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Abstract

Most existing solutions to temporal sentence
video grounding (TSGV) rely heavily on lo-
cal classifiers to discern start and end bound-
aries, often compromise internal consistency
and overlook boundary uncertainty. This pa-
per introduces a novel global ranking approach
that directly scores all candidate proposals us-
ing a unique loss function, thereby enhancing
robustness through the integrated decoding of
local and global predictions. We further in-
corporate pretrained language models into our
framework - a largely underexplored facet in
TSGV. Our methodology is evaluated across
three distinct settings: distribution-consistent,
distribution-changing, and composition gener-
alization datasets, outperforming existing base-
lines across the board. Notably, it exhibits su-
perior performance in out-of-distribution and
composition generalization tasks. To the best
of our knowledge, we are the first to com-
bine global proposal ranking and pretrained
language models for robust TSVG.

1 Introduction

Temporal Sentence Grounding in Videos (TSGV)
first introduced by Gao et al. (2017), is an essen-
tial bridge between textual and visual understand-
ing, promising significant advancements in video
comprehension and interaction. TSVG aims to lo-
cate specific moments within untrimmed videos
using a language query. An example is illustrated
in Figure 1, where a given query “person takes a
photo from the table” is used to identify the corre-
sponding moment (12.5 to 17.7 seconds) within a
26.96-second untrimmed video.

Existing approaches to this problem primarily
fall into two categories: proposal-free and proposal-
based methods. Proposal-free methods (Chen et al.,
2018; Ghosh et al., 2019; Zeng et al., 2020; Zhang
etal., 2020a; Cao et al., 2020a,b; Li et al., 2021; Liu
et al., 2021; Zhou et al., 2021; Nan et al., 2021; Xu
et al., 2021) focus on determining the start and end
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Figure 1: An example of temporal sentence grounding
in videos.

points of the target moment, making them simpler
to train but more prone to biases due to annota-
tion uncertainties. Proposal-based methods (Gao
et al., 2017; Anne Hendricks et al., 2017; Ge et al.,
2019; Zhang et al., 2019, 2020b, 2021b; Zheng
et al., 2022; Li et al., 2023a), on the other hand,
generate candidate proposals through the aggrega-
tion of video frames and alignment with the query
sentences, taking into account the interaction of
text and the entire proposal. While effective, these
methods heavily depend on the quality of proposal
generators and the efficiency of the ranking mecha-
nism.

To combine the advantages of both categories,
hybrid methods (Wang et al., 2020, 2021a; Xiao
et al., 2021; Huang et al., 2022) have been intro-
duced that combine both the segment-level and
frame-level information for improved video com-
prehension. Nevertheless, most of these techniques
generate proposals using sampled moments, failing
to consider all potential moments.

The utilization of pretrained language models
(PLMs) such as BERT (Devlin et al., 2019) and
Roberta (Liu et al., 2019) within the TSVG realm
is another underexplored area. Despite some ef-
forts (Wang et al., 2021b; Zheng et al., 2023; Shi-
momoto et al., 2023) to incorporate PLMs, the
results have varied, indicating the need for a more
harmonious integration approach.

In this work, we put forward a novel approach,
GPRank, designed to tackle these existing chal-
lenges. Our strategy employs a global ranking loss
function, enabling a comprehensive consideration



of all candidate proposals. This method integrates
a global perspective into the ranking of all candi-
date moments, ensuring a more precise and com-
prehensive ranking process. Moreover, we design
a backbone-specific integration strategy to facili-
tate better interaction between pretrained text fea-
tures and video features. By carefully orchestrating
this integration process, our method aims to fully
harness the potential of PLMs, thereby effectively
aligning textual queries with their corresponding
video moments.

We undertake extensive evaluations across three
distinct scenarios: 1) distribution-consistent bench-
marks, including ActivityNet-Captions (Krishna
et al., 2017), Charades-STA (Gao et al., 2017),
and TACoS (Regneri et al., 2013); 2) distribution-
changing datasets, containing ActivityNet-CD and
Charades-CD (Yuan et al., 2021); and 3) composi-
tion generalization datasets, including ActivityNet-
CG and Charades-CG (Li et al., 2022b). Exper-
imental outcomes demonstrate that our approach
outperforms multiple strong baselines across all
settings, with distinct effectiveness in out-of-
distribution and composition generalization tasks.

Our contributions in this paper are two-fold: we
introduce a new global span ranking method, and
we present a novel way of integrating pretrained
language models with video features for TSVG.
The source code of our approach will be made
publicly available.

2 Global Proposal Ranking

Temporal sentence video grounding identifies a
specific moment in an untrimmed video, denoted
as V with K frames, using a natural language
sentence Q) with L words. The moment is de-
fined by start (S) and end (&) points with S, E €
[1, K]. Instead of learning a direct mapping func-
tion f : f(V,Q) — [S, E], we model a score
gi; 1 <1 <5 < K) for each moment can-
didate, with a higher g; ; indicating better corre-
spondence between V and Q. The ground-truth
overlapping score 1; ; of a candidate proposal [i, j]
with respect to the answer moment [.S, E] is de-

fined via the intersection-over-union (IoU) score:
. [BdN[S.E]
Hij = {41008, E]"

The goal of global proposal ranking is to learn a
model that predicts g; ; to align with p; ; globally,
maintaining the partial order relation: when p; ; >
wir jr, then g; ; > gy j». We utilize a loss function

from Su et al. (2022), originally designed for multi-

label classification', which is defined as:
Lspan = log (1 + D i eXp(—gi,j)>
i<j

+ log (1 + 2(1.0 — i) eXp(gi,j))

i<y

ey

To minimize the loss function above, the model
needs to increase the value of g; ; when p; ; is
large and decrease the value of g; ; when p; ; is
small. When ; ; becomes a binary variable, the
loss function is identical to circle loss (Sun et al.,
2020). As shown in the appendix, the loss function
reaches a local minimum when

fi; = 0(29i,5), ©)

where o denotes the sigmoid function. This indi-
cates that for prediction, the probability of the span
[i, 7] being the target span can be approximated
using (2g; ;).

