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Abstract

Prognostic health management (PHM) has become important
in many industries as a critical technology to increase ma-
chine stability and operational efficiency. Recently, various
methods using deep learning to estimate the remaining use-
ful life (RUL) as a core task of PHM have been proposed.
However, the existing methods do not explicitly capture the
correlation between temporal and spatial time series, reduc-
ing the RUL prediction accuracy. This paper proposes a novel
RUL prediction algorithm using a spatio-temporal attention
mechanism to based on the vector highly correlated with la-
bel to solve this problem. The proposed model constructs
three paths in parallel, a time-oriented attention network, a
feature-oriented attention network, and a bidirectional long
short-term memory (LSTM) network. The first two attention
networks focus on temporal and spatial information required
for RUL prediction based on convolutional neural network
(CNN), respectively. Unlike existing attention networks, the
proposed attention network uses the vector learned in the in-
termediate prediction process as a query vector to focus on
time series data related to the RUL. The last bidirectional
LSTM network is additionally configured to compensate for
the inability of the CNN-based attention networks to grasp
continuous time distributions. Experiments have been per-
formed on two widely used datasets and experimental results
show that the proposed approach outperforms the state-of-
the-arts.

Introduction
Systems such as aircraft, space probes, nuclear power gen-
erators, and wind power generators require operational effi-
ciency, high reliability, and high performance under extreme
loads. Hence, prognostic health management (PHM) has be-
come critical to improve them (Batzel and Swanson 2009).
Specifically, in PHM, prognostics predict the remaining use-
ful life (RUL) to determine whether a problem exists for the
system to perform the intended function, which plays a de-
cisive role in PHM (Wang et al. 2018). The importance of
RUL prediction in many fields has encouraged researchers
to develop various RUL prediction approaches.

Recently, the data-driven approach relies on historically
collected data and attempts to derive models directly from
the data for RUL prediction (Kim, An, and Choi 2017). The
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data-driven approach has been becoming increasingly pop-
ular because no physical knowledge is required. In addi-
tion, the sensor system technology, data storage, and analy-
sis technology have constantly improved, thereby increasing
the use of the data-driven approach.

Deep learning has been actively used in the data-driven
approach to develop high-performance RUL prediction al-
gorithms (Huang, Huang, and Li 2019; Liu et al. 2020; Miao
et al. 2019). Deep learning, which has remarkable perfor-
mance in image and speech recognition, has a structure in
which several layers are stacked to extract feature informa-
tion from raw input data. This characteristic of deep learning
has great potential for matching original data and the RUL,
and several algorithms have been studied in this regard (Hsu
and Jiang 2018; Wang et al. 2018; Huang, Huang, and Li
2019; Babu, Zhao, and Li 2016; Liu et al. 2019; Li, Li, and
He 2019; Al-Dulaimi et al. 2019, 2020). However, it is dif-
ficult to predict RUL more accurately because these meth-
ods cannot identify correlation between time-series data and
cannot identify time-series data deeply related to RUL.

Recently, methods using an attention mechanism have
been studied to solve these problems. In particular, a self-
attention technique (Vaswani et al. 2017) has been widely
applied (Wang et al. 2020; Zhang, Song, and Li 2021; Liu
and Wang 2021). This technique is used to determine the re-
lationships between data within the same data set. In other
words, it is to grasp the correlation between sequence data,
and it is not designed in a structure that can directly analyze
the correlation between sequence data and the RUL.

We propose a novel attention network guided by vector
highly correlated with label inspired by (Devlin et al. 2018)
to solve this problem. (Devlin et al. 2018) randomly initial-
izes and uses a classification token (CLS) that summarizes
important information of text classification. Similar to this
work, we generate and use a vector with high correlation
with the target RUL for RUL prediction. Unlike existing
methods using the attention mechanism, the proposed atten-
tion network trains the vector with high correlation with the
RUL through an intermediate prediction process, and uses it
as a query in a scaled dot product attention process. Thus,
the correlation between the input data and RUL can be di-
rectly grasped. In addition, according to the correlation de-
gree between the input data and RUL, a weight can be given
accordingly. Therefore, the proposed method can predict the



Figure 1: Overall architecture of the proposed method.

