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ABSTRACT

The recent availability of Electronic Health Records (EHR) has allowed for the
development of algorithms predicting inpatient risk of deterioration and trajectory
evolution. However, prediction of disease progression with EHR is challenging
since these data are sparse, heterogeneous, multi-dimensional, and multimodal time-
series. Clustering is an alternative approach to identify similar groups within the
patient cohort that can be leveraged to predict patient status evolution. In particular,
the identification of phenotypically separable clusters has proven very useful
in improving healthcare delivery. Some clustering models have been proposed
to identify phenotypically separable clusters; however, these have struggled in
clinical settings characterised by several, highly imbalanced event classes. To
that end, we propose a generative model to cluster EHR data based on identifying
clinically meaningful phenotypes with regard to patient outcome prediction and
physiological trajectory. We introduce a novel probabilistic method that is capable
of simultaneously a) generating observation data, b) modelling temporal cluster
assignments, and c) predicting admission outcomes. Our results show performance
similar to state-of-the-art methods, with increased clustering separability, and
capability to generate observation data.

1 INTRODUCTION

The healthcare domain is comprised of a variety of settings where cohorts can be separated into
multiple patient subgroups, largely distinguished by differences in interventions, response to treatment,
etc. Identification of such subgroups can be invaluable to enhance understanding of underlying patient
physiological status (including potential clinical conditions or predictive trends), which consequently
allows for improvement in care quality and treatment, (e.g. Turner et al. (2015); Vogelmeier et al.
(2018)). We tackle the task of identifying clusters with different phenotypes in medical cohorts.
Phenotypes typically contain key clinical properties that relate to a patient’s future health status - as
such, they might not be fully available for new patients. In this paper, we define a cluster phenotype
as a combination of a) the physiological trajectory evolution profile of patients within the cluster, and
b) the distribution of clinical outcomes (unseen variables of clinical interest) within the cluster.

Data from clinical environments is generally recorded in EHRs. Modelling EHRs, however, is
extremely challenging due to severe heterogeneity, Shickel et al. (2017). Clinical variables comprise
a mixture of temporal and static (i.e. time-independent such as age, and gender) features, with
different signal characteristics. Moreover, EHR temporal variables are multi-modal (i.e. recorded
with different collection methods). Time-series features may also not be aligned with respect
to observation collection time and may show disparate sampling rates, missing data rates, noise
distribution, and evolution trends. Traditional clustering models such as K-means (Lloyd, 1982)
and Time-Series K-Means (TSKM, Tavenard et al. (2020), have proven to be lacklustre in dealing
with temporal data due to their failure in capturing existing time-dependent feature relationships,
Raykov et al. (2016). Recently, Deep Learning (DL) architectures such as Recurrent Neural Networks
(RNN, Rumelhart et al. (1985)) or Variational Auto-Encoders (VAE, Fortuin et al. (2019)) have
shown promise when applied to time-series data on a variety of domains due to increased modelling
capacity. AC-TPC (Lee & Van Der Schaar, 2020) and CAMELOT (Aguiar et al., 2022), in particular,
successfully leveraged (future) event information to aid in cluster formation.

1



Under review as a conference paper at ICLR 2023

There has been an increased focus on variational and generative approaches to aid in learning
representations as they are more expressive. For multi-dimensional temporal data, Chung et al. (2015)
propose a Gaussian Mixture Model-Variational Recurrent Neural Network (GMM-VRNN) model
for clustering highly structured and noisy data. On the other hand, the authors in Jun et al. (2021)
introduce a variational recurrent model for estimating missing feature distribution in EHR data. Our
contributions include an end-to-end DL-supervised method to identify phenotypically separable
clusters in EHR data and a probabilistic model that is capable of a) generating clinical observations
data, b) clustering clinical observations over time, and c) modelling admission outcomes.

2 DATA AND PRE-PROCESSING

We validate our proposed model on 2 very distinct medical settings representing disparate envi-
ronments within the healthcare domain. Our first dataset is a proprietary, secondary care dataset,
denoted as HAVEN, from the United Kingdom (UK), which contains observations from hospital
ward admissions of patients suffering from chronic respiratory disease. It is also the data that mainly
drove model development where it pertains to clinical application and feedback. Separately, we
also consider a freely-available, public dataset of patients admitted to an Emergency Department
(ED) within a hospital in the United States. The latter provides supportive evidence of our model’s
generalisability and increases the reproducibility of our work. We note this dataset was derived from
the MIMIC-IV-ED database (Johnson et al., 2021), and we refer to it solely as MIMIC henceforth.