We then propose a combination of predictions
from both local boundary classifiers and the global
span ranking module. Local boundary classifiers
learn two mapping functions, fs : fs(V,Q) —
S and f. : f(V,Q) — E, for recognizing the
start and the end points, respectively. The span
score obtained from the local boundary classifier is
defined as:

lij = Ps(i) X Pe(j) 3)
where Py(i) and P,(7) indicate the probabilities of
7 and j being the start and end points, respectively.
A hyper-parameter A (0 < A < 1) balances the
span scores from the local boundary classifier and
the global span ranking module:

si,; = Alogo(2¢s,5) + (1.0 — A) log l; 5. )
The final answer of the target moment is given by:

§7E' = argmax S; ;. 5)
1<i<<K

3 Model Architecture

In this section, we describe the specific model to ob-
tain the global ranking score g; ; and the local span
classification score /; ; defined in Eq. 3. We high-
light specific designs to integrate the pretrained text
features from Roberta and modules for the global
loss calculation. Figure 2 shows the overview of
our model architecture. It mainly contains three
stages: InputFusion, ContentFusion and Predic-
tionFusion. The InputFusion stage is responsible

"https://spaces.ac.cn/archives/9064
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Figure 2: The overview of GPRank architecture.

for fuse pretrained contextual embeddings into the
video features using GuidedQuery, generate pro-
posals, and inject boundary information to propos-
als using condition layer normalization. The Con-
tentFusion stage captures the interaction among
the pretrained contexutal text features, video fea-
tures and proposal features using guided attention.
Particularly, in the fusion stage, a ResidualEmb
module is used to directly emphasize the input
pretrained text features before video-language fu-
sion. The PredictionFusion stage combines the
dynamic boundaries from the proposal module and
the global proposal ranking module to train the
span-based classifier. In the end, it combines the
local predictions and global predictions to make
the final decisions.

3.1 Input Fusion

Video frames are encoded using a pretrained 3D-
CNN model (Carreira and Zisserman, 2017), pro-
ducing V. = {fi}X, € RP**K_ Queries use
the Roberta-base encoder (Liu et al., 2019). After
Roberta tokenizes into sub-words, their representa-
tions are averaged for word-level representations:
Q = {q}l-, € RP+*L The [CLS] token’s vector
is qy¢4). For cross-modal interactions, three linear
projections map video and sentence representations
to space D, giving V = FC(V) € RP*K Q =
FC(Q) S RDXL’ and Qlels] = Fc(q[cls}) eRP.
GuidedQuery The video frame features are then
used to generate moment proposals. To make these
dependent on the powerful pre-trained text fea-
tures, a GuidedQuery module is designed to assign
higher weights to the input video frames that share
higher similarity with the input query. Specifically,
this is achieved by using the global semantic vector
of the input query via a gating function,

Vy = o(repeat(qqs), K) @ V) @ V, (6)

where the repeat function repeats an input vector
multiple times and ® denotes Hadamard product.

Local Proposal Generation A 2D feature map
is generated as in (Zhang et al., 2020b), by enu-
merating all pairwise start-end frames, yielding
K =T x T video segments. With T' = | K/m|
and m as the downsampling rate, these segments,
P = {vh}N | € RP*N serve as moment pro-
posals. We s1mphfy by ﬂattenmg this map. Each
segment proposal uses a max-pooled feature vector
from its frames. The k-th proposal with boundaries

(t7,t) is:

P, = MaxPool(V,[t]|Vt € [ti,tk]), 7

where MaxPool is max-pooling over the proposal’s
frame range, capturing its key features.
Conditional Layer Normalization Downsam-
pling of m frames can lose boundary information
vital for temporal endpoints. To mitigate this, we
use a conditional layer normalization layer (Chen
et al., 2021; Li et al., 2022a) to infuse boundary
features from Vj, to P. For segment [, j], the nor-
malized representation is:

pi; - 1y

P; j = CLN(P; 5, Vy[i]® V4[i]) = 7, ®( .

+Ai g
(®)
Here, @ is concatenation. The gain and bias param-

eters, y;; and J; ;, are conditioned on V/[i] and
Volil:

Yiii = Wa[Voli]@Vy[f]l+ba, Aijj = Wa[‘@[i]@%[jHJrga)
1 and o represent the mean and standard deviation

of P; ; elements:

NE

(Pijk—p)*  (10)

1 & 1
= *ZPi,j,k’U Al
D — D

with P; ; . as the k-th dimension of P; ;.
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3.2 Prediction Fusion

In this section, we consider the boundary prediction
from a span-based classifier, the proposal-based
prediction from the local proposal module, and the
ranking based prediction from the global proposal
ranking module. Except for prediction score in-
terpolation during inference as shown in Eq 4, the
boundary predictions from the proposal ranking
model can be beneficial for training the span-based
local classification models by constructing dynamic
boundary sets.