RUL more accurately than the existing methods.

Proposed method
Fig. 1 shows the overall framework of the proposed method.
The proposed network consists of four primary substruc-
tures: a time-oriented attention network guided by vector
highly correlated with label, feature-oriented attention net-
work guided by vector highly correlated with label, bidi-
rectional LSTM network, and fusion network. The time-
oriented attention network assigns weights according to the
importance of each time step for the RUL prediction, and
the feature-oriented attention network assigns weights ac-
cording to the importance of each sensor for the RUL pre-
diction. Both networks are CNN-based attention networks,
which train a vector highly correlated with the RUL using
the newly proposed intermediate prediction process and the
vector as a query. Therefore, the attention networks provide
higher weights to time steps or sensors that are deeply re-
lated to the RUL between time steps or sensors. The bidirec-
tional LSTM network was additionally constructed to com-
pensate for the fact that the two attention networks were
CNN-based and could not grasp the continuous time distri-
bution. The network is designed according to the temporal
dimension and can store important historical data informa-
tion by bidirectionally learning long-term dependencies be-
tween time steps in time series data. Finally, the fusion net-
work applies the concatenation operation to the outputs of

the previous three path networks and outputs the final pre-
dicted RUL through residual blocks. The topology of the
substructures is listed in Table 4, and the details of the sub-
structures are described in the following sections.

Attention Network guided by Vector Highly
Correlated with Label
The overall structure of the proposed attention network is
presented in the attention network guided by vector highly
correlated with label block in Fig. 1. In this network, unlike
the existing self-attention mechanism (Vaswani et al. 2017),
an intermediate prediction process is newly designed in the
middle of the attention network process. Through the inter-
mediate prediction process, a vector with high correlation
with the RUL is trained. Then, the learned vector is an input
as a query to the scaled dot product attention process. There-
fore, the key can determine the correlation with the query,
which is a vector representing the RUL, so that the context
vector, including the correlation information between the in-
put data and RUL, can be obtained through the operation
with a value. In addition, the proposed attention network is
constructed in parallel in two dimensions: the spatial and
temporal dimensions. Through this, the correlation between
the temporal time series and RUL and between the spatial
time series and RUL can be directly grasped, and all as-
pects of multivariate data are considered. Therefore, it was
robust to the data set characteristics and exhibited high per-



formance. Furthermore, the proposed attention network pro-
vides excellent interpretability to easily determine the time
series affecting the RUL through the attention score calcula-
tion. Details are presented in the results section.

The proposed attention network consists of two paths.
One is a time-oriented attention network guided by vec-
tor highly correlated with label, and the other is a feature-
oriented attention network guided by vector highly cor-
related with label. In the time-oriented attention network
guided by vector highly correlated with label, a deeper RUL-
related time step is assigned a greater weight in the cor-
responding time step. The attention network considers the
sensor signal a channel in the CNN operation, extracts the
features of each time step, and concentrates on the correla-
tion between time steps. The original data shape is a vector
in the spatial dimension based on the order of batch size,
time, and sensor; thus, the input data shape is changed to
the batch size, sensor, and time by transposing the row rep-
resenting the time and the column representing the sensor.
In the feature-oriented attention network guided by vector
highly correlated with label, a deeper RUL among the sen-
sors is assigned a greater weight for the corresponding sen-
sor. The attention network considers the time signal to be a
channel in the CNN operation, extracts the features of each
sensor, and concentrates on the correlation between the sen-
sors. The original data shape is an input to the network as is.
Two attention networks have the same structure, as depicted
in the attention network guided by vector highly correlated
with label block in Fig. 1.

Bidirectional LSTM Network
The bidirectional LSTM is used to capture long-term de-
pendencies in the forward and backward directions of the
input sequence data. The LSTM is a network developed to
solve the vanishing gradient problem of the RNN, and the
network considering the direction information in the LSTM
is the bidirectional LSTM; hence, the bidirectional LSTM
can capture long-term dependencies in both directions, pre-
serving more information. In addition, the proposed atten-
tion network is CNN-based and does not consider temporal
information between data. Thus, the bidirectional LSTM is
used as one of the three-path parallel networks to use tem-
poral information that cannot be handled by the attention
network.

