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ABSTRACT

One of the most significant and longstanding problems in computer vision is in-
variance - the ability to robustly handle changes in real-world transformations such
as rotation, viewpoint, and lighting. Unfortunately, popular foundation models re-
main brittle under such transformations. While existing solutions towards invari-
ance have shown promise, they all fundamentally require some model training,
limiting their ability to adapt broadly to new tasks, transformations, and datasets.
Our key insight is that foundation model priors can be used to reason about trans-
formations. We thus propose Foundation Model Canonicalization (FMC), an ap-
proach that can undo nuisance transformations in images without any model train-
ing. With a single core approach, FMC can make models like CLIP and SAM
invariant to different transformations without any training or fine-tuning. Our
approach FMC flexibly adapts to new foundation models and tasks, making it
significantly easier for newer and larger models to achieve invariance.

1 INTRODUCTION

One of the oldest and most important problems in vision is invariance, and one of the oldest and most
promising solutions to invariance is canonicalization (Pitts & McCulloch, 1947; Marr & Nishihara,
1978; Hinton, 1981; Tarr & Pinker, 1989; Olshausen et al., 1993). No object appears the same
way twice due to rotation, lighting, and viewpoint changes. Yet, the brain can flexibly handle these
variations. One leading hypothesis for this impressive ability is that the brain transforms the input
into a canonical version, thus eliminating the nuisance variations (Shepard & Metzler, 1971).

In contrast, recent foundation models are brittle against such transformations despite their large-scale
training (Bommasani et al., 2021). This limitation hurts their applicability to real-world settings be-
cause mobile agents frequently encounter objects in unfamiliar contexts (e.g., a robot seeing a chair
from an unusual viewpoint). While these models show impressive generalization in-distribution,
they are unable to handle out-of-distribution inputs.

Achieving invariance in foundation models is especially challenging due to their scale. Re-training
or fine-tuning such models can be prohibitively costly or even impossible in many domains. Thus,
popular invariance approaches such as data augmentation (Bouchacourt et al., 2021), equivariant
architectures (Weiler & Cesa, 2019), or learned invariance (Benton et al., 2020) can be impractical
since these approaches rely on re-training or fine-tuning. Even if such a model could be fine-tuned,
this procedure reduces the out-of-the-box flexibility and generality of the target foundation model.

Thus, we ask: Could a single invariance method work for different tasks, models, and transforms?

Canonicalization is a promising approach because it decouples the invariance method from the
downstream model. Once an input has been made “upright”, any downstream model can use it. A
recent line of work (Mondal et al., 2023; Kaba et al., 2022) shows impressive results across domains
through learned canonicalization. Specifically, PRLC (Mondal et al., 2023) trains transformation
and model-specific canonicalization networks, relying on fine-tuning or dataset-dependent priors for
alignment with the downstream model. Still, a key limitation remains: PRLC still requires training
specialist networks for each dataset and transformation pair.

We thus propose Foundation Model Canonicalization (FMC), a general canonicalization approach
that provides invariance without any model training (Figure 1). Our key insight is that foundation
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Figure 1: Foundation Model Canonicalization is a training-free method for canonicalization-
based invariance. (a) Existing canonicalizers like PRLC (Mondal et al., 2023) train a model-and-
task-specific canonicalization network as well as fine-tune the downstream model for best perfor-
mance. In contrast, we propose a fully unsupervised canonicalizer, FMC, which leverages priors
from foundation models like CLIP and Stable Diffusion to canonicalize images for various trans-
forms and downstream models. (b) CLIP accuracy drops significantly under rotations. However,
applying FMC improves the accuracy under rotations by 28.3%. In summary, FMC can canonical-
ize images across different transformations without training and make downstream models robust.

model priors about images can be used to reason about transformations and thus perform canonical-
ization. Specifically, we design energy functions from CLIP (Radford et al., 2021), SAM (Kirillov
et al., 2023), and Stable Diffusion (Rombach et al., 2021) to determine which transformation param-
eters is most likely correspondent to the canonical form (Section 3).

Since FMC does not require training, it can be applied to new foundation models and tasks freely.
We first show that FMC genaralizes across datasets. We evaluate FMC on CLIP, finding that FMC
outperforms PRLC-trained models by at least 16% on pose accuracy (Section 4.1). FMC’s superior
canonicalization ability enables it to improve accuracy on rotated images, even beating PRLC on
settings they specifically trained their canonicalizer and downstream models on whereas FMC is
fully unsupervised. On CLIP, we outperform PRLC by 7.4% on CIFAR10, 9.6% on CIFAR100,
2.1% on STL10, and 4.4% on ImageNet. We then show that FMC generalizes across models. On
top of extending well to CLIP, we find that FMC outperforms PRLC by 26.2% on pose accuracy
on SAM Section 4.2. Finally, we also generalize across transformations, showing that FMC can
canonicalize color chrominance shifts and can improve the accuracy on poor 3D viewpoints.

In summary, this paper aims to provide a general canonicalization approach for invariance at a foun-
dation model scale. (1) We propose FMC, an energy function-based approach to canonicalization
that achieves invariance without any model training (Section 3). (2) Because FMC does not require
model training, FMC is much more general than prior works, enabling us to achieve invariance on
large scale models like CLIP (Section 4.1) and SAM (Section 4.2). (3) We show that FMC can
canonicalize other transformations such as color chrominance and 3D viewpoints (Section 4.3).

