
Batteryless Gesture Recognition
Via Learned Sampling

Geffen Cooper
The University of Texas at Austin

geffen@utexas.edu

Radu Marculescu
The University of Texas at Austin

radum@utexas.edu

Abstract—Batteryless wearables offer the potential for contin-
uous and maintenance-free operation through ambient energy
harvesting. However, the constrained and uncertain nature of
harvested energy makes it impossible to continuously sense,
process, and transmit data. In this batteryless setting, we no
longer have access to complete and continuous data streams.
Thus, we must adapt machine learning models to this new
paradigm where only a limited subset of the data can be sampled
and processed. In this work, we consider solar-powered gesture
recognition as a target application where sensing and processing
are constrained to a strict energy budget. We propose a learning-
based approach where a sampling policy and gesture classifier
are jointly trained via a shared representation. This enables
the system to learn which sensor samples are informative while
simultaneously optimizing the classifier for sparse inputs. By
actively deciding when to sample, we improve gesture recognition
accuracy by up to 10% compared to fixed-rate subsampling
across a wide range of energy budgets. This closes the gap to a
standard battery-powered approach by up to 40%.

Index Terms—Wearables, batteryless sensors, deep learning

I. INTRODUCTION AND PRIOR WORK

Batteryless wearables powered by ambient energy harvest-
ing can enable a new class of sustainable sensing systems [1].
By eliminating batteries, these devices have become appealing
for long-term health monitoring [2], activity recognition [3],
and human-computer interaction [4]. To explore wearable
batteryless systems from an algorithmic perspective, we target
gesture recognition as a representative task. Gesture recog-
nition enables natural interaction between users and devices
with applications ranging from assistive technologies to virtual
reality, making it a critical task for wearable computing [5].

While gesture recognition with battery-powered devices
such as smartwatches is well-established [5], removing the
stability of a continuous power source fundamentally changes
the problem. Specifically, in batteryless systems, energy is
highly constrained, making it impossible to guarantee the
sampling of complete gesture sequences. This leads to sparse,
and energy-dependent data, breaking the assumptions behind
conventional models trained on full gesture sequences.

Existing batteryless gesture recognition works tend to focus
on novel hardware for low-power sensing [6]–[9], but rely on
standard data processing pipelines with fixed length inputs.
In contrast, we use an off-the-shelf accelerometer and adopt a
learning-based approach that explicitly addresses the challenge
of energy constrained sampling by learning when to sample
and how to classify the resulting sparse input sequences.

Beyond gesture recognition, prior work on machine learning
with batteryless sensors has explored early exit networks [10]
and intermittent computing [11] to enable battery-free, on-
device inference. However, these works assume fully observed
inputs. In contrast, we optimize which portions of the in-
put signal to sample. Others have investigated energy-aware
data acquisition strategies [3], where a policy decides when
to spend or conserve energy to improve over opportunistic
baselines. Our approach differs in two key ways: (1) we
jointly optimize the sampling policy and classifier within a
unified model, and (2) we operate under a finite time-horizon
regime, where the system strategically allocates a fixed energy
budget over the uncertain duration of a gesture. Overall, our
contributions are as follows:

1) We design a learning framework that jointly optimizes
sampling and classification via a shared representation.

2) We evaluate our approach across a range of sampling
budgets on two gesture datasets, achieving up to 10%
higher accuracy over baseline strategies.

3) We validate the feasibility and practicality of our prob-
lem setting by profiling a physical hardware prototype.

The rest of the paper is organized as follows: Section II defines
our problem setting and approach. Section III outlines our
experiments, results, and hardware validation. Finally, Section
IV outlines our main contributions. We publish our code at:
https://github.com/SLDGroup/LearnedSampling

II. METHODOLOGY

A. Problem Setting
Battery-powered Setting: Gesture recognition operates on

a sequence X = (x1,x2, . . . ,xn) of samples, where xk ∈ Rd

is a sample at time step k and the length n is variable. In our
work, we use a 3-axis accelerometer (d = 3) where a sample
xk has (X,Y, Z) components. Each gesture X has a label
Y ∈ {1, . . . , C} where C is the number of gesture classes.
The goal is to learn a classifier Ŷ = fθ(X) parametrized by
θ from a dataset (X, Y), where Ŷ is the model prediction.