Fusion network
The fusion network concatenates the outputs of the three
path parallel networks and outputs the predicted RUL value,
the final output. It consists of the concatenation operation,
four residual blocks, and one fully connected layer, as illus-
trated in the fusion network block in Fig. 1. In the residual
block, the process of connecting the previous layer through
a shortcut connection (He et al. 2016) is applied. Through
this, the operation is straightforward and fast, but it greatly
affects solving the gradient vanishing and exploding prob-
lems by passing the gradient directly. Finally, the fully con-
nected layer outputs the predicted RUL, the final output, by
assigning one as the output feature size.

Experiments
Data Description and Processing
For the performance evaluation of the proposed method,
the commonly used NASA Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) dataset was
used. The C-MAPSS dataset describes the degradation pro-
cess of the aircraft engine. The engine consists of a fan,
low-pressure compressor, high-pressure compressor, com-
bustor, low-pressure turbine, and high-pressure turbine. A
total of 21 on board sensors that measure temperature, pres-
sure, and speed are placed in different locations to monitor
engine conditions. The measured values of the sensors were
sampled to compose a dataset as a multivariate time series.
Description of the data set is listed in Table 5.

Among the 21 sensors recorded in the C-MAPSS dataset,
low-importance sensors with no significant change in time
series values are included. Such data do not provide help-
ful information to predict the RUL and increase the network
complexity (Liu et al. 2019; Li, Li, and He 2019). Therefore,
the proposed method selected 14 sensors with indexes of 2,
3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21 like the existing
methods (Mo et al. 2020; Lim, Goh, and Tan 2016). We used
the min-max normalization to provide a standard range for
all sensor measurements. In addition, engine performance
degradation in the initial stage was almost negligible in ac-
tual use (Zheng et al. 2017). Therefore, the maximum value
of the RUL was limited to a constant value. The maximum
value of the RUL was set to 125, and the window size was
set to 30. Detailed information of the additional data set used
is described in Appendix A, B and Table 6.

Evaluation Metrics and setting
This paper used two objective evaluation metrics, the root
mean square error (RMSE) and score function, for perfor-
mance evaluation. The score function in (1) is an evaluation
metric proposed by the authors of the C-MAPSS dataset. In
the real world, late forecasting can cause severe damage to
the engine unit. Thus, a characteristic of the score function
is that it imposes more penalties on late predictions than on
early predictions (Lim, Goh, and Tan 2016). The score func-
tion is as follows:

Si =

{
exp−

Ei
13 − 1, if Ei < 0,

exp
Ei
10 − 1, otherwise,

Score =

n∑
i=1

Si. (1)

Detailed information of the evaluation metrics used is de-
scribed in Appendix C.

The learning rate was set to 0.0005, and the learning rate
was decreased by 0.3 every 40, 80, 140, and 160 epochs.
The batch size was set to 512, and training was conducted
for 170 epochs. The Adam optimizer was applied.

Results
Comparison with State-of-the-arts Methods Several
conventional methods (Babu, Zhao, and Li 2016; Hsu and
Jiang 2018; Wang et al. 2018; Liu et al. 2019; Li, Li, and He
2019; Mo et al. 2020; Li et al. 2020; Al-Dulaimi et al. 2020;



Table 1: Performance comparison of the proposed and state-
of-the-art methods on the C-MAPSS dataset (RMSE / Score)

Method FD001 FD002 FD003 FD004

Babu et al. 2016 20.74/973 23.53/3184 19.21/745 28.51/5867
Hsu et al. 2018 14.05/281 16.66/1005 14.08/258 20.61/2379

Wang et al. 2018 13.89/271 15.87/985 13.00/189 19.78/2360
Liu et al. 2019 15.63/526 21.03/3182 14.27/324 21.77/4682
Li et al. 2019 20.41/1058 20.24/2336 13.18/335 23.29/6749

Mo et al. 2020 12.19/259 19.93/4350 12.85/343 22.89/4340
Li et al. 2020 11.44/196 19.35/3747 11.67/242 22.22/4844
Al- et al. 2020 12.32/238 15.04/1057 11.36/226 17.75/1357

