
��������: A Benchmark for Parsing
Ambiguous Questions into Database Queries

Irina Saparina Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

i.saparina@sms.ed.ac.uk mlap@inf.ed.ac.uk

Abstract

Practical semantic parsers are expected to understand user utterances and map
them to executable programs, even when these are ambiguous. We introduce a new
benchmark, ��������, which we hope will inform and inspire the develop-
ment of text-to-SQL parsers capable of recognizing and interpreting ambiguous
requests. Our dataset contains questions showcasing three different types of ambi-
guity (scope ambiguity, attachment ambiguity, and vagueness), their interpretations,
and corresponding SQL queries. In each case, the ambiguity persists even when
the database context is provided. This is achieved through a novel approach that
involves controlled generation of databases from scratch. We benchmark various
LLMs on ��������, revealing that even the most advanced models struggle
to identify and interpret ambiguity in questions.

1 Introduction
Semantic parsing translates natural language utterances to logical forms or executable programs in
some machine-readable language (e.g., SQL). It has emerged as an important component in many
real-world applications (Őzcan et al., 2020; Liang, 2016; Wang et al., 2023b; Dukes, 2014) as it
allows users to seek information and control computer systems naturally and flexibly in natural
language. Practical semantic parsers are expected to understand user utterances and map them to
executable forms, even when these are ambiguous (see Figure 1 where a user request allows multiple
interpretations, each corresponding to a different logical form). Ambiguity is a pervasive challenge in
natural language applications (Min et al., 2020; Liu et al., 2023a; Yuan et al., 2023), and semantic
parsing is no exception. Wang et al. (2023a) show that more than half of failure cases for a text-to-SQL
semantic parser are due to ambiguity which can occur in different forms and at different levels.

Although the problem of mapping natural language utterances to formal representations has been
studied extensively, the issue of ambiguity has received less attention. Stengel-Eskin et al. (2024)
evaluate the ability of large language models to parse ambiguous sentences to first-order logic,
focusing on five well-known linguistic ambiguities. In the context of text-to-SQL parsing, other
work (Wang et al., 2023a; Bhaskar et al., 2023) introduces vagueness into the questions of popular
benchmarks like Spider (Yu et al., 2018) by modifying their databases, e.g., through synonyms.
Although targeting a real-world application, database augmentation is limited to a single type of
ambiguity1 and often operates in an artificial setting. For example, consider the database shown in
Figure 1b. We could add a “Scriptwriters” table with the same content as the existing “Screenwriters”
one. Our new database would allow vague questions, but would not be very realistic or well-designed.

1Vagueness and ambiguity are often considered distinct properties (Frappier et al., 2012); however, for
simplicity, we will refer to vagueness as a type of ambiguity.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

GymID
1
1
2
3

1
2
1
1

ClassID

Gyms_Classes

3 3

Gyms
ID Name Address
1
2

FitLife
Flow

ActiveZone

...

...

...3

3 Crossfit ...

Classes
ID Name Level
1
2

Yoga
Zumba

...

...

3 2

Screenwriters
ID Name Contract
1
2

Liam Roy
Jane Smith

Royalty
Work-for-Hire

Editors
ID Name Contract
1
2

Emma Brown
Lee Smith

Employment
Work-for-Hire

Show the screenwriters and editors from the UK.Show the writers and editors on a work-for-hire.
Who issued CD Special?

Bank
ID
1 Nexus

Branch
ID Name BankID
1 East Side 1

......

Name

Products
ID Name BankID
1
...

CD Special
...

1
...

BranchID
1
...

Scope Ambiguity VaguenessAttachment Ambiguitya. b. c.

SELECT Classes.Name FROM ...
GROUP BY HAVING
COUNT(DISTINCT Gyms_Classes.GymID) =
(SELECT COUNT(*) FROM Gyms)

Interpretations:

1. Show classes that are common to all gyms.

2. For each gym, show me the classes there.
SELECT Gyms.Name, Classes.Name FROM ...

SELECT Name FROM Screenwriters
WHERE Contract = 'Work-for-Hire'
UNION SELECT Name FROM Editors
WHERE Contract = 'Work-for-Hire'

Interpretations:

SELECT Name FROM Screenwriters
UNION SELECT Name FROM Editors
WHERE Contract = 'Work-for-Hire'

1. Which writers are contracted for a work-for-
hire and which editors have the same contract?

2. Provide a list of all writers and a list of work-for-
hire editors.

Interpretations:

3. Find the bank and branch that issued
CD Special.
SELECT Bank.Name, Branch.Name FROM ...
WHERE Products.Name = 'CD Special'

SELECT Bank.Name FROM ...
WHERE Products.Name = 'CD Special'

1. Which bank issued CD Special?

SELECT Branch.Name FROM ...
WHERE Products.Name = 'CD Special'

2. Which branch issued CD Special?

What activities does each gym offer?

Figure 1: Types of ambiguous questions (highlighted in blue), their interpretations (highlighted
in green), and corresponding SQL queries. Database elements that could lead to ambiguity are
highlighted in orange.

In this paper we introduce ��������, a novel benchmark which we hope will both inform
and inspire the development of parsers capable of recognizing and interpreting ambiguous queries.
�������� covers 16 distinct domains, it contains 846 multi-table databases, ambiguous questions,
their unambiguous interpretations provided by humans, and complex SQL queries (4,242 in total).
It includes three types of ambiguity, i.e., scope ambiguity, attachment ambiguity, and vagueness,
showcasing a diverse range of SQL queries. Figure 1 shows examples of ambiguous questions in
blue blocks and their unambiguous interpretations in green, both of which can be phrased as requests.
Aiming to mimic real-world semantic parsing scenarios with realistic and diverse databases, we
create them automatically in three steps: (a) we specify a domain of interest (e.g., Banking); (b) we
generate key concepts and relations such that they obey constraints imposed by a chosen ambiguity
type (e.g., for scope ambiguity, the database must have a many-to-many relationship with a common
element; see Figure 1a where multiple gyms offer the same class, namely yoga); and (c) we generate
SQL statements to construct tables with the desired structure. We use a large language model for
generation (OpenChat; Wang et al. 2024) and view database creation as a semantic parsing problem.
Since we can automatically filter predicted SQL statements based on execution results, minimal
manual effort is required to validate the generated databases and their content.2

We benchmark multiple advanced large language models of different sizes on ��������, in-
cluding the most recent Llama 3 (Dubey et al., 2024) and GPT-4o. Our experiments reveal that
models struggle to recognize ambiguity and provide all possible SQL queries for all interpretations.
They often capture only one interpretation and are biased towards a specific type of ambiguity. The
best model, Llama 3-70B, achieves only 31% recall on ambiguous questions compared to 66% on
unambiguous ones. �������� offers a diverse range of questions from various domains, each in-
troducing distinct types of ambiguity along with their interpretations. This diversity offers invaluable
insights into the challenges of real-world semantic parsing.

2 Related Work
The ambiguity inherent in natural language has been studied through the lens of various tasks,
including question-answering (Min et al., 2020), natural language inference (NLI; Liu et al. 2023a),
and coreference resolution (Yuan et al., 2023), where models have been broadly found lacking in
their ability to resolve ambiguities. The bulk of previous work has focused on question answering,
with emphasis on asking clarification questions to understand user intent (Rahmani et al., 2023),
open-domain question answering where a query can plausibly have multiple valid answers (Min et al.,

2The code and data are publicly available at: ambrosia-benchmark.github.io

2

ambrosia-benchmark.github.io

2020), disambiguating database search results in the context of task-oriented dialogue systems (Qian
et al., 2022; Kim et al., 2023), and leveraging relevance feedback to rerank the answers returned
from a QA engine based on knowledge graphs (Liu et al., 2023b).

Within the broader area of semantic parsing, some work (Li et al., 2023a; Mu et al., 2024) has
concentrated on clarifying vague questions for code generation. There is also interest in creating
datasets with ambiguous utterances and corresponding logical form representations. Rasmussen and
Schuler (2020) collect a dataset of λ-calculus translations that includes examples of scope ambiguity,
Arthur et al. (2015) explore different types of ambiguities that arise in the task of mapping search
queries into SCFGs, and Stengel-Eskin et al. (2024) create a benchmark for mapping ambiguous
sentences into first-order logic. We also collect ambiguous utterances, however, our benchmark is
designed for parsing questions into SQL database queries. Unlike Arthur et al. (2015) and Stengel-
Eskin et al. (2024) who create synthetic examples from templates, we ask human annotators to write
natural questions for a real-world application.

Related work in text-to-SQL parsing has primarily focused on vague questions. Wang et al. (2023a)
detect questions containing ambiguous tokens that could map to multiple columns. Their dataset
builds on WikiSQL (Zhong et al., 2017) and Squall (Shi et al., 2020) which are limited to single-table
databases. Bhaskar et al. (2023) modify Spider (Yu et al., 2018) with ChatGPT to create databases
that exclusively support vague questions. Despite relying on Spider, their approach often yields
unrealistic databases, e.g., they introduce ambiguity in table names by copying and renaming existing
tables, which leads to information being duplicated. Our dataset not only supports vagueness but also
includes scope and attachment ambiguities. Moreover, �������� provides multi-table databases
that mirror realistic applications.

Huang et al. (2023) explore ambiguity in the KaggleDBQA dataset (Lee et al., 2021) focusing on
vagueness, underspecified output formats, and unknown data structures. In contrast, our work assumes
the database context is fully specified and focuses on different types of linguistic ambiguity. Other
work Floratou et al. (2024); Pourreza and Rafiei (2023) analyzes vague questions and highlights
issues in existing text-to-SQL benchmarks, where ambiguous questions are often linked to only
one SQL query, leading to execution accuracy failures. �������� addresses this limitation by
providing multiple SQL interpretations for ambiguous questions. Veltri et al. (2023) automatically
generate declarative sentences containing facts that may lead to contradictions due to vague tables.
Our approach, however, centers on human-written and verified questions that users might ask in
real-world scenarios, rather than fact-checking.

Overall, our dataset introduces various types of ambiguity in questions, including scope and attach-
ment ambiguities, which are often overlooked. Additionally, �������� features human-written
interpretations and diverse SQL queries within a single ambiguity type and multi-table databases.