2 BACKGROUND

We start by explaining invariance and canonicalization in terms of group theory as introduced by
Kaba et al. (2022)We then explain energy-based models and how they can be extracted from foun-
dation models such as CLIP (Radford et al., 2021) and Stable Diffusion (Rombach et al., 2021).

Equivariance: We start with a function f : X → Y with inputs x ∈ X and outputs y ∈ Y . We also
assume a group of transformations G acting on the input. Specifically, we denote the transformation
as Tg : X → X where g ∈ G is a group element. Please note that while Kaba et al. (2022) consider
linear symmetries, i.e., T ∈ GL(X ), we consider any transforms Tg parameterized by a group.
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The goal is then to make f equivariant or invariant to the transformation group. Formally, f is
equivariant if:

f(Tg(x)) = T ′
gf(x) ∀x ∈ X

where T ′
g : Y → Y is a transform acting on the output space Y . Intuitively, equivariance means that

the function’s output changes in the same way as the input under the group of transformations. If T ′
g

is the identity, then f is invariant to the group: f(Tg(x)) = f(x) ∀x ∈ X
Canonicalization: Canonicalization refers to the process of transforming an input into a canonical
version. In the context of images, this could mean rotating an image to be upright or normalizing
the lighting. Kaba et al. (2022) formalize canonicalization as a method of equivariance by using
a canonicalizer function h : X → Tg that maps the input to a transformation. They write the
canonicalized form ϕ as:

ϕ(x) = h′(x)f
(
h(x) x

)
where h(x) undoes the transformation on x, effectively “uprighting” it, and h′(x) re-applies the
transformation to the output. Kaba et al. (2022) show that if the canonicalizer h is defined as a
minimizer over transformations, then ϕ is guaranteed to be equivariant:

h(x) = argmin
Tg, g∈G

E(Tg(x)) (1)

where E : X → R is a real-valued function. Strikingly, this holds even when E is not equivariant.

Energy-based models and energy functions: EBMs are a class of probabilistic models inspired by
statistical mechanics. Given a random variable x ∈ RD, any probability distribution Pθ(x) can be
re-written as:

Pθ(x) =
1

Z(θ)
e−Eθ(x)

where Z(θ) is the normalizing constant and Eθ : RD → R is called the energy function. Here, small
values of Eθ(x) correspond to more likely x.

These models are especially powerful because multiple EBMs can be composed by combining their
corresponding energy functions (Du et al., 2023; Liu et al., 2022) through operations such as addi-
tion. In this work, we derive energy functions from models such as CLIP (Radford et al., 2021) and
Stable Diffusion (Rombach et al., 2021) and combine them for better canonicalization.

Classifiers as energy-based models: Grathwohl et al. (2019) note that any classifier can be seen as
an energy-based model using its logits to define the joint energy between input and output. Specifi-
cally, the classifier energy for fθ with input x and output y is the negative logit:

Eθ(x, y) = −fθ(x)[y]

and the energy of an input x can be defined using the joint energy Eθ(x, y) by computing the log-
sum-exp over all labels: Eθ(x) = −LogSumExpy(fθ(x)[y])

While Grathwohl et al. (2019) use this to define a trainable energy-based model, we use a pre-trained
classifier (specifically CLIP) and find that the energy function derived from it can be used effectively
for canonicalization. We also replaced LSE(.) with max(.) for simplicity.

Diffusion models as priors: Graikos et al. (2022) show that diffusion models perform well as image
priors. Specifically, they perform inference over the data distribution x ∼ p(x) with a differentiable
constraint c(x, y) where y is some additional information. The task of modeling the desired posterior
p(x|y) is modeled as a minimization of free energy, as presented in Graikos et al. (2022):

Eθ(η) =
∑
t

Eϵ∼N (0,I)

[
||ϵ− ϵθ(xt, t)||22

]
− log c(η,y), xt =

√
ᾱtη +

√
1− ᾱtϵ (2)

where t goes over the number of diffusion steps, ϵθ is the pre-trained diffusion model, xt is the input
at time step t, η is the noise, and ᾱt =

∏t
i=1(1− βt) where βt is the denoising schedule parameter.

Similarly, Li et al. (2023) use diffusion models as classifiers by minimizing a similar energy function.
We use this free energy (without any constraint function) to canonicalize inputs. Specifically, we
will show how minimizing this free energy over rotations or lighting correlates to upright images.
This can help achieve equivariance with a pre-trained model such as CLIP (Radford et al. (2021)).
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Figure 2: Transformation distributions define a slice through the distribution of natural im-
ages, enabling us to use foundation models to canonicalize. Given the complex distribution of
natural data, which spans across many transformations, we propose a common solution that applies
across arbitrary transformation-based slices of the distribution (left). Given a particular slice, we
simulate different versions of the input image along this slice of the distribution, using energy func-
tions built on CLIP (Radford et al., 2021) and Stable Diffusion (Rombach et al., 2021) models for
each sample. We minimize the total energy to predict the canonical version (right).

3 METHODS

We start with our key insight and describe the overall framework of FMC (Section 3.1). We then
define the energy functions based on each foundation model (CLIP, Stable Diffusion, SAM) and
how to combine them (Section 3.2). Finally, we then describe how we use Bayesian Optimization
to efficiently search the continuous space of transformations (Section 3.3).