We note that both datasets share common key characteristics. For a single patient, the resulting
trajectories (i.e. collection of observations for the same clinical variable over time) display a)
heterogeneity, b) multi-modality, and differences in c) noise distributions, d) sampling rates, and e)
missing value rates. Such properties are common across EHR settings, and ensure that prediction
or learning of useful representations is challenging. Both datasets also contain information about
the occurrence of adverse events at the end of an admission, which allows the formation of outcome
classes. The outcome classes are indicative of a patient’s underlying health status, but are not
completely representative, in the sense that the sub-cohorts characterised by the same outcome are
not separable (and hence motivating the concept of phenotyping). Finally, the two settings considered
here lead to severe imbalances between outcome classes. Pre-processing was conducted similarly
with respect to both datasets, and a further description is provided in the Appendix, Section A1.

3 METHODS

We propose a novel generative model that is capable of identifying separable clusters. A sketch of
our proposed methodology is displayed in Figure 1(a), and a sketch of the Cluster-VRNN network
is shown in Figure 1(b)1. Consider an input dataset of the form X = {{xn,t}Tn

t=1}Nn=1, where N is
the number of patients, and Tn is the number of temporal observations for the n-th patient. Each
xn,t = [x1n,t, ..., x

f
n,t] ∈ RNf

is a set of observations with at most Nf values, where Nf is the
number of features (for instance, representing heart rate, age, etc.). We denote [xin,1, ..., x

i
n,Tn

] as
a trajectory. For each patient, we write xn to represent the complete sequence of corresponding
observations, and yn ∈ RNo

is a one-hot vector corresponding to the patient outcome.

Our representation framework builds on the work of Chung et al. (2015) to model the joint probability
p(x≤T ,π≤T ,y), where πt ∈ ∆K−1 are latent variables representing cluster probability assignments,
and K is the total number of clusters. The RNN represents x≤t,π≤t via a single cell state vector
ht ∈ Rs. Each cluster is represented according to a normal distribution with mean µk ∈ Rl and
variance σ2

kI , where Il is the identity matrix, and l is the dimension of the latent space. Finally, we
also associate a (categorical) outcome vector y for each patient. We define the VRNN component
models as follows:

• Prior fp(t) = p(πt | x<t,π<t) ∼ D(αp,t), αp,t = ReLU(g1(ht−1));

• Generation fg(t) = p(xt | x<t,π<t) ∼ N (µg, σ
2
gIf ), where µg, σg = g2(ht−1, g3(zt))

and zt =
∑

k µkπ
k
t ;

1A repository for our code will be shared after review
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(a) General overview of the proposed model. Time-series
input data passes through a Cluster-Variational Recurrent
Neural Network (VRNN), which models a generative ap-
proach for both data and latent variables. At each time
step, the VRNN estimates a cluster assignment probability,
πt, which is used to obtain a representation of the input
data, zt. The representation at the last time-step is used
to predict the admission outcome, ŷpred, through another
neural network.

(b) Sketch diagram of the (unrolled) Cluster-
VRNN network. Probabilistic variables are
represented with a triangle, deterministic with
a square, and inner computations with a circle.
Given a set of cluster representations, C, our
RNN-based network implements, at each time
step, a generative, prior, inference probabilistic
model, and a cell state update criteria.

• Inference q(t) = q(πt | x≤t) ∼ D(αi,t), where αi,t = ReLU(g4(ht−1, g5(xt)));

• Cell State Update ht = g6(ht−1, g5(xt), g3(zt));

• Outcome Prediction ŷ = σ(g7(zT )), given zT =
∑

k µkπ
k
T ,

where D denotes the Dirichlet distribution, Dirichlet (1969), gi are ’gate’ functions of the RNN (in
practice, shallow feed-forward neural networks), ReLU and σ denote, respectively, the rectified linear
unit and softmax activation functions.