3 The �������� Dataset Creation

3.1 Formal Definition of Ambiguity

Before discussing how our dataset was created, we formally define ambiguity in text-to-SQL parsing,
adapting the definition presented in Floratou et al. (2024):

Definition 1. Two SQL queries are non-equivalent if they produce different execution results,
notwithstanding variations in layout or format.

Definition 2. Let Q = {q1, . . . , qN} denote the universe of non-equivalent SQL queries that can be
formulated given a database D, with known database schema and values. Let s denote a natural
language question and f : s → P(Q) a function that operates in the context of database D and
deterministically maps s to P(Q), the power set of Q. Question s is ambiguous if f (s) has a
cardinality of at least two.

This definition excludes ambiguities emanating from data management issues (e.g., relating to
formatting, coverage, or the handling of NULL values), and assumes that the database schema and
values are known. We also do not consider underspecification of the output format (e.g., whether the
result should contain only specific columns or if auxiliary columns are acceptable). Instead, our focus
is on ambiguity as a linguistic phenomenon, arising from the way a question is formulated, and
leading to multiple interpretations and corresponding SQL queries. This ambiguity persists because
the database context does not uniquely resolve the interpretations a question invites.

3

1. Key Concepts &
Relations

2. CREATE TABLE &
INSERT INTO

Ambiguous Question & Interpretations

SQL queries

Database Creation
Each Gym has many Classes...
Yoga is common to many Gyms.

CREATE TABLE Gyms ...

INSERT INTO Gyms ...

2. For each gym, show me the classes there.

...

What activities does each gym offer?
1. Show classes that are common to all gyms.

SELECT Classes.Name FROM ... GROUP BY ...

SELECT Gyms.Name, Classes.Name FROM ...

Figure 2: Annotation process for scope ambiguity in the “Health” domain.

3.2 Design Considerations

Executable Logical Forms In designing our benchmark, we concentrated on text-to-SQL semantic
parsing for several reasons. It represents a real-world use case where ambiguity arises naturally,
e.g., in questions posed by users and the structure of databases. Unlike some other logical forms,
SQL queries can be easily executed and inspected for correctness. The task is familiar to LLMs, they
have demonstrated strong performance on standard benchmarks like Spider (Yu et al., 2018) and
BIRD-Bench (Li et al., 2023b); it is reasonable to expect them to be able to parse SQL queries even
in zero-shot settings since they likely have learned SQL syntax during training. This allows us to
focus on ambiguity per se, rather than the model’s ability to generate well-formed SQL.

Databases that Support Ambiguity Another important consideration is ambiguity in the context
of a database; it is not enough to just have ambiguous questions, they must also retain their ambiguity
in relation to the database context. For instance, the question “What activities does each gym offer?”
in Figure 1a is ambiguous precisely because there are fitness classes in the database common to
multiple gyms (see the “Gyms_Classes” table). Most databases in academic text-to-SQL benchmarks
(e.g., Spider) do not support ambiguous questions. As discussed earlier, modifying these databases,
e.g., by adding tables or columns with synonymous names, makes them unrealistic with duplicate
information and does not cover different types of ambiguity. In Section 3.3 we describe a controllable,
multi-step approach that uses LLMs to generate databases supporting question ambiguity.

Different Ambiguity Types Finally, we wish to include different types of ambiguity (see Figure 1).

Scope ambiguity arises when it is unclear which elements a quantifier, such as “each”, “every”, or
“all”, refers to. There are two possible interpretations for the ambiguous question in Figure 1a: in
the collective interpretation, the quantifier is interpreted widely (i.e., “each gym” refers to all gyms
in the database) and in the distributive interpretation the quantifier is interpreted narrowly (i.e., “each
gym” is considered separately).

Attachment ambiguity occurs when it is unclear how a modifier or phrase is attached to the rest of the
sentence. There are two possible interpretations for the question in Figure 1b: in the high attachment
reading, the prepositional phrase “on a work-for-hire” is attached to the verb “show” (i.e., both
screenwriters and editors are on work-for-hire contracts), whereas in the low attachment reading it is
attached to “editors” (i.e., only editors have work-for-hire contracts, and screenwriters are on any con-
tract). Within this category, we also consider attachment ambiguities for relative clauses (e.g., “writers
and editors who have work-for-hire contracts”) and adjectives (e.g., “work-for-hire editors and screen-
writers”) as their underlying database structure and SQL queries are similar to prepositional phrases.

Vagueness occurs when context creates uncertainty about which set of entities is being referred to.
Similarly to ambiguous questions, there can be several interpretations. In the example in Figure 1c,
the question has three interpretations depending on whether the answer refers to a general entity
(e.g., the bank) or a more specific subtype (e.g., the branch), or both.

Scope and attachment ambiguities are well-known examples of structural ambiguity (Resnik, 1993;
Kearns, 2000; Carnie, 2013; Kiss and Pafel, 2017) that arise when a sentence has more than one
syntactic parse. However, the research community has only recently started exploring them in
the context of LLMs (Liu et al., 2023a; Kamath et al., 2024a; Stengel-Eskin et al., 2024). We
classify vagueness separately, as vague questions typically have a single syntactic parse, but, due
to semantic imprecision, can refer to different database entities. We recognize that we do not
exhaustively cover all cases of ambiguity in questions. For instance, we do not address lexical
ambiguity (e.g., “Mississippi” as a river vs. state) which is less common in our context. We hope
follow-on work will augment our dataset with additional types of ambiguity.

4

Show the writers and editors on a work-for-hire. Who issued CD Special?

Scope Ambiguity VaguenessAttachment Ambiguityb. c. d.

Gyms
ID Name
1
2

FitLife
Flow

GymID ClassID
1
1
2

1
2
1

Gyms_Classes
Classes

ID Name
1
2

Yoga
Zumba

Screenwriters
Name Contract
Liam
Jane

Royalty
Work-for-Hire

Branch
ID Name
1
...

East
...

TEMPLATE

ICL EXAMPLES

a. Prompt

PREDICTIONS

TEMPLATE

ICL EXAMPLES

What activities does each gym offer?

TEMPLATE

ICL EXAMPLES

PREDICTIONS

Bank
ID Name
1
...

Nexus
...

BankingProducts

Name Bank
CD Special

...
1
...

Branch
1
...

Products

PREDICTIONS

Class 1 and Class 2 are subclasses of
General Class with the common property
"Common Property".

... Post Office and Library are subclasses
of Public Buildings with the common
property "Open Hours". ...

... Who organized the exhibition?
Organiser:
1. Curator 2. Museum ...

Question: Who / What / When / Where...
Answer:
General Category 1 General Category 2

 ... Screenwriters and Editors are
subclasses of Creative Roles with the
common property "Contract Type". ...

 ... Each Gym has many different
Classes. Among them, Yoga is common
to many Gyms. ...

 ... Where can I open a CD with the special
rate?
Banking Institution: 1. Bank 2. Branch ...

Each Entity has many different
Components. Among them, Specific
Component is common to many Entities.

... Each University has many different
Majors. Among them, Psychology is
common to many Universities. ...

Provide 50 examples on different topics in the [DOMAIN] domain in the following format: [TEMPLATE]
Examples in different domains: [ICL EXAMPLES]

Editors
Name Contract
Emma
Lee

Employment
Work-for-Hire

Figure 3: The prompt, templates, in-context examples (only one out of ten is shown for brevity, see
Appendix C for the full versions), and predictions of key concepts and relations for each ambiguity
type. Generated key concepts and relations later become sources of ambiguity in questions and
databases (shown at the bottom for illustrative purposes).

We create�������� with these considerations in mind, following three steps: we select a domain
and generate a database that supports one of the above ambiguity types; next, human annotators write
ambiguous questions along with their unambiguous interpretations; finally, we automatically generate
SQL queries based on templates for scope and attachment ambiguity, and ask annotators to write SQL
queries for vague questions. Figure 2 shows a sketch of the annotation process for scope ambiguity.

3.3 Database Generation

In this section we describe the database generation process. We break this task into the following
subtasks: selecting domains, generating key concepts and relations for each type of ambiguity, and
generating CREATE TABLE and INSERT INTO SQL statements to build the database.

Domains, Concepts, and Relations After analyzing existing semantic parsing datasets and publicly
available databases, we compiled a list of real-world domains for database use. We refined this list to
16 domains (e.g., Entertainment, Banking, Hospitality; see the full list in Appendix B) as we found
that some were either too narrow or too broad for LLM-based database generation.

To allow different interpretations in the context of a database, the latter must comply with constraints
specific to a particular type of ambiguity. In the scope ambiguity example in Figure 1a, the database
has information pertaining to different gyms and classes: a gym can offer multiple classes and a
class can be offered by multiple gyms but one class, i.e., yoga, is common among them. Due to this
structure (a many-to-many relationship with a common element), the question “What activities does
each gym offer?” has two different interpretations (collective vs. distributive reading).

Similar to the conceptual data modeling stage used in database modeling, we first identify key
concepts and relations that later become sources of ambiguity in questions and databases. For each
type of ambiguity, we define a template that captures the general structure of the data and the potential
for ambiguity. Using this template and ten in-context learning examples, we generate different
structures (key concepts and relationships) within a given domain. Figure 3 shows the prompt,
templates, in-context examples, and predictions which we obtain with a large language model (see
Appendix C for the full prompts). Specifically, we employ OpenChat (Wang et al., 2024), one of the
strongest open-sourced 7B LLMs with high performance in both code and text generation.

We manually inspect and filter LLM predictions with hallucinations or expressions otherwise unsuit-
able as database elements (e.g., proper nouns are unlikely to serve as table or column names). We
found the vague category to be the most difficult to generate, requiring the most filtering. Examples

5

include entities unsuitable for further use as table or column names (e.g., “CGI” and “Practical
Effects” can be valid answers for “What special effects were used in a movie?” but do not suit table
or column names in a realistic database) or mutually exclusive (e.g., “Major Studio” and “Indie
Producer” generally do not produce the same movie but are both types of production). Out of 1,883
predictions generated across all three categories, 881 (47%) were retained.

