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Abstract

Multimodal models have demonstrated powerful capabilities in complex tasks
requiring multimodal alignment, including zero-shot classification and cross-modal
retrieval. However, existing models typically rely on millions of paired multimodal
samples, which are prohibitively expensive or infeasible to obtain in many domains.
In this work, we explore the feasibility of building multimodal models with limited
amount of paired data by aligning pretrained unimodal foundation models. We
show that high-quality alignment is possible with as few as tens of thousands of
paired samples—less than 1% of the data typically used in the field. To achieve this,
we introduce STRUCTURE, an effective regularization technique that preserves
the neighborhood geometry of the latent space of unimodal encoders. Additionally,
we show that aligning last layers is often suboptimal and demonstrate the benefits
of aligning the layers with the highest representational similarity across modali-
ties. These two components can be readily incorporated into existing alignment
methods, yielding substantial gains across 24 zero-shot image classification and
retrieval benchmarks, with average relative improvement of 51.6% in classification
and 91.8% in retrieval tasks. Our results highlight the effectiveness and broad
applicability of our framework for limited-sample multimodal learning and offer a
promising path forward for resource-constrained domains.

1 Introduction

Unimodal foundation models (FMs) have achieved remarkable progress in recent years, demon-
strating high performance on a variety of complex tasks across diverse domains. Large language
models (LLMs) [1, 2] have shown unparalleled abilities across a wide range of natural language un-
derstanding and generation tasks, reaching human-level performance on many complex reasoning and
comprehension tasks. In parallel, vision FMs [3, 4] have delivered similar breakthroughs in visual per-
ception, enabling systems to perform tasks such as object recognition and segmentation with minimal
supervision. In scientific domains, models such as AlphaFold [5] and ESM2 [6] have demonstrated
the potential of large-scale models to solve highly specialized and complex problems, including
accurate protein structure prediction and sequence-based modeling of biomolecular functions.

While these models are highly effective within their respective modalities, many applications involve
multimodal data, where it is important to map different modalities into a shared representation space
to enable meaningful cross-modal comparison, retrieval, and classification. Pioneering multimodal
models like CLIP [7] and CLAP [8] align visual and auditory inputs with language through contrastive
learning and achieve strong zero-shot performance across a broad spectrum of multimodal tasks.
However, these powerful multimodal models rely on vast amounts of paired training data (e.g., CLIP
uses 400M pairs), which are often unavailable in many domains like healthcare and biology, where
collecting high-quality multimodal data is expensive and labor-intensive.
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Figure 1: Overview of the proposed approach for cross-modal alignment with limited data. The
objective is to align representations from two modalities (e.g., images and text) into a shared em-
bedding space. The central challenge is guiding the model toward a well-aligned solution, rather
than a misaligned one, when only a small amount of paired data is available. The key idea is to
freeze pretrained encoders and learn lightweight alignment functions that preserve each modality’s
pretrained latent structure during alignment.

A promising direction to address this limitation is to leverage powerful representations from
pretrained unimodal FMs for multimodal alignment. However, existing alignment methods [9–11]
still require large quantities of paired examples, often tens of millions, to learn a shared embedding
space effectively. On the other hand, unsupervised techniques [12, 13] do not use labeled data
but primarily perform sample-level matching, thus failing to construct a shared embedding space.
This opens a fundamental question: Can we align FMs from different modalities into a shared
representation space using a limited number of multimodal samples?

In this work, we answer this question affirmatively by introducing a modular alignment strategy
that requires as few as tens of thousands of paired examples, less than 1% of the data used by
existing modalities alignment methods [9–11]. Specifically, we introduce STRUCTURE, a novel
regularization technique designed to preserve the multiscale neighborhood structure of each unimodal
latent space during alignment, ensuring that the relationships between samples captured by the
unimodal encoders are retained. In addition, based on the observation that higher similarity correlates
with better alignment performance, we propose to align those layers with the highest representational
similarity. Incorporating both components into existing alignment methods leads to consistent relative
performance gains across 22 zero-shot classification and two retrieval benchmarks, averaging 51.6%
in classification and 91.8% in retrieval, demonstrating superior performance in low-data settings.
Finally, we show that incorporating just a few labeled examples per class from the target domain into
the training set can effectively bridge the performance gap to large-scale multimodal models trained
on hundreds of millions of multimodal data, highlighting the importance of domain coverage over
sheer data volume in multimodal alignment.

2 Related work

Multimodal foundation models. Recent advances in multimodal FMs have produced unified
architectures capable of understanding and generating content across vision and language. Early
models such as CLIP [7] and ALIGN [14] use contrastive learning to align image and text embeddings,
achieving strong zero-shot performance in classification and retrieval. In contrast, models like
BLIP [15] and GIT [16] adopt generative pretraining to support tasks such as image captioning and
visual question answering. More recent efforts, including FLAVA [17], PaLI [18], Kosmos-1 [19],
and Gemini [20], aim for broad task coverage through unified multimodal training, reflecting a shift
toward scalable, general-purpose multimodal systems. Despite their impressive capabilities, existing
multimodal models rely heavily on massive paired datasets, often hundreds of millions of samples. In
contrast, in this work we explore how to align powerful unimodal models that are readily available in
many domains using only limited multimodal supervision, reducing reliance on large-scale paired
data and enabling multimodal learning in low-data regimes.
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Parameter-frozen modality alignment. Parameter-frozen modality alignment is an efficient strat-
egy for building multimodal systems by aligning pretrained unimodal encoders without updating
their internal weights. Unsupervised alignment methods seek to align representations without relying
on paired data. Techniques such as Centered Kernel Alignment [12] focus on maximizing representa-
tional similarity between modalities, leveraging shared structural patterns. However, a key limitation
of these methods [13, 12, 21] is that they primarily perform sample-level matching, thus failing to
construct a shared embedding space. Furthermore, they are not able to utilize paired data even when
available, missing out on rich alignment signals that could significantly enhance performance. In
contrast, supervised alignment methods assume access to abundant paired data, such as millions of
paired samples, and train lightweight alignment modules (e.g., linear projections or MLPs) while
keeping the encoders frozen. These approaches [9, 10] have achieved strong performance in tasks
like zero-shot classification and retrieval. However, these methods are limited by their dependence
on large-scale multimodal datasets, requiring tens of millions of paired samples to effectively train
the models. In contrast, our work explores parameter-frozen alignment in a low-data regime, with
tens of thousands of paired samples, which is 0.02% of the paired samples used by previous works.
To address the challenges of low-data regimes, we propose an effective strategy that can be easily
integrated into existing methods [9, 10] to make them more effective under low-data conditions.

Other works have also focused on data-efficient alignment. FuseMix [22] shares our motivation of
using limited paired data but focuses on improving training efficiency via latent space augmentations.
Our geometric regularization and layer selection are complementary to their approach, and as shown
in our experiments, combining them yields further gains. Learning-free methods like ASIF [23] also
leverage neighborhood structure, but for direct matching without training an alignment function.

Platonic representation hypothesis. The Platonic representation hypothesis [24] suggests that
models from different modalities can converge to similar internal representations. This insight
motivates the possibility of aligning separate representation spaces. While earlier multimodal FMs like
CLIP [7] depend on end-to-end training with vast amounts of paired data, the Platonic view offers a
more efficient alternative: aligning independently trained unimodal models within a shared embedding
space. This approach opens the door to scalable and flexible multimodal learning without the need
for joint training, and it has recently spurred interest in supervised and unsupervised alignment
techniques [9, 12]. Building on this direction, which is related to the broader field of geometric priors
in representation alignment [25–28], our work explores its potential in the challenging low-data
setting.

3 Problem setup

We consider the task of aligning representations from independently pretrained encoders across
different modalities. As illustrated in Figure 1, we keep the encoders frozen and learn lightweight
alignment functions that map from each modality’s latent space into a shared space where semantically
related samples are close. We next formalize this setup.

Modality alignment with pretrained representations. Let X1 ⊆ Rd1 and X2 ⊆ Rd2 be the latent
spaces of two pretrained unimodal encoders, which correspond to outputs from either the last or
intermediate layers of the encoders, and d1 and d2 be their respective dimensions, which do not need
to be equal. Given a set of N paired multimodal samples D = {(xi

1, x
i
2)}Ni=1, where xi

1 ∈ X1 and
xi
2 ∈ X2, our goal is to learn two alignment functions f1 : Rd1 → A and f2 : Rd2 → A, which

map the modality-specific spaces X1 and X2 into a shared embedding space A ⊆ Rk of dimension k.
Alignment in the shared space is achieved when the paired samples (xi

1, x
i
2) are closer to each other

than to any non-paired sample. Specifically,

sim(f1(x
i
1), f2(x

i
2)) ≥ sim(f1(x

i
1), f2(x

j
2)) ∀j ̸= i, (1)

where sim(·) denotes a similarity function, such as cosine similarity.