Local Boundary Prediction. Given video (V' &€
RP>*KY and sentence (Q € R”*!) representations,
we estimate frame-wise endpoint probabilities by
computing context-query attention, following the
approach of previous work (Seo et al., 2016; Xiong
et al., 2016; Yu et al., 2018; Zhang et al., 2020a).
The endpoint probabilities are given by:

h,,h, = LSTM(V ® h)
(Ts, Te) =Softmax (F'C'(hs)), Softmax(FC(h.)),
where h=0(Convld(V|q)) € R**7,

FC(V[ X" F © X**| F & X*") ¢ R™*T; and
T
A= FCE) FCQ) yuzg _ g prT xuzv _ parpgeT

vD
amn

In Eq. (11), frame-wise endpoint probabilities T,
T, are predicted using a two-layer LSTM net-
work, which are the probability distributions used
in Eq 3. This LSTM network operates on a fu-
sion of the video and sentence modalities, achieved
through function H, and per-frame fused feature
V e RP*K g then rescaled using an estimated
likelihood h € R'™T of being foreground.

Matrix A € RE*L contains frame-to-word cor-
relation scores. A" and A€ are row and column-
wise softmax normalised versions of this matrix.
The sentence-level representations g are obtained
via a weighted sum of words (Bahdanau et al.,
2015). The symbols (-||-) denotes concatenation.

After generating T and T, we predict a specific
boundary encompassed by a single start and end
frame, based on the outputs of the bounding branch.
This is done in a maximum likelihood manner:

S’zargmtasz, E:argmtaXT67 (12)
Here, S and E represent the predicted start and
end frame indices of a video that correspond to the
given query.

Dynamic Proposal Boundary Prediction. The
proposal-level video representations P are fused

with the sentence features using the function H, as
defined in Eq. (11). This fused representation is
rearranged into a 2D feature map, and per-proposal
alignment scores are then predicted using a 2D
convolution layer:

p* = o(Conv2d(H(V,Q))) s.t. py € (0,1) Vk € [1, N].
(13)

Here, o activates the segment-wise alignment
scores p®. These scores are supervised based on
the temporal overlap between each proposal and
the manual boundary:

a, = IoU((ty, ty), (S, E))

1,
v =19 0,
af,

‘C‘dligﬂ(V7 Qa S7 E) = BCE(ya7pa)'

if ap, > 7y
ifoar <7
otherwise

(14)

In the above equation, 7,, and 7; represent the upper
and lower overlap thresholds, which regulate the
flexibility of video-text alignment. These are set to
0.7 and 0.3 respectively, as in (Zhang et al., 2020b).

Given the learned segment-wise alignment
scores p°, the boundary (t7,t5) of the most con-
fident proposal, with the highest predicted score
P}, > v VEk € [1, N], is considered as the pseudo
boundary. From this, we construct the candidate
endpoint sets as:

S = [min(t}-, S), max(t}-, S)], 15)
E = [min(tg«, E), max(tg«, £)].

We customize the candidate endpoint sets for
each individual activity by exploring content align-
ments between video segments and query sen-
tences, thereby creating an dynamic boundary.
Dynamic Global Boundary Prediction To com-
pute the global ranking score s; ; as defined in Eq.4,
we leverage the vector h, as defined in Eq.11. We
first split this vector into two equal parts, repre-
sented as z° and z°, using the chunk function:

z°,2° = chunk(h.,2), s;; = FC(z;)FC(z5)"  (16)
Here chunk(h,,2) splits h, to two equal parts.
This calculation allows s; ; to effectively utilize
the information encapsulated in h., which is also
used in Eq. 11 for end point prediction, thereby
enabling effective scoring of spans.

Given s; j, we can select the optimal moment by
maximizing s; ; over all valid intervals 1 < ¢ <
J < K: Given s; j, we can select the optimal mo-
ment by S,, £, = arg max; <;<j<x Sij- Based on



this prediction, we update the candidate endpoint
sets as:

S = [min(S,, §), max(S,, S)], an
E = [min(FEy, E), max(Fy, E)].
These updated sets S and E represent the final
dynamic boundary that we use to train the span-
based local classifier.
Learning from dynamic boundary. Using the
dynamic boundary (S, E), we create boundary
supervisions to maximize the candidate endpoint
probabilities in Eq. (18):

Lhound (F» Q- 8, E) = —log(3_ p}) —log(3_ p). (18

tes teE

Unlike the common frame-wise supervision that
trains p® and p°® to be one-hot (Zhang et al., 2020a),
this method provides a flexible boundary for tar-
get moments. It lets the model discern endpoints
beyond manual boundaries and ignore irrelevant
actions, enhancing learning of the video’s temporal
structure relative to the query.

3.3 The Overall Training Loss

Besides the global proposal ranking loss Lspan,
boundary loss Lyound, and alignment loss Lyjign, wWe
incorporate a highlight loss (Zhang et al., 2020a)
to train h as in Eq. (11). This loss emphasizes key
video content:

Liign(F, Q, S, E) = BCE(y", h),

e ’ (19
yp = W¥[min(S) <t < max(E)].

The overall loss function for our proposed model
is then formulated as follows:

L = A Lpound + A2Lylign + AsLhigh + AaLspan  (20)

The model is trained to minimize the weighted sum
loss. The weighting factors A1, Ao, A3, A4 allow for
adjusting the relative importance of each loss term,
providing flexibility to tune the model based on
specific performance objectives.