Wang et al. 2019 10.95/261 20.47/4368 10.62/247 22.64/5168
Huang et al. 2019 - 25.11/4793 - 26.61/4971

Proposed 11.25/183 14.96/899 10.81/152 16.17/1588

Wang et al. 2019; Huang, Huang, and Li 2019) were used
for performance comparison with the proposed method. As
listed in Table 1, the proposed method achieved higher per-
formance in FD001, FD002, FD003, and FD004 for the
RMSE, on average, 2.95, 6.28, 3.04, and 7.4 than the state-
of-the-art methods on the C-MAPSS dataset, respectively.
In addition, the proposed method achieved higher perfor-
mance in FD001, FD002, FD003, and FD004 for the score
than the state-of-the-art methods, on average, 198, 2311,
245, and 3299, respectively. (Wang et al. 2019) had 0.3 and
0.19 higher RMSE performance than the proposed method
in FD001 and FD003, respectively, but 5.51 and 6.47 lower
RMSE performance in FD002 and FD004 than the proposed
method, respectively. Furthermore, the existing methods had
significantly poor performance in FD002 and FD004 com-
pared to FD001 and FD003, but the proposed model has
proved to be the most robust model for the data set char-
acteristics by remarkably narrowing the performance gap.
Performance comparisons for the additional data sets used
are described in Appendix D and Table 7.

Ablation study
The ablation study was performed to remove the applied
techniques from the proposed method to confirm the effects
on the C-MAPSS dataset. The ablation study was performed
to remove the applied techniques from the proposed method
to confirm the effects on the C-MAPSS dataset. First, to con-
firm the effect of using both the time- and feature-oriented
networks, we compared the variant performance in which
each attention network was removed. Second, to verify the
effectiveness of the newly proposed attention network, an
attention network guided by vector highly correlated with
label, we changed the proposed attention network to an ex-
isting self-attention network and compared the performance.
Specific details are explained in the section below.

Effectiveness of time- and feature-oriented attention net-
works We compared the variant performance in which
each attention network is removed to check the effective-
ness of using time and feature-oriented networks. In Table
2, (A) and (B) denote feature- and time-oriented networks,

Table 2: Performance comparison of variants of the pro-
posed model on the C-MAPSS dataset (A): Feature-oriented
attention network guided by vector highly correlated with
label (B): Time-oriented attention network guided by vector
highly correlated with label (RMSE / Score)

Method FD001 FD002 FD003 FD004

(A) removal 11.98/206 15.48/935 12.12/194 17.79/1706
(B) removal 12.82/242 15.52/931 10.76/151 17.65/1719

(A),(B) removal 12.77/254 15.98/974 11.59/175 18.71/1818
Proposed 11.25/183 14.96/899 10.81/152 16.17/1588

Table 3: Performance comparison of attention network
guided by vector highly correlated with label and self-
attention network on the C-MAPSS dataset (RMSE / Score)

Method FD001 FD002 FD003 FD004

Self-attention 12.26/210 15.76/1094 12.17/204 18.50/2226
Proposed 11.25/183 14.96/899 10.81/152 16.17/1588

respectively. The proposed method achieved better perfor-
mance than all other variants based on the RMSE. Through
this, we prove the effectiveness of using both the time- and
feature-oriented networks.

Effectiveness of attention network guided by vector
highly correlated with label To verify the effectiveness of
the newly proposed attention network, we changed it to an
existing self-attention network and compared their perfor-
mance. Table 3 reveals that the proposed method achieved
better performance for the RMSE and score function than
the self-attention method. Through this, we prove that the
attention network has an effect comparable to the self-
attention method that has been widely used, and we prove
the need for an intermediate prediction process that predicts
the label RUL using a query in the middle of the network.

