
Robust Temporal Sentence Video Grounding with Global Proposal Ranking

Anonymous ACL submission

Abstract
Most existing solutions to temporal sentence001
video grounding (TSGV) rely heavily on lo-002
cal classifiers to discern start and end bound-003
aries, often compromise internal consistency004
and overlook boundary uncertainty. This pa-005
per introduces a novel global ranking approach006
that directly scores all candidate proposals us-007
ing a unique loss function, thereby enhancing008
robustness through the integrated decoding of009
local and global predictions. We further in-010
corporate pretrained language models into our011
framework - a largely underexplored facet in012
TSGV. Our methodology is evaluated across013
three distinct settings: distribution-consistent,014
distribution-changing, and composition gener-015
alization datasets, outperforming existing base-016
lines across the board. Notably, it exhibits su-017
perior performance in out-of-distribution and018
composition generalization tasks. To the best019
of our knowledge, we are the first to com-020
bine global proposal ranking and pretrained021
language models for robust TSVG.022

1 Introduction023

Temporal Sentence Grounding in Videos (TSGV)024

first introduced by Gao et al. (2017), is an essen-025

tial bridge between textual and visual understand-026

ing, promising significant advancements in video027

comprehension and interaction. TSVG aims to lo-028

cate specific moments within untrimmed videos029

using a language query. An example is illustrated030

in Figure 1, where a given query “person takes a031

photo from the table” is used to identify the corre-032

sponding moment (12.5 to 17.7 seconds) within a033

26.96-second untrimmed video.034

Existing approaches to this problem primarily035

fall into two categories: proposal-free and proposal-036

based methods. Proposal-free methods (Chen et al.,037

2018; Ghosh et al., 2019; Zeng et al., 2020; Zhang038

et al., 2020a; Cao et al., 2020a,b; Li et al., 2021; Liu039

et al., 2021; Zhou et al., 2021; Nan et al., 2021; Xu040

et al., 2021) focus on determining the start and end041

Figure 1: An example of temporal sentence grounding
in videos.

points of the target moment, making them simpler 042

to train but more prone to biases due to annota- 043

tion uncertainties. Proposal-based methods (Gao 044

et al., 2017; Anne Hendricks et al., 2017; Ge et al., 045

2019; Zhang et al., 2019, 2020b, 2021b; Zheng 046

et al., 2022; Li et al., 2023a), on the other hand, 047

generate candidate proposals through the aggrega- 048

tion of video frames and alignment with the query 049

sentences, taking into account the interaction of 050

text and the entire proposal. While effective, these 051

methods heavily depend on the quality of proposal 052

generators and the efficiency of the ranking mecha- 053

nism. 054

To combine the advantages of both categories, 055

hybrid methods (Wang et al., 2020, 2021a; Xiao 056

et al., 2021; Huang et al., 2022) have been intro- 057

duced that combine both the segment-level and 058

frame-level information for improved video com- 059

prehension. Nevertheless, most of these techniques 060

generate proposals using sampled moments, failing 061

to consider all potential moments. 062

The utilization of pretrained language models 063

(PLMs) such as BERT (Devlin et al., 2019) and 064

Roberta (Liu et al., 2019) within the TSVG realm 065

is another underexplored area. Despite some ef- 066

forts (Wang et al., 2021b; Zheng et al., 2023; Shi- 067

momoto et al., 2023) to incorporate PLMs, the 068

results have varied, indicating the need for a more 069

harmonious integration approach. 070

In this work, we put forward a novel approach, 071

GPRank, designed to tackle these existing chal- 072

lenges. Our strategy employs a global ranking loss 073

function, enabling a comprehensive consideration 074
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of all candidate proposals. This method integrates075

a global perspective into the ranking of all candi-076

date moments, ensuring a more precise and com-077

prehensive ranking process. Moreover, we design078

a backbone-specific integration strategy to facili-079

tate better interaction between pretrained text fea-080

tures and video features. By carefully orchestrating081

this integration process, our method aims to fully082

harness the potential of PLMs, thereby effectively083

aligning textual queries with their corresponding084

video moments.085

We undertake extensive evaluations across three086

distinct scenarios: 1) distribution-consistent bench-087

marks, including ActivityNet-Captions (Krishna088

et al., 2017), Charades-STA (Gao et al., 2017),089

and TACoS (Regneri et al., 2013); 2) distribution-090

changing datasets, containing ActivityNet-CD and091

Charades-CD (Yuan et al., 2021); and 3) composi-092

tion generalization datasets, including ActivityNet-093

CG and Charades-CG (Li et al., 2022b). Exper-094

imental outcomes demonstrate that our approach095

outperforms multiple strong baselines across all096

settings, with distinct effectiveness in out-of-097

distribution and composition generalization tasks.098

Our contributions in this paper are two-fold: we099

introduce a new global span ranking method, and100

we present a novel way of integrating pretrained101

language models with video features for TSVG.102

The source code of our approach will be made103

publicly available.104

2 Global Proposal Ranking105

Temporal sentence video grounding identifies a106

specific moment in an untrimmed video, denoted107

as V with K frames, using a natural language108

sentence Q with L words. The moment is de-109

fined by start (S) and end (E) points with S,E ∈110

[1,K]. Instead of learning a direct mapping func-111

tion f : f(V ,Q) → [S,E], we model a score112

gi,j (1 ≤ i ≤ j ≤ K) for each moment can-113

didate, with a higher gi,j indicating better corre-114

spondence between V and Q. The ground-truth115

overlapping score µi,j of a candidate proposal [i, j]116

with respect to the answer moment [S,E] is de-117

fined via the intersection-over-union (IoU) score:118

µi,j =
[i,j]∩[S,E]
[i,j]∪[S,E] .119

The goal of global proposal ranking is to learn a120

model that predicts gi,j to align with µi,j globally,121

maintaining the partial order relation: when µi,j ≥122

µi′,j′ , then gi,j ≥ gi′,j′ . We utilize a loss function123

from Su et al. (2022), originally designed for multi-124

label classification1, which is defined as: 125

Lspan = log
(
1 +

∑
i≤j

µi,j exp(−gi,j)
)