3.1 KEY INSIGHT AND FRAMEWORK

Key insight: An image x, along with all of its transformed versions Tg(x), defines a slice through
the overall distribution of natural images (Figure 2). In this slice, the canonical version of the image,
x∗ is likely to be encountered the most often in training data (similar to the upright assumption of
PRLC (Mondal et al., 2023)). Formally:

pdata(x
∗) ≥ pdata(Tg(x∗)) ∀g ∈ G

Maximizing this probability over all transformations is sufficient to find the canonical x∗. A general
model of the natural image distribution might thus be used to canonicalize images across a large
range of transformations.

Framework: We define an energy function EFMC ∝ − log pdata(x) estimated by foundation models
to be used as the canonicalizer in Equation (1). Minimizing this energy over transformations thus
maximizes the probability of the resulting image, thus canonicalizing it:

y = f(Tĝ(x)) where ĝ = argmin
g∈G

EFMC
(
Tg(x)

)
(3)

Our framework is thus divided into three components: (1) A parametrized transformation Tg (e.g.,
rotation), (2) An energy function EFMC derived from various foundation models, and (3) A down-
stream model f that performs the desired task.

Please note that this framework is fully modular, with the necessary equivariance/invariance emerg-
ing from the system design rather than an inherent property of any single component.

3.2 ENERGY FUNCTIONS FROM FOUNDATION MODELS

We take existing foundation models such as CLIP, Stable Diffusion, and SAM and extract knowledge
from them in the form of energy functions. This is an especially convenient form of knowledge since
the energy functions from multiple models can be readily combined with each other as well as hand-
designed priors. In particular, each energy is defined as:

1. Euncond(x;α, β): Following joint energy models (JEM) (Grathwohl et al., 2019), the un-
conditional classifier energy marginalizes over all classes, thus not requiring a class label.
However, it is defined in a simpler manner as a linear combination of mean and max logits:

Euncond(x;α, β) = α
1

|C|

|C|∑
c=1

fθ(x)[c]− β max
c∈1,2,...,|C|

fθ(x)[c]

4
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Figure 3: Foundation Model Canonicalization in continuous transformation spaces: Given an
input image, we generate different transformed versions of the image (left). Each is ranked by a
combined energy function as shown in Figure 2 with the minimum of this grid representing the
canonical form (center). However, this is infeasible for continuous transformation spaces such as
color shift. Thus, we apply Bayesian Optimization to estimate the minimum energy in continuous
spaces (right). Combining energy functions and Bayesian optimization provides a general approach
for canonicalization in continuous transform spaces.

where α, β ∈ R are hyperparameters and fθ(x)[c] is the logit for image x and class c. For
CLIP, we use cosine similarity between the CLIP image embedding of image x and text
embedding of label c instead. We use CLIP ViT-H-14 for this energy function.

2. Ediff(x): This energy uses an unconditional diffusion model to impose a prior on latent
images. Following Graikos et al. (2022), the energy is the negative diffusion model loss:

Ediff(x) =
1

T

T∑
t=1

∥ϵt − ϵθ
(√

ᾱtx+
√
1− ᾱtϵt

)
∥2

where x is the image. Interestingly, we find that using only a subset of time steps
(500− 1000) is sufficient for the transformations considered in this paper. We use Stable-
Diffusion-2-base for all our experiments.

3. Eseg(x): The Segment Anything Model (SAM) Kirillov et al. (2023) produces an estimated
IoU for each candidate segmentation for a given image and prompt (i.e., box, caption,
points). While SAM does not explicitly model pdata, its IoU is likely to be higher for in-
distribution images. It thus can be used as a weak proxy for the likelihood of the observed
image. We use the negative estimated IoU (eIoU) from SAM-ViT-H as our energy function:

Eseg(x) = −eIoUSAM(x)

Combining energy functions: We minimize the combined energy EFMC
(
Tg(x)

)
over all transfor-

mations Tg to find the canonical version of the input image x. This is done by solving the following
optimization problem:

ĝ = argmin
g∈G

EFMC
(
Tg(x), α, β, γ1, γ2, γ3

)
(4)

EFMC
(
Tg(x), α, β, γ1, γ2, γ3

)
= γ1Euncond(Tg(x);α, β) + γ2Ediff(Tg(x)) + γ3Eseg(Tg(x)) (5)

where T is the set of all transformations and α, β, γ1, γ2, γ3 ∈ R are hyperparameters.

3.3 BAYESIAN OPTIMIZATION FOR CONTINUOUS ENERGY LANDSCAPES

While the energy function in Equation (4) can be minimized through exhaustive search for a small
number of transformations (like C8, i.e. the group of 8 rotations around the circle), it becomes infea-
sible for continuous transformations. Gradient-based optimization requires differentiating through
the energy function and, thus, the foundation models, which is infeasible due to drastically higher
memory cost. PRLC (Mondal et al., 2023) uses SO(3)-equivariant canonicalization network to pre-
dict rotations, but this solution does not work for all continuous domains.