In our setting, we assume the onset of a gesture (k = 1)
is identified as the time when the acceleration magnitude
surpasses a given threshold. In a traditional battery-powered
system, the full gesture would then be densely sampled and
processed by a classifier f . However, in a batteryless setting,
dense sampling is not feasible, prompting the need for selec-
tive sampling and processing strategies.

…

Sampling Policy

LSTM

Classifier

(A) (B)

(C)

Fig. 1. (A) Overview. A wearable on the wrist harvests solar energy to power an accelerometer. At the onset of a gesture, our system has stored energy
Eonset which corresponds to a fixed number of observations m for gesture recognition. (B) Sampling and Processing. With each observed sample xki

, we
use an LSTM fθstate to accumulate information into a learned state hi where i is the observation index and ki is the time step. At each decision point, the
hidden state hi, current time ki, and remaining budget mrem are used by the policy fθpolicy (gray box) to determine ∆ki, the delay before observing the next
sample (gray arrows). Between samples, the system sleeps and uses negligible energy. Once the budget m is exhausted, we pass the final hidden state hm

to the classifier fθclass . The gesture prediction Ŷ is then transmitted via Bluetooth (BLE). (C) Sampled Signal. In the top plot, the faded lines show the full
accelerometer data, while the dark lines show the sampled (observed) data. In the bottom plot, we see that a fixed amount of energy Eupdate is used to observe
and process each new sample. The dashed lines show the budget for sampling and processing with the remaining budget being used for transmission (ETX).

Batteryless Setting: Our system harvests solar energy for
sensing, processing, and communication. In our setting, the
instantaneous solar power harvested is sufficient to power the
accelerometer for detecting the gesture onset, but it is not
sufficient to sense and process samples for gesture recognition.
Thus, energy is buffered into a capacitor until the gesture on-
set, at which point our system uses the available energy to se-
lectively sample a subset of the data X̃ = (xk1 ,xk2 , . . . ,xkm)
where ki ∈ {1, . . . , n} is a non-uniform time step and m is
the sampling budget. This procedure is outlined in Figure 1.

B. Energy Constrained Sampling

At the gesture onset, our system has a fixed energy budget,
Eonset, and sensing becomes a sequential decision making
process where each sampling decision is informed by the
data collected so far. To this end, we use an LSTM (Long
Short-Term Memory) [12], a recurrent neural network which
maintains a hidden state to capture information over time.
Overall, our system consists of three jointly learned parts
θsystem = {θstate, θpolicy, θclass} where θstate, θpolicy, and θclass are
the parameters of the LSTM (fθstate), sampling policy (fθpolicy),
and gesture classifier (fθclass) respectively. With each observed
sample xki , our LSTM updates the hidden state:

hi = fθstate(ki,xki
,hi−1) (1)

Note, we use ki as an input to add temporal context since the
samples are not uniformly spaced. The updated hidden state
is then used by the policy to determine when to sample next:

∆ki = fθpolicy(ki,mrem,hi) (2)

where mrem is the remaining sampling budget, and ∆ki is the
number of samples to delay for until observing the next sample
(ki+1 = ki +∆ki). The final hidden state hm is then used by

the classifier as Ŷ = fθclass(hm). The output ∆ki is predicted
from the set {1, 2, 4, 8, 16} which consists of powers of two to
provide a compact yet flexible range of temporal resolutions.
We define the number of samples the system can observe as the
sampling budget m, which is a function of the initial energy,
Eonset, the cost to read and process one accelerometer sample,
Eupdate, and the cost to transmit the prediction over BLE, ETX:

m =

⌊
Eonset − ETX

Eupdate

⌋
(3)

C. Jointly Optimizing Sampling and Classification
As shown in Figure 1, the hidden state of the LSTM

represents the shared representation used by our sampling
policy and gesture classifier. Ideally, the policy learns to map
this evolving representation to sampling decisions that yield
the most ‘informative’ and discriminative samples, enabling
the classifier to accurately distinguish between gestures.