+ log
(
1 +

∑
i≤j

(1.0− µi,j) exp(gi,j)
) (1) 126

To minimize the loss function above, the model 127

needs to increase the value of gi,j when µi,j is 128

large and decrease the value of gi,j when µi,j is 129

small. When µi,j becomes a binary variable, the 130

loss function is identical to circle loss (Sun et al., 131

2020). As shown in the appendix, the loss function 132

reaches a local minimum when 133

µ̂i,j = σ(2gi,j), (2) 134

where σ denotes the sigmoid function. This indi- 135

cates that for prediction, the probability of the span 136

[i, j] being the target span can be approximated 137

using σ(2gi,j). 138

We then propose a combination of predictions 139

from both local boundary classifiers and the global 140

span ranking module. Local boundary classifiers 141

learn two mapping functions, fs : fs(V ,Q) → 142

S and fe : fe(V ,Q) → E, for recognizing the 143

start and the end points, respectively. The span 144

score obtained from the local boundary classifier is 145

defined as: 146
li,j = Ps(i)× Pe(j) (3) 147

where Ps(i) and Pe(j) indicate the probabilities of 148

i and j being the start and end points, respectively. 149

A hyper-parameter λ (0 ≤ λ ≤ 1) balances the 150

span scores from the local boundary classifier and 151

the global span ranking module: 152

si,j = λ log σ(2gi,j) + (1.0− λ) log li,j . (4) 153

The final answer of the target moment is given by: 154

Ŝ, Ê = argmax
1≤i≤j≤K

si,j . (5) 155

3 Model Architecture 156

In this section, we describe the specific model to ob- 157

tain the global ranking score gi,j and the local span 158

classification score li,j defined in Eq. 3. We high- 159

light specific designs to integrate the pretrained text 160

features from Roberta and modules for the global 161

loss calculation. Figure 2 shows the overview of 162

our model architecture. It mainly contains three 163

stages: InputFusion, ContentFusion and Predic- 164

tionFusion. The InputFusion stage is responsible 165

1https://spaces.ac.cn/archives/9064
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Figure 2: The overview of GPRank architecture.

for fuse pretrained contextual embeddings into the166

video features using GuidedQuery, generate pro-167

posals, and inject boundary information to propos-168

als using condition layer normalization. The Con-169

tentFusion stage captures the interaction among170

the pretrained contexutal text features, video fea-171

tures and proposal features using guided attention.172

Particularly, in the fusion stage, a ResidualEmb173

module is used to directly emphasize the input174

pretrained text features before video-language fu-175

sion. The PredictionFusion stage combines the176

dynamic boundaries from the proposal module and177

the global proposal ranking module to train the178

span-based classifier. In the end, it combines the179

local predictions and global predictions to make180

the final decisions.181

3.1 Input Fusion182

Video frames are encoded using a pretrained 3D-183

CNN model (Carreira and Zisserman, 2017), pro-184

ducing V = {ft}Kt=1 ∈ RDv×K . Queries use185

the Roberta-base encoder (Liu et al., 2019). After186

Roberta tokenizes into sub-words, their representa-187

tions are averaged for word-level representations:188

Q = {ql}Ll=1 ∈ RDq×L. The [CLS] token’s vector189

is q[cls]. For cross-modal interactions, three linear190

projections map video and sentence representations191

to space D, giving V = FC(V ) ∈ RD×K , Q =192

FC(Q) ∈ RD×L, and q[cls] = FC(q[cls]) ∈ RD.193

GuidedQuery The video frame features are then194

used to generate moment proposals. To make these195

dependent on the powerful pre-trained text fea-196

tures, a GuidedQuery module is designed to assign197

higher weights to the input video frames that share198

higher similarity with the input query. Specifically,199

this is achieved by using the global semantic vector200

of the input query via a gating function,201

Vg = σ(repeat(q[cls],K)⊗ V )⊗ V , (6)202

where the repeat function repeats an input vector 203

multiple times and ⊗ denotes Hadamard product. 204

Local Proposal Generation A 2D feature map 205

is generated as in (Zhang et al., 2020b), by enu- 206

merating all pairwise start-end frames, yielding 207

K = T × T video segments. With T = ⌊K/m⌋ 208

and m as the downsampling rate, these segments, 209

P = {vp
n}Nn=1 ∈ RD×N , serve as moment pro- 210

posals. We simplify by flattening this map. Each 211

segment proposal uses a max-pooled feature vector 212

from its frames. The k-th proposal with boundaries 213

(tsk, t
e
k) is: 214

Pk = MaxPool(Vg[t]|∀t ∈ [tsk, t
e
k]), (7) 215

where MaxPool is max-pooling over the proposal’s 216

frame range, capturing its key features. 217

Conditional Layer Normalization Downsam- 218

pling of m frames can lose boundary information 219

vital for temporal endpoints. To mitigate this, we 220

use a conditional layer normalization layer (Chen 221

et al., 2021; Li et al., 2022a) to infuse boundary 222

features from Vg to P . For segment [i, j], the nor- 223

malized representation is: 224

Pi,j = CLN(Pi,j ,Vg[i]⊕Vg[j]) = γi,j⊗(
Pi,j − µ

σ
)+λi,j

(8) 225

Here, ⊕ is concatenation. The gain and bias param- 226

eters, γi,j and λi,j , are conditioned on Vg[i] and 227

Vg[j]: 228

γi,j = wα[Vg[i]⊕Vg[j]]+bα, λi,j = wβ [Vg[i]⊕Vg[j]]+bβ
(9) 229

µ and σ represent the mean and standard deviation 230

of Pi,j elements: 231

µ =
1

D

D∑
k=1

Pi,j,k, σ =

√√√√ 1

D

D∑
k=1

(Pi,j,k − µ)2 (10) 232

with Pi,j,k as the k-th dimension of Pi,j . 233
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3.2 Prediction Fusion234

In this section, we consider the boundary prediction235

from a span-based classifier, the proposal-based236

prediction from the local proposal module, and the237

ranking based prediction from the global proposal238

ranking module. Except for prediction score in-239

terpolation during inference as shown in Eq 4, the240

boundary predictions from the proposal ranking241

model can be beneficial for training the span-based242

local classification models by constructing dynamic243

boundary sets.244

Local Boundary Prediction. Given video (V ∈245

RD×K) and sentence (Q ∈ RD×L) representations,246

we estimate frame-wise endpoint probabilities by247

computing context-query attention, following the248

approach of previous work (Seo et al., 2016; Xiong249

et al., 2016; Yu et al., 2018; Zhang et al., 2020a).250

The endpoint probabilities are given by:251

hs,he = LSTM(V̂ ⊗ h)