Different from previous works, we focus on this alignment problem under the challenging condition of
limited paired data. Specifically, we focus on the scenario when N is relatively small (i.e., tens of thou-
sands of samples) compared to tens of millions of paired samples considered in previous works [9, 10].

We unify different alignment methods under a joint framework that consists of three main components:
(i) modality-specific latent spaces X1 and X2, (ii) alignment functions f1 and f2, and (iii) the objective
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Table 1: Overview of existing methods and our approach within the modality alignment framework.
LC represents the standard symmetric contrastive losses from CLIP [7]. RS denotes STRUCTURE,
a regularization term proposed in our work.

Method Modality-specific spaces Alignment functions f Objective function LA

Linear mapping [10] Last layers Linear LC

Non-linear mapping [9] Last layers MLP LC

Token alignment [9] Last layers Token level MLP LC

CSA [29] Last layers Linear Reformulated LC

Our work Most similar layers Any Any + RS

function LA, which guides the construction of the shared space A. Table 1 summarizes how existing
methods instantiate each of these components. In our work, we propose a general framework that can
work with any alignment function and any objective function by regularizing the objective using the
STRUCTURE regularization RS , and using as modality-specific latent layers those layers that have
highest representational similarity. We introduce both components in the following section.

4 Multimodal alignment with limited data

To align pretrained unimodal encoders using a limited number of paired multimodal samples, we
propose two key components: (i) STRUCTURE, a regularization that preserves the intrinsic geometry
of each modality’s latent space, and (ii) a strategy for selecting modality-specific latent space, those
layer pairs that have highest representational similarity. Both components can be seamlessly integrated
into existing alignment methods [9, 10, 29] (see Table 1).

Preserving neighborhood via STRUCTURE regularization. With a limited number of paired
samples, it is crucial to preserve the latent structure of pretrained unimodal encoders, trained on
millions or even billions of examples, as they encode meaningful relationships between samples.
To achieve this, we introduce STRUCTURE, a regularization term that preserves the neighborhood
relationships of the pretrained space of unimodal encoders within the aligned space.

Given a modality-specific space X ⊆ Rd and its corresponding shared space A ⊆ Rk, where X
can be either X1 or X2, the regularization term aims to ensure the hierarchical (i.e., multi-scale)
consistency between the relationships expressed by X and A. Specifically, each sample xi ∈ X and
ai ∈ A (i.e., ai = f(xi)) is first ℓ2-normalised, x̂i = xi/∥xi∥2, âi = ai/∥ai∥2, and then centered to
remove any global translation bias:

x̃i = x̂i − 1
N

∑N
j=1 x̂j , ãi = âi − 1

N

∑N
j=1 âj . (2)

We denote the normalized and centered matrices as X̃ = [x̃1, x̃2, · · · , x̃N ] ∈ RN×d and Ã =
[ã1, ã2, · · · , ãN ] ∈ RN×k.

The (scaled) similarity matrices are computed with temperature τ >0 as:

SX = X̃X̃⊤

τ , SA = ÃÃ⊤

τ . (3)

To interpret the similarities as probability distributions, we apply a softmax function row-wise.
Specifically, we define PX = softmax(SX), PA = softmax(SA) as the corresponding matrices
with the similarity distributions of the respective spaces.

To capture relationships reachable by exactly l hops on the similarity graph, we define for each
hierarchical level l = 1, . . . , L, where L ∈ N is the total number of levels2:

P
(l)
X = (PX)

l
, P

(l)
A = (PA)

l
. (4)

Intuitively, PX can be seen as the transition matrix of a random walk on the data manifold. The l-hop
matrices thus capture multi-step relationships and progressively more global structure.

2For a square matrix P , the power P l is defined by repeated matrix multiplication, i.e., P l = P P · · ·P
(with l factors), and should not be confused with entrywise exponentiation, generally (P l)ij ̸= P l

ij .
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The key idea of our regularization is to enforce consistency between the structural relationships, i.e.,
the relative positions and neighborhood structure in the embedding space, captured by X and A. Thus,
we employ Jensen-Shannon divergence because of its symmetric nature to measure the divergence
between similarity distributions. Specifically, at each level l, we define the level-specific divergence as:

JS(P (l)
X , P

(l)
A ) =

1

2
DKL

(
P

(l)
X

∥∥∥M (l)
)
+

1

2
DKL

(
P

(l)
A

∥∥∥M (l)
)
, (5)

where

M (l) =
1

2

(
P

(l)
X + P

(l)
A

)
, (6)

and DKL is the Kullback-Leibler divergence. In practice, a small constant ε is added inside the
logarithm for numerical stability, i.e., P (l)

X + ε and P
(l)
A + ε.

The final formulation of the STRUCTURE regularizer is a weighted average of the divergences
across levels, where lower levels are weighted more heavily to counteract the more concentrated
distributions of the higher levels:

R(L)
S (X,A) =

1

L

L∑
l=1

JS(P (l)
X , P

(l)
A )

l
. (7)

We denote R(L)
S as the regularization that operates on L levels, and set it to 1 if not otherwise specified.

Together with any objective function LA used for representation alignment (e.g., LC in work [9, 10]),
the combined loss is defined as

L = LA + λ
(
R(L)

S (X1, f1(X1))︸ ︷︷ ︸
Reg. for Modality 1

+R(L)
S (X2, f2(X2))︸ ︷︷ ︸
Reg. for Modality 2

)
, (8)

where λ is the regularization weight.

Each JS(·) is non-negative and vanishes iff its inputs coincide, with equality exactly when PX = PA

for all l, resulting from perfect multi-scale alignment. Moreover, by virtue RS is invariant to global
scaling, translations, and orthonormal rotations, depending solely on the intrinsic, hierarchical
relational structure of the embeddings. Since RS operates in sample space, and thus is influenced by
the size of N , we investigate the generalization gap between the empirical and expected values of the
regularization.

Lemma 1 (Generalization bound). The generalization gap between the empirical and the expected
values of RS is bounded by ∣∣R̂N −R⋆

∣∣ ≤ O
(

1√
N

)
. (9)

where R̂N is the empirical STRUCTURE regularizer and R⋆ is its expectation over the data distribu-
tion. This shows that the empirical regularizer faithfully approximates its population expectation as
the number of samples increases.

Proof. Given in Appendix C.

Similarity-based layer selection. In parameter-frozen alignment, the quality of alignment is closely
linked to the representational similarity between the unimodal representation spaces X1 and X2.
Given two unimodal FMs, these spaces typically correspond to different layers of the models. There-
fore, selecting the appropriate layers for alignment is critical. To identify the layers with the greatest
potential for effective alignment, a metric is required to quantify the similarity between these represen-
tation spaces. Examples include Centered Kernel Alignment (CKA) [30], which measures the overall
correspondence of pairwise relationships by comparing centered Gram matrices, unbiased CKA [31],
which further removes the systematic overestimation inherent in standard CKA statistics when sample
sizes are small, and mutual k-nearest-neighbor (kNN) [24], which identifies the k closest samples
in each modality’s feature space and records the fraction of neighbors they share. Prior work has,
however, solely relied on aligning models at their last layers [9], ignoring layer-based similarity. We
instead challenge this approach and show in Figure 2 a strong correlation between the representational
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Figure 2: Zero-shot performance of different model combinations when aligning different layers
as a function of their representational similarity measured in mutual kNN (MkNN). Here, the star
indicates the performance achieved when aligning the last layers of the models, and ρ is the average
Spearman’s rank correlation coefficient across different datasets.

similarity measured in terms of mutual kNN of the layers of pretrained unimodal encoders and
downstream zero-shot performance once aligned using a single linear layer with our regularization.

We thus propose the following procedure for layer selection: (i) compute the representational
similarity between all pairs of layers in terms of mutual kNN on a small set of paired samples (in the
order of 5,000 pairs), typically randomly selected from the training set, and (ii) choose the layers with
the highest similarity for alignment. Throughout our work, we compute representational similarity
according to mutual kNN with k chosen according to Rice’s criterion3, similar to what has been
used in prior work [24] to measure similarities of different latent spaces. We show that this selection
procedure leads to consistent results with different subset sizes and repeats in Appendix H.2.