Optimisation and Training Our model is trained variationally, according to an Evidence Lower
BOund (ELBO) approach, due to the intractability of the data log-likelihood integral. For our model,
it can be shown2 that the ELBO can be written as:

L = Eπ≤T∼q(π≤T |x≤T )

[
log p(yT | πT ) +

T∑
t=1

(
log fg(t)− KL(q(t)∥fp(t))

)]
(1)

L is estimated by sampling once from a Dirichlet distribution, and computing the corresponding ex-
pression. In the Appendix Section A2, we provide further detail concerning practical implementation
with regard to estimating L, namely, our sampling mechanisms, and simplification of the inner term.

3.1 MODEL TRAINING

Our model is trained to maximise the ELBO lower bound (Equation 1). All model gates were
implemented with 2 hidden layers of 30 nodes each, and a hyperbolic tangent activation function.
Glorot initialization Glorot & Bengio (2010) was used for all neural network weights, with the
exception of bias weights, which are initialized according to a standard normal distribution. Our
model was implemented in Python using the Tensorflow, scikit-learn and NumPy packages, and all
experiments were run with 1 Tesla v100GPU, and 8 CPUs Intel(R) Xeon(R) Gold 6246 @3.30 GHz.

4 RESULTS AND DISCUSSION

For Benchmarking, we regarded TSKM and GMM as classical clustering benchmarks and CAMELOT
and VRNN-GMM as state-of-the-art DL methods for clustering multi-dimensional time-series data.
We evaluated clustering performance through standard clustering metrics, including Silhouette score

2full derivation in the Appendix Lemma A3
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(SIL, Rousseeuw (1987)), Davies-Bouldin Index (DBI, Davies (1979)), Variance Ratio Criterion (VRI,
Caliński & Harabasz (1974)). To evaluate phenotype identification, we considered the related task of
outcome prediction. The prediction task was benchmarked against traditional classifiers for outcome
prediction in EHR data, namely Support Vector Machines (SVM), XGBoost (XGB) and NEWS2 (i.e.,
the National Early Warning Score used in the UK hospitals). Prediction performance was evaluated
using a multi-class macro-averaged one-vs-all Area-under-the-Receiver-Operating-Curve (AUROC),
unweighted mean F1-score (F1), and unweighted mean Recall (Recall). Their average and standard
deviation over 5 experiments, with different seeds, are reported. For purely unsupervised models,
a predictive pipeline was constructed by assigning patients to clusters and returning a prediction
corresponding to the empirical outcome distribution in the cluster. All models were trained on the
same training (60%) and test (40%) sets. Hyper-parameters were selected through grid search and
Occam’s razor approach, the latter used for integer-valued hyper-parameters. Where applicable,
neural network dimensions were kept consistent across all DL models.

We show the performance results of our model and benchmarks on the HAVEN dataset in Tables
1(clustering) and 2(outcome prediction). In Appendix Section A3, we further show results for the
MIMIC dataset, which follow a similar trend.

Metric SIL DBI VRI

TSKM 0.35 (±0.01) 1.19 (±0.08) 554.6 (±2.5)
GMM 0.14 (±0.02) 2.39 (± 0.23) 457.93 (± 11.9)

VRNNGMM 0.16 (± 0.30) 12.8 (± 9.32) 66.5 (± 18.7)
CAMELOT 0.11 (± 0.04) 3.12 (± 0.53) 216.7 (± 6.2)

Proposed 0.19 (± 0.10) 2.4 (± 0.34) 366.5 (± 18.7)

Table 1: Clustering separability performance on
HAVEN. Average and standard deviation are re-
ported for each metric.

Metric AUROC F1-score Recall

SVM 0.50 (± 0.02) 0.23 (± 0.00) 0.25 (± 0.00)
XGB 0.65 (± 0.01) 0.23 (± 0.00) 0.22 (± 0.00)

NEWS2 0.61 0.29 0.34
TSKM 0.55 (± 0.01) 0.24 (± 0.03) 0.26 (± 0.02)
GMM 0.62 (± 0.1) 0.30 (± 0.08) 0.26 (± 0.02)

VRNNGMM 0.68 (± 0.01) 0.32 (±0.02) 0.33 (± 0.01)
CAMELOT 0.73 (±0.02) 0.36 (±0.01) 0.38 (±0.02)

Proposed 0.72 (± 0.02) 0.36(±0.02) 0.35 (± 0.02)

Table 2: Outcome Prediction performance on HAVEN.
Average and standard deviation are reported for each
metric.