(Ts,Te)=Softmax(FC(hs)), Softmax(FC(he)),

where h=σ(Conv1d(V̂ ∥q)) ∈ R1×T ,

V̂ = H(V ,Q) =

FC(V ∥Xv2q∥F ⊗Xv2q∥F ⊗Xq2v) ∈ RD×T ; and

A =
FC(F )⊤ FC(Q)√

D
,Xv2q = QAr⊤, Xq2v = FArAc⊤

(11)252

In Eq. (11), frame-wise endpoint probabilities Ts,253

Te are predicted using a two-layer LSTM net-254

work, which are the probability distributions used255

in Eq 3. This LSTM network operates on a fu-256

sion of the video and sentence modalities, achieved257

through function H , and per-frame fused feature258

V̂ ∈ RD×K is then rescaled using an estimated259

likelihood h ∈ R1×T of being foreground.260

Matrix A ∈ RK×L contains frame-to-word cor-261

relation scores. Ar and Ac are row and column-262

wise softmax normalised versions of this matrix.263

The sentence-level representations q are obtained264

via a weighted sum of words (Bahdanau et al.,265

2015). The symbols (·∥·) denotes concatenation.266

After generating Ts and Te, we predict a specific267

boundary encompassed by a single start and end268

frame, based on the outputs of the bounding branch.269

This is done in a maximum likelihood manner:270

Ŝ = argmax
t

Ts, Ê = argmax
t

Te, (12)271

Here, Ŝ and Ê represent the predicted start and272

end frame indices of a video that correspond to the273

given query.274

Dynamic Proposal Boundary Prediction. The275

proposal-level video representations P are fused276

with the sentence features using the function H , as 277

defined in Eq. (11). This fused representation is 278

rearranged into a 2D feature map, and per-proposal 279

alignment scores are then predicted using a 2D 280

convolution layer: 281

pa = σ(Conv2d(H(V ,Q))) s.t. pak ∈ (0, 1) ∀k ∈ [1, N ].
(13) 282

Here, σ activates the segment-wise alignment 283

scores pa. These scores are supervised based on 284

the temporal overlap between each proposal and 285

the manual boundary: 286

αk = IoU((tsk, t
e
k), (S,E))

ya
k =

 1, if αk ≥ τu
0, if αk < τl
αk, otherwise

Lalign(V ,Q, S, E) = BCE(ya,pa).

(14) 287

In the above equation, τu and τl represent the upper 288

and lower overlap thresholds, which regulate the 289

flexibility of video-text alignment. These are set to 290

0.7 and 0.3 respectively, as in (Zhang et al., 2020b). 291

Given the learned segment-wise alignment 292

scores pa, the boundary (tsk, t
e
k) of the most con- 293

fident proposal, with the highest predicted score 294

pak∗ ≥ pak ∀k ∈ [1, N ], is considered as the pseudo 295

boundary. From this, we construct the candidate 296

endpoint sets as: 297

S̃ = [min(tsk∗ , S),max(tsk∗ , S)],

Ẽ = [min(tek∗ , E),max(tek∗ , E)].
(15) 298

We customize the candidate endpoint sets for 299

each individual activity by exploring content align- 300

ments between video segments and query sen- 301

tences, thereby creating an dynamic boundary. 302

Dynamic Global Boundary Prediction To com- 303

pute the global ranking score si,j as defined in Eq.4, 304

we leverage the vector he as defined in Eq.11. We 305

first split this vector into two equal parts, repre- 306

sented as zs and ze, using the chunk function: 307

zs, ze = chunk(he, 2), si,j = FC(zsi )FC(zej)
T (16) 308

Here chunk(he, 2) splits he to two equal parts. 309

This calculation allows si,j to effectively utilize 310

the information encapsulated in he, which is also 311

used in Eq. 11 for end point prediction, thereby 312

enabling effective scoring of spans. 313

Given si,j , we can select the optimal moment by 314

maximizing si,j over all valid intervals 1 ≤ i ≤ 315

j ≤ K: Given si,j , we can select the optimal mo- 316

ment by Ŝg, Êg = argmax1≤i≤j≤K si,j . Based on 317
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this prediction, we update the candidate endpoint318

sets as:319

S̃ = [min(Ŝg, S̃),max(Ŝg, S̃)],

Ẽ = [min(Êg, Ẽ),max(Êg, Ẽ)].
(17)320

These updated sets S̃ and Ẽ represent the final321

dynamic boundary that we use to train the span-322

based local classifier.323

Learning from dynamic boundary. Using the324

dynamic boundary (S̃, Ẽ), we create boundary325

supervisions to maximize the candidate endpoint326

probabilities in Eq. (18):327

Lbound(F ,Q, S̃, Ẽ) = − log(
∑
t∈S̃

p
s
t ) − log(

∑
t∈Ẽ

p
e
t ). (18)328

Unlike the common frame-wise supervision that329

trains ps and pe to be one-hot (Zhang et al., 2020a),330

this method provides a flexible boundary for tar-331

get moments. It lets the model discern endpoints332

beyond manual boundaries and ignore irrelevant333

actions, enhancing learning of the video’s temporal334

structure relative to the query.335

3.3 The Overall Training Loss336

Besides the global proposal ranking loss Lspan,337

boundary loss Lbound, and alignment loss Lalign, we338

incorporate a highlight loss (Zhang et al., 2020a)339

to train h as in Eq. (11). This loss emphasizes key340

video content:341

Lhigh(F ,Q, S, E) = BCE(yh,h),

yh
t = ⊮[min(S̃) ≤ t ≤ max(Ẽ)].