Database Generation via SQL statements Based on the domain, key concepts, and relations
from the previous step, we generate and execute CREATE TABLE statements to define database tables
and their structure, as well as INSERT INTO statements to add values to tables. For this, we use the
OpenChat model in a zero-shot setting. We determine possible database configurations for each type
of ambiguity, since the concepts and relations generated in the previous step can be mapped to database
elements in different ways. For instance, “Screenwriters” and “Editors” are two concepts predicted
for the attachment example in Figure 3c, and can be used as table names (shown in the example)
or column names within a single table. In total, we consider four configurations for databases that
support attachment ambiguity, two for databases that support vagueness, and one for scope ambiguity,
each of these corresponds to a separate instruction to the LLM (see details in Appendix D).

We first generate CREATE TABLE statements (4–6 tables per database on average), and then proceed
to generate INSERT INTO statements (3–5 rows per table on average). At each step, we do not
accept predictions that are non-executable or different from the selected configuration. We manually
validate the generated databases and filter those we consider unnatural. For example, in Figure 3c, a
database with “Contract Type” as a table would not be realistic, even though possible to generate. In
contrast, “Projects”, an alternative common property for screenwriters and editors, could be mapped
to a column or table name. The total number of databases we obtain after filtering is 846.

3.4 Question and SQL Annotation

Ambiguous questions and their interpretations were written by human annotators. SQL queries for
scope and attachment ambiguity were generated automatically, while those for vague questions were
written by annotators. Annotators were recruited via the Prolific crowdsourcing platform based
on various screening tasks; they were all native English speakers with prior knowledge of SQL
or experience in database management. We manually reviewed all submissions and ensured all
annotators followed our instructions. Details on crowdsourcing are provided in Appendix E.

Scope and Attachment Ambiguity To create examples of scope and attachment ambiguity, we
first automatically generate SQL queries using pre-defined templates for each database configuration
(one for scope and four for attachment ambiguity). SQL queries are executed to ensure they yield non-
empty, distinct results (and thus correspond to an ambiguous intent). We then automatically generate
templates for questions (e.g., “What Name of Classes do we have for every Gyms?” in Figure 1a).
Prolific annotators (20 in total) are shown a database as context and asked to write ambiguous
questions and their interpretations in natural language based on these templates. The annotators
substantially edited and paraphrased the original templates. The mean edit distance between our
templates and their annotations is 9.2 for scope ambiguity and 12.3 for attachment ambiguity (higher
values indicates greater deviation from the template, and edit distance is 0 when there is no difference).

In total, we obtained 501 questions with scope ambiguity, 362 questions with attachment ambiguity
and two interpretations in natural language per question. Each ambiguous question corresponds to
two golden SQL queries, and each interpretation is itself an unambiguous question and corresponds
to one of these SQL queries.

Vagueness A major difference between vague questions and those with scope and attachment
ambiguities is that the former can map to very different SQL queries. To promote the diversity of SQL
queries in our dataset, we ask experts (10 in total) to write SQL queries from scratch for this category
rather than relying on predefined templates. To make the task easier, we simplify the databases by
dropping and renaming tables or columns. For example, the “Bank” and “Branch” tables shown
in Figure 3d are merged into a “Banking Institution” table (so that annotators inspect one general
entity instead of two specific ones). Annotators write SQL queries and corresponding questions for
the simpler tables (e.g., “Banking Institution”) which we restore to the original databases once the
annotation is complete. A question is ambiguous as an entity or its reference can be interpreted
in different ways (e.g., a banking institution might be a bank, a branch, or both). From the SQL

6

Table 1: Comparison between �������� and other text-to-SQL datasets with ambiguous ques-
tions, NoisySP (Wang et al., 2023a) and AmbiQT (Bhaskar et al., 2023). # ambig and # unambig
refer to the number of ambiguous questions and their unambiguous interpretations.

Scope Attachment Vague # DB # Tab/DB# ambig # unambig # ambig # unambig # ambig # unambig
NoisySP 0 0 0 0 8,673 0 8,086 1.0
AmbiQT 0 0 0 0 23,295 0 200 5.1

�������� 501 1,002 362 724 414 1,239 846 5.0

query written by the annotators, we create SQL queries corresponding to different interpretations
by replacing table or column names referring to the general entity with the specific original names.
Again, we execute the queries to validate that they produce non-empty, distinct results.

Finally, a different batch of annotators (the same ones who wrote scope and attachment questions and
interpretations) were shown vague questions and corresponding key concepts (e.g., a vague question
“Who issued CD Special?” and key concepts “Bank” and “Branch” shown in Figure 3d) and asked
to write interpretations in natural language. In total, we obtained 414 vague questions and 1,239
interpretations (two or three per question). Each question has two or three golden SQL queries, and
each interpretation is itself an unambiguous question and corresponds to one of these SQL queries.

3.5 Dataset Analysis

Table 1 shows dataset statistics for �������� compared to two other text-to-SQL datasets with
ambiguous questions (Wang et al., 2023a; Bhaskar et al., 2023). A unique aspect of ��������
is that it includes three different types of ambiguity and provides interpretations in natural language
for ambiguous questions. The number of tables per database in �������� is comparable to
AmbiQT, which is based on Spider. Incidentally, our database generation approach could be used to
augment existing text-to-SQL benchmarks, e.g., to assess robustness or out-of-domain generalization.

4 Experiments
Below we present an experimental framework for evaluating model performance on ��������
and offer insights into model capabilities and failure modes. Implementation details are provided in
Appendix F, and additional experimental results can be found in Appendix G.

Models We benchmark various large language models (LLMs) on �������� in light of their
growing use and good performance on text-to-SQL tasks (Yu et al., 2018; Li et al., 2023b). Our
experiments include LLMs of different sizes: OpenChat-7B (Wang et al., 2024), the model we used
for database generation; the instruction-tuned Llama3-8B and Llama3-70B models from the Llama
family (Dubey et al., 2024); instruction-tuned CodeLlama-70B (Roziere et al., 2023) which is
trained specifically for code generation tasks; and GPT-3.5 Turbo and GPT-4o models from OpenAI.

Prompting �������� offers various options for exploring ambiguity in semantic parsing. In
general, we expect a performant model to be able to recognize ambiguity in the context of a database
and output as many SQL interpretations as applicable. Thus, our experiments follow two scenarios:
(1) the model is given instructions that acknowledge the potential of ambiguity in the questions
and specify that the output should include SQL queries for each possible interpretation; and (2) we
provide standard text-to-SQL instructions but consider top-5 predictions from a beam of size 5 as
does previous work (Bhaskar et al., 2023; Stengel-Eskin et al., 2024). We refer to the first method as
Prompt and the second as Beam. In both scenarios, models have access to database context as we
display the CREATE TABLE and INSERT INTO statements which fully describe the database schema
and content. Databases in �������� do not have many rows, and as such fit within the context
limits of the LLMs we use. We acknowledge that in real-world applications database content can be
very large, requiring specific methods to extract related database entities. However, we leave this
to future work. For Prompt, we conduct experiments with temperature equal to 0.5 and 5 random
seeds and average the results for all models except for the OpenAI ones (due to cost constraints). For
Beam, experimental results are deterministic since temperature is fixed to 0. We reserve 10% of the
dataset for few-shot learning.

7

Table 2: Recall, precision and AllFound metrics for different zero-shot LLMs on ��������.
Llama3-70B (Prompt) captures ambiguity best, with the highest recall on ambiguous questions. All
models are unable to parse multiple interpretations when these exist (see AllFound metric).

Model Method % Recall % Precision % AllFound
ambig unambig ambig unambig ambig

OpenChat-7B Prompt 15.5 36.8 24.7 28.2 0.2
Beam 14.7 37.9 — — 1.1

Llama3-8B Prompt 18.0 45.4 30.2 37.9 0.1
Beam 19.9 48.6 — — 1.7

CodeLlama-70B Prompt 17.9 44.1 34.3 40.9 0.1
Beam 25.4 56.2 — — 0.1

Llama3-70B Prompt 30.7 64.5 42.7 49.4 1.9
Beam 28.0 65.5 — — 1.4

GPT-3.5 Turbo Prompt 26.7 61.6 40.2 52.1 0.5
GPT-4o Prompt 27.1 63.4 51.1 59.6 0.4

Evaluation Metrics A common approach to evaluating text-to-SQL semantic parsing is to compare
whether the predicted SQL retrieves the same answer from the database as the gold logical form,
typically by measuring execution accuracy. This method accommodates different formulations of
the same SQL query and we employ it as well, but in our case, the output for ambiguous questions
can be mapped to several correct SQL queries. We report recall and precision, but our primary focus
is recall on ambiguous questions, as it captures the extent to which a model predicts different SQL
queries that correspond to all possible interpretations. Following recent work (Bhaskar et al., 2023;
Stengel-Eskin et al., 2024), we also measure whether all SQL queries are generated for ambiguous
questions, i.e., whether recall is 100%. We call this metric AllFound.

4.1 Zero-Shot Results

Table 2 summarizes the performance of zero-shot models on ��������. We report results using
micro-averaging. The standard deviation of the Prompt method is within 0.3%–1.2% for precision
and recall for all models, except for CodeLlama, which varies from 4% to 5%. The standard deviation
for AllFound is below 0.3%. For fairness, we do not report precision for the Beam method as it
consistently outputs the top-5 predictions, although there are only 1–3 gold SQL queries.

As can be seen, all models demonstrate substantially higher recall on unambiguous questions com-
pared to ambiguous ones, with differences ranging from 21% for OpenChat-7B to 36% for GPT-4o
and 38% for Llama3-70B. As indicated by the AllFound metric, models generally fail to capture
the ambiguity in the question as they rarely predict SQL queries for different interpretations. They
often predict a correct SQL query for one interpretation only, which is why precision on ambiguous
questions is higher than recall. Conversely, models sometimes predict more than one SQL query for
unambiguous questions, which explains why they have lower precision than recall. Precision is 1.0 for
both ambiguous and unambiguous questions when a model produces a single correct interpretation.
However, when a model produces multiple predictions and only one is correct precision can drop
significantly (e.g., to 0.1). This effect explains why ambiguous and unambiguous questions obtain
somewhat similar precision.

Note that recall for unambiguous questions is the same as execution accuracy in standard text-to-SQL
with one gold SQL query. Table 2 shows that the best recall is only 65.5% (achieved by Llama3-70B),
which suggests �������� has challenging examples even in a standard text-to-SQL setting.