Since this is a low-dimensional continuous optimization problem, we use the well-established
Bayesian Optimization method (Nogueira, 2014; Frazier, 2018) to efficiently minimize the energy
function with a small number of evaluations. Specifically, we use a Gaussian Process (GP) with an

5
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Figure 4: FMC beats PRLC dataset specialist canonicalizers on rotated accuracy and pose
estimation. (a) We show that FMC achieves better pose accuracy than PRLC on their datasets.
(b) We show that FMC achieves model beats PRLC dataset specialist models on pose error. (c)
As a result of our superior pose estimation, we generalize better to new models like CLIP. Dashed
lines represent oracle performance, i.e., perfectly undoing the rotation except for any loss of corner
information from cropping. This result highlights FMC’s strong canonicalization ability.

RBF kernel to model the energy function from a small number of sample evaluations. We use the
GP to guide the search for the optimal transformation ĝ using the expected improvement (EI) ac-
quisition function (Jones et al., 1998), which is defined as: EI(g) = E

[
(Emin − ÊFMC(g)

+
]

where

Emin is the minimum value of the energy function observed so far, ÊFMC is the GP’s prediction of
the energy for g, and (x)+ =max(x, 0). The g that maximizes the expected improvement is then
evaluated and used to update the GP model. The search continues for a fixed number of steps. This
allows us to optimize the energy function in continuous spaces.

4 EXPERIMENTS

We now evaluate FMC to demonstrate its capabilities as an unsupervised canonicalizer. We first
show that FMC generalizes better than PRLC Mondal et al. (2023) across datasets, extending to new
datasets like ImageNet (Deng et al., 2009) and outperforming the PRLC specialist models trained
on CIFAR10 (Krizhevsky et al., 2010), CIFAR100 (Krizhevsky et al., 2010), and STL10 (Coates
et al., 2011) (Section 4.1). We then show that FMC generalizes better across models, extending to
CLIP and outperforming PRLC on SAM (Section 4.2). Finally, we surprisingly find that FMC can
generalize to other transformations such as color shifts and 3D viewpoint rotations (Section 4.3).

4.1 FMC GENERALIZES ACROSS DATASETS

Experimental Setup: We compare against PRLC (Mondal et al., 2023) on their set-
tings on CLIP (Radford et al., 2021), PRLC-trained ViT (Dosovitskiy et al., 2021) PRLC-
trained ResNet50 (He et al., 2016) models across CIFAR10 (Krizhevsky et al., 2010), CI-
FAR100 (Krizhevsky et al., 2010), and STL10 (Coates et al., 2011). For PRLC on CLIP we transfer
their ResNet50 canonicalizers. We follow their experimental setup, evaluating on C8 rotations. We
then extend to ImageNet (Deng et al., 2009) where we use a pretrained ResNet50 and ViT-B. We
report accuracy on upright images, rotated images (on C8 rotations), pose accuracy (i.e., did the
canonicalizer pick the correct C8 rotation), and pose error (i.e., the average error in degrees).

Takeaway #1: FMC Outperforms PRLC Specialists: Figure 4 shows that FMC beats PRLC
dataset specialist canonicalizers on rotated accuracy and C8 pose estimation. We find that on each
of PRLC’s evaluated datasets (CIFAR10, CIFAR100, and STL10) on CLIP, we achieve at least 16%
higher C8 pose accuracy and at least 7.9% lower pose error. This explains our better generalization
to CLIP. We outperform PRLC by 7.4% on CIFAR10, 9.6% on CIFAR100, and 2.1% on STL10.
These results highlight FMC’s canonicalization ability.
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Pretrained Network ResNet50
(PRLC-Trained)

ViT
(PRLC-Trained)

Datasets Canoncalizer Accuracy Random Rotation (C8) Accuracy Random Rotation (C8)

CIFAR10

None 96.6 86.2 97.6 86.7
Rotation Aug. 94.9 90.1 96.3 93.7

PRLC 96.1 95.1 95.8 94.8
Ours 96.4 (+0.3%) 95.6 (+0.5%) 97.3 (+1.5%) 96.0 (+1.2%)

Oracle 96.6 95.9 97.6 96.7

CIFAR100

None 84.4 69.7 87.1 73.8
Rotation Aug. 80.2 74.1 82.6 78.4

PRLC 83.1 81.8 83.9 82.2
Ours 83.7 (+0.6%) 82.2 (+0.4%) 86.2 (+2.3%) 84.3 (+2.1%)

Oracle 84.4 83.4 87.1 83.4

STL10

None 97.4 88.7 97.3 90.0
Rotation Aug. 98.1 95.0 97.9 94.1

PRLC 95.2 94.1 95.7 93.9
Ours 96.1 (+0.9%) 95.5 (+1.4%) 96.0 (+0.3%) 95.2 (+1.3%)

Oracle 97.4 96.7 97.3 96.4

Table 1: FMC beats PRLC dataset specialist canonicalizers and models on rotated accuracy.
We find that FMC outperforms PRLC, without any training, across all PRLC specific model and
dataset pairs on both upright inputs and randomly rotated inputs. We compare against just upright
images in the Acc columns. Oracle refers to a system where the exact angle to upright is known,
and thus only measures the change in accuracy due to loss of information due to rotating, cropping,
and re-rotating. Rand Rot. (C8) applies a random C8 transform to the input before passing it to the
aligner / model. Best non-oracle rows are bolded. Rotation Aug. numbers taken from Mondal et al.
(2023). This result highlights that we can beat PRLC even on their best settings.

Table 1 shows that we outperform PRLC specialists even when using their trained models as the
downstream classifier. These classifiers have been fine-tuned to align with the PRLC canonicalizer.
Even though our technique is training-free, we outperform these specific dataset and model pairs on
CIFAR10, CIFAR100, and STL10 on rotated C8 accuracy. This further highlights FMC’s strong
canonicalization abilities to achieve invariant predictions.