(19)342

The overall loss function for our proposed model343

is then formulated as follows:344

L = λ1Lbound + λ2Lalign + λ3Lhigh + λ4Lspan (20)345

The model is trained to minimize the weighted sum346

loss. The weighting factors λ1, λ2, λ3, λ4 allow for347

adjusting the relative importance of each loss term,348

providing flexibility to tune the model based on349

specific performance objectives.350

4 Experiments351

4.1 Data and Settings352

We evaluate the robustness of GPRank on three353

settings. The first is the standard setting, includ-354

ing TACoS (Regneri et al., 2013; Rohrbach et al.,355

2012), Charades-STA (Gao et al., 2017; Sigurds-356

son et al., 2016) and ActivityNet-Captions (Krishna357

et al., 2017; Heilbron et al., 2015). Table 1 in the358

appendix shows the data statistics of the standard359

setting. The second is the distribution changing 360

setting including Charades-CD and ActivityNet- 361

CD (Yuan et al., 2021). The performance of the 362

models is evaluated in both in-distribution (test-iid) 363

and out-of-distribution (test-ood) scenarios. The 364

third is the compositional generalization setting, 365

including Charades-CG and ActivityNet-CG (Li 366

et al., 2022b). The evaluations span three settings: 367

Test-Trivial, Novel-Composition, and Novel-Word, 368

with the last two involving unseen semantic com- 369

position and words outside the training set. 370

Evaluation Metrics. We follow common prac- 371

tices in the field (Zhang et al., 2020a; Wang et al., 372

2021a; Nan et al., 2021) and measures the aver- 373

age recall rate at three temporal IoU thresholds 374

(IoU@µ) for µ = 0.3, µ = 0.5, and µ = 0.7. A 375

higher IoU indicates a better performance. We also 376

report the mean IoU (mIoU), a metric representing 377

the average overlap between the predicted and the 378

ground-truth boundaries. 379

Implementation Details. The implementation 380

details are described in the appendix. 381

4.2 Main Results 382

Table 1 shows the main results on the standard 383

distribution-consistent setting. Various baselines 384

listed in the table include VSLNet (Zhang et al., 385

2020a), IVG (Nan et al., 2021), 2D-LGI (Mun et al., 386

2020), BPNet (Xiao et al., 2021), EBM (Huang 387

et al., 2022) and MS-DETR (Wang et al., 2023). 388

GPRank outperforms all the other models in terms 389

of mIoU across all three datasets. Specifically, 390

GPRank achieved the highest mIoU of 37.93, 391

54.39, and 47.30 on the TACoS, Charades-STA, 392

and ActivityNet-Captions datasets, respectively. 393

When IoU=0.7, MS-DETR outperforms the others 394

on the TACoS and ActivityNet-Captions datasets, 395

while GPRank retains the top spot in the Charades- 396

STA dataset. In the lower IoU thresholds (0.3 and 397

0.5), GPRank again excels across all three datasets. 398

In fact, for IoU=0.3, GPRank significantly outper- 399

forms the baselines, with gains over MS-DETR of 400

6.48, 6.08, and 4.16 points on TACoS, Charades- 401

STA, and ActivityNet-Captions, respectively. This 402

advantage of GPRank can be attributed to its ap- 403

proach of ranking all the proposals from a global 404

perspective, which enables it to better model the 405

long-tailed low IoU proposals. 406

4.3 Out-of-domain Generalization 407

Table 2 shows the out-of-domain generalization re- 408

sults. We ran the source code of EMB (Huang et al., 409
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Method TACoS Charades-STA ActivityNet-Captions

mIoU µ =0.3 µ =0.5 µ =0.7 mIoU µ =0.3 µ =0.5 µ =0.7 mIoU µ =0.3 µ =0.5 µ =0.7

VSLNet (Zhang et al., 2020a) 24.11 29.61 24.27 20.03 45.15 64.30 47.31 30.19 43.19 63.16 43.22 26.16
IVG (Nan et al., 2021) 28.26 38.84 29.07 19.05 48.02 67.63 50.24 32.88 44.21 63.22 43.83 27.10
LGI (Mun et al., 2020) - - - - 51.38 72.96 59.46 35.48 41.13 58.52 41.51 23.07
BPNet (Xiao et al., 2021) 19.53 25.93 20.96 14.08 46.34 65.48 50.75 31.64 42.11 58.98 42.07 24.69
EMB (Huang et al., 2022) 35.49 50.46 37.82 22.54 53.09 72.50 58.33 39.25 45.59 64.13 44.81 26.07
MS-DETR (Wang et al., 2023) 35.09 47.66 37.36 25.81 50.12 68.68 57.72 37.40 46.82 62.12 48.69 31.15

GPRank (ours) 37.93 54.14 38.42 24.12 54.39 74.76 60.78 40.86 47.30 66.28 46.68 27.84

Table 1: Performances on distribution-consistent settings. µ: IoU. Here we only include baselines which report
µ = {0.3, 0.5, 0.7} and mIoU at the same time for fair comparisons. More baselines are shown in the Appendix.
Bold and underline denotes the best and the second best in a column, respectively.

Charades-CD ActivityNet-CD

test-iid test-ood test-iid test-ood

µ=0.5µ=0.7µ=0.5µ=0.7µ=0.5µ=0.7µ=0.5µ=0.7

Bias-based 16.87 9.34 5.04 2.21 19.81 12.27 0.26 0.11
PredictAll 0.00 0.00 0.06 0.00 20.05 12.45 0.00 0.00

CTRL 29.80 11.86 30.73 11.97 11.27 4.29 7.89 2.53
ACRN 31.77 12.93 30.03 11.89 11.57 4.41 7.58 2.48
ABLR 41.13 23.50 31.57 11.38 35.45 20.57 20.88 10.03
2D-TAN 46.48 28.76 28.18 13.73 40.87 28.95 18.86 9.77
SCDM 47.36 30.79 41.60 22.22 35.15 22.04 19.14 9.31
DRN 41.91 26.74 30.43 15.91 39.27 25.71 25.15 14.33

TSP-PRL 35.43 17.01 19.37 6.20 33.93 19.50 16.63 7.43

WSSL 14.06 4.27 23.67 8.27 17.20 6.16 7.17 1.82

TCN-DCM 52.50 35.28 40.51 21.02 42.15 29.69 20.86 11.07
MDD 52.78 34.71 40.39 22.70 43.63 31.44 20.80 11.66
DD+MD 55.66 38.87 40.88 28.11 50.37 32.70 25.05 14.67

Shuffle 57.59 37.79 46.67 27.08 48.07 32.15 24.57 13.21
EMB† 62.33 43.14 48.68 30.02 48.80 31.27 21.80 10.63

GPRank† 64.52 44.47 54.87 34.55 52.99 35.03 28.44 13.95

Table 2: Performance comparisons on Charades-CD and
ActivityNet-CD. † denotes our implementation.