Compared with all other DL-based benchmarks, our model shows a large improvement in clustering
performance (see Table 1). Furthermore, our model outperforms the standard probabilistic model,
GMM, also by a significant margin (with the exception of DBI). TSKM obtains better scores with
regard to clustering metrics, however, this is largely due to a) metric bias towards convex clusters,
and b) clustering directly on the input space, as opposed to DL models which do so in a latent space
with extracted features.

With regard to identifying separable phenotypes, our model performs similarly to CAMELOT, and
outperforms all other benchmarks (DL and standard classifiers) on both HAVEN and MIMIC - an
increase of at least 4% (HAVEN) and 6% (MIMIC) in mean AUROC. We did not find statistical
evidence (through Friedman testing, Friedman (1937)) to indicate a difference between CAMELOT
and our proposed method. On the other hand, our model, which is dynamic and adaptive over time, is
tremendously more expressive than CAMELOT, which is static and not probabilistic. Furthermore,
the novel generative framework is extremely useful for clinical application as it can be used to better
understand the future evolution for both clusters, and also individual patients.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel deep-learning model for the task of identifying phenotypically
separable clusters in temporal EHR data. As part of our proposed model, we propose a sequential,
variational generative approach that is capable of a) modelling cluster probability assignment at each
time step, b) generating observational data over time, and c) predicting the outcome of a patient. Our
experiments show promising results with respect to cluster separability and outcome prediction in
two independent datasets, one of which is freely available. The addition of the DL-parametrised
probabilistic model likely aided in learning relevant representations and clusters through the increased
modelling capacity. Furthermore, our approach provides insight into identifying underlying cluster
probability assignments throughout the duration of a patient stay. In the future, we will further
explore the relevance of our generative framework and conduct an investigation into the quality of
the generated observations. Finally, we will develop methodologies to analyse the temporal cluster
assignments, for instance, what motivates cluster changes over time, and how can we accurately
evaluate learned cluster assignments’ performance.
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APPENDIX

1 DATA AND PRE-PROCESSING

HAVEN HAVEN is a dataset of routinely collected clinical observations from March 2014 to
March 2018 (HAVEN project, REC reference: 16/SC/0264;16/CAG/0066 and Confidential Advisory
Group reference 08/02/1394). HAVEN contains EHR measurements of patients admitted to Oxford
University Hospitals NHS Foundation Trust. The database does not contains observation data from
Intensive Care Units (ICU) (only information about ICU entry/exit), and we exclude ED observations.

We used the protocol defined in Pimentel et al. (2019) to subset the cohort to those patients at risk
of developing Type-II Respiratory Failure (T2RF) in hospital (a diagram of the data selection steps
can be found in Figure A.1 in the Appendix). Our processing pipeline identifies 4 separate outcomes
based on the occurrence of adverse events: i) no event during the hospital stay, leading to successful
discharge from the hospital, or the first instance of one of three possible events, ii) unplanned entry
to ICU, iii) cardiac arrest (also named ‘Cardiac’ hereafter) and iv) ‘Death’. We show the features
of different outcome groups are not clearly separable (see Tables A.2, A.1 in the Appendix). As
such, learnt clusters will naturally contain a mix of outcomes. With regard to HAVEN, we represent
the clinically relevant component of a cluster phenotype (denoted as cluster propensity (score)) as a
categorical distribution with the corresponding empirical outcome proportion within the cluster.

For each admission, observational data were averaged into 4 hour-window blocks, based on the time
to outcome (or time to discharge, in the case of no event during stay), to allow uniformisation of the
time indices across different features for the same patient. Following the literature validating Early
Warning Score (EWS) systems (baseline models used by UK NHS staff to track inpatient physiology,
(Royal College of Physicians, 2017)) and clinical input, we restrict observations to those within 24
and 72 hours prior to the occurrence of an event. Our cluster phenotypes, therefore, showcase the
outcome propensity in the subsequent 24 hours.

Collected features were all transformed according to min-max normalisation. This was preferred
over gaussian normalisation due to the skewness and heterogeneity of most feature distributions.
Consequently, any missing values were imputed based on the first previous observation - all remaining
missing observations were imputed according to the feature median within the train and validation
cohorts. Finally, static features (such as age, gender, etc.) were similarly normalised and passed to all
models as a constant time-varying feature with the corresponding value.