4 Experiments

4.1 Data and Settings

We evaluate the robustness of GPRank on three
settings. The first is the standard setting, includ-
ing TACoS (Regneri et al., 2013; Rohrbach et al.,
2012), Charades-STA (Gao et al., 2017; Sigurds-
son et al., 2016) and ActivityNet-Captions (Krishna
et al., 2017; Heilbron et al., 2015). Table 1 in the
appendix shows the data statistics of the standard

setting. The second is the distribution changing
setting including Charades-CD and ActivityNet-
CD (Yuan et al., 2021). The performance of the
models is evaluated in both in-distribution (test-iid)
and out-of-distribution (test-ood) scenarios. The
third is the compositional generalization setting,
including Charades-CG and ActivityNet-CG (Li
et al., 2022b). The evaluations span three settings:
Test-Trivial, Novel-Composition, and Novel-Word,
with the last two involving unseen semantic com-
position and words outside the training set.
Evaluation Metrics. We follow common prac-
tices in the field (Zhang et al., 2020a; Wang et al.,
2021a; Nan et al., 2021) and measures the aver-
age recall rate at three temporal IoU thresholds
(IoU@pu) for p = 0.3, 4 = 0.5, and p = 0.7. A
higher IoU indicates a better performance. We also
report the mean IoU (mloU), a metric representing
the average overlap between the predicted and the
ground-truth boundaries.

Implementation Details. The implementation
details are described in the appendix.

4.2 Main Results

Table 1 shows the main results on the standard
distribution-consistent setting. Various baselines
listed in the table include VSLNet (Zhang et al.,
2020a), IVG (Nan et al., 2021), 2D-LGI (Mun et al.,
2020), BPNet (Xiao et al., 2021), EBM (Huang
et al., 2022) and MS-DETR (Wang et al., 2023).
GPRank outperforms all the other models in terms
of mloU across all three datasets. Specifically,
GPRank achieved the highest mloU of 37.93,
54.39, and 47.30 on the TACoS, Charades-STA,
and ActivityNet-Captions datasets, respectively.
When IoU=0.7, MS-DETR outperforms the others
on the TACoS and ActivityNet-Captions datasets,
while GPRank retains the top spot in the Charades-
STA dataset. In the lower IoU thresholds (0.3 and
0.5), GPRank again excels across all three datasets.
In fact, for IoU=0.3, GPRank significantly outper-
forms the baselines, with gains over MS-DETR of
6.48, 6.08, and 4.16 points on TACoS, Charades-
STA, and ActivityNet-Captions, respectively. This
advantage of GPRank can be attributed to its ap-
proach of ranking all the proposals from a global
perspective, which enables it to better model the
long-tailed low IoU proposals.

4.3 Out-of-domain Generalization

Table 2 shows the out-of-domain generalization re-
sults. We ran the source code of EMB (Huang et al.,



Method TACoS Charades-STA ActivityNet-Captions
mloU p =0.3 1 =0.5 p =0.7 mloU p =0.3 p =0.5 g =0.7 mloU p =0.3 p =0.5 p =0.7
VSLNet (Zhang et al., 2020a) 24.11 29.61 24.27 20.03 45.15 6430 47.31 30.19 43.19 63.16 4322 26.16
IVG (Nan et al., 2021) 28.26 38.84 29.07 19.05 48.02 67.63 50.24 32.88 4421 6322 43.83 27.10
LGI (Mun et al., 2020) - - - - 5138 7296 5946 3548 41.13 58.52 41.51 23.07
BPNet (Xiao et al., 2021) 19.53 2593 2096 14.08 46.34 6548 50.75 31.64 42.11 5898 42.07 24.69
EMB (Huang et al., 2022) 3549 5046 37.82 2254 53.09 72.50 58.33 39.25 45.59 64.13 4481 26.07
MS-DETR (Wang et al., 2023) 35.09 47.66 37.36 25.81 50.12 68.68 57.72 37.40 46.82 62.12 48.69 31.15
GPRank (ours) 37.93 54.14 3842 24.12 5439 7476 60.78 40.86 47.30 66.28 46.68 27.84

Table 1: Performances on distribution-consistent settings. p: IoU. Here we only include baselines which report
= {0.3,0.5,0.7} and mIoU at the same time for fair comparisons. More baselines are shown in the Appendix.
Bold and underline denotes the best and the second best in a column, respectively.

Charades-CD ActivityNet-CD

test-iid

test-iid test-ood test-ood

1=0.5 4=0.7 u=0.5 ,u=0.7\,u=0.5 1=0.7 4=0.5 4=0.7

Bias-based 16.87 9.34 5.04 2.21(19.81 12.27 0.26 0.11
PredictAll 0.00 0.00 0.06 0.00|20.05 12.45 0.00 0.00
CTRL 29.80 11.86 30.73 11.97|11.27 429 7.89 2.53
ACRN 31.77 12.93 30.03 11.89|11.57 441 7.58 2.48
ABLR 41.13 23.50 31.57 11.38|35.45 20.57 20.88 10.03
2D-TAN  46.48 28.76 28.18 13.73]40.87 28.95 18.86 9.77
SCDM 47.36 30.79 41.60 22.22(35.15 22.04 19.14 9.31
DRN 41.91 26.74 30.43 15.91(39.27 25.71 25.15 14.33
TSP-PRL  35.43 17.01 19.37 6.20|33.93 19.50 16.63 7.43
WSSL 14.06 4.27 23.67 8.27(17.20 6.16 7.17 1.82
TCN-DCM 52.50 35.28 40.51 21.02]42.15 29.69 20.86 11.07
MDD 52.78 34.71 40.39 22.70(43.63 31.44 20.80 11.66
DD+MD  55.66 38.87 40.88 28.11|50.37 32.70 25.05 14.67
Shuffle 57.59 37.79 46.67 27.08|48.07 32.15 24.57 13.21
EMB{} 62.33 43.14 48.68 30.02|48.80 31.27 21.80 10.63
GPRank{ 64.52 44.47 54.87 34.55|52.99 35.03 28.44 13.95

Table 2: Performance comparisons on Charades-CD and
ActivityNet-CD. t denotes our implementation.