Overall, Llama3-70B (Prompt) captures ambiguity best, with the highest recall on ambiguous
questions at nearly 31% and the highest AllFound value of 1.9% which is admittedly still very low.
Llama3-70B performs better with the Prompt method, while CodeLlama-70B appears to perform
better when considering top-k predictions (Beam), however, it never predicts both interpretations
in this case. CodeLlama-70B is very unstable with the Prompt method, and shows performance
comparable to Llama3-8B. This instability indicates that parsing ambiguous questions is significantly
different from other code generation tasks encountered during training, requiring different skills
(e.g., explicit instructions or documentation). GPT-4o performs best in terms of precision, however,
even for this model, precision is lower than recall on unambiguous questions which means that it
predicts SQL queries when it should not. In general, all models fail to provide multiple SQL

8

Table 3: Breakdown of model performance (zero-shot Llama3-70B) by ambiguity type shows that
attachment ambiguity is most challenging.

% Recall % Precision % AllFound
Prompt ambig unambig ambig unambig ambig
Scope 41.5 90.4 52.7 66.4 2.9
Attachment 12.7 24.0 13.7 13.4 0.3
Vague 35.6 69.4 56.7 56.4 4.6

% Recall % AllFound
Beam ambig unambig ambig
Scope 41.6 91.8 1.1
Attachment 10.3 22.2 0.0
Vague 25.8 69.1 0.3

Table 4: Distribution of model predictions (zero-shot Llama3-70B) by interpretation type. Across
ambiguities, there is a clear bias towards one interpretation type.

Scope Attachment Vague
Method Collective Distributive High Low Component Full
Prompt 16.5 83.5 98.2 1.8 83.5 16.5
Beam 18.6 81.4 97.3 2.7 74.3 25.7

queries when several interpretations are possible due to ambiguity but can mistakenly offer
more than one SQL query for unambiguous questions.

4.2 Analysis

We perform a more detailed analysis on the zero-shot instruction-tuned Llama 3-70B model, which has
demonstrated the highest performance on our dataset. Table 3 presents recall, precision, and AllFound
metrics for different categories of ambiguous and unambiguous questions. We observe that attachment
ambiguity is most challenging. This category involves complex SQL queries (often requiring the
UNION operator) and has the largest diversity in database configurations and corresponding gold
SQL queries, which explains poor performance even on unambiguous questions. In contrast, we
obtain best results for scope ambiguity, achieving nearly 92% recall (i.e., execution accuracy) on
unambiguous questions, and 42% on ambiguous ones. We consider only one database configuration
for scope ambiguity, which might be more familiar to LLMs due to the widespread use of many-to-
many relationships. Interestingly, the model captures vagueness better with the Prompt method as
evidenced by superior recall and AllFound results.

Table 4 shows the distribution of model predictions by interpretation type. We consider ambiguous
examples that have at least one correctly predicted SQL query. For vague questions, we focus on
those with three interpretations and define two types of predictions: those with only one component
(interpretations 1 and 2 in Figure 1c; Component) and those with all components (interpretation 3 in
Figure 1c; Full). There is a clear bias towards one interpretation type. The distributive interpretation
is preferred for scope ambiguity (in 80% of cases) corroborating the findings of Kamath et al. (2024b).
High attachment is chosen in more than 97% of cases for attachment ambiguity, and interpretations
involving individual components are also overwhelmingly preferred in the case of vagueness. Overall,
the Prompt method leads to more biased predictions compared to Beam.

4.3 Few-Shot Results

Figure 4 shows the performance of Llama3-70B (Prompt) in a few-shot learning setting. We select in-
context examples randomly, each including ambiguous questions, their unambiguous interpretations,
and corresponding SQL queries. We observe largest improvements in recall and precision over the
zero-shot method with one to three examples. Recall on ambiguous questions improves by 4% but
remains substantially worse compared to unambiguous questions. Increasing the number of examples
helps, but improvements are not statistically significant given the 2–7% standard deviation.

Table 5 presents results with GPT-4o in one-shot setting (with 3 seeds). As can be seen, LLaMa3-70B
and GPT-4o perform similarly: one-shot improves recall and AllFound in ambiguous questions for
both models. The only difference is a slight (not statistically significant) decrease for LLaMa3-70B in
precision, which could be due to the model generating more SQL queries, leading to more incorrect
predictions and thus lower precision.

9

Figure 4: Recall, precision, and AllFound metrics for zero-shot and few-shot Llama3-70B. In-context
examples are selected randomly. We obtain best results with 1-3 examples.

Table 5: Recall, precision, and AllFound metrics for Llama3-70B and GPT-4o in zero- and one-shot
settings. We also include results for Llama3-70B simultaneously prompted with all three ambiguities
and their definitions. Differences between models and settings are negligible.

Model ICL Examples % Recall % Precision % AllFound
ambig unambig ambig unambig ambig

Llama3-70B
0-shot 30.7 64.5 42.7 49.4 1.9
1-shot 32.4 67.3 51.7 57.1 3.7

3 ambiguities 35.0 66.6 48.3 50.7 3.0

GPT-4o 0-shot 27.1 63.4 51.1 59.6 0.4
1-shot 31.3 63.8 49.8 53.1 4.5

Further analysis indicates that providing more examples for one type of ambiguity improves per-
formance for that type but may negatively impact others. We thus benchmark Llama3-70B with
a prompt that includes all three ambiguities and their definitions from Section 3.2, unlike random
sampling. The two prompt formats yield similar results, however, we observe a smaller standard
deviation (2–4%) when prompting with all three ambiguities. Since it is unrealistic to have examples
for all possible ambiguities, we consider these results an upper bound.

5 Limitations
Despite our best efforts to create a high-quality dataset, we cannot guarantee that �������� is
error-free. Recall that we rely on annotators to provide ambiguous questions and their interpretations,
both of which may have flaws. Hence, some interpretations may be unclear, failing to disambiguate
the question, or unnatural and overly explicit with direct mentions to database entities. Our
databases generally have simple and clear names, whereas in reality, they might be incomplete, have
abbreviations, and so on. Since our experiments show that LLMs struggle to detect ambiguity and
provide interpretations, we believe the current databases are well-suited for our task. However, future
work might include augmentations to render them more realistic. When conducting experiments,
we display the full database content, which is neither scalable nor safe for real-world applications.
Consequently, our results can be seen as an upper bound on semantic parsing performance with
ambiguous questions. Although our work broadens the scope of linguistic ambiguity in the
text-to-SQL task, we acknowledge our dataset does not exhaustively cover all cases of ambiguity.
We hope follow-on work will explore these further.

6 Conclusion
In this paper, we present ��������, a novel dataset for parsing ambiguous questions into SQL
database queries across multiple domains. We populate �������� with multi-table realistic
databases that support ambiguity, having developed an automatic pipeline for controlled database gen-
eration using key concepts and relations. �������� covers three types of ambiguity and contains
ambiguous questions along with their interpretations in natural language. Our experiments demon-
strate that even the most advanced LLMs struggle to capture ambiguity and provide accurate SQL
queries for different interpretations of ambiguous questions, leaving ample room for improvement.
We further hope �������� will spur future research on generalization (e.g., across domains and
ambiguity types). Databases with fixed structures can be also modified to explore other interesting
scenarios, including cases where the database context helps clarify originally ambiguous questions.

10

7 Acknowledgments
We thank the anonymous reviewers for their constructive feedback and Tom Hosking for his insightful
comments. We gratefully acknowledge the support of the UK Engineering and Physical Sciences
Research Council (grant EP/W002876/1).

References
Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Semantic

parsing of ambiguous input through paraphrasing and verification. Transactions of the Association
for Computational Linguistics, 3:571–584.

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and Sunita Sarawagi. 2023. Benchmarking and
improving text-to-SQL generation under ambiguity. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 7053–7074, Singapore. Association
for Computational Linguistics.

A. Carnie. 2013. Syntax: A Generative Introduction. Introducing Linguistics. Wiley.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, et al. 2024. The llama 3 herd of models.

Kais Dukes. 2014. SemEval-2014 task 6: Supervised semantic parsing of robotic spatial commands.
In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages
45–53, Dublin, Ireland. Association for Computational Linguistics.

Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither, Wangda Tan,
Joyce Cahoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, Alex Van Grootel, Brandon Chow,
Kai Deng, Katherine Lin, Marcos Campos, K. Venkatesh Emani, Vivek Pandit, Victor Shnayder,
Wenjing Wang, and Carlo Curino. 2024. NL2SQL is a solved problem... not! In 14th Conference
on Innovative Data Systems Research, CIDR.

Melanie Frappier, Derek Brown, and Robert DiSalle, editors. 2012. Analysis and Interpretation in
the Exact Sciences: Essays in Honour of William Demopoulos, 2012 edition. Number 78 in The
Western Ontario Series in Philosophy of Science. Springer.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé III, and Kate Crawford. 2021. Datasheets for datasets. Commun. ACM, 64(12):86–92.

Zachary Huang, Pavan Kalyan Damalapati, and Eugene Wu. 2023. Data ambiguity strikes back: How
documentation improves gpt’s text-to-sql. In Table Representation Learning Workshop at NeurIPS
2023.

Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala, and Siva Reddy. 2024a. Scope ambiguities in
large language models. Transactions of the Association for Computational Linguistics, 12:738–754.

11

https://doi.org/10.1162/tacl_a_00159
https://doi.org/10.1162/tacl_a_00159
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://books.google.co.uk/books?id=or-Y3c9dY4UC
http://arxiv.org/abs/2307.07306
http://arxiv.org/abs/2407.21783
https://doi.org/10.3115/v1/S14-2006
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
http://arxiv.org/abs/2308.15363
https://doi.org/10.1145/3458723
https://openreview.net/pdf?id=FflKTuIRTD
https://openreview.net/pdf?id=FflKTuIRTD
https://doi.org/10.1162/tacl_a_00670
https://doi.org/10.1162/tacl_a_00670

Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala, and Siva Reddy. 2024b. Scope ambiguities in
large language models.

Kate Kearns. 2000. Semantics. St. Martin’s Press, New York.

Yongil Kim, Yerin Hwang, Joongbo Shin, Hyunkyung Bae, and Kyomin Jung. 2023. Injecting
comparison skills in task-oriented dialogue systems for database search results disambiguation. In
Findings of the Association for Computational Linguistics: ACL 2023, pages 4047–4065, Toronto,
Canada. Association for Computational Linguistics.