After processing, input data contained over 100,000 patient trajectories corresponding to 4,266 unique
hospital admissions (only the last admission of each patient was considered in our analysis). Original
trajectories for the patient cohort are shown in the Appendix in Figures A.3, A.4, A.5 for different
variables/features. It can be observed that the different outcome groups are not clearly separable, both
with respect to temporal and static variables. Furthermore, we note the high degree of imbalance
in the data - admissions with no event account for over 86.8% of the total number of admissions,
while event classes correspond to 10.3% Death, 1.8% ICU and 1.1% Cardiac. A description of the
complete pipeline of data pre-processing is shown in Figure A.1.

A total of 26 input features were considered. Firstly, 4-hourly vital-sign sets which included 8
features: Heart Rate (HR), Respiratory Rate (RR), Systolic Blood Pressure (SBP), Diastolic Blood
Pressure (DBP), peripheral Oxygen Saturation (SpO2), Temperature (TEMP), level of consciousness
via the AVPU scale - Alert, Verbal, Pain, Unresponsive - and estimated Fraction of Inspired Oxygen
(FiO2, available when an oxygen mask is applied to the patient). Each set consisted of a timestamp
and the vital-sign numerical values. Secondly, 4 demographic variables were selected (modelled as
static variables): age, sex, and admission type (elective or surgical). Thirdly, we included 6 features
resulting from biochemistry blood tests, denoted as ’Serum’: Serum levels of urea, albumin, creatinine,
sodium, potassium and C-reactive protein concentrations. Finally, 8 haematological blood test features
were also included: white and haemaglobin cell counts, concentration of eosinophils, basophils,
neutrophils, and lymphocytes, as well as eosinophil-to-basophil and neutrophil-to-lymphocyte ratios.
These features were selected based on domain knowledge of features related to severity in the
prognosis and outcome of inpatients at risk of T2RF.

Descriptive statistics for all input variables is described in Table A.2. Median and inter-quartile
range (IQR) is displayed for continuous and categorical variables, while binary variables are shown
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A.1: HAVEN data pre-processing steps.
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according to number of counts in the dataset and corresponding cohort proportion. Statistics are
displayed for the complete data (”All”), but also for each sub-cohort defined by the overall outcome.
We can observe that these sub-cohorts are not clearly separable and are hard to identify solely from
this information.

A.2: Descriptive statistics and information of all input data features. Variables are displayed with
type, description, units and average statistics. We separate all features according to medical literature,
including vital-sign, static, serum and haematological variables, and we also display statistics per
outcome sub-cohort, defined as a cohort with those patients assigned to a given outcome.

9
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A summary of the patient cohort in relation to outcomes and target phenotypes can be seen in Table
A.1. Challenges with regards to obtaining phenotypically separable clusters can similarly be observed
- there is no clear significant difference between the target outcome sub-cohorts with regards to
demographic input variables. With regards to outcome distribution, we also note the high degree of
imbalance in the dataset - the large majority of the patients in our dataset suffered from no adverse
events (over 86%), while only 48 had a Cardiac event, and 76 were re-directed to the ICU.

A.1: Descriptive demographic variable information for each outcome sub-cohort.

No Event Death ICU Cardiac
N 3701 441 76 48

Age (IQR) 71 (61 - 80) 81 (74 - 88) 69 (61 - 74) 76 (69 - 82)
Gender, M 1810 (48.9%) 247 (56.0%) 38 (50.0%) 28 (58.33%)
CCI (IQR) 4 (3 - 13) 14 (4 - 21) 7 (4 - 17) 15 (4 - 23)

Elective 1126 (30.4%) 3 (0.7%) 8 (10.5%) 2 (4.2%)
Surgical 1054 (28.5%) 48 (10.1%) 22 (29.0%) 6 (12.5%)

The lack of outcome sub-cohort separability can be further observed in a temporal domain. Figures
A.3, A.4, A.5 plot the mean trajectories of different temporal variables sets for each outcome sub-
cohort, respectively, according to vital signs, haematological and serum features. Mean is calculated
based on the time to outcome, and missing observations are disregarded and ignored.