5 Experiments

Experimental setup. In our experiments, we align frozen pretrained unimodal encoders using a
limited number of image–text pairs. To align models, we use the MS COCO train split consisting
of 80,000 paired samples [33]. To demonstrate versatility of the STRUCTURE regularization, we
apply it to different alignment strategies shown in Table 1, including linear mapping (Linear) [10],
non-linear mapping (MLP) [9], and CSA [29]. In addition, to evaluate the benefits of selecting layers
based on the similarity of representations rather than the last layer, we trained the models on either the
final layers (“Last”) or the similarity-based selected layers (“Similar”). Experiments are performed
with different combinations of models. By default, we consider RoBERTa [34] and DINOv2 ViT
Giant [3] as our unimodal encoders.

We evaluate model performance on zero-shot classification and cross-modal retrieval tasks. For
zero-shot classification, we consider 22 datasets from the CLIP benchmark [7]. For cross-modal
retrieval, we consider the Flickr30 and MS COCO test splits to evaluate both text-to-image and
image-to-text performance. Detailed dataset descriptions and training configurations are described in
Appendices D and E, respectively.

Performance comparison. We conduct a comprehensive evaluation of zero-shot classification
and cross-modal retrieval performance across diverse datasets and alignment techniques. Table 2
shows that adding STRUCTURE regularization helps improve generalization performance across
all three alignment techniques. On average, STRUCTURE yields substantial relative gains in both
zero-shot classification and cross-modal retrieval. Specifically, for zero-shot classification, the average
relative improvement from using STRUCTURE (compared to the baseline using the most similar
layers without regularization) is 74.0% for MLP, 68.4% for Linear, and 26.8% for CSA. In retrieval
tasks, the corresponding relative improvements are 137.0%, 122.8%, and 15.9%, respectively. These
results highlight that MLP and Linear alignment strategies benefit the most from STRUCTURE,
while CSA shows more moderate but still substantial gains, indicating the broad applicability of our
STRUCTURE across different alignment methods.

3⌈2 3
√
N⌉, which comes from the literature of choosing the optimal number of histogram bins [32].
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Table 2: Performance comparison of zero-shot classification and cross-modal retrieval tasks across
eight datasets and three alignment methods. Alignment is performed for a RoBERTa and a ViT-Giant.
Underline shows the best performance in the respective group (i.e., alignment method), bold indicates
the overall best performance for the respective dataset, and italic indicates our framework.

Zero-shot Classification (Accuracy) Retrieval (R@1)

Method STL10 CIFAR10 Caltech101 Food101 CIFAR100 ImageNet Pets Flickr30 I2T Flickr30 T2I

Linear + Last [10] 75.6 85.5 37.9 14.8 34.0 9.9 7.0 32.5 22.1
Linear + Similar 79.7 89.0 39.5 14.6 33.1 10.5 4.9 35.3 24.0
Linear + Similar + RS 92.6 96.3 56.0 30.6 51.3 24.7 13.2 65.8 53.7

MLP + Last [9] 76.6 79.2 38.2 15.6 35.3 10.6 5.3 31.6 20.3
MLP + Similar 84.0 81.5 38.8 17.1 34.5 11.4 6.1 36.4 25.0
MLP + Similar + RS 92.7 96.3 56.0 30.5 52.1 25.1 13.2 65.9 53.8
CSA + Last [29] 77.9 78.5 31.4 29.3 47.4 23.2 14.4 47.0 38.3
CSA + Similar 80.0 80.8 33.6 28.0 47.4 23.3 14.9 48.6 39.0
CSA + Similar + RS 91.7 97.2 61.5 28.6 56.4 26.8 17.0 56.1 43.1

In addition to regularization, selecting layers based on representational similarity instead of defaulting
to the final layer also leads to consistent improvements across all methods. On average, this strategy
yields relative gains in classification accuracy of 2.5% for Linear, 4.8% for MLP, and 2.0% for CSA.
For retrieval tasks, the relative improvements are even more pronounced, 8.6% for Linear, 18.3% for
MLP, and 2.7% for CSA. This strategy alone provides a significant boost in performance and, when
combined with STRUCTURE, results in the best overall generalization. The complete results across
all 24 datasets are shown in Appendix H.8, showing consistent trends on the extended benchmark:
average improvements from baseline to our approach are 65.0% for Linear in classification and
122.7% in retrieval, 61.5% and 136.8% for MLP, and 28.3% and 15.9% for CSA, respectively.
Interestingly, on the CIFAR10 dataset, our alignment strategy even outperforms CLIP [7] by around
2% while using only 0.02% of the data used to train CLIP.
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Figure 3: Comparison of zero-shot and retrieval performance for linear alignment when scaling down
the training data, repeated five times for each sample size. Here, U quantifies the proposed method’s
label efficiency by computing the utility compared to using the last layer.

Scaling down the training data. To measure the effect of the size of the training dataset on the
performance, we subsampled the COCO training set and evaluated the effectiveness of the proposed
method across varying dataset sizes for both zero-shot classification and retrieval tasks. We observe
that across different tasks and sample sizes, STRUCTURE regularization combined with layer
selection significantly improves performance, even in extreme resource-constrained settings of
only 1,000 samples (see Figure 3). Similarly, we find that the layer selection strategy continues to
provide improvements even with less data (Appendix H.3). These results demonstrate that combining
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latent-geometry preservation with strategic layer selection is highly performant under severe data
scarcity, making multimodal alignment practical even in the most constrained low-data regimes.

To quantify label efficiency, we measure the utility [35] U(N) = (N̂/N)− 1 for different-sized sub-
sets and report its average value. Here, N is the number of labeled examples used by the regularized
model, and N̂ is the minimal number of labeled examples required when naively relying on the last
layer for alignment without any regularization to match that same accuracy. This metric tracks the
reduction in samples needed to achieve equivalent performance. For example, for zero-shot classifica-
tion on the CIFAR100 dataset and text-to-image retrieval performance on the Flickr30 dataset, the
outlined method yields an average utility of 23.1× and 22.4×, respectively, indicating that roughly
23× fewer samples are needed to achieve the same performance as the baseline. These substantial
label savings demonstrate that our approach significantly reduces annotation requirements while
preserving high performance, thereby enhancing practicality for real-world multimodal applications.
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Figure 4: Zero-shot performance when randomly adding
LAION samples to the COCO training set, repeated three
times, when aligning the best layers and adding the regu-
larization.

Scaling up the training data. We
next explored the effect of increasing
the size of the multimodal dataset used
for alignment. We gradually incorpo-
rate increasingly larger subsets of the
LAION-15M dataset [36] into the COCO
dataset of 80K samples. Following the
approach of Gadre et al. [37], we filter
out low-quality LAION samples by
computing CLIP scores [38] for each
image–text pair and discarding those with
a score below 0.15. From the remaining
847K samples, we randomly draw subsets
and incrementally add them to the 80K
COCO training set in steps of 80K. Figure
4 presents the results of incrementally
adding different numbers of paired samples for CIFAR100 and ImageNet zero-shot classification,
and we compare performance with and without applying STRUCTURE regularization on layers
selected based on representational similarity. The steepest performance gain occurs with the initial
addition of 80K samples, while further increases yield smaller but steady improvements. Notably, the
impact of STRUCTURE regularization diminishes as more data becomes available, highlighting its
particular effectiveness in low-data regimes, where preserving pretrained structure is most beneficial.
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Figure 5: Zero-shot classification per-
formance as in-domain samples are
added to the training set. Performance
is evaluated on multiple fine-grained
in-domain tasks, where the added and
evaluation samples come from the
same dataset. Here, the star indicates
the CLIP performance.

Train-test data distribution shift. Despite the advantages
of our alignment approach in low-data regimes, performance
remains low on certain datasets. For example, accuracy on
the Pets dataset reaches only around 15%. We attribute this
to distribution shifts between the COCO-based training set
and the target evaluation domains, including differences in
image content, label granularity, and overall dataset cover-
age and scale. To understand the impact of this shift, we
augmented the training set (80K COCO pairs) with a small
number of k in-domain examples per class drawn from dif-
ferent image classification benchmarks. These k samples per
class are added directly to the 80,000-sample COCO training
set (e.g., 80, 000 + 10× k total samples for CIFAR10). We
find that mixing a small number of samples from the target
domain into the training set can effectively close distribu-
tion gaps and achieve strong performance. Figure 5 plots
zero-shot accuracy as a function of number of samples per
class k across five datasets, including Flowers, Food101, CI-
FAR100, Pets, and ImageNet. Remarkably, we can achieve
or even outperform CLIP trained on hundreds of millions of
multimodal samples by adding a few in-distribution labeled
samples. Specifically, with just three samples per class, accu-
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Figure 7: Performance of different language models combined with a DINOv2 ViT-G when choosing
the last or most similar layer for alignment, and the influence of adding STRUCTURE regularization
when training a single linear alignment layer.

racy on the Flowers dataset rises from around 24% to over 95%, outperforming CLIP’s 93% accuracy.
Similarly, on the CIFAR100 dataset, using only four samples per class yields a 3% improvement over
CLIP. On the ImageNet dataset, our alignment strategy matches CLIP’s performance with only 17
samples per class. On both Pets and Flowers datasets, we achieve comparable results to CLIP using
approximately 20 samples per class. These results suggest that in a limited data regime, labeling just
a few in-domain samples can yield comparable or even superior performance to large models trained
on millions of paired samples.