Katalin É. Kiss and Jürgen Pafel. 2017. Quantifier Scope Ambiguities. John Wiley & Sons, Ltd.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleDBQA: Realistic
evaluation of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2261–2273, Online. Association for Computational
Linguistics.

Haau-Sing (Xiaocheng) Li, Mohsen Mesgar, André Martins, and Iryna Gurevych. 2023a. Python
code generation by asking clarification questions. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 14287–14306, Toronto,
Canada. Association for Computational Linguistics.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2023b. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Proceedings of the 37th Annual Conference on Neural
Information Processing Systems, 36.

Percy Liang. 2016. Learning executable semantic parsers for natural language understanding.
Communications of the ACM, 59(9):68–76.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
Swayamdipta, Noah Smith, and Yejin Choi. 2023a. We’re afraid language models aren’t modeling
ambiguity. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 790–807, Singapore. Association for Computational Linguistics.

Lihui Liu, Yuzhong Chen, Mahashweta Das, Hao Yang, and Hanghang Tong. 2023b. Knowledge
graph question answering with ambiguous query. In Proceedings of the ACM Web Conference
2023, WWW ’23, page 2477–2486, New York, NY, USA. Association for Computing Machinery.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2020. AmbigQA: An-
swering ambiguous open-domain questions. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5783–5797, Online. Association for
Computational Linguistics.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu, and
Qing Wang. 2024. Clarifygpt: Empowering llm-based code generation with intention clarification.

Fatma Őzcan, Abdul Quamar, Jaydeep Sen, Chuan Lei, and Vasilis Efthymiou. 2020. State of the
art and open challenges in natural language interfaces to data. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page 2629–2636, New
York, NY, USA. Association for Computing Machinery.

Jiaxin Pei, Aparna Ananthasubramaniam, Xingyao Wang, Naitian Zhou, Apostolos Dedeloudis,
Jackson Sargent, and David Jurgens. 2022. POTATO: The portable text annotation tool. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 327–337, Abu Dhabi, UAE. Association for Computational Linguistics.

12

http://arxiv.org/abs/2404.04332
http://arxiv.org/abs/2404.04332
https://doi.org/10.18653/v1/2023.findings-acl.249
https://doi.org/10.18653/v1/2023.findings-acl.249
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118358733.wbsyncom005
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.1145/3543507.3583316
https://doi.org/10.1145/3543507.3583316
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://arxiv.org/pdf/2310.10996
https://doi.org/10.1145/3318464.3383128
https://doi.org/10.1145/3318464.3383128
https://doi.org/10.18653/v1/2022.emnlp-demos.33

Mohammadreza Pourreza and Davood Rafiei. 2023. Evaluating cross-domain text-to-SQL models and
benchmarks. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 1601–1611, Singapore. Association for Computational Linguistics.

Kun Qian, Satwik Kottur, Ahmad Beirami, Shahin Shayandeh, Paul Crook, Alborz Geramifard, Zhou
Yu, and Chinnadhurai Sankar. 2022. Database search results disambiguation for task-oriented
dialog systems. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1158–1173,
Seattle, United States. Association for Computational Linguistics.

Hossein A. Rahmani, Xi Wang, Yue Feng, Qiang Zhang, Emine Yilmaz, and Aldo Lipani. 2023. A
survey on asking clarification questions datasets in conversational systems. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2698–2716, Toronto, Canada. Association for Computational Linguistics.

Nathan Rasmussen and William Schuler. 2020. A corpus of encyclopedia articles with logical forms.
In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 1051–1060,
Marseille, France. European Language Resources Association.

Philip Resnik. 1993. Semantic classes and syntactic ambiguity. In Human Language Technology:
Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code llama: Open foundation models for
code.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal Daumé III, and Lillian Lee. 2020. On the
potential of lexico-logical alignments for semantic parsing to SQL queries. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 1849–1864, Online. Association
for Computational Linguistics.

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin Van Durme. 2024. Zero and few-shot semantic
parsing with ambiguous inputs. In The 12th International Conference on Learning Representations.

Enzo Veltri, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Data ambiguity profiling
for the generation of training examples. In 2023 IEEE 39th International Conference on Data
Engineering.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou. 2023a. Know what I don’t know: Handling
ambiguous and unknown questions for text-to-SQL. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 5701–5714, Toronto, Canada. Association for Computational
Linguistics.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. 2024. Openchat:
Advancing open-source language models with mixed-quality data. In The 12th International
Conference on Learning Representations.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, and Graham Neubig. 2023b. MCoNaLa: A
benchmark for code generation from multiple natural languages. In Findings of the Association
for Computational Linguistics: EACL 2023, pages 265–273, Dubrovnik, Croatia. Association for
Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for Computational Linguistics.

Yuewei Yuan, Chaitanya Malaviya, and Mark Yatskar. 2023. AmbiCoref: Evaluating human and
model sensitivity to ambiguous coreference. In Findings of the Association for Computational
Linguistics: EACL 2023, pages 1023–1030, Dubrovnik, Croatia. Association for Computational
Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.

13

https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2022.naacl-main.85
https://doi.org/10.18653/v1/2022.naacl-main.85
https://doi.org/10.18653/v1/2023.acl-long.152
https://doi.org/10.18653/v1/2023.acl-long.152
https://aclanthology.org/2020.lrec-1.132
https://aclanthology.org/H93-1054
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://openreview.net/forum?id=qL9gogRepu
https://openreview.net/forum?id=qL9gogRepu
https://doi.ieeecomputersociety.org/10.1109/ICDE55515.2023.00041
https://doi.ieeecomputersociety.org/10.1109/ICDE55515.2023.00041
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.findings-acl.352
https://openreview.net/forum?id=AOJyfhWYHf
https://openreview.net/forum?id=AOJyfhWYHf
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2023.findings-eacl.75
https://doi.org/10.18653/v1/2023.findings-eacl.75
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 4.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Section 4.1 and 4.3.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix F.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix A.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix E.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix E.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See Appendix E and Appendix H.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] See Appendix E.

14

A Hosting, Licensing and Maintenance
The data, instructions, and code used for the creation of �������� and our benchmarking
experiments are publicly available under the CC BY 4.0 license: ambrosia-benchmark.github.
io. We plan to update the dataset by correcting any annotation errors as they are identified. A
datasheet (Gebru et al., 2021) for �������� provides detailed documentation in Appendix H.

B Domains
The dataset includes the following domains across all categories of ambiguity: Airport, Banking,
Education, Entertainment, Filmmaking, Hospitality, Job Postings, and Journalism. Additionally,
the Scope and Vague categories include the domains of Agriculture, Traffic, Streaming Services,
Healthcare, and the Housing Market. The Vague category alone also encompasses the domains of
Construction, Demographics, and Students.

C Prompts for Key Concepts and Relations Generation
Below, we provide the prompts used for generating key concepts and relations. The domain is
indicated in grey to be filled in with a specific name. We sample with a temperature of 0.6 and top_p
of 0.95 until at least 35 concepts and relations are generated, or the number of attempts exceeds 5.

Scope: Key Concepts and Relations Generation

Provide 50 examples on different topics in the DOMAIN domain in the following format:

Each [Entity] has many different [Components]. Among them, [Specific Component] is common
to many [Entities].

Examples in different domains:

1. Each University has many different Majors. Among them, Psychology is common to many
Universities.

2. Each Report has many different Sections. Among them, Introduction is common to many
Reports.

3. Each Hospital has many different Amenities. Among them, Waiting Room is common to many
Hospitals.

4. Each Musical has many different Roles. Among them, Narrator is common to many Musicals.

5. Each Phone has many different Features. Among them, Touchscreen is common to many
Phones.

6. Each Museum has many different Events. Among them, Family Day is common to many Museums.

7. Each Company has many different Departments. Among them, Human Resources is common to
many Companies.

8. Each Website has many different Pages. Among them, Homepage is common to many Websites.

9. Each Restaurant has many different Dishes. Among them, Pizza is common to many
Restaurants.

10. Each Route has many different Stops. Among them, Transit Hub is common to many Routes.

Examples in the DOMAIN domain:

Attachment: Key Concepts and Relations Generation

Provide 50 examples on different topics in the DOMAIN domain in the following format:

[Class 1] and [Class 2] are subclasses of [General Class]. All [Entities of Class 1]
and [Entities of Class 2] have property "[Common Property]". There might be a [Entity
of Class 1] and a [Entity of Class 2] that both have "[Common Property]" equal to
"[Common Value]".

Examples in different domains:

15

ambrosia-benchmark.github.io
ambrosia-benchmark.github.io

1. Post Office and Library are subclasses of Public Buildings. All Post Offices and
Libraries have the property "Open Hours". There might be a Post Office and a Library
that both have "Open Hours" equal to "8 a.m.".

2. Teacher and Lawyer are subclasses of Professional Occupations. All Teachers and
Lawyers have the property "Education Level". There might be a Teacher and a Lawyer that
both have "Education Level" equal to "Master’s Degree".

3. Ballet and Musical are subclasses of Performing Arts. All Ballets and Musicals have the
property "Performance Venue". There might be a Ballet and a Musical that both have
"Performance Venue" equal to "Broadway Theater".

4. Apartment and Townhouse are subclasses of Residences. All Apartments and Townhouses
have the property "Living Space Features". There might be an Apartment and a Townhouse
that both have "Living Space Features" equal to "Balcony".

5. Bus and Train are subclasses of Public Transport. All Buses and Trains have the property
"Scheduled Routes". There might be a Bus and a Train that both have "Scheduled Routes"
equal to "Downtown Loop".

6. Hospital and Ambulatory Surgery Center are subclasses of Healthcare Facilities.
All Hospitals and Ambulatory Surgery Centers have the property "Number of
Patients". There might be a Hospital and an Ambulatory Surgery Center that both have
"Number of Patients" equal to "Over 100 daily".

7. Thesis and Report are subclasses of Academic Writing. All Theses and Reports have the
property "Research Focus". There might be a Thesis and a Report that both have "Research
Focus" equal to "Renewable Energy".

8. Smartphone and Tablet are subclasses of Electronic Devices. All Smartphones and
Tablets have the property "Charger Type". There might be a Smartphone and a Tablet that
both have "Charger Type" equal to "USB-C".