2022) on these benchmarks, showing commend-
able performance compared to all the other base-
lines as shown in Table 2. GPRank shows the best
performance overall. It achieved the highest scores
in both datasets, across both in-distribution and
out-of-distribution tests. Specifically, in the out-of-
distribution tests, GPRank scored 54.87 (IoU=0.5)
and 34.55 (IoU=0.7) on Charades-CD, which out-
performs the baselines by large margins. GPRank
is slightly worse than DD+MD (Zhang et al.,
2021a) when looking at IoU=0.7 on ActivityNet-
CD, which is reasonable since DD+MD applies
video data augmentation techniques, which are not
considered in our method. These results suggest
that the GPRank model performs well under vary-
ing distributions, effectively grounding videos in
both familiar (in-distribution) and unfamiliar (out-
of-distribution) scenarios.

4.4 Compositional Generalization

Table 3 presents the performance of various tempo-
ral grounding methods on on ActivityNet-CG. As
shown in Table 3, our GPRank method achieves
the highest score in 8 out of 9 metrics, while
taking the second position in the remaining one.
Compared to MS-2D-TAN+SSL (Li et al., 2023a),
GPRank boasts of mIOU improvements of +3.31,
+4.54, and +4.50 across the Test-Trivial, Novel-
Composition, and Novel-Word settings, respec-
tively. When compared to VISA+ASSL (Li et al.,
2023b), the mIOU performances of GPRank on
the Novel-Composition and Novel-Word settings
are comparable, although GPRank secures higher
IoU=0.5 scores. On Charades-CG (presented in the
appendix), GPRank markedly outperforms the lead-
ing state-of-the-art method, VISA+ASSL (47.44
v.s. 43.89), in the Novel-Composition setting. In
addition, in terms of the IoU=0.7 metric across
all settings on Charades-CG, GPRank outdoes all
considered baselines.

The overall results underscore the robustness of
our method in generalizing to novel semantic com-
binations and new words on both datasets. Intrigu-
ingly, both VISA+ASSL and MS-2D-TAN+SSL
employ specially designed self-supervised learning
modules to better align the semantic space of the
two input modalities. The fact that GPRank does
not yet incorporate a self-supervised method sug-
gests a potential avenue for further improvement.

S Analysis

Ablation Study Table 4 presents the results of
an ablation study conducted on the Charades-CD
dataset. In the study, the base model, EMB (Huang
et al., 2022), is progressively augmented with
various components: Roberta, ResidualEmb,
GuidedQuery, and CLN. By comparing each row



Test-Trivial

Novel-Composition

Novel-Word

Method

1=0.5 p=0.7 mloU p=0.5 p=0.7 mloU p=0.5 p=0.7 mloU

WeakSup WSSL (Duan et al., 2018) 11.03 4.14 15.07 289 0.76 7.65 3.09 1.13 7.10
RL-based TSP-PRL (Wu et al., 2020) 34.27 18.80 37.05 14.74 1.43 12.61 18.05 3.15 14.34
LGI (Mun et al., 2020) 43.56 23.29 41.37 2321 9.02 27.86 23.10 9.03 26.95
Proposal-free  VLSNet (Zhang et al., 2020a) 39.27 23.12 4251 20.21 9.18 29.07 21.68 9.94 29.58
VISA (Li et al., 2022b) 47.13 29.64 44.02 31.51 16.73 35.85 30.14 15.90 35.13
VISA+ASSL (Li et al., 2023b) 49.37 31.18 46.15 33.22 17.83 37.56 32.04 17.24 36.87
Proposal-based TMN (Liu et al., 2018) 16.82 7.01 17.13 874 439 10.08 993 5.12 11.38
P 2D-TAN (Zhang et al., 2020b) 44.50 26.03 42.12 22.80 9.95 28.49 23.86 10.37 28.88
2D-TAN+SSL (Li et al., 2023a) 46.58 29.65 45.60 27.18 12.60 30.98 26.58 12.55 30.09

DeCo (Yang et al., 2023) 43.98 24.25 43.47 27.35 11.66 31.27 - - -

LGI+DeCo (Yang et al., 2023) 47.38 28.43 46.03 28.69 12.98 32.67 - - -
MS-2D-TAN (Zhang et al., 2021b) 48.80 31.52 46.58 29.86 14.40 31.80 28.90 13.83 31.01
MS-2D-TAN+SSL (Li et al., 2023a) 49.63 31.73 47.22 30.80 15.39 33.18 30.15 14.97 32.14
Hybrid GPRank (ours) 52.37 33.10 50.53 34.76 17.97 37.72 33.44 17.28 36.64

Table 3: Performances on ActivityNet-CG. Bold and underlined denote the best and second best results, respectively.

test-iid test-ood

05 07 \ 05 07
EMB 62.33 43.14/48.68 30.02
+Roberta 59.66 42.41(47.34 28.62
+Roberta+Res 62.45 42.77(50.61 30.64
+Roberta+Res+GuidedQuery 61.24 41.19(51.64 30.99
+Roberta+Res+GuidedQuery+CLN 64.28 40.71(52.47 31.41

EMB w/ global ranking loss 63.00 44.00/51.80 31.00

61.48 40.83|52.30 32.53
64.52 44.47|54.87 34.55

GPRank w/o global ranking loss
GPRank

Table 4: Ablation study on Charades-CD.

with its predecessor, we can observe the impact of
each component on the system’s performance.

However, upon adding Roberta to EMB, we no-
tice a decrease in performance for both test-iid and
test-ood conditions. This implies that the integra-
tion of Roberta into this system does not enhance
the results. While this finding might seem coun-
terintuitive given Roberta’s strong performance in
language tasks, it aligns with the results obtained
by Shimomoto et al. (2023). One potential expla-
nation could be that Roberta embeddings, unlike
the GloVe embeddings used in the EMB model, are
more context-specific and dynamic. These proper-
ties might make it challenging to establish a robust
mapping function necessary for bridging the gap
between text and video modalities.