Different pairs of models. We explore the performance across different language models, each
combined with a DINOv2 ViT-G encoder. Figure 7 shows that our regularization term and layer
selection strategy consistently improve results across all combinations of models. On average, our
method yields improvements of 15.2% for RoBERTa, 20.5% for Llama3-8B, and 19.8% for Llama-
13B. Notably, the RoBERTa-based combination achieves the highest overall performance, supporting
previous findings [9] that RoBERTa aligns particularly well with vision FMs.
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Figure 6: Evolution of Trustworthiness100 and
Continuity100 over 2, 000 training epochs on a
fixed random subset of 5, 000 embeddings from
the training (solid lines) and validation set (dashed
lines) when aligning the most similar layers
without and with regularization. Trustworthiness
penalizes introducing new neighbors not present
in the original pretrained space, while continuity
penalizes losing true (pretrained) neighbors.

Neighborhood preservation. To empirically
verify that the STRUCTURE regularization pre-
serves pretrained neighborhood, we monitored
Trustworthiness100 and Continuity100 [39] on a
fixed random subset of 5,000 embeddings from
the training and the held-out validation set at the
end of each epoch with and without the STRUC-
TURE regularization. Trustworthiness measures
the fraction of k-nearest neighbors in the aligned
space that were already neighbors in the original
pretrained embedding, while Continuity mea-
sures the fraction of original neighbors that re-
main in the aligned space. As shown in Figure 6,
over 2,000 epochs, both the training Trustwor-
thiness and Continuity steadily decline under
the standard alignment objective, while the gap
between training and validation values steadily
widens. In contrast, with STRUCTURE regular-
ization, Trustworthiness and Continuity curves
on training and validation remain between 0.99
and 1.00 (gap < 0.002) with no drift. This demonstrates that our regularizer enforces consistent,
geometry-respecting alignments throughout optimization, avoiding the over-warping seen in unregu-
larized alignment.

Further experiments. Additional results are provided in the Appendix H, including experiments
with text–audio alignment and application to the biological domain (see H.4), more ablations such
as the robustness to the parameter λ, number of regularization levels L, layer selection metric,
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normalization schemes, and distance functions (see H.6), as well as comparisons to unsupervised
alignment methods (see H.7).

6 Conclusion

We present a simple, yet effective, framework for parameter-frozen modality alignment in low-data
regimes, leveraging two key components: (i) a novel STRUCTURE regularizer that preserves the
multi-scale neighborhood geometry of each modality’s pretrained latent space, and (ii) an automatic
layer-selection procedure that identifies and aligns the pair of intermediate layers with the highest
representation similarity. Both components integrate seamlessly with existing alignment pipelines, be
they linear projections, MLPs, or advanced matrix-decomposition methods, offering a plug-and-play
solution for any modality alignment method. We evaluate our strategy by incorporating it into three
existing modality alignment methods and observe consistent performance improvements across
24 benchmark datasets covering zero-shot classification and retrieval tasks, with average relative
improvements of 51.6% in classification and 91.8% in retrieval tasks. This stems from a faithful
preservation of pretrained geometry throughout training, enforced by the proposed regularization.
We further show that injecting only a handful of in-domain examples per class achieves comparable
performance to multimodal models trained on hundreds of millions of samples.

Limitations

While our method performs competitively in the low-data regime, there remains a performance gap
on more challenging tasks compared to models like CLIP that are trained on hundreds of millions
of paired samples. That said, we show that this gap can be significantly reduced by incorporating
only a few in-domain samples in Figure 5, which highlights the potential of few-shot adaptation.
Additionally, this prompted us to consider which data is most effective for aligning the spaces of
different modalities. A promising future direction is to systematically investigate how different types
of data influence cross-modal alignment quality in a low-data regime.

Currently, we have only investigated aligning two modalities. However, our framework can be
straightforwardly extended to three or more modalities. Since the STRUCTURE regularization is
computed independently for each modality to preserve its own pretrained structure, this extension
only requires adding an additional regularization term to the loss function for each new modality. For
instance, aligning three modalities (X1, X2, X3) would involve the following objective:

L = LA + λ(R(L)
S (X1, f1(X1)) +R(L)

S (X2, f2(X2)) +R(L)
S (X3, f3(X3))).

Since aligning more than two modalities is still a very active research topic, we leave these investiga-
tions to future efforts.
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Quake, and Jure Leskovec. Universal cell embeddings: A foundation model for cell biology. bioRxiv, 2023.

[65] Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. Advances in Neural
Information Processing Systems, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Yes, all claims are backed by careful evaluation of related work (see Section 2) and all
claims regarding methods’ performance are backed up by empirical results (see Section 5).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, the paper discusses limitations in Section 6 of the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

14



• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Yes, for all theoretical results the paper provides a full set of assumptions and complete
proof (see Appendix C).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, experimental details are described in the experimental setup (see Section 5) and all
hyperparameters are given in Appendix D. Furthermore, Appendix B provides a PyTorch implementa-
tion for the proposed STRUCTURE regularization.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For example,
if the contribution is a novel architecture, describing the architecture fully might suffice, or if the
contribution is a specific model and empirical evaluation, it may be necessary to either make it
possible for others to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this, but reproducibility
can also be provided via detailed instructions for how to replicate the results, access to a hosted
model (e.g., in the case of a large language model), releasing of a model checkpoint, or other
means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of closed-
source models, it may be that access to the model is limited in some way (e.g., to registered

15



users), but it should be possible for other researchers to have some path to reproducing or
verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Yes, code will be made public once the paper is de-anonymized.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, experimental details are described in the experimental setup (see Section 5) and all
hyperparameters are given in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper reports error bars whenever training was not fully deterministic, such as
in Figures 3, 4, 10. However, since our default training and evaluation setup are fully deterministic
(backbones frozen, identity-initialized projections, fixed seed and data order), repeating the experiment
yields identical results. All standard deviations are therefore zero and have been omitted, as can be seen
in Figures 3, 10 where the last dot corresponds to 5 repeats of the training, leading to zero standard
deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes, we specify the computational resources of the paper in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have carefully reviewed and adhered to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Yes, the positive societal impact of the paper is discussed in the introduction and
conclusion. Negative societal impacts are not expected as the outlined methodology enables multimodal
alignment even for limited data scenarios while being computationally efficient.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks as beyond code we are not releasing any new artifacts
such as data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Yes, the authors are the original owners of assets and have specified the referenced
assets in the experimental details (see Section 5), dataset descriptions (see Appendix E), and model
descriptions (see Appendix F).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: This paper does not release any new assets beyond code, which is adequately documented
in order to reproduce all results from the paper.
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Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an

anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing, editing,
or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality
of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve the development of any LLMs, nor their use beyond minor
editing.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Computational Resources

Our experiments used a cluster of 8 NVIDIA GeForce RTX 3090 GPUs, but each individual training run required
only a single GPU and less than 4GB of VRAM and took at most 2 hours. The most computationally demanding
part was obtaining the embeddings from the pretrained unimodal encoders, which on a single GPU with a batch
size of 16 has a speed of 3 sec/iter.