Takeaway #2: FMC Generalizes to ImageNet better than PRLC: Table 3 (in the Appendix)
evaluates on ImageNet using vanilla ResNet50 and ViT models on ImageNet since PRLC does
not train on ImageNet. We take the best-performing PRLC aligner (STL10) for both models. Our
unsupervised approach generalizes to new datasets and outperforms PRLC by 4.3% on ResNet50 for
C8 images and by 11.4% for ViT. Our pose error is at least 17.8% lower than PRLC. While our pose
accuracy is slightly lower, if we compute the accuracy of ±45◦, we yet again beat PRLC by 22.5%.
This suggests that FMC can more consistently generate close to correct poses. In summary, without
any ImageNet training, we are able to exhibit better generalization to ImageNet classification on
rotated images than PRLC.

Takeaway #3: PRLC Struggles to Generalize Across Datasets: Figure 7 (in the Appendix) shows
that struggles to generalize across datasets. Its performance on pose estimation drops significantly
when using canonicalizers trained on a different datasets than the downstream model. This is most
obvious when applying CIFAR10 or CIFAR100 aligners to STL10, with the pose accuracy dropping
over 30% on ViT and the pose error rising by 30%. The exception is that the CIFAR100 aligner
performs better on CIFAR10 than the CIFAR10 aligner in most cases, likely due to their similarity.
These results showcase FMC’s strength in generalizing across datasets (Table 1).

4.2 FMC GENERALIZES ACROSS MODELS

Experimental Setup: We adopt a similar setup to Section 4.1 and PRLC (Mondal et al., 2023). We
compare PRLC against FMC on CLIP for classification and SAM for segmentation. We measure the
performance on upright images, rotated images (following PRLC, C8 for classification and C4 for
segmentation), and pose accuracy. We also measure the transferability of both PRLC canonicalizers
and FMC over CLIP and PRLC trained classifiers. Please see the appendix for further details.
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Pretrained Network SAM
Dataset Canonizalizer mAP Random Rotation (C4) (%) Pose Accuracy (%)

COCO

Naive 62.0 -
PRLC 62.7 47.9
Ours 66.1 (+3.4%) 74.1 (+26.2%)

Oracle 66.2 -

Table 2: FMC beats PRLC on segmentation: We first report FMC’s performance on mAP on
COCO, outperforming PRLC by 3.4% (left). We then show that the C4 pose accuracy is higher than
PRLC by 26.2%. This shows FMC’s ability to generalize to segmentation without supervision.

Takeaway #4: FMC Generalizes to CLIP better than PRLC: As shown in Section 4.1, FMC
generalizes better to CLIP (Figure 4). For each of PRLC’s evaluated dataset, we achieve at least
a 16% higher C8 pose accuracy with a decrease of at least 7.9% on pose error. FMC’s strong
canonicalization ability enables us to generalize to new models like CLIP, outperforming PRLC by
7.4% on CIFAR10, 9.6% on CIFAR100, 2.1% on STL10, and 4.4% on ImageNet. These results
highlight FMC’s generalization to new downstream models.

Takeaway #5: FMC Outperforms PRLC on SAM: Table 2 shows performance of FMC on SAM
following PRLC’s setup (SAM-ViT-H on COCO with ground-truth box prompts). We outperform
PRLC (Mondal et al., 2023), achieving a 26.2% improvement on C4 pose accuracy. We also achieve
a 3.4% gain in accuracy over C4 rotations. These results demonstrate FMC’s ability to generalize
across tasks and models to segmentation.

Takeaway #6: FMC Generalizes Across Downstream Models: In Fig. 9(in the Appendix) we ap-
ply different model aligners to different downstream models. FMC generalizes across other down-
stream models better than PRLC (Mondal et al., 2023), showing a particular advantage in generaliz-
ing to CLIP over the CIFAR10 and CIFAR100 PRLC canonicalizers. These results show that FMC
is not limited to working well on CLIP and can generalize across to other downstream models in
ViT and PRLC better than PRLC to CLIP.

Takeaway #7: FMC Produces Stable Classification Results over Angles: Fig. 8 (in the Appendix)
shows the stability of accuracy vs. angle for CLIP. We find that FMC accuracy remains stable across
the range of angles, with the accuracy line remaining above that of PRLC on CIFAR10, CIFAR100,
and STL10.

4.3 FMC GENERALIZES ACROSS TRANSFORMS

We now examine the ability of FMC’s ability to generalize to color and 3D viewpoint shifts. A
surprising finding is that the unsupervised nature of FMC leads to the emergence of canonicalization
in other transformations. We use the von Kries model (KRIES, 1905) to apply color shifts for 3D
viewpoints we apply Zero123 Liu et al. (2023) to generate new viewpoints.

Takeaway #8: FMC Generalizes to Color Chrominance Shifts: We test the model’s invariance
to these transformations by applying the above color shifts to the CIFAR100 dataset and evaluat-
ing CLIP with and without canonicalization. Figure 5a shows FMC achieves invariance on color
shifts. While our method is not competitive against SOTA supervised approaches like Barron &
Tsai (2017); Hernandez-Juarez et al. (2020), it is still good enough for classification. Compared to
the vanilla model FMC improves the accuracy on chrominance shifted images by 9.9% without any
training or adaptations to handle color chrominance. Figure 5b shows accuracy over the radius in
log-chrominance space, demonstrating that FMC’s accuracy remains more stable than vanilla CLIP.
Overall, these results show the surprising ability of FMC to canonicalize color -shifted images.