Pretraining with Random Sampling: Learning the LSTM
representation is challenging as all modules have randomly
initialized weights. Initially, the classifier cannot provide
meaningful feedback, and the policy has no signal about
which samples are useful. Thus, we pretrain the LSTM and
classifier using a random policy. This provides a preliminary
representation and classifier that allow the policy to learn
which samples are most important for classification.

Policy Optimization as Supervised Learning: Even with
a pretrained representation and classifier, directly learning the
policy is challenging as we lack labels indicating when to
sample. Thus, we cast the problem as a supervised learning
task. The goal is to learn a function that maps the current
hidden state hi (at decision step i) to the delay ∆k until the
next sample xki+1 as shown in Equation (2). We now explain
how we learn this function via Algorithm 1.

1. Initialization: At the start of Algorithm 1, we assume
we have a pretrained LSTM representation and classifier which
were trained using a random policy. Then, for each budget m,
we train a randomly initialized policy for sampling.

2. Main Algorithm: For each decision index i within the
budget, we aim to train the policy to map the hidden state hi to
the best subsequent observation time ki+1. Thus, in the main
part of the algorithm (Lines 2-6), we train the policy to predict
the next best sampling time when starting from decision index
i, and then finetune the LSTM and classifier representations.

3. Policy Training: To train the policy in a supervised
manner (Lines 7-11), we need to find the next best sampling
time from decision step i for each gesture in the dataset. We
use this best delay as a label and optimize the parameters of
the policy with the Adam optimizer [13] to predict this delay.

4. Supervision via Rollouts: To find the best delay (Lines
12-21), we roll out the policy to decision step i (Line 14).
From ki, we sample multiple candidate delays (1,2,4, ... steps),
and then use uniform subsampling to consume the remaining
budget. By keeping the remainder of each trajectory compa-
rable, we isolate the impact of the single delayed observation.
Intuitively, small delays lead to denser sampling early in the
gesture, while larger delays preserve more budget for denser
sampling later. Finally, we train the policy to predict the delay
that led to the highest confidence of ground truth gesture Y .

5. Finetuning the Representation: After training the policy
for the current delay index, we freeze it and finetune the LSTM
representation and the classifier using standard supervised
learning. The only difference is that the forward pass through
the LSTM uses the frozen policy to sample the input.

III. EXPERIMENTS

A. Experimental Details

Datasets: We use the SmartWatch Gesture [14] (20 ges-
tures, 8 subjects) and Motion Gesture [15] (6 gestures, 14
subjects) datasets which were collected with a smartwatch.
Since we introduce a new problem formulation, we evaluate
against three baselines. (1) Random Sampling: select m ran-
dom time steps. (2) Uniform Subsampling: select m time steps
by uniformly subsampling. Since the gesture length varies, we
subsample based on the average length. (3) Dense Sampling:
use all samples with no energy constraint (the upper bound).

Training: We use the default PyTorch LSTM (hidden size
32). The policy and classifier are fully connected layers that
take the hidden state as input. We train the Dense, Random,
and Uniform Subsampling models for 300 epochs with the
Adam optimizer (batch size 8, learning rate 0.0005), and use
dropout (rate 0.5) for the classifier. For finetuning and policy
training (Algorithm 1), we use a learning rate of 0.01, batch
size of 8, and 5 epochs per iteration (Line 2 of Algorithm 1).

Evaluation: We use the macro-average F1-score as our eval-
uation metric and use leave-One-Subject-Out-Cross-Validation
(LOSOCV), training on S − 1 subjects and testing on the
remaining one where S is the number of subjects. We repeat
the experiment across 3 seeds and test our approach across a
range of sampling budgets m ∈ {2, 3, 4, 5, 6, 7}.