When we add the ResidualEmb component to
the EMB+Roberta model, an improvement is seen
in the IoU scores for both test-iid and test-ood
conditions at the 0.5 and 0.7 thresholds. This
suggests that the ResiduallLM contributes posi-
tively to the model’s performance. The inclusion
of GuidedQuery in the EMB+Roberta+Res model
further enhances the IoU scores under the test-

ood condition, but slightly reduces the scores un-
der the test-iid condition. This might indicate a
trade-off situation. The addition of CLN to the
EMB+Roberta+Res+GuidedQuery model improves
the ToU scores under both test-iid and test-ood con-
ditions, signifying that the CLN component posi-
tively contributes to the model’s effectiveness.

Finally, we compare the performance of the
GPRank model with and without the global ranking
loss. The GPRank model without global ranking
loss shows lower IoU scores under both conditions
compared to the version with the global ranking
loss. This suggests that the global ranking loss is a
valuable contribution to the model’s performance.

Effect of A The impact of the )\ parameter is investi-
gated by incrementing its value from O to 1 in steps
of 0.1. A X value of 1 implies the exclusive use
of local boundary-based classifiers, while a value
of 0 indicates sole reliance on global span rank-
ing scores. As illustrated in Figure 3, the global
span ranking model’s pure form yields lower results
compared to the pure local boundary classifiers.
We posit that this is because the global span rank-
ing model requires effective span representations
for successful training. At present, we utilize only
boundary-based features, neglecting the internal
features of spans. When A < 0.5, the performance
remains relatively strong, whereas it deteriorates
for A > 0.5. The model exhibits optimal perfor-
mance at A = 0.5. This suggests that the global
ranking scores account for a non-negligible role.

More analysis and discussions are included in the
appendix.
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Figure 3: The effect of A (Eq 4) on ActivityNet.
6 Related Work

Temporal Sentence Video Grounding Models
Temporal sentence video grounding (TSVG) was
introduced by Gao et al. (2017) and quickly gained
research community’s attention. Methodologies
for this task are typically proposal-free or proposal-
based. Proposal-free methods target recognizing
start and end boundaries of moments (Chen et al.,
2018; Ghosh et al., 2019; Zeng et al., 2020; Zhang
et al., 2020a; Li et al., 2021; Zhou et al., 2021; Nan
etal., 2021; Xu et al., 2021). They train models us-
ing ground-truth endpoints but can be biased due to
annotation uncertainties (Otani et al., 2020; Zhou
et al., 2021; Huang et al., 2022). Proposal-based
methods generate candidate proposals from video
segments, aligning them with query sentences (Gao
et al., 2017; Anne Hendricks et al., 2017; Ge et al.,
2019; Zhang et al., 2019, 2020b, 2021b; Zheng
et al., 2022; Li et al., 2023a). The top-ranked
proposal is chosen as the prediction. While less
boundary-sensitive, their success hinges on pro-
posal quality and ranking efficiency. Hybrid meth-
ods blend proposal-free and proposal-based advan-
tages, using both segment and frame-level data for
deeper video insight (Wang et al., 2020, 2021a;
Xiao et al., 2021; Huang et al., 2022). Notably,
Huang et al. (2022) address the uncertain bound-
ary issue by generating a set of elastic boundaries
that are dynamically built using proposal-based
methods. Despite these advancements, Huang et al.
(2022) generate proposals using sampled moments,
whereas our model considers all possible moments.
TSVG with Pretrained Language Models The
use of TSVG with GloVE embeddings (Pennington
et al., 2014) still remarkably dominates the field.
The exploration of TSVG with pretrained language
models such as BERT (Devlin et al., 2019) and
Roberta (Liu et al., 2019) is less prevalent. Al-
though Yang et al. (2022) used Roberta for spatio-
temporal video grounding, it is a different task.
Further, Wang et al. (2021b) and Zheng et al.

(2023) utilize DistilIBERT (Sanh et al., 2020) as
the text encoder, a distilled version of BERT that
may not fully leverage BERT’s capabilities. Re-
cent work by Shimomoto et al. (2023) successfully
employ efficient adapter-based pretrained language
models (PLMs) for TSVG. Despite their efforts,
fine-tuning the pretrained encoder on Charades-
STA (Gao et al., 2017) yields limited improvements
or occasionally reduces performance across dif-
ferent backbone models, indicating the challenge
of integrating PLMs for TSVG. We diverge from
these methods by designing a backbone-specific
integration that enables better interaction between
the pretrained text features and video features.
Global Proposal Ranking Liu et al. (2021) and
Zhang et al. (2021b) proposed methods for ranking
candidate proposals using cross-entropy loss. Liu
et al. (2021) introduced a contextual biaffine scor-
ing network, while Zhang et al. (2021b) employs
multi-scale 2D temporal feature maps. However,
both methods use cross-entropy as their training
objective and do not explicitly consider the rank-
ing of all candidate moments from a global per-
spective. Our method adopts a global ranking loss
function, originally designed for multi-label clas-
sification (Su et al., 2022). The ranking score of
a moment proposal is directly calculated based on
its overlap with the ground truth, thus enabling a
global ranking of the candidate moments.