B Implementation� �
import torch
import torch.nn.functional as F

def reg_structure(X, A, L=1, tau=.05, eps=1e-8):
X_hat = F.normalize(X, p=2, dim=1, eps=eps)
A_hat = F.normalize(A, p=2, dim=1, eps=eps)

X_tilde = X_hat - X_hat.mean(dim=0, keepdim=True)
A_tilde = A_hat - A_hat.mean(dim=0, keepdim=True)

Sx = (X_tilde @ X_tilde.T) / tau
Sa = (A_tilde @ A_tilde.T) / tau

Px = F.softmax(Sx, dim=1)
Pa = F.softmax(Sa, dim=1)

r_S = 0.0
for l in range(1, L + 1):

Px_l, Pa_l = Px.matrix_power(l), Pa.matrix_power(l)
M_l = 0.5 * (Px_l + Pa_l)
d_js = 0.5 * ((Pa_l * (torch.log(Pa_l + eps) - torch.log(M_l + eps))).sum()

+ (Px_l * (torch.log(Px_l + eps) - torch.log(M_l + eps))).sum())
r_S += d_js / l

return r_S / L� �
Listing 1: PyTorch reference implementation of the STRUCTURE regularizer RS(X,A)

C Proof of the generalization gap of STRUCTURE regularization

Unlike classical weight-space penalties such as the ℓ1 norm, which impose sparsity directly on the model
parameters and are agnostic to the number of training examples available, the proposed STRUCTURE regularizer
is constructed in the sample space, via pairwise similarities among the N input embeddings. Consequently,
its numerical value and statistical behavior depend explicitly on N , the size of the dataset or batch size,
respectively. To ensure that this penalty remains well-behaved as the number of samples changes, we introduce
its population counterpart, defined as the expectation of the empirical similarity-based regularizer under the true
data distribution. In the following section, we will show that the empirical estimator is unbiased and concentrates
around its population expectation at a rate of O(1/

√
N), thereby providing a computationally efficient yet

statistically reliable approximation to the ideal regularization term.

For a fixed number of hierarchical levels L, we define the STRUCTURE regularizer

R(L)
S (X,A) =

1

L

L∑
l=1

JS(P (l)
X , P

(l)
A )

l
, (10)

where PX = softmax
(
SX

)
= softmax

(
X̃X̃⊤

τ

)
, PA is defined analogously, and P

(l)
X = (PX)l, P (l)

A = (PA)
l.

We define the empirical and expected values as

R̂N = RS(X,A), R⋆ = E(x1,x2)∼D
[
R̂N

]
.

In order to prove the generalization gap of the regularization, we investigate how much each sample pair can
influence the output and use this to derive the bound using McDiarmid’s inequality.
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Lemma 2 (Per-sample sensitivity). Replacing a single pair (xi
1, x

i
2) by an arbitrary (x̃i

1, x̃
i
2), while keeping the

other N−1 pairs fixed, changes the value of (10) by at most

∆N =
4 log 2

N
. (11)

Proof. Replacing a single sample (xi
1, x

i
2) alters exactly one row and one column of each similarity matrix

SX , SA, which after row-wise softmax means exactly two rows of PX (and two of PA) can change. We measure
the matrix-level deviation by averaging the total variation (TV) distance of corresponding rows,

d(P, P ′) =
1

N

N∑
j=1

TV
(
P (j, ·), P ′(j, ·)

)
, TV(p, p′) = 1

2

∑
i

|pi − p′i| ≤ 1,

so changing two rows gives d(PX , P ′
X) ≤ 2

N
and similarly d(PA, P

′
A) ≤ 2

N
. Next, we check the influence of

the sample perturbation for the Jensen–Shannon divergence

JS(PX , PA) =
1
2
DKL

(
PX∥M

)
+ 1

2
DKL

(
PA∥M

)
,

where M = 1
2
(PX + PA). Each KL term is bounded by log 2, and more generally if TV(p, p′) ≤ δ and

TV(q, q′) ≤ δ then
∣∣JS(p, q) − JS(p′, q′)

∣∣ ≤ log 2[TV(p, p′) + TV(q, q′)]. Hence, at any fixed level L, the
two-matrix, two-row perturbation shifts the JS divergence by at most log 2( 2

N
+ 2

N
) = 4 log 2

N
, and averaging

over l = 1, . . . , L with weights 1/l cannot increase this bound.

Lemma 3 (Generalization bound). The generalization gap between the empirical and the expected values of
RS is bounded by ∣∣R̂N −R⋆

∣∣ ≤ O
(

1√
N

)
. (12)

Proof. McDiarmid’s bounded-difference inequality states that for any function f of independent variables
X1, X2, . . . , XN ,

Pr
(∣∣f(X1, X2, . . . , XN )− E[f(X1, X2, . . . , XN )]

∣∣ ≥ ε
)
≤ 2 exp

(
− 2ε2∑N

i=1 c
2
i

)
,

where ci bounds the change in f when only the ith input is perturbed. Using ci = ∆N from (11),

N∑
i=1

c2i = N∆2
N = N

(4 log 2
N

)2
=

16 log2 2

N
.

Hence, for every ε > 0,

Pr
(∣∣R̂N −R⋆

∣∣ ≥ ε
)
≤ 2 exp

(
− ε2N

8 log2 2

)
. (13)

Next, we fix a confidence level 1− δ with 0 < δ < 1 and set the right-hand side of (13) to δ. Solving for ε gives

ε = 2
√
2 log 2

√
log(2/δ)

N
.

Thus, with probability at least 1− δ,

∣∣R̂N −R⋆
∣∣ ≤ 2

√
2 log 2

√
log(2/δ)

N
(14)

showing O
(

1√
N

)
convergence.

D Hyperparameters

Table 3 lists all default hyperparameters that were used throughout the paper if not otherwise specified.
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Table 3: List of default hyperparameters used throughout the paper.

Category Hyperparameter Value

Layer selection Validation size 5,000
Metric Mutual kNN (k=rice)

Alignment training

Epochs 1,000
Batch size 4,096
Learning rate scheduler Cosine
Auto learning rate finder [40]
Gradient clipping 1.0
Early stopping epochs 200
Optimizer AdamW
Weight decay 0.0001

Alignment objective

Temperature τ 0.05
RS levels L 1
λ 10.0
λ warmup Linear
λ warmup steps 1,000

Alignment layer Output dimension 512

E Description of evaluation datasets

We use 22 vision datasets for evaluation of zero-shot classification and two retrieval datasets for evaluation
on retrieval tasks, similar to those studied in Radford et al. [7], except for four tasks because of either un-
availability of the dataset or lack of diversity in the modality-specific pretrained spaces, leading to random
performance. These datasets cover a wide range of vision tasks, including general object classification datasets
CIFAR10 [41], CIFAR100 [41], STL10 [42], ImageNet [43], Caltech101 [44]; fine-grained object classification
datasets Food101 [45], Flowers [46], Cars [47], FGVC Aircraft [48], Pets [49]; handwritten digits classification
dataset MNIST [50]; texture classification dataset DTD [51]; scene classification dataset SUN397 [52]; the
facial emotion recognition dataset FER2013 [53]; the satellite image classification datasets EuroSAT [54],
Resisc45 [55]; the German Traffic Sign Recognition Benchmark (GTSRB) [56]; the KITTI Distance dataset [57];
the metastatic tissue classification dataset PatchCamelyon (PCam) [58]; action recognition datasets UCF101 [59],
Kinetics700 [60]; the country classification dataset Country211 [7]. Furthermore, we include two standard
image–text retrieval benchmarks: MS COCO [33] and Flickr30 [61]. For the two video datasets, UCF101 and
Kinetics700, we take the middle frame of each video clip as the input of the pre-trained models. We use accuracy
for zero-shot classification evaluation and recall@1 (R@1) for retrieval evaluation. For zero-shot classification
evaluation, we follow the same setup and use the same prompts as in Radford et al. [7].

F Description of pretrained unimodal encoders

We compare performance when using three self-supervised vision encoders from the DINOv2 family for
alignment. Namely, a Vision Transformer Base (ViT-B), Large (ViT-L), and Giant (ViT-G), where each is
pretrained on massive unlabeled image corpora using distilled masked prediction objectives to produce rich,
high-dimensional patch-level embeddings [3]. For language, we compare RoBERTa, a transformer-based encoder
optimized on large-scale English text, which outputs contextualized token representations that are aggregated
into a fixed-length sentence embedding [34]. In addition, we leverage two sizes of the Llama3 decoder-only
transformer family, namely an 8B and 13B parameter version, which are pretrained on web-scale text data for
generative tasks [2]. In all experiments, we freeze the unimodal encoders and learn only lightweight projection
layers atop their latent outputs to align them into a shared multimodal embedding space.

G Layers with the highest similarity

Table 5 lists the model combinations in this work along with the layers of each encoder that have the highest
representational similarity measured in terms of mutual kNN with k chosen according to Rice’s criterion.
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Table 4: List of benchmarks we used for both zero-shot classification and retrieval evaluation.