2022) on these benchmarks, showing commend-410

able performance compared to all the other base-411

lines as shown in Table 2. GPRank shows the best412

performance overall. It achieved the highest scores413

in both datasets, across both in-distribution and414

out-of-distribution tests. Specifically, in the out-of-415

distribution tests, GPRank scored 54.87 (IoU=0.5)416

and 34.55 (IoU=0.7) on Charades-CD, which out-417

performs the baselines by large margins. GPRank418

is slightly worse than DD+MD (Zhang et al.,419

2021a) when looking at IoU=0.7 on ActivityNet-420

CD, which is reasonable since DD+MD applies421

video data augmentation techniques, which are not422

considered in our method. These results suggest423

that the GPRank model performs well under vary-424

ing distributions, effectively grounding videos in425

both familiar (in-distribution) and unfamiliar (out-426

of-distribution) scenarios.427

4.4 Compositional Generalization 428

Table 3 presents the performance of various tempo- 429

ral grounding methods on on ActivityNet-CG. As 430

shown in Table 3, our GPRank method achieves 431

the highest score in 8 out of 9 metrics, while 432

taking the second position in the remaining one. 433

Compared to MS-2D-TAN+SSL (Li et al., 2023a), 434

GPRank boasts of mIOU improvements of +3.31, 435

+4.54, and +4.50 across the Test-Trivial, Novel- 436

Composition, and Novel-Word settings, respec- 437

tively. When compared to VISA+ASSL (Li et al., 438

2023b), the mIOU performances of GPRank on 439

the Novel-Composition and Novel-Word settings 440

are comparable, although GPRank secures higher 441

IoU=0.5 scores. On Charades-CG (presented in the 442

appendix), GPRank markedly outperforms the lead- 443

ing state-of-the-art method, VISA+ASSL (47.44 444

v.s. 43.89), in the Novel-Composition setting. In 445

addition, in terms of the IoU=0.7 metric across 446

all settings on Charades-CG, GPRank outdoes all 447

considered baselines. 448

The overall results underscore the robustness of 449

our method in generalizing to novel semantic com- 450

binations and new words on both datasets. Intrigu- 451

ingly, both VISA+ASSL and MS-2D-TAN+SSL 452

employ specially designed self-supervised learning 453

modules to better align the semantic space of the 454

two input modalities. The fact that GPRank does 455

not yet incorporate a self-supervised method sug- 456

gests a potential avenue for further improvement. 457

5 Analysis 458

Ablation Study Table 4 presents the results of 459

an ablation study conducted on the Charades-CD 460

dataset. In the study, the base model, EMB (Huang 461

et al., 2022), is progressively augmented with 462

various components: Roberta, ResidualEmb, 463

GuidedQuery, and CLN. By comparing each row 464
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Method Test-Trivial Novel-Composition Novel-Word

µ=0.5 µ=0.7 mIoU µ=0.5 µ=0.7 mIoU µ=0.5 µ=0.7 mIoU

WeakSup WSSL (Duan et al., 2018) 11.03 4.14 15.07 2.89 0.76 7.65 3.09 1.13 7.10

RL-based TSP-PRL (Wu et al., 2020) 34.27 18.80 37.05 14.74 1.43 12.61 18.05 3.15 14.34

Proposal-free
LGI (Mun et al., 2020) 43.56 23.29 41.37 23.21 9.02 27.86 23.10 9.03 26.95
VLSNet (Zhang et al., 2020a) 39.27 23.12 42.51 20.21 9.18 29.07 21.68 9.94 29.58
VISA (Li et al., 2022b) 47.13 29.64 44.02 31.51 16.73 35.85 30.14 15.90 35.13
VISA+ASSL (Li et al., 2023b) 49.37 31.18 46.15 33.22 17.83 37.56 32.04 17.24 36.87

Proposal-based TMN (Liu et al., 2018) 16.82 7.01 17.13 8.74 4.39 10.08 9.93 5.12 11.38
2D-TAN (Zhang et al., 2020b) 44.50 26.03 42.12 22.80 9.95 28.49 23.86 10.37 28.88
2D-TAN+SSL (Li et al., 2023a) 46.58 29.65 45.60 27.18 12.60 30.98 26.58 12.55 30.09
DeCo (Yang et al., 2023) 43.98 24.25 43.47 27.35 11.66 31.27 - - -
LGI+DeCo (Yang et al., 2023) 47.38 28.43 46.03 28.69 12.98 32.67 - - -
MS-2D-TAN (Zhang et al., 2021b) 48.80 31.52 46.58 29.86 14.40 31.80 28.90 13.83 31.01
MS-2D-TAN+SSL (Li et al., 2023a) 49.63 31.73 47.22 30.80 15.39 33.18 30.15 14.97 32.14

Hybrid GPRank (ours) 52.37 33.10 50.53 34.76 17.97 37.72 33.44 17.28 36.64

Table 3: Performances on ActivityNet-CG. Bold and underlined denote the best and second best results, respectively.

test-iid test-ood
0.5 0.7 0.5 0.7

EMB 62.33 43.14 48.68 30.02
+Roberta 59.66 42.41 47.34 28.62
+Roberta+Res 62.45 42.77 50.61 30.64
+Roberta+Res+GuidedQuery 61.24 41.19 51.64 30.99
+Roberta+Res+GuidedQuery+CLN 64.28 40.71 52.47 31.41

EMB w/ global ranking loss 63.00 44.00 51.80 31.00

GPRank w/o global ranking loss 61.48 40.83 52.30 32.53
GPRank 64.52 44.47 54.87 34.55

Table 4: Ablation study on Charades-CD.