Conclusion
We proposed a novel attention network guided by vector
highly correlated with label. The proposed attention network
trained a query to highly correlate with the RUL through an
intermediate prediction process. Then, the learned query was
applied to the scaled dot product attention process. Thus,
the correlation between the input data and RUL was directly
identified, and weights were assigned accordingly. In addi-
tion, data related to the RUL were identified in both dimen-
sions by constructing the proposed attention network in par-
allel in the temporal and spatial dimensions. Therefore, the
correlation between the temporal time series and RUL and
between the spatial time series and RUL is directly grasped,
and a more accurate RUL prediction was possible in a form
that considers all aspects of the multivariate data. In the ex-
perimental results, the proposed model outperformed state-
of-the-art models for RUL prediction on various benchmark
datasets.
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Appendix A
Data Description
To provide additional quantitative results of the proposed
method, the IEEE PHM 2012 Prognostic Challenge data set
(Nectoux et al. 2012) was used. In the IEEE PHM 2012
Prognostic challenge dataset, temperature and vibration data
in the horizontal and vertical directions in the bearing hous-
ing were sampled at 25.6 kHz, and the process of stopping
for 10 seconds was repeatedly performed and recorded. As
presented in Table 6, this dataset includes three sub-datasets
measured under different conditions. We adopted all sub-
datasets for evaluation.

Appendix B
Data Processing
In the C-MAPSS dataset, the input sequence data can be ex-
pressed as a matrix, as shown in (2):

X = [x1, x2, ..., xt, ..., xT ] =
[
x1, x2, ..., xs, ..., xS

]
∈ RT×S ,

xt = x1
t , x

2
t , ..., x

S
t ∈ R1×S , t ∈ [1, T ] ,

xs = xs
1, x

s
2, ..., x

s
T ∈ RT×1, s ∈ [1, S] , (2)

where t and T represent the time-sequential index and final
failure time, respectively. Moreover, s and S represent the
sensor index and number of sensors, respectively.

In the IEEE PHM 2012 Prognostic challenge dataset, the
input sequence data can be expressed as a matrix, as in (3):

X = [x1, x2, ..., xt, ..., xT ] ∈ RT ,

xt = x1
t , ..., x

v
t , ..., x

V
t ∈ R1×V , t ∈ [1, T ] , (3)

where t and T represent the time-sequential index and fi-
nal failure time, respectively. In addition, v and V represent
the vibration signal type index and number of vibration sig-
nal types, respectively. There are two types of vibration sig-
nals: horizontal and vertical. As with existing methods (Mao
et al. 2018; Soualhi, Medjaher, and Zerhouni 2014), we per-
formed the RUL prediction on univariate data using only the
horizontal signal because it provides better results for track-
ing the bearing degradation. In addition, standardization was
used to consider values that deviate significantly from the
mean as outliers. The RUL was scaled using a health indica-
tor (HI) (Yang et al. 2020) as in (4):

HIt =
RULt

RUL0
(4)

where HI at time t can be obtained by dividing the RUL at
t (RULt) by the RUL at the origin (RUL0). A series of HI
values ranging from 0 to 1 is obtained.

Appendix C
Evaluation Metrics
For performance evaluation, two objective evaluation met-
rics were used: the RMSE and score function. The RMSE
not described above is defined as follows:

Ei = RULi −RULi, RMSE =

√√√√ 1

n

n∑
i=1

E2
i , (5)

where RULi and RULi are the predicted RUL and true
RUL, respectively, n represents the total number of test sam-
ples, and Ei denotes the difference between the predicted
and actual values of the ith test sample.

The score function in (6) is an evaluation metric proposed
by the authors of the IEEE PHM 2012 Prognostic challenge
dataset. Similar to (1), it is characterized by imposing more
penalties on late prediction values than on early prediction
values. The score function is as follows:

Score =
1

n

n∑
i=1

Ai,

Ai =


exp

(
− ln(0.5)

(Eri

5

))
, Eri ≤ 0,

exp

(
− ln(0.5)

(Eri

20

))
, Eri > 0,

Eri =
RULi −RULi

RULi
× 100. (6)