Task Dataset Number of Classes Train size Test size

Classification

Food101 [45] 101 75,750 25,250
CIFAR10 [41] 10 50,000 10,000
CIFAR100 [41] 100 50,000 10,000
SUN397 [52] 397 19,850 19,850
Cars [47] 196 8,144 8,041
FGVC Aircraft [48] 100 6,667 3,333
DTD [51] 47 3,760 1,880
OxfordPets [49] 37 3,680 3,669
Caltech101 [44] 102 3,060 6,084
Flowers [46] 102 2,040 6,149
MNIST [50] 10 60,000 10,000
FER2013 [53] 7 28,709 3,589
STL10 [42] 10 5,000 8,000
EuroSAT [54] 10 10,000 5,000
Resisc45 [55] 45 25,200 6,300
GTSRB [56] 43 26,640 12,630
KITTI Distance [57] 4 5,985 1,496
Country211 [7] 211 42,200 21,100
PatchCamelyon [58] 2 294,912 32,768
UCF101 [59] 101 9,537 3,783
Kinetics700 [60] 700 536,485 33,966
ImageNet [43] 1000 1,281,167 50,000

Retrieval MS COCO [33] N/A 82,783 40,504
Flickr30 [61] N/A 29,783 5,000

Table 5: Layer combination with the highest representational similarity in terms of mutual kNN,
where k is chosen according to Rice’s criterion.

Language Model Vision Model Language Index Vision Index

RoBERTa ViT-L 24 22

ViT-G 24 38

Llama3-8B ViT-G 25 36

Llama13B ViT-G 29 36

H Further results

In this section, we provide a detailed results of the experiments presented in the main paper. In Section H.7, we
compare our supervised alignment method to an unsupervised approach, Section H.6 presents details on the
ablation study that isolates the effects of regularization and layer selection, Section H.2 analyzes the consistency
of our layer selection procedure across different validation set sizes, and Section H.8 presents detailed results of
the downstream performance on zero-shot classification and retrieval tasks.

H.1 Layer-wise performance

In Section 4, we propose selecting layers for alignment based on their representational similarity rather than
defaulting to the final layers. To provide a more comprehensive view, Figure 8 shows a detailed layer-wise
analysis between the last five layers of a RoBERTa encoder and a DINOv2 ViT-L encoder in terms of the
respective downstream performance these combinations achieve after alignment. Results show that the most
suitable layers (here 24/22 for the language and vision encoder pair) yield strong performance across all datasets.
Additionally, we can see that for CIFAR10 and UCF101, there is a tendency that later vision layers lead to better
performance while the choice of the language layers is less influential.
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Figure 8: Downstream performance of the last five layers for a RoBERTa encoder and a DINOv2
ViT-L encoder.

H.2 Layer selection consistency

Figure 9 evaluates the stability of layer selection by repeating the process 100 times on random validation
subsets of varying sizes (N = 100, 500, 1000, and 5000) for mutual kNN with k=rice. All metrics illustrate
high robustness against repeated selection on different subsets, justifying our choice of a 5000-sample set to
ensure reliable layer pairing across runs.
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(c) N = 1, 000

0 6 12 18 24
Language model layer index

0

5

11

17

23

Vi
si

on
 m

od
el

 la
ye

r i
nd

ex

Mutual kNN (k=rice)

0

20

40

60

80

100
Se

le
ct

io
n 

%

(d) N = 5, 000

Figure 9: Consistency of different mutual kNN (k=rice) when repeatedly selecting N samples and
selecting the best layer combination.

H.3 Low-data comparison layer selection

Figure 10 compares the layer selection strategy when scaling down the training data using the same setup as for
Figure 3 of the main paper. Results show a minor difference in performance and utility when using the most
similar layers for alignment. However, results show that the proposed layer selection strategy is a simple addition
to existing alignment methods as the method includes choosing the last layers to align if they indeed are the
most similar. This can be clearly seen as the performance across tasks is positive. Thus the selection process can
additionally boost performance at minimal additional overhead.
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Figure 10: Zero-shot and retrieval performance for training linear alignment using the last or most
similar layer. Here, U quantifies the proposed method’s label efficiency by computing the utility
compared to using the last layer.

H.4 Application to other modalities

Audio-text. We further evaluate the proposed method for audio-language alignment. Here, as a pretrained
unimodal encoder, we use BEATs-iter3 [62] for audios, and extract text embeddings using RoBERTa [34]. We
train a linear alignment on 3,839 audio-caption pairs from the Clotho dataset [63].

To evaluate cross-modal alignment, we perform audio-to-text and text-to-audio retrieval on a held-out set of
1,045 pairs from the same dataset. As shown in Table 6, our STRUCTURE regularization significantly improves
the retrieval performance compared to the baseline without regularization. This demonstrates the generalizability
of our regularization method across modalities beyond vision–language alignment.

Table 6: Retrieval performance (R@k) for audio–text alignment.
Audio-to-Text Text-to-Audio

Method R@1 R@5 R@1 R@5
Linear + Last [10] 0.2 1.2 0.4 2.9
Linear + Similar 0.6 2.0 0.0 1.4
Linear + Similar + RS 7.9 23.6 8.0 24.6

Single-cell image-transcriptome. In addition to the audio application, we have conducted additional
experiments on the biological domain using only 19,900 paired human single-cell image-transcriptome data. In
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this experiment, we linearly align a UCE [64] encoder for the transcriptome data and a masked autoencoder
(MAE) trained on single-cell images for the image data. We split the 19,900 paired samples into 100 training
samples and 19,800 test samples to simulate the low data setting. Results below show that our regularization also
helps in the biological domain, yielding relative improvements of 43.1% on the retrieval task and 30.3% on the
cell type classification task, even if the Platonic representation hypothesis is not guaranteed in the biological
domain.

Table 7: Retrieval and classification performance for single-cell image-transcriptome alignment
Method Retrieval (R@5) Classification
Linear + Last [10] 4.2 40.3
Linear + Similar + RS 6.0 52.5

H.5 Modality Gap Analysis

We measured the modality gap [65] for three different alignment setups for a ViT-Giant and RoBERTa Large,
trained on COCO with a linear alignment function. The modality gap was measured for the two image-text
datasets considered in our submission (i.e., COCO and Flickr30) to ensure that the comparison is influenced
solely by the data itself and not by any other artifacts introduced by the evaluation, such as a zero-shot template,
as would be necessary for the classification datasets. Interestingly, the results given in Table 8 show that the
modality gap indeed decreases when first selecting the most similar layers and then further when applying
STRUCTURE regularization. This aligns with the findings from the respective paper [65], that the modality gap
indeed has a relationship with downstream performance.

Table 8: Modality gap for different alignment setups on the COCO and Flickr30 test sets. The gap
was measured as the Euclidean distance between the mean of the image embeddings and the mean of
the text embeddings after L2 normalization.

Method COCO Flickr30
Linear + Last [10] 6.6 6.8
Linear + Similar 6.0 6.3
Linear + Similar + RS 4.5 3.8

H.6 Ablation study

Table 9 examines the influence of different hyperparameters of the proposed method. Specifically the num-
ber of hierarchical levels in the STRUCTURE regularizer, regularization strength λ, layer selection strategy,
normalization schemes, and distance functions. Varying the number of levels from one to five yields virtually
identical accuracy across datasets, indicating that a single-level penalty suffices to preserve pretrained geometry.
A strong regularization weight λ = 10 gives the best performance (e.g., STL10 at 92.6%, CIFAR10 at 96.3%),
whereas λ ∈ {0.1, 1} under-regularizes leading to worse results. Without regularization, choosing the last layer
yields 75.6% on STL10 and 85.5% on CIFAR10, but using mutual kNN layer selection boosts these to 79.7%
and 89.0%, respectively. These results confirm that both strategic layer choice and sufficient regularization are
critical for maximally leveraging low-data regimes. Additionally, Table 12 and Figure 7 from the main paper
confirm that best-layer alignment and STRUCTURE regularization consistently increase performance across four
language-vision model pairs. For normalization schemes and distance functions, STRUCTURE demonstrates
robustness to these changes, highlighting that the primary benefit stems from the idea of regularizing hierarchical
relationships.

The variable N in the default setting of STRUCTURE represents the size of the batch, typically set to 4, 096
random samples (here approximately 6% of the entire dataset), which allows for a sufficient estimate of the
true data generation distribution while maintaining computational efficiency. In Table 9, we also conducted
experiments to demonstrate how the choice of sample size affects performance. Results show that the benefit of
the regularization increases with increased sample size, but also show its efficiency, since even with 128 samples,
there is a clear improvement. Thus a practical choice is to use bigger batch sizes if possible. Additionally we
investigated the choice of randomly selecting the subset of samples used to compute the regularization. Results
show that the regularization yields very similar results regardless of whether it uses a fixed (same-sized) or a
random subset of the data.
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Table 9: Ablation of components for two coarse-grained (STL10, CIFAR10) and two fine-grained
tasks (Food101, CIFAR100), when applying STRUCTURE on different layers l, changing the
contribution of RS, choosing the optimal layers according different metrics, changing the size and
the type of subset used to compute the regularization, changing normalization, and using different
distance functions. All experiments are performed for linear alignment.