with its predecessor, we can observe the impact of465

each component on the system’s performance.466

However, upon adding Roberta to EMB, we no-467

tice a decrease in performance for both test-iid and468

test-ood conditions. This implies that the integra-469

tion of Roberta into this system does not enhance470

the results. While this finding might seem coun-471

terintuitive given Roberta’s strong performance in472

language tasks, it aligns with the results obtained473

by Shimomoto et al. (2023). One potential expla-474

nation could be that Roberta embeddings, unlike475

the GloVe embeddings used in the EMB model, are476

more context-specific and dynamic. These proper-477

ties might make it challenging to establish a robust478

mapping function necessary for bridging the gap479

between text and video modalities.480

When we add the ResidualEmb component to481

the EMB+Roberta model, an improvement is seen482

in the IoU scores for both test-iid and test-ood483

conditions at the 0.5 and 0.7 thresholds. This484

suggests that the ResidualLLM contributes posi-485

tively to the model’s performance. The inclusion486

of GuidedQuery in the EMB+Roberta+Res model487

further enhances the IoU scores under the test-488

ood condition, but slightly reduces the scores un- 489

der the test-iid condition. This might indicate a 490

trade-off situation. The addition of CLN to the 491

EMB+Roberta+Res+GuidedQuery model improves 492

the IoU scores under both test-iid and test-ood con- 493

ditions, signifying that the CLN component posi- 494

tively contributes to the model’s effectiveness. 495

Finally, we compare the performance of the 496

GPRank model with and without the global ranking 497

loss. The GPRank model without global ranking 498

loss shows lower IoU scores under both conditions 499

compared to the version with the global ranking 500

loss. This suggests that the global ranking loss is a 501

valuable contribution to the model’s performance. 502

Effect of λ The impact of the λ parameter is investi- 503

gated by incrementing its value from 0 to 1 in steps 504

of 0.1. A λ value of 1 implies the exclusive use 505

of local boundary-based classifiers, while a value 506

of 0 indicates sole reliance on global span rank- 507

ing scores. As illustrated in Figure 3, the global 508

span ranking model’s pure form yields lower results 509

compared to the pure local boundary classifiers. 510

We posit that this is because the global span rank- 511

ing model requires effective span representations 512

for successful training. At present, we utilize only 513

boundary-based features, neglecting the internal 514

features of spans. When λ < 0.5, the performance 515

remains relatively strong, whereas it deteriorates 516

for λ > 0.5. The model exhibits optimal perfor- 517

mance at λ = 0.5. This suggests that the global 518

ranking scores account for a non-negligible role. 519

More analysis and discussions are included in the 520

appendix. 521
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Figure 3: The effect of λ (Eq 4) on ActivityNet.
6 Related Work522

Temporal Sentence Video Grounding Models523

Temporal sentence video grounding (TSVG) was524

introduced by Gao et al. (2017) and quickly gained525

research community’s attention. Methodologies526

for this task are typically proposal-free or proposal-527

based. Proposal-free methods target recognizing528

start and end boundaries of moments (Chen et al.,529

2018; Ghosh et al., 2019; Zeng et al., 2020; Zhang530

et al., 2020a; Li et al., 2021; Zhou et al., 2021; Nan531

et al., 2021; Xu et al., 2021). They train models us-532

ing ground-truth endpoints but can be biased due to533

annotation uncertainties (Otani et al., 2020; Zhou534

et al., 2021; Huang et al., 2022). Proposal-based535

methods generate candidate proposals from video536

segments, aligning them with query sentences (Gao537

et al., 2017; Anne Hendricks et al., 2017; Ge et al.,538

2019; Zhang et al., 2019, 2020b, 2021b; Zheng539

et al., 2022; Li et al., 2023a). The top-ranked540

proposal is chosen as the prediction. While less541

boundary-sensitive, their success hinges on pro-542

posal quality and ranking efficiency. Hybrid meth-543

ods blend proposal-free and proposal-based advan-544

tages, using both segment and frame-level data for545

deeper video insight (Wang et al., 2020, 2021a;546

Xiao et al., 2021; Huang et al., 2022). Notably,547

Huang et al. (2022) address the uncertain bound-548

ary issue by generating a set of elastic boundaries549

that are dynamically built using proposal-based550

methods. Despite these advancements, Huang et al.551

(2022) generate proposals using sampled moments,552

whereas our model considers all possible moments.553

TSVG with Pretrained Language Models The554

use of TSVG with GloVE embeddings (Pennington555

et al., 2014) still remarkably dominates the field.556

The exploration of TSVG with pretrained language557

models such as BERT (Devlin et al., 2019) and558

Roberta (Liu et al., 2019) is less prevalent. Al-559

though Yang et al. (2022) used Roberta for spatio-560

temporal video grounding, it is a different task.561

Further, Wang et al. (2021b) and Zheng et al.562

(2023) utilize DistillBERT (Sanh et al., 2020) as 563

the text encoder, a distilled version of BERT that 564

may not fully leverage BERT’s capabilities. Re- 565

cent work by Shimomoto et al. (2023) successfully 566

employ efficient adapter-based pretrained language 567

models (PLMs) for TSVG. Despite their efforts, 568

fine-tuning the pretrained encoder on Charades- 569

STA (Gao et al., 2017) yields limited improvements 570

or occasionally reduces performance across dif- 571

ferent backbone models, indicating the challenge 572

of integrating PLMs for TSVG. We diverge from 573

these methods by designing a backbone-specific 574

integration that enables better interaction between 575

the pretrained text features and video features. 576

Global Proposal Ranking Liu et al. (2021) and 577

Zhang et al. (2021b) proposed methods for ranking 578

candidate proposals using cross-entropy loss. Liu 579

et al. (2021) introduced a contextual biaffine scor- 580

ing network, while Zhang et al. (2021b) employs 581

multi-scale 2D temporal feature maps. However, 582

both methods use cross-entropy as their training 583

objective and do not explicitly consider the rank- 584

ing of all candidate moments from a global per- 585

spective. Our method adopts a global ranking loss 586

function, originally designed for multi-label clas- 587

sification (Su et al., 2022). The ranking score of 588

a moment proposal is directly calculated based on 589

its overlap with the ground truth, thus enabling a 590

global ranking of the candidate moments. 591

7 Conclusion 592

In this paper, we presented an exploration of in- 593

tegrating the pre-trained language model Roberta 594

for temporal video grounding models. Our focus 595

was not only to enhance the model’s performance 596

but also to ensure robustness in varying conditions. 597

Contrary to expectations, the direct incorporation 598

of Roberta resulted in a slight performance de- 599

crease in a dataset, emphasizing the importance 600

of thoughtfully integrating these models. To ad- 601

dress this, we proposed architecture modifications, 602

which positively impacted the IoU scores in both 603

in-distribution and out-of-distribution, and compo- 604

sitional generalization testing scenarios. We also 605

leveraged a global proposal ranking loss, which 606

further augmented our model’s performance, indi- 607

cating its effectiveness in enhancing the model’s 608

robustness. The approach and findings from this 609

study offer valuable guidance for future research in 610

effectively combining large-scale language models 611

and video grounding models. 612
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Limitation613