Appendix D
Quantitative Results on the IEEE PHM 2012
Prognostic challenge dataset
We performed experiments on the IEEE PHM 2012 Prog-
nostic Challenge dataset to provide additional quantitative
results of the proposed method, as shown in Table 7. In
RMSE, the proposed method showed higher performance
than the existing method with an average of 4485, 3435, and
1199 of conditions 1, 2, and 3, respectively. In addition, in
score function, the proposed method showed higher perfor-
mance than the existing method with an average of 199.93,
150.49, and 146.19 of conditions 1, 2, and 3, respectively.
In particular, in conditions 1 and 2, the lowest performances
based on RMSE were 27887 and 20635 by (Hsu and Jiang
2018), respectively. However, for the same sub-datasets, the
proposed method showed 2360 and 1099, respectively, and
had a big performance difference of 25527 and 19536, re-
spectively, compared to (Hsu and Jiang 2018). We prove the



superiority of the proposed method in both datasets through
performance comparison on the IEEE PHM 2012 Prognos-

tic Challenge dataset as well as the performance comparison
on the C-MAPSS dataset shown above.



Table 4: Topology of the overall architecture

Layer Parameters Input
channel size

Output
channel size

Time-oriented attention network
CNN 1 kernel: 4, stride: 1 14 100
CNN 2 kernel: 3, stride: 1 100 100
FC 1 - 22 30
FC 2 - 22 30

CNN 3 kernel: 3, stride: 1 100 100
FC 3 - 19 100
FC 4 - 100 1

Feature-oriented attention network
CNN 1 kernel: 4, stride: 1 30 100
CNN 2 kernel: 3, stride: 1 100 100
FC 1 - 6 14
FC 2 - 6 14

CNN 3 kernel: 3, stride: 1 100 100
FC 3 - 3 100
FC 4 - 100 1

Bidirectional LSTM network
BLSTM 1 hidden: 64, activation: tanh 14 64
BLSTM 2 hidden: 64, activation: tanh 64 64

FC - 6 100
Fusion network

RB 1 - 300 200
RB 2 - 200 200
RB 3 - 200 400
RB 4 - 400 400

FC 1 in RB activation: ReLU input of RB output of RB
FC 2 in RB dropout: 0.2 output of RB output of RB
FC 3 in RB activation: ReLU output of RB output of RB

FC - 400 1

Table 5: Description of C-MAPSS dataset

FD001 FD002 FD003 FD004
Training engine number 100 260 100 248
Testing engine number 100 259 100 248
Operational conditions 1 6 1 6

Fault modes 1 1 2 2



Table 6: Description of IEEE 2012 Prognostic challenge dataset

Operational
condition 1

Operational
condition 2

Operational
condition 3

Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500

Training dataset Bearing 1 1 Bearing 2 1 Bearing 3 1
Bearing 1 2 Bearing 2 2 Bearing 3 2

Testing dataset Bearing 1 3 Bearing 2 3 Bearing 3 3
Bearing 1 4 Bearing 2 4
Bearing 1 5 Bearing 2 5
Bearing 1 6 Bearing 2 6
Bearing 1 7 Bearing 2 7

Table 7: Performance comparison of the proposed and state-of-the-art methods on the IEEE PHM 2012 Prognostic challenge
dataset (RMSE / Score)

Dataset Babu et al. 2016 Hsu et al. 2018 Wang et al. 2018 Liu et al. 2019 Proposed

1 3 46/0.97 7579/100.65 7021/93.25 300/6.36 2/0.052
1 4 1690/372.54 5332/460.27 6556/471.65 2299/1059.8 1671/341.20
1 5 5159/341.55 27887/902.5 20635/667.9 8374/554.4 2360/156.25
1 6 935/223.98 6872/532.72 5329/413.11 1998/478.45 1227/293.86
1 7 26/6.58 1534/264.61 1185/204.47 0.742/3.41 0.213/0.027
2 3 1031/13.69 7000/92.96 933/12.39 33.21/0.441 0.963/0.013
2 4 365/26.29 5330/457.74 4496/323.49 1570/112.98 309/22.24
2 5 4226/144.86 20635/667.8 10200/330.1 6723/217.59 1099/35.59
2 6 123/9.59 5329/413.11 3478/269.68 1658/326.73 236/18.34
2 7 127/24.23 1185/204.47 803/138.01 327/216.12 74/21.93
3 3 1816/221.49 1865/227.14 1715/209.26 1927/235.01 631/77.03
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