A.3: Plot of mean vital-sign trajectories (median with respect to SpO2) in solid line as given by
the 4 outcome groups: admissions with a) Cardiac-, b) Death- , or c) ICU-, and d) No-events. The
corresponding feature units are: HR (bpm), RR (breaths-per-minute), SBP and DBP (mmHg), SPO2

and FIO2 (%), TEMP (C) and AVPU is unitless. The respective standard errors are represented by
the dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or discharge -
the black lines represent the time window (72 - 24 hours prior to an event or discharge) considered
for input to all models.
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A.4: Plot of mean haematological trajectories in solid line as given by the 4 outcome groups:
admissions with a) Cardiac-, b) Death- , or c) ICU-, and d) No-events. The y− axis representations
concentration in g/L (ALB), µ mol/L (CR), mmol/L (POT, SOD), mg/L (CRP) and mL (UR). The
respective standard errors are represented by the dashed lines. We visualised trajectories from up to
7 days prior to an outcome event or discharge - the black lines represent the time window (72 - 24
hours prior to an event or discharge) considered for input to all models.
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A.5: Plot of mean serum trajectories in solid line as given by the 4 outcome groups: admissions with
a) Cardiac-, b) Death- , or c) ICU-, and d) No-events. The y− axis denotes concentration in g/L
(HGB) or 109/L (all other features). The respective standard errors are represented by the dashed
lines. We visualised trajectories from up to 7 days prior to an outcome event or discharge - the black
lines represent the time window (72 - 24 hours prior to an event or discharge) considered for input to
all models.
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MIMIC-IV-ED MIMIC-IV-ED (abbreviated henceforth as MIMIC) is a large, freely available
database of ED admissions at the Beth Israel Deaconess Medical Center, introduced in (Johnson
et al., 2021; Goldberger et al., 2000). MIMIC contains 448,972 total admissions between 2011 and
2019, and for each admission, the dataset has records of vital-sign variables, triage measurements,
medications and consequent hospital journey.

Our pre-processing method was identical to that used for HAVEN. Admissions whose cause of
entry was psychiatric and/or childbirth were excluded as they comprise significantly distinct cohorts.
We considered 1 hour time block uniformisation, and only observations at most 6 hours before ED
discharge time were kept. These values were decided based on clinical input and empirically-observed
distribution. For each patient, we define their outcome according to their potential admissions within
the following 12 hours: a) whether the patient died (’Death’), b) whether the patient was admitted to
any ICU (’ICU’), c) whether the patient remained in hospital, at any ward (’Ward’), and d) whether
the patient was discharged (’Discharge’). The post-processing cohort had a similarly imbalanced
outcome distribution, with a cohort distribution of 0.30% Death, 16.53% ICU, 2.11% Discharge and
81.06% Ward.

2 MODEL PROPERTIES

The objective of our probabilistic model is the maximisation of the data likelihood:

p(x≤T ,yT ) =

∫
p(x≤T ,yT | π≤T ) dπ≤T

=

∫
p(yT | πT )fj(T )dπ≤T

=

∫
p(yT | πT )

T∏
t=1

fg(t)fp(t) dπ≤T (2)

Unfortunately, Equation 2 is generally impossible to optimise directly due to the intractability of the
integral expression. On the other hand, direct approximations can be computationally expensive. As
such, we use an Evidence Lower BOund (ELBO) approach with our VRNN; in particular, we use q,
defined above, as the family of variational approximations, and we focus on maximising the ELBO
lower-bound.

Lemma 3. The ELBO lower-bound corresponding to Equation (2) is given by:

L = Eπ≤T∼q(π≤T |x≤T )

[
log p(yT | πT )+

T∑
t=1

(
log fg(t)− KL(q(t)∥fp(t))

)]
(3)

Proof. We start from Equation 2. We have:

p(x≤T ,yT ) =

∫
p(x≤T ,yT | π≤T ) dπ≤T

Define new set of variables x′ to be such that x′
t = xt for t < T , and x′

T = [xT ,yT ]. Then our
goal can be written as p(x′

≤T ) =
∫
p(x′

≤T | π≤T ) dπ≤T . Similarly, we also extend our variational
approximation family, q(π≤T | x≤T ), by naturally incorporating yT . Denote the derived variational
family by q′ = q′(π≤T | x′

≤T ). In this case, we can use the expression derived in Chung et al.
(2015):
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L = Eπ≤T∼q(π≤T |x′
≤T

)

[
T∑

t=1

(
− KL(q′(t)∥f ′p(t)) + log f ′g(t)

)]
where f ′p, f ′g are analogously defined. Note that L represents a sum over time of two opposite goals -
a) minimisation of the KL divergence between variational distribution and prior on latent variables,
and b) log-likelihood.