Takeaway #9: FMC Generalizes to 3D Figure 6a shows that FMC’s energy function correlates with
quality of 3D viewpoint for classification accuracy. Figure 6b shows a histogram of the Spearman’s
rank correlation coefficients over videos where we find that for the majority of videos, our energy
and the ground truth probability are highly correlated, suggesting that FMC’s energy function sort
3D viewpoints well. Fig. 6c shows that FMC can improve poor viewpoints. For the worst 11
viewpoints, the accuracy when taking the best valued Zero123 generated image we can improve the
accuracy by up to 11.4% and an average of 8.4%.
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Figure 5: FMC can canonicalize color chrominance. (a) We show that FMC improves accuracy on
chrominance shifted images by 9.9%. (b) As the shift distance in log-chrominance space increases,
FMC accuracy remains stable while the accuracy of the vanilla model drops.
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Figure 6: FMC can improve classification on poor viewpoints. (a) We compare FMC’s energy
ranking vs. a ground truth ranking of the true label probability on CO3D. (b) Histogram of Spearman
Correlation coefficients. For most videos, our energy ranking is highly correlated with the ranking
generated from using the ground truth label probabilities. (c) Objaverse 3D results with Zero123. We
compare the accuracy of original frames and the accuracy obtained by taking the Zero123 generated
image with the minimum FMC energy. This plot shows that FMC can improve the accuracy on poor
viewpoints. These results highlight that FMC can improve classification on poor viewpoints.

5 DISCUSSION

Limitations: As an unsupervised technique, we do not outperform SOTA on pose estimation bench-
marks or color correction methods such as Hernandez-Juarez et al. (2020). For 3D, FMC’s ability
to classify good viewpoints is weakened for modest gains at worse viewpoints. Further improve-
ments and analysis on how to configure FMC with Zero123 could improve performance. Finally,
our technique is slow at inference time due to repeated evaluations of large models. This cost could
be further reduced by only using canonicalization for OOD inputs.

Choice of Foundation Models: The core principle behind FMC is based on the ability of foundation
models to reason about the natural distribution of transformations. We now discuss the requirements
for suitable foundation models to provide accurate priors.

In theory, the probability distribution represented by our energy functions (Section 2) must approx-
imate the data distribution along the submanifold defined by the transformation to work well. The
suitable foundation models must then: 1) see enough natural data to be able to model the data
distribution across multiple settings, 2) have been trained on realistic data that reflects the natural
distribution of images rather than augmented data which may distort the learned prior, and 3) employ
a training loss that can model the data distribution either explicitly (e.g., flow models) or implicitly
(e.g., classifiers through JEM (Grathwohl et al., 2019)). In essence, if the foundation model is a use-
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ful out-of-distribution detector for the desired transformations, it is likely to work for FMC. Once
foundation models have been selected, the balance between them can be tuned with hyperparameter
selection via Bayesian Optimization.

6 RELATED WORK

Data Augmentation: Data augmentation during training is the simplest and most popular way to
achieve invariance, but it requires fixing the transformations ahead-of-time. Some recent work such
as VIAT (Ruan et al. (2023)), ViewFool (Dong et al. (2022)), and Omniview Tuning (Ruan et al.
(2024)) use adversarial viewpoints as augmentations during training/fine-tuning. However, adapting
an existing model to new transformations thus requires expensive re-training or fine-tuning. Ad-
ditionally, the range of augmentations (e.g., rotation degrees) is unknown and artificially chosen,
which can hurt accuracy for some classes (Bouchacourt et al., 2021; Kirichenko et al., 2024). Ad-
ditionally, the resulting model is not as robust for classes with fewer training examples (Zhou et al.,
2022), making data augmentation unsuitable for tasks with imbalanced data.

Equivariant Networks: Another line of work (Bronstein et al., 2021) aims to design neural net-
works with the necessary equivariance hardcoded into the architecture itself. This approach led to
Convolutional Neural Networks (LeCun et al., 1999; Fukushima, 1988), and more recently, group
equivariant networks for various transforms Cohen et al. (2019); Esteves et al. (2017); Kondor &
Trivedi (2018). This elegant approach is useful when the group of transformations is known and
fixed (e.g., 2D rotations on images or 3D rotations of point clouds). However, this approach severely
limits the choice of architecture. In contrast, our approach does not restrict the underlying models.

Learned Invariance: Augerino (Benton et al. (2020)) invariances from the dataset, learning the aug-
mentation range for each transformation independently. LILA (Immer et al. (2022)) improves upon
Augerino by using marginal likelihood methods. InstaAug (Miao et al. (2022)) learns per-instance
invariances but still struggles with multi-model distributions as it can only model transformation
parameters independently. Singhal et al. (2023) generalize Augerino, LILA, and InstaAug by train-
ing a normalizing flow to jointly predict transformation distributions for all transformations. This
flow-based approach generalizes better and adapts to long-tailed data but still requires training. In
contrast, our approach does not require any dataset-specific training. Our key insight is that the
knowledge needed to achieve invariance already exists in foundation models, and we propose a way
to extract these priors. Our approach thus generalizes better across datasets and can be plug-and-play
with classifier dataset pairs without further retraining.