Ablation STL10 CIFAR10 Food101 CIFAR100
Regularization levels
R(1)

S 92.6 96.3 30.6 51.3
R(2)

S 92.5 96.4 30.6 51.3
R(3)

S 92.6 96.3 30.6 51.1
R(5)

S 92.5 96.1 30.6 51.0

Regularization strength
λ = 0.1 90.8 95.1 30.9 50.2
λ = 1.0 91.4 95.9 30.8 50.8
λ = 10.0 92.6 96.3 30.6 51.3
Layer selection (w/o RS)
Last 75.6 85.5 14.8 34.0
CKA [30] 87.9 74.5 11.5 23.3
Unbiased CKA [31] 87.9 74.5 11.5 23.3
Mutual kNN (k=10) [24] 79.4 88.1 16.0 32.7
Mutual kNN (k=rice) 79.7 89.0 14.6 33.1
Batch size
N = 128 90.3 96.5 29.2 48.6
N = 1, 024 92.1 96.8 30.2 50.4
N = 4, 096 92.6 96.3 30.6 51.3
N = 8, 192 92.5 96.5 31.0 52.1
Subset type
random 92.6 96.3 30.6 51.3
fixed 92.6 96.5 30.7 51.5
Normalization schemes
Normalize + centering 92.6 96.3 30.6 51.3
Centering + normalize 92.1 96.4 30.8 51.1
Normalize 92.7 96.1 30.5 51.5
Standard scaling 90.8 95.1 31.0 50.3

Distance functions
Cosine 92.6 96.3 30.6 51.3
RBF 90.8 94.9 30.9 50.3
Spearman 90.4 91.6 30.0 50.0

H.7 Comparison to unsupervised methods

Table 10 compares our supervised alignment method (Linear + Similar + RS) with unsupervised Kernel Local
CKA [12] and ASIF [23]. Across all three evaluation tasks (COCO, CIFAR-10, and CIFAR-100), our method
yields significant improvement in both top-1 and top-5 accuracy while relying on only 80,000 paired samples.
For instance, for COCO retrieval, Kernel Local CKA attains only 13.1% R@1, whereas the proposed method
reaches 32.7% (a 19.6 pp. improvement) and improves R@5 from 40.0% to 56.2%. Similarly, on CIFAR10
our approach jumps from 0.06% to 96.8% top-1, and on CIFAR-100 from 1.13% to 46.9%. Compared against
ASIF, results demonstrate that our method again substantially outperforms it, achieving relative improvements
of 32.9% on the COCO retrieval task, 32.9% on the CIFAR-100 fine-grained classification task, and 5.6% on the
CIFAR-10 coarse-grained classification task.
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Table 10: Top-1 and Top-5 accuracy of unsupervised approaches compared against our framework on
different datasets.

COCO CIFAR10 CIFAR100
Method R@1 R@5 Top-1 Top-5 Top-1 Top-5

Kernel Local CKA [12] 13.1 40.0 0.06 3.2 1.13 4.0
ASIF [23] 24.6 45.4 91.7 94.5 23.8 38.2
Linear + Similar + RS 32.7 56.2 96.8 96.8 46.9 46.9

H.8 Extended downstream results

Table 11 expands on the results in Table 2 from the main paper, detailing results on all evaluation tasks,
including 22 zero-shot classification and two retrieval datasets with an additional fourth alignment technique
(FuseMix [22]). Figure 11 expands on Figure 3 with more zero-shot classification and retrieval tasks. Figure 12
illustrates the performance of model combinations across different vision models, analogous to Figure 7 from
the main paper, but with more combinations. Table 12 expands on Figure 7 from the main paper, detailing results
on all evaluation tasks, including 22 zero-shot classification and two retrieval datasets.

Table 11: Performance for multiple evaluation tasks and alignment methods. Underline shows the
best performance in the respective group (i.e., alignment method), and bold indicates the overall best
performance for the respective dataset. This table expands on table 2 from the main paper, detailing
results on 22 zero-shot classification and two retrieval datasets.

Zero-shot Classification (Accuracy) Retrieval (R@1)

Method STL10 Caltech101 Food101 CIFAR10 CIFAR100 ImageNet UCF101 Kinetics700 SUN397 EuroSAT Resisc45 Flickr30 I2T Flickr30 T2I
CLIP (OpenAI) [7] 99.4 83.5 93.0 95.0 74.6 74.3 75.0 44.5 67.6 57.5 65.2 88.1 71.5

Linear + Last [10] 75.6 37.9 14.8 85.5 34.0 9.9 21.5 9.9 19.6 19.9 19.9 32.5 22.1
Linear + Similar 79.7 39.5 14.6 89.0 33.1 10.5 20.4 10.0 19.9 22.4 20.3 35.3 24.0
Linear + Similar + RS 92.6 56.0 30.6 96.3 51.3 24.7 41.8 20.4 37.9 29.2 36.5 65.8 53.7

MLP + Last [9] 76.6 38.2 15.6 79.2 35.3 10.6 27.7 10.0 18.1 25.4 25.0 31.6 20.3
MLP + Similar 84.0 38.8 17.1 81.5 34.5 11.4 25.7 10.9 20.1 22.2 21.3 36.4 25.0
MLP + Similar + RS 92.7 56.0 30.5 96.3 52.1 25.1 42.3 20.8 38.3 25.0 34.7 65.9 53.8
CSA + Last [29] 77.9 31.4 29.3 78.5 47.4 23.2 35.5 18.4 33.4 26.4 28.3 47.0 38.3
CSA + Similar 80.0 33.6 28.0 80.8 47.4 23.3 34.4 17.9 33.6 22.5 29.6 48.6 39.0
CSA + Similar + RS 91.7 61.5 28.6 97.2 56.4 26.8 44.0 21.6 37.6 28.4 38.8 56.1 43.1

FuseMix + Last [22] 81.8 37.2 16.4 86.6 34.6 10.0 23.1 9.9 17.7 16.0 23.9 32.5 21.9
FuseMix + Similar 81.8 37.2 16.4 86.6 34.6 10.0 23.1 9.9 17.7 16.0 23.9 32.5 21.9
FuseMix + Similar + RS 91.7 55.8 29.3 96.2 46.3 21.1 35.6 19.1 34.4 27.4 36.6 58.2 47.6

Zero-shot Classification (Accuracy) Retrieval (R@1)

Method Gtsrb Kitti Country211 FER2013 PCam Cars Aircraft Pets Flowers MNIST DTD COCO I2T COCO T2I
CLIP (OpenAI) [7] 45.3 25.2 28.8 52.5 61.5 50.96 32.2 92.7 75.2 59.7 52.4 34.6 18.5

Linear + Last [10] 3.4 26.8 1.4 19.7 51.2 1.0 1.3 7.0 0.2 13.7 9.0 6.9 3.6
Linear + Similar 4.0 29.5 1.1 21.9 53.0 0.9 1.5 4.9 0.1 7.9 8.2 7.1 4.0
Linear + Similar + RS 7.8 28.5 2.3 30.9 43.8 2.5 2.6 13.2 6.2 12.7 18.4 18.2 13.3

MLP + Last [9] 7.8 24.1 1.2 18.9 50.6 0.9 2.1 5.3 0.5 14.4 8.4 6.0 2.7
MLP + Similar 7.4 25.4 1.3 17.9 50.3 1.2 1.6 6.1 0.4 9.9 9.4 7.1 3.8
MLP + Similar + RS 7.9 32.7 2.5 28.2 47.0 2.2 3.3 15.3 5.6 13.6 18.7 18.3 13.4
CSA + Last [29] 7.0 27.1 1.6 28.1 42.9 1.8 1.5 14.4 6.2 10.2 12.6 9.2 8.0
CSA + Similar 6.0 22.3 1.7 27.6 51.4 1.7 1.9 14.9 4.9 11.6 13.0 9.6 8.1
CSA + Similar + RS 4.9 31.6 2.2 30.9 45.0 1.7 2.1 17.0 4.1 11.8 14.8 10.3 8.1

FuseMix + Last [22] 3.3 32.0 1.1 22.5 52.3 1.2 1.4 8.0 2.0 10.7 9.9 5.8 4.0
FuseMix + Similar 3.3 32.0 1.1 22.5 52.3 1.2 1.4 8.0 2.0 10.7 9.9 5.8 4.0
FuseMix + Similar + RS 5.3 28.9 2.0 24.3 50.2 1.5 1.4 11.3 2.9 15.0 15.7 15.0 10.6
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Figure 11: Zero-shot and retrieval performance for training linear alignment using the last or most
similar layer. Here, U quantifies the proposed method’s label efficiency by computing the utility
compared to using the last layer. This figure expands on Figure 3 with more evaluation tasks.
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single linear alignment layer.
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Table 12: Performance for different model combinations for linear alignment when aligning the last
or the most similar layer and when adding RS. This table expands on Figure 7 from the main paper,
detailing results on 22 zero-shot classification and two retrieval datasets.