For t < T , we note that all expressions are unaltered, as x′t = xt for t < T , yT depends solely on zT ,
and does not interfere with computation of other variables.

For t = T , we consider each term separately. Note that f ′p(T ) = p(πT | π<T ,x
′
<T ) = p(πT |

π<T ,x<T ) = fp(T ). Similarly, re-arranging the terms and expanding the definition on conditional
distributions, we get the same for the other KL term. On the other hand:

f ′g(t) = p(xT ,yT | hT−1,πT ) = p(yT | hT−1,πT ,xT )p(xT | hT−1,πT ) = p(yT | πT )fg(t)

Thus log f ′g(T ) = log fg(T ) + log p(yT | πT ). Our Lemma then follows by re-arranging the terms.

Note that the positive log terms represent the quality of the data generation component, while the
second term measures the difference between the variational approximation, q, and the latent prior,
fp, on cluster assignment. Maximising this expression, therefore, can be achieved by accurately
capturing both goals.

To compute the lower bound, it is necessary to estimate the expectation in Equation (3). Not only
that, we need to achieve this so we can back-propagate through our model weights. We estimate the
expectation by sampling from the Dirichlet distribution, and computing the corresponding expression.
This approach has been shown to be a sufficiently good approximation to the expectation, Ruiz et al.
(2016). In order to back-propagate the lower-bound through the model weights (in particular, the
inference weights), we re-parametrise the Dirichlet distribution. We use the following results:
Lemma 4. Suppose we have M independent gamma distributed random variables, Xi ∼ Γ(αi, 1),
where αi > 0. Let X0 denote the sum of all random variables. Then, the variable P =
(X1/X0, ..., XM/X0) is Dirichlet distributed with parameter (α1, ..., αM ).

Proof. The proof relies on the Jacobian formula for transforming random variables. Further details
in Devroye (1986).

Lemma 4 is not yet sufficient - the gamma variables Γ(αi, 1) are dependent on αi, and therefore
it is not possible to back-propagate through the sampling. We further re-parametrise the gamma
distributions to counter this effect. There currently is no provably correct method for sampling from
gamma random variables, however, useful approximations exist, Knowles (2015). We use inverse
transform sampling (Devroye, 1986) - a) sample u is generated from a [0, 1] uniform distribution,
b) approximate the inverse cumulative distribution as F−1

α,β(z) ≈ β−1(zαΓ(α))1/α, c) transform u
according to inverse approximation. Note that we can differentiate through the generated sample with
respect to the gamma distribution parameters. As such, we combine this approach with Lemma 4, to
obtain a Dirichlet-generating algorithm that is also differentiable with respect to its parameters.

On the other hand, we can also simplify the KL-divergence term in Equation 3 through the following
lemma:
Lemma 5. Suppose that random variables W1,W2 are respectively given by Dirichlet distributions
with parameters α,β ∈ Rm. Then, we have:

KL
(
W1∥W2

)
= log Γ(α0)− log Γ(β0)−

d∑
i=1

(
log Γ(αi)− log Γ(βi)

)
+

d∑
i=1

(αi − βi)(ψ(αi)− ψ(α0))

where Γ denotes the Gamma function, and ψ is the digamma function.
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Proof. We use some known properties of the Dirichlet distribution (Ng et al., 2011), specifically that:

• Marginal distributions W j
1 ∼ Beta(αj , α0 − αj);

• E[−lnW j
1 ] = ψ(α0)− ψ(αj);

Then:

KL(W1∥W2) = −
∫
∆d−1

log pW1(w)
pW2

(w)

pW1(w)
dw = Ew∼pW1

[
log

pW1

pW2

]
=

Ex∼pW1

[
log pW1

− log pW2

]

= Ew∼pW1

[
log Γ(α0)−

∑
i

log Γ(αi) +
∑
i

(αi − 1) log(xi)−

log Γ(β0) +
∑
i

log Γ(βi)−
∑
i

(βi − 1) log(W i
1)

]
= log Γ(α0)− log Γ(β0)−

∑
i

[
log Γ(αi)− log Γ(βi)

]
+

∑
i

(αi − βi)Ew∼W i
1

[
logW i

1

]
and the result follows from known Dirichlet properties.
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