9. Documentary and Animation are subclasses of Film Genres. All Documentaries and
Animations have the property "Target Audience". There might be a Documentary and an
Animation that both have "Target Audience" equal to "Young Adults".

10. Passport and Driving License are subclasses of Identification Documents. All
Passports and Driving Licenses have the property "Date of Issue". There might be a
Passport and a Driving License that both have "Date of Issue" equal to "June 1,
2018".

Examples in the DOMAIN domain:

Vague: Key Concepts and Relations Generation

Provide 50 examples on different topics in the DOMAIN domain in the following format:

Question: [Who /What / How /When /Where ...]? Subject of Inquiry: [Subject]
Focus: [Focus] Possible answer types: 1. [General Category 1] 2. [General Category 2]

Examples in different domains:

1. Question: Who organized the exhibition? Subject of Inquiry: Exhibitions
Focus: Organizer Possible answer types: 1. Curator 2. Museum

2. Question: When was this artefact created? Subject of Inquiry: Artefacts
Focus: Timeframe Possible answer types: 1. Historical Period 2. Estimated Age

3. Question: What is the capacity of this venue? Subject of Inquiry: Venues
Focus: Capacity Possible answer types: 1. Seating Capacity 2. Total Capacity

4. Question: How was this research funded? Subject of Inquiry: Research
Focus: Funding Possible answer types: 1. Grant 2. Funding Organization

5. Question: Where was this play published? Subject of Inquiry: Books
Focus: Place of Origin Possible answer types: 1. Magazine 2. Country

6. Question: What powers this vehicle? Subject of Inquiry: Vehicles
Focus: Propulsion Method Possible answer types: 1. Engine Type 2. Energy Source

7. Question: When was this phone introduced? Subject of Inquiry: Electronics

16

Focus: Timeframe Possible answer types: 1. Presentation Day 2. Release Date

8. Question: Who won this contest? Subject of Inquiry: Contests
Focus: Winner Possible answer types: 1. Singer 2. Nation

9. Question: What are the main features of this region? Subject of Inquiry: Regions
Focus: Features Possible answer types: 1. Landscape 2. Climate

10. Question: Where is this painting displayed? Subject of Inquiry: Paintings
Focus: Location Possible answer types: 1. Gallery 2. City

Examples in the DOMAIN domain:

D Database Generation

Screenwriters
Name Contract
Liam
Jane

Royalty
Work-for-Hire

Editors
Name Contract
Emma
Lee

Employment
Work-for-Hire

DocumentsScreenwriters
Name DocID
Liam
Jane

1
2

Editors
Name DocID
Emma
Lee

3
2

Name Type
Doc1
Doc2

Royalty
Work-for-Hire
EmploymentDoc3

ID
1
2
3

Employees
Name DocID
Liam
Jane

1
2

Occupation

Emma
Lee

3
2

Editor
Editor

Screenwriter
Screenwriter

Documents
Name Type
Doc1
Doc2

Royalty
Work-for-Hire
EmploymentDoc3

ID
1
2
3

Employees
Name Contract
Liam
Jane

Royalty
Work-for-Hire

Occupation

Emma
Lee

Employment
Work-for-Hire

Editor
Editor

Screenwriter
Screenwriter

a. b.

d.c.

Figure 5: Database configurations that support attachment ambiguity.

BankingProducts

Name Bank
CD Special

...
Nexus

...

Branch
East Side

...

ProductsBranch
ID Name
1
...

East
...

Bank
ID Name
1
...

Nexus
...

BankingProducts

Name Bank
CD Special

...
1
...

Branch
1
...

Products

a. b.

Figure 6: Database configurations that support vagueness.

Figure 5 shows four possible configurations for attachment ambiguity, each of them corresponding to
concepts in Figure 3c and supporting the ambiguous request “Show the writers and editors on work
for hire”. Figure 6 shows two possible configurations for vague questions, each of them corresponding
to concepts in Figure 3d and supporting the ambiguous request “Who issued CD Special?”.

Below we provide examples of the prompts used for the generation of CREATE TABLE and INSERT
INTO SQL statements for different ambiguity types and configurations. We indicate placeholders we
substitute with specific values in grey. For databases with attachment and vague ambiguities, we
provide the prompts corresponding to the configurations shown in Figures 5a and 6a, for the sake of
brevity.

Each configuration has strict conditions we can validate when executing predicted SQL statements.
For instance, in the case of scope ambiguity, we automatically discard a database if there is no
connection between the “Entity” and “Components” tables. However, we relaxed some restrictions
to generate more efficiently, as they can be satisfied by automatic modifications later. For example,
we require a value in “Components” to be connected to multiple, but not necessarily all, values in
“Entity,” as we can later add the missing connections.

17

Scope: CREATE TABLE

Create multiple connected tables in the DOMAIN
domain via SQLite, including a "Entity" table,
a "Components" table (values:
"Specific_Component" and others), and a
"Entities_Components" table that joins these
two tables (multiple rows of "Entity" are
connected to "Specific_Component" and
other values of "Components").

Other tables and columns are arbitrary. Each
table must contain at least 3 columns.

Provide multiple CREATE TABLE statements in
SQLite.

Scope: INSERT INTO

SQLite database in the DOMAIN domain:

CREATE TABLE statements

Insert 5 or more rows into each table.

"Components" table must contain
"Specific_Component" and other values.
All rows of table "Entity" must be linked to
two rows of "Components", with
"Specific_Component" and with another
value, through "Entities_Components".

Provide 5 or more INSERT INTO statements
for each table in SQLite.

Attachment (a.): CREATE TABLE

Create multiple connected tables in the DOMAIN
domain via SQLite. One table contains
information about "Class_1" and
"Common_Property" (containing values such
as "Common_Value", etc.), and the other table
contains information about "Class_2" and
"Common_Property".

Other tables and columns are arbitrary. Each
table must contain at least 3 columns.

Provide multiple CREATE TABLE statements in
SQLite.

Attachment (a.): INSERT INTO

SQLite database in the DOMAIN domain:

CREATE TABLE statements

Insert 5 or more rows into each table.

There must be:

• One row with "Class_1" and
"Common_Property" equal to
"Common_Value",

• One row with "Class_1" and
"Common_Property" different from
"Common_Value",

• One row with "Class_2" and
"Common_Property" equal to
"Common_Value",

• One row with "Class_2" and
"Common_Property" different from
"Common_Value",

Other rows are arbitrary. Use non-trivial
values.

Provide 5 or more INSERT INTO statements
for each table in SQLite.

Vague (a.): CREATE TABLE

Create multiple connected tables in the DOMAIN
domain via SQLite, including a table
"General_Category_1", a table
"General_Category_2" and a table
"Common_Subject" connected to the tables
"General_Category_1" and
"General_Category_2".

Other tables and columns are arbitrary. Each
table must contain at least 3 columns.

Provide multiple CREATE TABLE statements in
SQLite.

Vague (a.): INSERT INTO

SQLite database in the DOMAIN domain:

CREATE TABLE statements

Insert 5 or more rows into each table.

Provide 5 or more INSERT INTO statements
for each table in SQLite.

18

Figure 7: Annotation Interface: example of writing questions with scope ambiguity and their
unambiguous interpretations.

E Human Annotation
We recruited Prolific annotators using the following criteria: English as the first and primary language,
no language-related disorders or literacy difficulties, knowledge of SQL and database management, a
Prolific approval rate of 100%, and residency in the UK, USA, Ireland, Australia, New Zealand, or
Canada. We also created trial tasks to choose the best annotators. Each annotator was paid £9 per
hour. The total budget for annotation was £1,600. All submissions in Prolific are anonymous. All
annotators participated voluntarily and had the option to return the task at any time if they chose not
to complete it. We only collected data that was specifically requested from the annotators.

The first group of annotators (20 in total), participated in text-only tasks. These tasks included writing
questions with scope and attachment ambiguity and unambiguous interpretations for all questions,
including vague ones. We assigned 3–5 instances per person, which took 10–20 minutes to annotate.
The second group (10 annotators in total), wrote SQL queries and corresponding questions that were
later rendered vague. Each annotator completed 3 instances, taking an average of 20 minutes per
instance.

We provided separate instructions with examples for each task and manually reviewed all submissions
to ensure all annotators followed them. We elicited annotations using the Potato tool (Pei et al.,
2022). An example of the interface is shown in Figure 7. The code and detailed instructions used for
annotation are available at: https://github.com/saparina/ambrosia.

F Implementation Details

Models We implemented the Prompt method using the Text Generation Inference toolkit3 for
the Llama-family models; for OpenChat (Wang et al., 2024), we used the official implementation
provided by the authors and the OpenAI API for the GPT models4. We used the following versions of
these models: openchat-3.5-1210, gpt-3.5-turbo-0125, gpt-4o-2024-05-13. The temperature for GPT
models is 0. We implemented the Beam method using the vLLM library (Kwon et al., 2023). We
used 4-8 CPUs, one NVIDIA-A100 GPU for OpenChat 7B and Llama3-8B and two NVIDIA-A100
GPUs for CodeLlama-70B and Llama3-70B. For the largest models, one zero-shot experiment (with
fixed random seed) took one hour and one few-shot experiment with 5 examples took 5 hours.

3https://github.com/huggingface/text-generation-inference
4https://platform.openai.com/

19

https://github.com/saparina/ambrosia
https://github.com/huggingface/text-generation-inference
https://platform.openai.com/

Evaluation To compute evaluation metrics on model predictions, we represent the output of an
SQL query as a set of values. This allows matching queries that correspond to the same interpretation
and yield the same data even if they are structured differently, e.g., with different column orders
or different operations. For instance, some gold queries in the attachment category use the UNION
operator, but they could also be written using the JOIN operator. Although this relaxation might result
in occasional false positives, we found it rarely happens as different SQL queries produce completely
different outputs on our databases. We filter exact duplicates in predictions.

We measure precision as the number of correct queries in the output divided by the total number of
predictions. Below we provide some examples:

Ambiguous case:

• If the model predicts only one SQL query from the gold set (one interpretation), precision is
1.0.
• If the model predicts all SQL queries from the gold set (all interpretations), precision remains

1.0.
• If multiple predictions include incorrect queries, precision falls between 0 and 1 (e.g., 0.5

might indicate one correct interpretation and one incorrect query, or two correct interpreta-
tions and two incorrect queries).