Learned Canonicalization: Learned canonicalization has its early roots in mental rotation Shepard
& Metzler (1971). Hock & Tromley (1978) found that the response time in humans to recognize ro-
tated objects increased linearly with rotation. Tarr & Pinker (1989) drew further ties between mental
rotation and invariant object recognition. These works suggest that canonicalizing can robustly align
neural networks to the adaptable nature of the human brain.

Kaba et al. (2022) propose a learned canonicalization (LC) approach via a learned energy function.
At test time, it minimizes this function to canonicalize the inputs before passing them through the
downstream model, enabling better generalization. EquiAdapt (Mondal et al. (2023)) enforces a
regularization prior to align the training set distributions with the predicted canonicalization distri-
butions, improving this approach for downstream models.

However, LC and EquiAdapt still require dataset, transform, and model-specific training and do not
generalize well beyond their trained settings (Section 4). In contrast, our approach makes no such
assumptions, instead leveraging energy functions of pre-trained foundation models.

We discuss more related work in the Appendix.

Conclusion: FMC is a training-free method for canonicalization. We note that foundation model
priors can be used to reason about transformations. We can outperform PRLC (Mondal et al., 2023)
on their specific settings, generalize better to new datasets and models like ImageNet (Deng et al.,
2009) and CLIP (Radford et al., 2021), and extend to transformations other than 2D rotations without
any training or fine-tuning. FMC is designed to adapt to new models and tasks, enabling equivari-
ance without the burden of model training.
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ImageNet ResNet50
(Vanilla-Trained)

ViT
(Vanilla-Trained)

CLIP
(Vanilla-Trained)

Canon. Acc Rand Rot.
(C8) Acc Rand Rot.

(C8) Acc Rand Rot.
(C8)

None 75.2 50.1 80.4 59.6 77.1 67.0
PRLC* 63.1 59.2 63.7 60.5 72.1 69.6

Ours 66.3 (+3.2) 63.5 (+4.3) 73.6 (+9.9) 71.9 (+11.4) 75.4 (+3.3) 74.0 (+4.4)
Oracle 75.2 71.5 80.4 78.1 77.1 75.3

PRLC R50
Aligner

PRLC ViT
Aligner Ours

Acc (↑) Acc @ 45◦ (↑) Err (↓) Acc Acc @ 45◦ Err Acc Acc @ 45◦ Err
37.9 55.4 63.1 31.8 56.4 65.6 37.0 (-0.9) 78.9 (+22.5) 45.3 (-17.8)

Table 3: FMC generalizes better to ImageNet and outperforms PRLC’s canonicalizers. We find
that Foundation Model Canonicalization outperforms PRLC, without any training, on both upright
inputs and randomly rotated inputs. We compare against just upright images in the Acc columns.
Oracle refers to a system where the exact angle to upright is known, and thus only measures the
change in accuracy due to loss of information due to rotating, cropping, and re-rotating. Rand
Rot. (C8) applies a random C8 transform to the input before passing it to the aligner / model.
Best non-oracle rows on rotated performance are bolded. For PRLC, the canonicalizers were the
best performing ones from other datasets (STL10 for both ResNet50 and ViT). Thus, they were not
trained specifically for ImageNet.

7 ADDITIONAL RESULTS AND FIGURES
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Figure 7: FMC generalizes better across datasets when mixing up aligners and downstream
models. PRLC performance on pose estimation drops significantly when using a canonicalizer
trained from a different dataset compared to FMC, which applies one technique across all settings.
This result highlights the generalizability across datasets of an unsupervised approach.

A EXPERIMENTAL SETUP

A.1 EXPERIMENTAL SETUP - 3D

For 3D, we first look at the CO3D (Reizenstein et al., 2021) dataset to measure how our FMC’s
energy function correlates to 3D viewpoint quality. We compare the ranking of viewpoint frames
by FMC energy compared to that of the probability of the ground truth label. We then look at
Objaverse-LVIS (Deitke et al., 2022) to measure the effect of combining FMC with Zero123 (Liu
et al., 2023) as the transformation generation function to simulate new 3D viewpoints from a single
image. For Zero123 experiments, we rank the viewpoints by the probability of the ground truth label
and then measure the difference in accuracy between the original Objaverse renders and that of the
energy minimizing Zero123 render for the respective ranking bins.
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Figure 8: Accuracy vs. C8 angle on CLIP. Like on ResNet50, we find that using FMC leads to
invariant predictions over angles, outperforming PRLC. The contrast is particularly clear for CLIP
on CIFAR10 and CIFAR100, where our accuracy over angle is consistently above PRLC.
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Figure 9: Transferring canonicalizers across models. We measure the effects of transferring canoni-
calizers across different downstream models by plotting the relative accuracy over the naive model.
We find that FMC outperforms the PRLC aligners, particularly when transferring to CLIP on CI-
FAR10 and CIFAR100. These results show the ability of FMC to generalize across downstream
models. All ViT and R50 models and aligners are PRLC-trained versions.

The model we use for both experiments is the fine-tuned version of CLIP from OVSEG (Liang
et al., 2023) which is designed to work on background removed images, as Zero123 operates on
such images. Please see the Appendix for more details on experimental setup.