Algorithm 1 Jointly Optimizing Sampling and Classification

Require: m, sampling budget; (θpretrain
state , θpretrained

class), pretrained
LSTM and classifier; {(X, Y)}, a gesture dataset;

1: initialize θpolicy

2: for i = 1 to m do
3: θsystem ← {θstate, θpolicy, θclass}
4: θpolicy ← TRAINPOLICY(θsystem, m, i, {(X, Y)})
5: θstate, θclass ← FINETUNE(θsystem, m, i, {(X, Y)})
6: end for
7: function TRAINPOLICY(θsystem, m, i, {(X, Y)})
8: Ypolicy ← BESTDELAY(θsystem, m, i, (X, Y))
9: θpolicy ← AdamUpdate(θpolicy,{(X, Ypolicy)})

10: return θpolicy
11: end function
12: function BESTDELAY(θsystem, m, i, (X, Y))
13: h← 0, mrem ← m, k ← 0
14: hi, k,mrem ← LSTM Policy(X, i,h)
15: for l ∈ {1, 2, 4, 8, 16} do
16: Trajl ←

[
X[k + l, :],X[k + l :: ∆unif, :]

]
17: predl ← fθclass(LSTM(Trajl,h))
18: end for
19: Ypolicy ← argmax

l
{predl[Y]}

20: return Ypolicy
21: end function
22: function FINETUNE(θstate, θclass, m, i, {(X, Y)})
23: Ŷ ← fθclass (LSTM Policy(X, i,h))
24: θstate, θclass ← AdamUpdate(θstate, θclass,{(X, Y)})
25: return θstate, θclass
26: end function

B. Results

Figures 2 and 3 show the mean F1-scores (averaged over
seeds and subjects) per budget, with error bars for standard
deviation. The dashed line shows the dense sampling upper
bound. On the SmartWatch dataset, Uniform Subsampling
(orange) outperforms Random Sampling (blue) as random
sampling can miss key gesture segments whereas uniform
subsampling weights all segments equally. However, on the
Motion dataset, which contains high variability in gesture
length, random sampling performs similarly or better. This is
because uniform subsampling uses a fixed sampling rate based
on the average sequence length, causing it to underutilize the
budget on short gestures or run out of samples before the
gesture ends on long gestures. In contrast, our learned policy
(green) adapts to the input, consistently achieving the highest
F1-score and approaching the upper bound with larger budgets.

C. Hardware Validation

We profile a hardware prototype (Fig. 4) consisting of an
nRF52832 (MCU) and BMA400 accelerometer. A solar panel
charges a 100 uF capacitor via a DFM8001 power management
chip (PMIC) which delivers 1.8V to the PCB. The BMA400’s
internal logic wakes the MCU when motion is detected.

2 3 4 5 6 7
Sampling Budget m

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

ro
 A

ve
ra

ge
 F

1-
Sc

or
e

Dense Sampling
Random Sampling
Uniform Subsampling
Learned Policy (Ours)

Fig. 2. SmartWatch Gesture dataset results. We plot the mean with standard
deviation error bars of the Macro-F1-Score across 6 sampling budgets. The
upper dashed line shows the mean F1 for dense sampling.

2 3 4 5 6 7
Sampling Budget m

0.4

0.5

0.6

0.7

0.8

M
ac

ro
 A

ve
ra

ge
 F

1-
Sc

or
e

Dense Sampling
Random Sampling
Uniform Subsampling
Learned Policy (Ours)

Fig. 3. Motion Gesture dataset results. We plot the mean with standard
deviation error bars of the Macro-F1-Score across 6 sampling budgets. The
upper dashed line shows the mean F1 for dense sampling.

Indoor light is enough to power the motion detection logic:
[(2.5uA MCU sleep) + (0.85uA BMA400 logic)] · 1.8V
≈ 6uW . The DFM8001 charges the capacitor until 2.7V and
turns off once it discharges to 2.2V giving 1

2100uF(2.72 −
2.22) ≈ 120uJ of usable energy. Profiling shows an average
cost of ETX = 25uJ (1 byte payload) and Eupdate = 15uJ.
Applying Equation (3), m = ⌊(120− 25)/15⌋ = 6 samples in
the best case which validates our problem setting. Importantly,
our method adds negligible cost. Breaking down Eupdate:
reading one sample (at 25 Hz) costs 3uJ, the LSTM state
update (Eq. (1)) costs 12uJ, and the policy evaluation (Eq. (2))
adds ≈ 0.2uJ. Since every policy requires an LSTM update
for classification, our method only adds the negligible cost of
policy evaluation, keeping Equation (3) valid across policies.