Zero-shot Classification (Accuracy) Retrieval (R@1)

Language Model Vision Model Method STL10 Caltech101 Food101 CIFAR10 CIFAR100 ImageNet UCF101 Kinetics700 SUN397 EuroSAT Resisc45 Flickr30 I2T Flickr30 T2I

RoBERTa

ViT-L
Last [10] 79.1 34.2 14.2 84.8 32.8 8.9 21.9 9.0 16.1 12.8 23.2 28.2 19.7
Similar 90.2 39.8 12.8 86.4 30.8 10.3 24.2 8.4 18.4 16.4 15.0 36.3 24.3
Similar + RS 97.3 60.4 23.1 97.0 50.3 22.7 33.9 16.8 35.5 25.8 26.2 58.8 47.4

ViT-G
Last [10] 75.6 37.9 14.8 85.5 34.0 9.9 21.5 9.9 19.6 19.9 19.9 32.5 22.1
Similar 79.7 39.5 14.6 89.0 33.1 10.5 20.4 10.0 19.9 22.4 20.3 35.3 24.0
Similar + RS 92.6 56.0 30.6 96.3 51.3 24.7 41.8 20.4 37.9 29.2 36.5 65.8 53.7

Llama3-8B ViT-G
Last [10] 68.9 27.5 22.7 74.3 27.0 6.1 12.8 5.7 15.5 13.9 12.4 21.8 11.5
Similar 85.3 24.4 26.5 80.8 29.4 7.3 17.2 6.7 18.6 8.5 11.1 30.7 21.5
Similar + RS 91.3 53.9 28.8 89.4 41.1 17.6 32.5 14.0 31.7 24.6 29.7 56.1 44.0

Llama13B ViT-G
Last [10] 70.8 33.5 20.6 69.5 26.4 5.4 8.6 5.7 12.7 20.7 13.0 22.3 12.4
Similar 79.2 31.9 18.1 69.9 23.1 4.9 13.9 5.2 14.2 11.2 9.9 26.3 17.1
Similar + RS 93.6 59.7 36.5 87.3 48.4 21.5 42.7 15.8 32.6 23.4 26.2 56.7 48.5

BGE-Small ViT-G
Last [10] 75.9 39.0 14.5 82.7 30.4 7.5 24.4 8.0 14.6 14.2 18.1 31.6 19.1
Similar 81.9 37.8 14.2 87.3 29.5 8.2 25.7 7.3 16.1 12.7 15.2 35.9 23.0
Similar + RS 91.3 52.2 22.1 92.8 44.8 17.2 35.3 14.9 25.8 30.5 29.4 56.9 45.6

BGE-Base ViT-G
Last [10] 82.5 36.7 16.5 77.2 36.0 9.4 28.3 9.4 17.2 23.7 21.4 31.7 18.0
Similar 81.2 38.6 15.3 77.1 34.1 9.3 27.9 9.2 17.7 14.2 19.4 32.2 20.9
Similar + RS 87.0 54.7 23.4 89.7 46.7 20.8 42.6 17.7 34.8 25.9 34.3 60.0 48.0

all-MiniLM-L6-v2 ViT-T
Last [10] 86.6 40.8 5.2 66.0 17.3 5.3 12.1 3.6 9.4 22.5 7.4 16.9 14.1
Similar 86.6 40.8 5.2 66.0 17.3 5.3 12.1 3.6 9.4 22.5 7.4 16.9 14.1
Similar + RS 89.2 45.6 6.7 68.9 23.5 8.9 17.7 6.0 13.8 21.9 9.9 23.6 17.9

all-mpnet-base-v2 ViT-T
Last [10] 85.7 42.9 5.9 65.2 22.9 8.9 18.5 5.9 16.0 18.7 9.3 22.6 14.8
Similar 85.7 42.9 5.9 65.2 22.9 8.9 18.5 5.9 16.0 18.7 9.3 22.6 14.8
Similar + RS 85.1 52.1 8.7 68.0 28.2 12.1 21.6 7.8 19.7 26.4 12.6 28.9 22.3

Zero-shot Classification (Accuracy) Retrieval (R@1)

Language Model Vision Model Method Gtsrb Kitti Country211 FER2013 PCam Cars Aircraft Pets Flowers MNIST DTD COCO I2T COCO T2I

RoBERTa

ViT-L
Last [10] 3.3 30.2 1.0 22.4 50.8 1.3 1.4 7.9 2.0 10.9 9.7 5.1 3.4
Similar 4.2 23.7 1.0 22.2 50.2 1.4 1.0 10.3 1.4 11.6 10.0 6.1 3.9
Similar + RS 4.6 28.2 2.0 25.3 50.0 1.9 3.1 17.5 6.5 11.6 17.1 15.5 10.6

ViT-G
Last [10] 3.4 26.8 1.4 19.7 51.2 1.0 1.3 7.0 0.2 13.7 9.0 6.9 3.6
Similar 4.0 29.5 1.1 21.9 53.0 0.9 1.5 4.9 0.1 7.9 8.2 7.1 4.0
Similar + RS 7.8 28.5 2.3 30.9 43.8 2.5 2.6 13.2 6.2 12.7 18.4 18.2 13.3

Llama3-8B ViT-G
Last [10] 5.0 27.8 0.7 18.0 54.6 0.4 2.2 3.2 3.4 13.2 4.9 3.5 2.8
Similar 2.7 26.1 0.9 23.8 47.4 1.4 4.3 10.6 5.6 7.7 11.9 5.4 5.2
Similar + RS 3.4 28.9 2.1 19.3 53.8 1.8 8.0 15.9 10.0 14.5 17.9 11.8 10.5

Llama13B ViT-G
Last [10] 4.5 37.4 1.0 13.7 58.2 1.9 2.7 6.7 1.9 14.5 6.3 4.0 3.0
Similar 5.7 35.7 0.7 13.4 49.6 1.8 2.8 7.3 3.4 12.4 8.6 4.9 4.1
Similar + RS 9.9 33.5 1.6 30.0 52.2 2.8 6.6 19.9 7.8 13.0 17.3 13.9 12.8

BGE-Small ViT-G
Last [10] 5.9 26.4 0.9 21.5 50.3 0.7 0.8 6.3 1.8 8.0 8.6 6.0 3.2
Similar 4.2 25.5 1.0 19.5 51.2 0.9 1.1 9.5 5.2 4.6 8.5 7.1 4.4
Similar + RS 7.4 40.7 1.5 36.9 50.4 1.6 1.4 12.2 6.1 9.8 12.5 12.8 10.3

BGE-Base ViT-G
Last [10] 6.6 36.2 0.9 20.6 50.3 0.9 2.0 7.5 1.6 11.7 5.6 5.5 2.7
Similar 6.2 35.5 0.9 22.9 50.2 0.7 2.5 7.9 2.6 9.0 7.3 6.0 3.7
Similar + RS 2.9 42.8 2.2 29.9 50.0 1.5 2.3 10.0 3.9 11.0 15.1 15.2 11.4

all-MiniLM-L6-v2 ViT-T
Last [10] 5.6 11.7 0.7 23.1 50.1 0.3 1.2 7.8 3.5 9.3 5.7 2.8 2.5
Similar 5.6 11.7 0.7 23.1 50.1 0.3 1.2 7.8 3.5 9.3 5.7 2.8 2.5
Similar + RS 3.5 14.7 1.0 13.3 48.3 0.9 1.3 6.4 0.8 9.6 6.3 4.5 3.2

all-mpnet-base-v2 ViT-T
Last [10] 1.4 26.7 1.1 14.8 45.2 1.1 2.4 5.3 1.1 9.4 10.2 4.3 2.9
Similar 1.4 26.7 1.1 14.8 45.2 1.1 2.4 5.3 1.1 9.4 10.2 4.3 2.9
Similar + RS 2.8 23.0 1.4 14.9 45.3 1.2 1.5 6.1 1.0 10.6 12.1 6.3 4.5
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