7 Conclusion

In this paper, we presented an exploration of in-
tegrating the pre-trained language model Roberta
for temporal video grounding models. Our focus
was not only to enhance the model’s performance
but also to ensure robustness in varying conditions.
Contrary to expectations, the direct incorporation
of Roberta resulted in a slight performance de-
crease in a dataset, emphasizing the importance
of thoughtfully integrating these models. To ad-
dress this, we proposed architecture modifications,
which positively impacted the IoU scores in both
in-distribution and out-of-distribution, and compo-
sitional generalization testing scenarios. We also
leveraged a global proposal ranking loss, which
further augmented our model’s performance, indi-
cating its effectiveness in enhancing the model’s
robustness. The approach and findings from this
study offer valuable guidance for future research in
effectively combining large-scale language models
and video grounding models.



Limitation

One key limitation is that we only consider one spe-
cific temporal video grounding model, EMB, in our
work. While EMB is an effective baseline model
in this domain, there is a range of other models
available in the temporal video grounding litera-
ture, each with its unique strengths and features.
These models include VSLNet and MS-2D-TAN,
among others, which offer different mechanisms
for understanding and grounding temporal video
content.

Another limitation is our model-specific archi-
tecture and global ranking loss, designed to work
optimally with the EMB model and Roberta em-
beddings, might not be directly compatible with
other temporal video grounding models or other
pre-trained language models and large language
models such as LLaMA (Touvron et al., 2023).
Therefore, our proposed architecture may require
significant adaptations or the development of new
components to be compatible with other models.
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A Appendix
A.1 The relationship between 1 and g

To minimize the loss function above, the model
needs to increase the value of g; ; when p; ; is
large and decrease the value of g; ; when p; ; is
small. When ; ; becomes a binary variable, the
loss function is identical to circle loss (Sun et al.,
2020). The direct relation between ; ; and g; ;
during inference can be derived by considering the
partial derivative of L4, With respect to each g; ;:

OLspan — i g9 (1 — i j)edi
9gi; L1+ > pige 9 1+ > (1— pij)edis’
i<y i<j

@n

By setting p; je 97 = (1 — p; j)e97, the par-
tial derivative 25:pan equals zero, indicating local
minimums of the 1oss function. Solving this equa-
tion, we get: [i; ; = 0(2g; ;), where o denotes the
sigmoid function. This indicates that for prediction,
we can approximate the probability of the span

[4, j] being the target span using o (2g; ;).
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A.2 Guided Attention

Content Guided Attention. The content-guided
attention module incorporates the preceding and
subsequent content information of each frame into
its representation. This approach emphasizes the
importance of discerning changes or differences
between sequential frames:

Ve = {MaxPool ({ fi }1—1) }1=; € RP*K,

Vi = {MaXPOOI({f’i}f{:t)}le € RDXK,
V = Conv2d({V, Vpee, Van }) € RP*5.

(22)

Afterwards, the content-guided representations

of video frames (V) are used for attentive encod-
ing (Eq.11), both within the same modality (V <«
g(V, V) and across modalities (V « g(V,Q)).
This way, the model pays attention not just to the
content of individual frames, but also to how they
change over time, aiding in the identification of key
moments within the video.
Boundary Guided Attention.  Similar to the
content-guided attention approach for video frames,
we explicitly incorporate the frame-wise boundary
features with the content representations of video
segments to promote boundary-sensitive content
alignment:

Py = {ft;;}szl eRPN, Py = {fee Yoo € RV,
P = Conv2d({ P, P, Vena}) € RP*V,

(23)
In Eq. (23), the features Py, and P.pq represent
the start and end frames of each of the K pro-
posals. These boundary features are stacked and
combined with the segment-wise content features
P through a 2D convolution layer to generate
the boundary-guided segment representations p.
This boundary-guided attention approach shares
the same philosophy as temporal pyramid pool-
ing (Zhao et al., 2017), in that it explicitly en-
codes the temporal structure into the segment’s
representation to make it sensitive to the segment’s
boundaries. The boundary-guided representations
P are then used for attentive encoding within the
same modality P < g(15, P) and across different
modalities P « g(P, Q)) as defined by Eq.11.

A.3 Data Statistics
Table 5 shows the data statistics on the distribution-
consistent settings.

A.4 Implementation Details

We generally follow the settings of Huang et al.
(2022). We employed the provided video features
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Metric | ActivityNet | Charades | TACoS
#Train 37,421 12,408 | 10,146
#Val 17,031 - 4,589
#Test 17,505 3,720 4,083
AvgLenof V 117.61s 30.59s | 287.14s
Avg Len of M 36.18s 8.22s 5.45s
Avg Words of @ 14.8 7.2 10.1

Table 5: Data Statistics. V: video, M: ground-truth
moment, Q: language query.

of Zhang et al. (2020a) to encode video inputs. For
text inputs, we use the 300D GloVe (Pennington
et al., 2014) embeddings and Roberta-base (Liu
et al., 2019) as the pretrained langauge model. We
tune our GPRank model for 20 epochs using a
batch size of 16. The backbone parameters of
EMB and the parameters of Roberta are tuned us-
ing separate Adam optimizers. For the backbone
parameters, we use a learning rate of Se-4. For
the Roberta parameters, we use Se-6 for Charades
datasets (including Charades-STA, Charades-CD,
Charades-CG) and 1e-5 for TACoS and ActivityNet
datasets (ActivityNet-Captions, ActivityNet-CD,
ActivityNet-CG). To represent the input language
query, we use the last output layer of Roberta for
Charades-related datasets and sum the last four out-
put layers of Robert for TACoS and ActivityNet-
related datasets. For the loss weights, A\; = 1.0,
A2 = 1.0, A3 = 5.0, and A4 = 1.0 give the optimal
performance.