One key limitation is that we only consider one spe-614

cific temporal video grounding model, EMB, in our615

work. While EMB is an effective baseline model616

in this domain, there is a range of other models617

available in the temporal video grounding litera-618

ture, each with its unique strengths and features.619

These models include VSLNet and MS-2D-TAN,620

among others, which offer different mechanisms621

for understanding and grounding temporal video622

content.623

Another limitation is our model-specific archi-624

tecture and global ranking loss, designed to work625

optimally with the EMB model and Roberta em-626

beddings, might not be directly compatible with627

other temporal video grounding models or other628

pre-trained language models and large language629

models such as LLaMA (Touvron et al., 2023).630

Therefore, our proposed architecture may require631

significant adaptations or the development of new632

components to be compatible with other models.633
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A Appendix 914

A.1 The relationship between µ and g 915

To minimize the loss function above, the model 916

needs to increase the value of gi,j when µi,j is 917

large and decrease the value of gi,j when µi,j is 918

small. When µi,j becomes a binary variable, the 919

loss function is identical to circle loss (Sun et al., 920

2020). The direct relation between µi,j and gi,j 921

during inference can be derived by considering the 922

partial derivative of Lspan with respect to each gi,j : 923

∂Lspan

∂gi,j
=

−µi,je
−gi,j

1 +
∑
i≤j

µi,je−gi,j
+

(1− µi,j)e
gi,j

1 +
∑
i≤j

(1− µi,j)egi,j
,

(21) 924

By setting µi,je
−gi,j = (1 − µi,j)e

gi,j , the par- 925

tial derivative ∂Lspan

∂gi,j
equals zero, indicating local 926

minimums of the loss function. Solving this equa- 927

tion, we get: µ̂i,j = σ(2gi,j), where σ denotes the 928

sigmoid function. This indicates that for prediction, 929

we can approximate the probability of the span 930

[i, j] being the target span using σ(2gi,j). 931
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A.2 Guided Attention932

Content Guided Attention. The content-guided933

attention module incorporates the preceding and934

subsequent content information of each frame into935

its representation. This approach emphasizes the936

importance of discerning changes or differences937

between sequential frames:938

Vpre = {MaxPool({fi}ti=1)}Kt=1 ∈ RD×K ,

Vsub = {MaxPool({fi}Ki=t)}Kt=1 ∈ RD×K ,

Ṽ = Conv2d({V ,Vpre,Vsub}) ∈ RD×K .

(22)939

Afterwards, the content-guided representations940

of video frames (Ṽ ) are used for attentive encod-941

ing (Eq.11), both within the same modality (V ←942

g(Ṽ , Ṽ ) and across modalities (V ← g(Ṽ ,Q)).943

This way, the model pays attention not just to the944

content of individual frames, but also to how they945

change over time, aiding in the identification of key946

moments within the video.947

Boundary Guided Attention. Similar to the948

content-guided attention approach for video frames,949

we explicitly incorporate the frame-wise boundary950

features with the content representations of video951

segments to promote boundary-sensitive content952

alignment:953

Psta = {fts
k
}Nk=1 ∈ RD×N , Pend = {fte

k
}Nk=1 ∈ RD×N ,

P̃ = Conv2d({P ,Psta,Vend}) ∈ RD×N .
(23)954

In Eq. (23), the features Psta and Pend represent955

the start and end frames of each of the K pro-956

posals. These boundary features are stacked and957

combined with the segment-wise content features958

P through a 2D convolution layer to generate959

the boundary-guided segment representations P̃ .960

This boundary-guided attention approach shares961

the same philosophy as temporal pyramid pool-962

ing (Zhao et al., 2017), in that it explicitly en-963

codes the temporal structure into the segment’s964

representation to make it sensitive to the segment’s965

boundaries. The boundary-guided representations966

P̃ are then used for attentive encoding within the967

same modality P ← g(P̃ , P̃ ) and across different968

modalities P ← g(P̃ ,Q)) as defined by Eq.11.969

A.3 Data Statistics970

Table 5 shows the data statistics on the distribution-971

consistent settings.972

A.4 Implementation Details973

We generally follow the settings of Huang et al.974

(2022). We employed the provided video features975

Metric ActivityNet Charades TACoS

#Train 37,421 12,408 10,146
#Val 17,031 - 4,589
#Test 17,505 3,720 4,083

Avg Len of V 117.61s 30.59s 287.14s
Avg Len of M 36.18s 8.22s 5.45s

Avg Words of Q 14.8 7.2 10.1

Table 5: Data Statistics. V: video, M: ground-truth
moment, Q: language query.