Unambiguous case:

• We have one gold SQL query. If the model predicts only this query, precision is 1.0.
• If the model predicts the correct query along with additional incorrect ones, precision is

reduced (e.g., 1 / total number of predictions).

In both cases, if there are no correct queries, precision is 0. When there is only one correct prediction,
precision is 1.

We measure recall as the number of correct queries in the output divided by the total number of
ground truth queries (interpretations). Below we provide some examples:

Ambiguous case:

• If the model predicts all SQL queries from the ground truth set (covering all interpretations),
recall is 1.0, even if additional incorrect queries are present in the output.
• If any ground truth interpretation is missing in the predictions, recall is between 0 and 1.

For example, if there are two gold interpretations and the model predicts only one, recall
would be 0.5.

Unambiguous case:

• If the model predicts the single gold query correctly, recall is 1.0, regardless of additional
incorrect predictions.

In both cases, if there are no correct queries, recall is 0.

Prompting Below we provide the prompts used for the Prompt and Beam methods. We follow
best practices for designing text-to-SQL prompts for LLMs, such as adding instructions like “Do not
include any explanations, and do not select extra columns beyond those requested in the question” to
prevent models from generating redundant columns or descriptions (Dong et al., 2023; Gao et al.).
However, we found that the models do not always adhere to these instructions. To address this,
we implemented a separate extractor for SQL queries from each model’s output. Additionally, we
observed that models often generate separate SQL queries for attachment ambiguity instead of a
single complex query with a UNION of two subqueries. To resolve this, we added the instruction
“Show the results in one table” to each question in this category.

20

Prompt

The task is to write SQL queries based on the
provided questions in English. Questions can
take the form of an instruction or command and
can be ambiguous, meaning they can be
interpreted in different ways. In such cases,
write all possible SQL queries corresponding to
different interpretations and separate each SQL
query with an empty line. Do not include any
explanations, and do not select extra columns
beyond those requested in the question.

Given the following SQLite database schema:

SQL_DATABASE_DUMP

Answer the following:
QUESTION

Beam

The task is to write SQL queries based on the
provided questions in English. Questions can
take the form of an instruction or command.
Do not include any explanations, and do not
select extra columns beyond those requested
in the question.

Given the following SQLite database schema:

SQL_DATABASE_DUMP

Answer the following:
QUESTION

Below we present the few-shot prompt with randomly selected in-context examples. Each example
includes ambiguous questions, their unambiguous interpretations, and corresponding SQL queries:

Few-Shot Prompt

The task is to write SQL queries based on the provided questions in English. Questions can take the form
of an instruction or command and can be ambiguous, meaning they can be interpreted in different ways. In
such cases, write all possible SQL queries corresponding to different interpretations and separate each
SQL query with an empty line. Do not include any explanations, and do not select extra columns beyond
those requested in the question.

Some example databases, questions and corresponding SQL queries are provided based on similar
problems:

Example 1:

Given the following SQLite database schema:

EXAMPLE_SQL_DATABASE_DUMP

Answer the following:
AMBIGUOUS_QUESTION

SQL query(s):
SQL_QUERY_1
SQL_QUERY_2
[OPTIONAL_SQL_QUERY_3]

Answer the following:
INTERPRETATION_1

SQL query(s):
SQL_QUERY_1

Answer the following:
INTERPRETATION_2

SQL query(s):
SQL_QUERY_2
. . .

Given the following SQLite database schema:

21

SQL_DATABASE_DUMP

Answer the following:
MAIN_QUESTION

Additionally, we consider the prompt with all three ambiguities and their definitions included:

Few-Shot Prompt with 3 Ambiguities and Definitions

The task is to write SQL queries based on the provided questions in English. Questions can take the form
of an instruction or command and can be ambiguous, meaning they can be interpreted in different ways. In
such cases, write all possible SQL queries corresponding to different interpretations and separate each
SQL query with an empty line. Do not include any explanations, and do not select extra columns beyond
those requested in the question.

Some example databases, questions and corresponding SQL queries are provided based on similar
problems:

Type 1: Scope Ambiguity

Definition: Scope ambiguity issue arises when it is unclear which elements a quantifier, such as "each",
"every" or "all", refers to.

Example:

Given the following SQLite database schema:

SCOPE_SQL_DATABASE_DUMP

Answer the following:
SCOPE_QUESTION

SQL query(s):
SQL_QUERY_1
SQL_QUERY_2

Answer the following:
SCOPE_INTERPRETATION_1

SQL query(s):
SQL_QUERY_1
. . .

Type 2: Attachment Ambiguity

Definition: Attachment ambiguity occurs when it is unclear how a modifier or phrase is attached to the
rest of the sentence.

ATTACHMENT_EXAMPLE

Type 3: Vagueness

Definition: Vagueness occurs when context creates uncertainty about which set of entities is being referred
to.

VAGUE_EXAMPLE

Given the following SQLite database schema:

SQL_DATABASE_DUMP

Answer the following:
MAIN_QUESTION

22

Table 6: Number of unique SQL queries predicted by zero-
shot Llama3-70B (Prompt) and number of unique results
after execution of these queries. The model predicts more
than one query even for unambiguous questions.

Unique SQL Queries # Unique Exec Results
ambig unambig ambig unambig

2.4 2.3 2.0 1.7

Table 7: Zero-shot accuracy of the
Llama3-70B in detecting ambiguity in
questions. The model overestimates
ambiguity.

% Accuracy
ambig unambig
81.2 26.1

G Additional Results
Extended Analysis Table 6 presents the number of unique SQL queries predicted by the zero-shot
Llama3-70B (Prompt) and the number of unique results obtained upon executing these predictions.
As can be seen, the number of execution results is consistently lower than the number of predicted
SQL queries, indicating that some queries, despite differing in structure, yield the same results.
Typically, both metrics are around 2, implying that the model is capable of generating multiple
distinct SQL queries that produce different results. Although the figures for unambiguous questions
are lower than for ambiguous ones, they still do not approach the optimum value of 1.0 (unambiguous
questions correspond to a single SQL query).

To further explore how the model captures ambiguity, we consider the task of ambiguity detection.
We present the model with a question and ask it to determine whether it is ambiguous. Similar to the
Prompt method, we provide the model with comprehensive instructions regarding this task:

Ambiguity Detection

The task is to identify ambiguous questions in English that are intended to interact with an SQLite
database. Questions can take the form of an instruction or command and can be ambiguous, meaning
they can be interpreted in different ways (corresponding to different SQL queries that produce different
results). Answer Yes or No, and do not include any explanations.

Given the following SQLite database schema:

SQL_DATABASE_DUMP

Is the following question ambiguous:
QUESTION

Table 7 shows the accuracy of zero-shot Llama3-70B in detecting ambiguity. Our results indicate that
the model tends to overestimate ambiguity, classifying questions as ambiguous in approximately 80%
of cases, regardless of whether they genuinely are. This is a limitation of prompt-based approaches,
which may confuse the model rather than provide helpful guidance.

Error Cases We conducted an error analysis on the zero-shot Llama3-70B (Prompt) by randomly
selecting 50 examples where the model failed. Our analysis revealed errors typical of standard
text-to-SQL parsing, as well as errors specifically related to ambiguity. Common text-to-SQL errors
included: incorrect output columns (29%), including superfluous columns contrary to our instructions,
errors in the filters and joins (17%), failure to include a UNION of two queries (17%, typical for the
attachment category), and execution errors (5%). The most frequent error relating to ambiguity is the
generation of different variations of the same SQL query, which occurred in 34% of cases, even for
unambiguous questions. For ambiguous queries, the model provided only one interpretation in 11%
of cases. See the examples provided next.

23

Type: Scope Domain: Agriculture Ambiguous? Yes

Question What kind of crop does each farm offer?

Predictions ✓ SELECT f.Name, c.CropName FROM Farms f JOIN FarmsCrops fc ON f.FarmID =
fc.FarmID JOIN Crops c ON fc.CropID = c.CropID

✓ SELECT DISTINCT f.Name, c.CropName FROM Farms f JOIN FarmsCrops fc ON
f.FarmID = fc.FarmID JOIN Crops c ON fc.CropID = c.CropID

Gold 1. SELECT c.CropName FROM FarmsCrops fc JOIN Crops c ON fc.CropID =
c.CropID JOIN Farms f ON fc.FarmID = f.FranID GROUP BY fc.CropID HAVING
COUNT(DISTINCT fc.FarmID) = (SELECT COUNT(*) FROM Farms)

2. SELECT f.name, c.cropName FROM FarmsCrops fc JOIN Crops c ON fc.CropID
= c.CropID JOIN Farms f ON fc.FarmID = f.FarmID

Comments All predicted queries are correct but they all provide the same information and correspond to one
interpretation (distributive; gold query 2).

Type: Scope Domain: Healthcare Ambiguous? No

Question For every program, list the activity descriptions

Predictions ✗ SELECT hpp.description, a.description FROM Health_Promotion_Program hpp
JOIN Health_Promotion_Program_Activities hppa ON hpp.program_id =
hppa.program_id JOIN Activities a ON hppa.activity_id = a.activity_id

✗ SELECT a.description FROM Health_Promotion_Program hpp JOIN
Health_Promotion_Program_Activities hppa ON hpp.program_id =
hppa.program_id JOIN Activities a ON hppa.activity_id = a.activity_id
GROUP BY hpp.program_id

Gold SELECT hpp.name, a.description FROM Health_Promotion_Program_Activities
hppa JOIN Activities a ON hppa.activity_id = a.activity_id JOIN
Health_Promotion_Program hpp ON hppa.program_id = hpp.program_id

Comments The first predicted query has an error in the output columns: it outputs the program description
instead of the program name. The second query omits the program name column altogether.

Type: Attachment Domain: Filmmaking Ambiguous? Yes

Question Provide all sound designs and music scores created by Thomas Newman. Show them in one table.