A.5 Effect of Pretrained Language Models

In this study, we compared our models with differ-
ent pretrained language models on the Charades-
STA test set. Our results were compared with
those from models such as TMLGA, DoRi (Shi-
momoto et al., 2023), MMN (Wang et al., 2021b),
and TRM (Zheng et al., 2023). Notably, TMLGA
is a less robust backbone model compared to
DoRi. Both MMN and TRM, which utilised Dis-
tilIBERT (Sanh et al., 2020) as their encoder, are
based on VGG video features, making a direct com-
parison less feasible. However, they have been
included for reference.

TMLGA (Rodriguez et al., 2020) exhibited sim-
ilar results across all three pretrained encoders.
DoRi (Rodriguez-Opazo et al., 2021) also achieved
comparable performance using both BERT (Devlin
et al., 2019) and DeBERTa (He et al., 2021), outper-
forming TMLGA by a significant margin. These
results suggest that the choice between BERT,



Method | Encoder |IoU=0.3 | IoU=0.5 | IoU=0.7 | mIoU
MNL | DistillBERT | 60.48 47.45 27.15 —
TRM | DistillBERT | 60.67 47.77 28.01 |42.77

TMLGA BERT 71.02 52.53 33.52 |49.80

TMLGA Roberta - 53.84 34.78 |49.91

TMLGA | DeBERTa - 53.49 34.65 |49.78
DoRi BERT 72.50 58.63 40.97 |53.29
DoRi DeBERTa - 58.39 41.61 |53.34

GPRank | Roberta | 74.76 | 60.78 | 40.86 |54.39

Table 6: Comparisons with different pretrained language
model encoders on Charades-STA test set.

Dataset |  Config  |mloU|u = 0.3|p = 0.5|p = 0.7
CE 36.01| 51.48 | 37.43 | 22.41
TACoS CE + combined|36.49| 52.00 | 37.77 | 22.60
GPRank 37.93| 54.14 | 38.42 | 24.12
CE 53.60| 73.57 | 59.64 | 39.92
Charades-STA|CE + combined|53.93| 74.45 | 60.18 | 39.83
GPRank 54.39| 74.76 | 60.78 | 40.86

Table 7: Effect of cross-entropy loss

Roberta, and DeBERTa might yield similar per-
formance levels when the same backbone models
are used, implying that the backbone models might
have a more significant impact.

Drawing from these experiences, we chose to
utilise only the Roberta encoder, which provided
the best performance for TMLGA among the three
encoders. Our method GPRank demonstrated the
highest scores across all IoU thresholds, outper-
forming all other methods and encoders. These
results underscore the effectiveness of our unique
design approach, which involves a deep integra-
tion of pretrained language representations with
the EMB backbone, over architecture-agnostic in-
tegration.

A.6 Effect of cross-entropy loss

We also investigate performances of cross-
entropy (CE) loss with pre-trained language mod-
els, combining probabilities predicted by CE
(CE+combined) and local boundary classifier prob-
abilities. Table 7 shows the results on TACoS and
Charades-STA. Comparable outcomes are observed
with ActivityNet as well. Using CE loss is also ben-
eficial with our encoder. A configuration with our
prediction fusion further enhances performance.
However, both approaches fall short when com-
pared to our proposed method.
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A.7 Composition Generalization Results on
Charades-CG

Table 8 shows the composition generalization re-
sults on Charades-CG. Table 8 reveals that MS-2D-
TAN+SSL emerges as the top-performing baseline
model, achieving the highest IOU=0.7 score in the
Novel-Word setting. VISA+ASSL stands out with
its superior IOU=0.5 performance in the Novel-
Composition setting. Our GPRank method regis-
ters seven top records and two second-place records
across the nine metrics. Particularly, GPRank ex-
cels in the Test-Trivial setting, surpassing all base-
line methods. In the Novel-Composition setting,
GPRank markedly outperforms the leading state-
of-the-art method, VISA+ASSL (47.44 v.s. 43.89).
In terms of the IoU=0.7 metric across all settings,
GPRank outdoes all considered baselines.



Test-Trivial Novel-Composition Novel-Word

Method

p=0.5 p=0.7 mloU p=0.5 p©=0.7 mloU ©=0.5 p=0.7 mloU

WeakSup WSSL 1533 546 1831 3.61 121 826 279 0.73 7.92
RL-based TSP-PRL 39.86 21.07 38.41 16.30 2.04 13.52 14.83 2.61 14.03
LGI 49.45 23.80 45.01 29.42 12.73 30.09 26.48 12.47 27.62
Proposal-free  VLSNet 4591 19.80 41.63 24.25 11.54 31.43 25.60 10.07 30.21
VISA 53.20 26.52 47.11 45.41 22.71 42.03 42.35 20.88 40.18
VISA+ASSL 56.14 28.27 48.92 47.76 24.85 43.89 4475 22.31 42.38
Proposal-based TMN 1875 8.16 19.82 8.68 4.07 10.14 943 496 11.23
posal- 2D-TAN 48.58 26.49 44.27 30.91 12.23 29.75 29.36 13.21 28.47
2D-TAN+SSL 53.91 31.82 46.84 35.42 17.95 33.07 43.60 25.32 39.32

DeCo 58.75 28.71 49.06 47.39 21.06 40.70 - - -
MS-2D-TAN 57.85 37.63 50.51 43.17 23.27 38.06 45.76 27.19 40.80
MS-2D-TAN+SSL 58.14 37.98 50.58 46.54 25.10 40.00 50.36 28.78 43.15
Hybrid GPRank (ours) 59.85 40.89 53.72 47.04 29.46 47.44 51.80 34.53 43.01

Table 8: Performances on Charades-CG. Bold and underlined denote the best and second best results, respectively.
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