of Zhang et al. (2020a) to encode video inputs. For 976

text inputs, we use the 300D GloVe (Pennington 977

et al., 2014) embeddings and Roberta-base (Liu 978

et al., 2019) as the pretrained langauge model. We 979

tune our GPRank model for 20 epochs using a 980

batch size of 16. The backbone parameters of 981

EMB and the parameters of Roberta are tuned us- 982

ing separate Adam optimizers. For the backbone 983

parameters, we use a learning rate of 5e-4. For 984

the Roberta parameters, we use 5e-6 for Charades 985

datasets (including Charades-STA, Charades-CD, 986

Charades-CG) and 1e-5 for TACoS and ActivityNet 987

datasets (ActivityNet-Captions, ActivityNet-CD, 988

ActivityNet-CG). To represent the input language 989

query, we use the last output layer of Roberta for 990

Charades-related datasets and sum the last four out- 991

put layers of Robert for TACoS and ActivityNet- 992

related datasets. For the loss weights, λ1 = 1.0, 993

λ2 = 1.0, λ3 = 5.0, and λ4 = 1.0 give the optimal 994

performance. 995

A.5 Effect of Pretrained Language Models 996

In this study, we compared our models with differ- 997

ent pretrained language models on the Charades- 998

STA test set. Our results were compared with 999

those from models such as TMLGA, DoRi (Shi- 1000

momoto et al., 2023), MMN (Wang et al., 2021b), 1001

and TRM (Zheng et al., 2023). Notably, TMLGA 1002

is a less robust backbone model compared to 1003

DoRi. Both MMN and TRM, which utilised Dis- 1004

tillBERT (Sanh et al., 2020) as their encoder, are 1005

based on VGG video features, making a direct com- 1006

parison less feasible. However, they have been 1007

included for reference. 1008

TMLGA (Rodriguez et al., 2020) exhibited sim- 1009

ilar results across all three pretrained encoders. 1010

DoRi (Rodriguez-Opazo et al., 2021) also achieved 1011

comparable performance using both BERT (Devlin 1012

et al., 2019) and DeBERTa (He et al., 2021), outper- 1013

forming TMLGA by a significant margin. These 1014

results suggest that the choice between BERT, 1015
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Method Encoder IoU=0.3 IoU=0.5 IoU=0.7 mIoU

MNL DistillBERT 60.48 47.45 27.15 —
TRM DistillBERT 60.67 47.77 28.01 42.77

TMLGA BERT 71.02 52.53 33.52 49.80
TMLGA Roberta - 53.84 34.78 49.91
TMLGA DeBERTa - 53.49 34.65 49.78

DoRi BERT 72.50 58.63 40.97 53.29
DoRi DeBERTa - 58.39 41.61 53.34

GPRank Roberta 74.76 60.78 40.86 54.39

Table 6: Comparisons with different pretrained language
model encoders on Charades-STA test set.

Dataset Config mIoU µ = 0.3 µ = 0.5 µ = 0.7

TACoS
CE 36.01 51.48 37.43 22.41

CE + combined 36.49 52.00 37.77 22.60
GPRank 37.93 54.14 38.42 24.12

Charades-STA
CE 53.60 73.57 59.64 39.92

CE + combined 53.93 74.45 60.18 39.83
GPRank 54.39 74.76 60.78 40.86

Table 7: Effect of cross-entropy loss

Roberta, and DeBERTa might yield similar per-1016

formance levels when the same backbone models1017

are used, implying that the backbone models might1018

have a more significant impact.1019

Drawing from these experiences, we chose to1020

utilise only the Roberta encoder, which provided1021

the best performance for TMLGA among the three1022

encoders. Our method GPRank demonstrated the1023

highest scores across all IoU thresholds, outper-1024

forming all other methods and encoders. These1025

results underscore the effectiveness of our unique1026

design approach, which involves a deep integra-1027

tion of pretrained language representations with1028

the EMB backbone, over architecture-agnostic in-1029

tegration.1030

A.6 Effect of cross-entropy loss1031

We also investigate performances of cross-1032

entropy (CE) loss with pre-trained language mod-1033

els, combining probabilities predicted by CE1034

(CE+combined) and local boundary classifier prob-1035

abilities. Table 7 shows the results on TACoS and1036

Charades-STA. Comparable outcomes are observed1037

with ActivityNet as well. Using CE loss is also ben-1038

eficial with our encoder. A configuration with our1039

prediction fusion further enhances performance.1040

However, both approaches fall short when com-1041

pared to our proposed method.1042

A.7 Composition Generalization Results on 1043

Charades-CG 1044

Table 8 shows the composition generalization re- 1045

sults on Charades-CG. Table 8 reveals that MS-2D- 1046

TAN+SSL emerges as the top-performing baseline 1047

model, achieving the highest IOU=0.7 score in the 1048

Novel-Word setting. VISA+ASSL stands out with 1049

its superior IOU=0.5 performance in the Novel- 1050

Composition setting. Our GPRank method regis- 1051

ters seven top records and two second-place records 1052

across the nine metrics. Particularly, GPRank ex- 1053

cels in the Test-Trivial setting, surpassing all base- 1054

line methods. In the Novel-Composition setting, 1055

GPRank markedly outperforms the leading state- 1056

of-the-art method, VISA+ASSL (47.44 v.s. 43.89). 1057

In terms of the IoU=0.7 metric across all settings, 1058

GPRank outdoes all considered baselines. 1059
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Method Test-Trivial Novel-Composition Novel-Word

µ=0.5 µ=0.7 mIoU µ=0.5 µ=0.7 mIoU µ=0.5 µ=0.7 mIoU

WeakSup WSSL 15.33 5.46 18.31 3.61 1.21 8.26 2.79 0.73 7.92

RL-based TSP-PRL 39.86 21.07 38.41 16.30 2.04 13.52 14.83 2.61 14.03

Proposal-free
LGI 49.45 23.80 45.01 29.42 12.73 30.09 26.48 12.47 27.62
VLSNet 45.91 19.80 41.63 24.25 11.54 31.43 25.60 10.07 30.21
VISA 53.20 26.52 47.11 45.41 22.71 42.03 42.35 20.88 40.18
VISA+ASSL 56.14 28.27 48.92 47.76 24.85 43.89 44.75 22.31 42.38

Proposal-based TMN 18.75 8.16 19.82 8.68 4.07 10.14 9.43 4.96 11.23
2D-TAN 48.58 26.49 44.27 30.91 12.23 29.75 29.36 13.21 28.47
2D-TAN+SSL 53.91 31.82 46.84 35.42 17.95 33.07 43.60 25.32 39.32
DeCo 58.75 28.71 49.06 47.39 21.06 40.70 - - -
MS-2D-TAN 57.85 37.63 50.51 43.17 23.27 38.06 45.76 27.19 40.80
MS-2D-TAN+SSL 58.14 37.98 50.58 46.54 25.10 40.00 50.36 28.78 43.15

Hybrid GPRank (ours) 59.85 40.89 53.72 47.04 29.46 47.44 51.80 34.53 43.01

Table 8: Performances on Charades-CG. Bold and underlined denote the best and second best results, respectively.
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