A.2 EXPERIMENTAL SETUP – COLOR

We define the color shift transformation using the popular von Kries model (KRIES, 1905) where an
illuminant vector with the RGB values L = [LR,LG,LB] ∈ R3 is multiplied element-wise with every
pixel in the image. We then generate this illuminant vector L by sampling in the log-chrominance
space (Barron & Tsai, 2017). Specifically,

Lu, Lv ∼ U [−1, 1] (6)

[LR, LG, LB ] = [
exp(−Lu)

z
,
1

z
,
exp(−Lv)

z
] (7)

where z =
√
exp(−Lu)2 + exp(−L2

v) + 1 is a normalizing constant and Lu, Lv are the log-chroma
values sampled from the uniform distribution with range [−1, 1]. Intuitively, the log-chroma space
defines the R/G and B/G ratios in log-space. A range of [−1, 1] corresponds roughly to a 7×
change in the ratio between the minimum and maximum points of the range.

A.3 HYPERPARAMETERS FOR THE ENERGY FUNCTIONS

All hyperparameters were found using Bayesian Optimization with the same kernel and acquisition
function mentioned in Section 3 and performed using the Bayesian Optimization Toolbox (Nogueira,
2014) for 300 time steps. Each energy hyperparameter was tuned on a small training or validation
set by recording logits and finding the combination of energy functions that maximized accuracy.
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For experiments on ImageNet, CIFAR10, CIFAR100, and STL10, we only used the classification
energy for computational efficiency. This setting can be reduced to a single free parameter, which
we denote αlogit. The coefficient for mean logit is thus αlogit and the coefficient for max logit is
(1− αlogit).

Specifically, the αlogit coefficients we found were: 0.59 for CIFAR10, CIFAR100, and ImageNet,
0.73 for STL10,and 0.64 for our method applied with PRLC’s classifiers. For segmentation, the
αlogit is 0.74 with a diffusion energy factor of 0.94 and a segmentation energy factor of 1.12. For
ImageNet, we also found it helpful to include the mean of top-5 logits with a factor of 0.08.

For diffusion energy, we subsample the time steps to range from 500 to 1000 with a stride of 20.
This is primarily for computational efficiency.

A.4 3D

For our CO3D experiments, we take 10 random videos from each class, and sample 50 random
frames from each video. We crop and preprocess the view following the pipeline in (Liu et al.,
2023). Like Appendix A.3, we tune the energy hyperparameter with Bayesian Optimization using
a 10% subset of the data. The metric optimized is the difference in mean accuracy of the best five
ranks and the worst five ranks. We sort the frames by energy and bin them by their respective video
frame ranks, and then compute the accuracy of each rank over the videos. The αlogit coefficient
found was 1.31.

For Chrominance invariance results, we use Bayesian Optimization to make the search more ef-
ficient. We initialize the GP with 10 random samples and then iteratively search over 20 more
samples.

For Objaverse-LVIS (Deitke et al., 2022), we render 400 objects at 36 views, corresponding to
the upper hemisphere of azimuth and elevation angles at an interval of 30 degrees. Due to some
Objaverse-LVIS containing similar labels which confused the models (e.g., orange vs. mandarin
orange vs. tangerine, ring vs. wedding ring, etc.), we filtered the dataset. Specifically, we only
kept objects with (1) more than 10% of renders classified correctly and (2) a clear winner class
(i.e., the frequency of the most common class should be at least 33% more than 2nd most common
class). This selects roughly 30% of the objects.. This generates the test set of images with different
viewpoints to evaluate on.

Then, to evaluate FMC, we start at each Objaverse render, simulate Zero123 (Liu et al., 2023)
generated images at azimuth circles of an interval of 30 degrees at elevation angles of [-60, -30,
0, 30, 60], taking the minimum energy (best) Zero123 generation as the canonical form. Like for
CO3D, we rank the frames, sort and bin them, and compute the accuracy for each rank. However, to
isolate the effects of Zero123 on FMC, we rank both the baseline and FMC curves by the probability
of the ground truth mask as a proxy for the true ranking of viewpoint. We use the same Bayesian
Optimization setting as CO3D. The αlogit coefficient found was 0.79.

A.5 RELATED WORK (CONT.)

3D Robustness and pose estimation: Existing approaches for 3D robustness combine multiple
views by pooling features across them Fan et al. (2024); Su et al. (2015); Yang & Wang (2019);
Wei et al. (2020; 2022); Hamdi et al. (2021); Kanezaki et al. (2018). However, in many vision
settings, multiple views or 3D models may not be available. In contrast, our technique only requires
one view at test time—we simulate alternate views with a generative model instead. Chen et al.
(2020) learns category-level pose estimation using analysis-by-synthesis. This approach is closely
related to our approach; however, it is category-specific, whereas our model is category-agnostic.
ImageNet3D (Ma et al., 2024) annotates a large dataset of 3D objects with poses and trains NNs for
open-set pose estimation in a supervised manner. In contrast, our method is unsupervised.

OOD detection: A variety of approaches have been proposed for OOD detection, including energy
functions and generative models (Hendrycks & Gimpel, 2016; Liu et al., 2020; Lee et al., 2018;
Liang et al., 2017; Graham et al., 2023), but this capability has yet to be harnessed for invariance.
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To our knowledge, this work is the first to leverage large-scale generative models in conjunction
with Equation (1) to create provably invariant models.
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