IV. CONCLUSION

In this paper, we developed a learning-based framework
for gesture recognition in the batteryless setting, where only
a limited subset of the input can be observed. By jointly
training a sampling policy and gesture classifier via a shared
representation, our approach learns to select informative sam-
ples with negligible overhead. Our method achieves the best
performance across two datasets and 6 sampling budgets when
averaged across multiple subjects and random seeds. Finally,
we validated our problem setting using a physical prototype,
showing that batteryless gesture recognition is feasible with
commodity hardware. In future work we seek to generalize
our approach to use a single model for all sampling budgets.

Fig. 4. Hardware Prototype. A solar panel charges a 100uF capacitor via
a power management chip which delivers a regulated 1.8V to the PCB.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant ECCS-
2428656 and the iMAGiNE Consortium at UT Austin. We
also thank David Sisson for assistance with the PCB design.

REFERENCES

[1] S. Ahmed et al., “The internet of batteryless things,” Communications
of the ACM, vol. 67, no. 3, 2024.

[2] H. Kim, B. Rigo, G. Wong, Y. J. Lee, and W.-H. Yeo, “Advances in
wireless, batteryless, implantable electronics for real-time, continuous
physiological monitoring,” Nano-Micro Letters, vol. 16, no. 1, 2024.

[3] G. Cooper and R. Marculescu, “Packet pruning: Finding better energy
spending policies for batteryless human activity recognition,” in 2024
IEEE 20th International Conference on Body Sensor Networks (BSN).
IEEE, 2024, pp. 1–4.

[4] A. Alsubhi et al., “User-centered perspectives on the design of battery-
less wearables,” International Journal of Human–Computer Interaction,
vol. 40, no. 23, pp. 8025–8046, 2024.

[5] R. Tchantchane, H. Zhou, S. Zhang, and G. Alici, “A review of hand
gesture recognition systems based on noninvasive wearable sensors,”
Advanced intelligent systems, vol. 5, no. 10, p. 2300207, 2023.

[6] H. Truong et al., “Capband: Battery-free successive capacitance sensing
wristband for hand gesture recognition,” in Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems, 2018, pp. 54–67.

[7] A. Jayatilaka and D. C. Ranasinghe, “Real-time fluid intake gesture
recognition based on batteryless uhf rfid technology,” Pervasive and
Mobile Computing, vol. 34, pp. 146–156, 2017.

[8] M. Kodali, S. Sigg et al., “Towards battery-less rf sensing,” in 2021 IEEE
International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops). IEEE,
2021, pp. 352–355.

[9] Y. Li, T. Li, R. A. Patel, X.-D. Yang, and X. Zhou, “Self-powered gesture
recognition with ambient light,” in Proceedings of the 31st annual ACM
symposium on user interface software and technology, 2018.

[10] P. Farina et al., “Memory-efficient energy-adaptive inference of pre-
trained models on batteryless embedded systems,” arXiv preprint
arXiv:2405.10426, 2024.

[11] L. Caronti, K. Akhunov, M. Nardello, K. S. Yıldırım, and D. Brunelli,
“Fine-grained hardware acceleration for efficient batteryless intermittent
inference on the edge,” ACM Transactions on Embedded Computing
Systems, vol. 22, no. 5, pp. 1–19, 2023.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[14] L. Porzi, S. Messelodi, C. M. Modena, and E. Ricci, “A smart watch-
based gesture recognition system for assisting people with visual im-
pairments,” in Proceedings of the 3rd ACM international workshop on
Interactive multimedia on mobile & portable devices, 2013, pp. 19–24.

[15] R.-D. Vatavu and O.-C. Ungurean, “Understanding gesture input ar-
ticulation with upper-body wearables for users with upper-body motor
impairments,” in Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, 2022, pp. 1–16.