Predictions ✗ SELECT description FROM SoundDesigns WHERE creatorId = (SELECT id FROM
Creators WHERE name = ’Thomas Newman’)

✗ SELECT description FROM MusicScores WHERE creatorId = (SELECT id FROM
Creators WHERE name = ’Thomas Newman’)

✓ SELECT sd.description, ms.description FROM SoundDesigns sd, MusicScores
ms WHERE sd.creatorId = ms.creatorId AND sd.creatorId = (SELECT id FROM
Creators WHERE name = ’Thomas Newman’)

✓ SELECT * FROM (SELECT description FROM SoundDesigns WHERE creatorId =
(SELECT id FROM Creators WHERE name = ’Thomas Newman’)) UNION SELECT *
FROM (SELECT description FROM MusicScores WHERE creatorId = (SELECT id
FROM Creators WHERE name = ’Thomas Newman’))

Gold 1. SELECT sd.description FROM Creators c JOIN SoundDesigns sd ON c.id =
sd.creatorId WHERE c.name = "Thomas Newman" UNION SELECT ms.description
FROM Creators c JOIN MusicScores ms ON c.id = ms.creatorInterId WHERE
c.name = "Thomas Newman"

2. SELECT sd.description FROM Creators c JOIN SoundDesigns sd ON c.id =
sd.creatorId UNION SELECT ms.description FROM Creators c JOIN MusicScores
ms ON c.id = ms.creatorId WHERE c.name = "Thomas Newman"

Comments The first two predictions should be subqueries of a single complex query (failure to include a
UNION of two queries). The last two queries are correct; however, they provide the same
information and correspond to one interpretation (with high attachment; gold query 1).

24

Type: Attachment Domain: Hospitality Ambiguous? No

Question Show all youth hostels and also show the hotels, but only those with 50-priced rooms. Show them
in one table.

Predictions ✗ SELECT name, location, accommodation_type FROM hotels WHERE
accommodation_type = ’Youth Hostel’

✗ SELECT name, location, accommodation_type FROM hotels WHERE id IN
(SELECT hotel_id FROM rooms WHERE price = 50.0)

✗ SELECT name, location, accommodation_type FROM hotels WHERE
accommodation_type = ’Youth Hostel’ UNION SELECT name, location,
accommodation_type FROM hotels WHERE id IN (SELECT hotel_id FROM rooms
WHERE price = 50.0)

Gold SELECT h.name FROM hotels h JOIN rooms r ON h.id = r.hotel_id WHERE
h.accommodation_type = "Youth Hostel" OR (h.accommodation_type = "Hotel"
AND r.price = 50.0)

Comments All predicted queries have redundant output columns. The first two predictions should be
subqueries of a single complex query (failure to include a UNION of two queries).

Type: Vague Domain: Journalism Ambiguous? Yes

Question List all the articles with their respective editor and author names.

Predictions ✓ SELECT a.title, me.name AS editor, au.fullname AS author FROM Articles
a JOIN Final_Draft fd ON a.final_draft_id = fd.id JOIN Managing_Editor me
ON fd.managing_editor_id = me.id JOIN Authors au ON a.author_id =
au.author_id

✓ SELECT a.title, ce.name AS editor, au.fullname AS author FROM Articles
a JOIN Final_Draft fd ON a.final_draft_id = fd.id JOIN Copy_Editor ce ON
fd.copy_editor_id = ce.id JOIN Authors au ON a.author_id = au.author_id

Gold 1. SELECT A.title, ME.name, AU.fullname FROM Articles A JOIN Final_Draft FD
ON FD.id = A.final_draft_id JOIN Managing_Editor ME ON ME.id =
FD.managing_editor_id JOIN Authors AU ON AU.author_id = A.author_id

2. SELECT A.title, CE.name, AU.fullname FROM Articles A JOIN Final_Draft
FD ON FD.id = A.final_draft_id JOIN Copy_Editor CE ON CE.id =
FD.Copy_Editor_id JOIN Authors AU ON AU.author_id = A.author_id

3. SELECT A.title, ME.name, CE.name, AU.fullname FROM Articles A JOIN
Final_Draft FD ON FD.id = A.final_draft_id JOIN Managing_Editor ME ON
ME.id = FD.managing_editor_id JOIN Authors AU ON AU.author_id =
A.author_id JOIN Copy_Editor CE ON CE.id = FD.Copy_Editor_id

Comments All predicted queries are correct and correspond to two different interpretations (Component), but
the third interpretation (Full) is missing.

Type: Vague Domain: Student Ambiguous? No

Question List students born after 1990, along with their field of study.

Predictions ✗ SELECT fullname, Field_Of_Study FROM Students WHERE BirthDate >
’1990-01-01’

✗ SELECT fullname, Field_Of_Study FROM Students WHERE YEAR(BirthDate) >
1990

Gold SELECT fullname, Field_Of_Study FROM Students WHERE CAST(SUBSTR(BirthDate,
1, 4) AS INT) > ’1990’

Comments The first predicted query has an error in its filter as it incorrectly includes students born in 1990.
The second query is not executable as SQLite does not have a built-in YEAR function.

25

H Datasheet for ��������
Below we provide a datasheet (Gebru et al., 2021) for ��������.

Motivation

For what purpose was the dataset created? �������� aims to study ambiguity in semantic
parsing, with a focus on text-to-SQL parsing due to its real-world relevance. Large Language Models
(LLMs) have demonstrated strong performance on existing unambiguous text-to-SQL benchmarks,
allowing us to concentrate specifically on studying ambiguity. Unlike other logical forms, such as
the first-order logic used by Stengel-Eskin et al. (2024), SQL queries are straightforward to execute
and verify, making them ideal for testing. We aim to replicate practical semantic parsing scenarios
with diverse databases in various domains that support ambiguity in questions. We also cover three
different types of ambiguity and provide human-written interpretations that enable in-depth analysis.
This distinguishes �������� from other benchmarks (Wang et al., 2023a; Bhaskar et al., 2023),
which rely on augmentations of existing datasets, and are thus less realistic, and lack diversity.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? It was created by the authors.

Who funded the creation of the dataset? We gratefully acknowledge the support of the UK
Engineering and Physical Sciences Research Council (grant EP/W002876/1).

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? �������� includes databases, ambiguous questions and requests related to them,
their corresponding interpretations and SQL queries.

How many instances are there in total (of each type, if appropriate)? �������� contains
846 multi-table databases in 16 distinct domains, 1,277 ambiguous questions, their unambiguous
interpretations provided by humans and complex SQL queries (2,965 in total).

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The dataset includes all instances we collected. Our data collection
approach allows for future expansion of the dataset.

What data does each instance consist of? One example in �������� includes a database
that supports ambiguity, an ambiguous question, its possible interpretations, and SQL queries
corresponding to these interpretations. Interpretations can be viewed separately as unambiguous
questions.

Is there a label or target associated with each instance? For each question, the targets are the
corresponding SQL queries: one query for an unambiguous question and 2–3 queries for an ambiguous
one. Additionally, each database is labeled based on the domain it represents, its configuration, and
the type of ambiguity present in the relevant questions.

Is any information missing from individual instances? No

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? Annotators were given databases for context when writing questions, interpreta-
tions, and SQL queries for vague questions. Other SQL queries were constructed to query the given
database. Annotators provided interpretations when they were aware of the ambiguous question they
related to.

Are there recommended data splits (e.g., training, development/validation, testing)? We reserve
10% for a few-shot learning scenario and recommend to evaluate on the remaining data.

26

Are there any errors, sources of noise, or redundancies in the dataset? We manually validate all
databases and human annotations. However, there might be annotation errors that we did not notice,
such as interpretations that fail to disambiguate the questions or questions that are not ambiguous.
The generated database might also contain tables that are irrelevant to the chosen key concepts.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

Does the dataset relate to people? Yes.

Does the dataset identify any subpopulations (e.g., by age, gender)? There might be questions
or databases containing information about age or gender, but they do not provide any opinions.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? No, all annotation submissions
were fully anonymous.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
UNION memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? We manually
verify that the dataset does not contain any sensitive or harmful information.

Collection Process

How was the data associated with each instance acquired? Human annotators wrote ambiguous
questions along with their unambiguous interpretations. Databases were generated by the LLM
OpenChat ((Wang et al., 2024)), and SQL queries were automatically created using templates
to address scope and attachment ambiguity. Annotators were asked to write SQL queries and
corresponding questions for databases, which we had modified by merging vague concepts into more
general ones, thereby removing ambiguity. After the annotation was complete, we restored the original
databases and adjusted the SQL queries. The questions became vague due to the reintroduction of
vague concepts. We manually verified questions, their interpretations and databases. SQL queries
were executed to validate that they produced non-empty, distinct results. See details in Section 3 and
Appendix E.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? We elicited annotations
using the Potato tool (Pei et al., 2022).

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? N/A

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? We recruited
annotators through the Prolific crowdsourcing platform. Each annotator was paid £9 per hour.

Over what timeframe was the data collected? October 2023–April 2024.

Were any ethical review processes conducted (e.g., by an institutional review board)? No.

27

Does the dataset relate to people? Yes.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? The data was collected directly.

Were the individuals in question notified about the data collection? Yes, by requirement process
in Prolific.

Did the individuals in question consent to the collection and use of their data? Yes, by require-
ment process in Prolific.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? No.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? No, all submissions on Prolific are anonymous, and
we did not collect any data beyond what was requested.

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? We manually validated all generated concepts and databases and human-written
submissions.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? No.

Is the software used to preprocess/clean/label the instances available? Yes, see https://
github.com/saparina/ambrosia

Uses

Has the dataset been used for any tasks already? Yes, we benchmarked LLMs on the text-to-SQL
semantic parsing with ambiguous questions.

Is there a repository that links to any or all papers or systems that use the dataset? No.

What (other) tasks could the dataset be used for? It can be used for studying different types of
generalization, e.g., across domains or types of questions.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? We cannot guarantee that the dataset is
free from errors (see Section 5 for limitations). Additionally, the recruitment of annotators with
knowledge of database management and SQL introduces a potential bias. Future research could
mitigate this by paraphrasing the questions.

Are there tasks for which the dataset should not be used? No.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset is publicly available.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset is
available at ambrosia-benchmark.github.io

When will the dataset be distributed? Now.

28

https://github.com/saparina/ambrosia
https://github.com/saparina/ambrosia
ambrosia-benchmark.github.io

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The dataset is distributed under CC BY 4.0

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

Maintenance

Who is supporting/hosting/maintaining the dataset? The authors of this paper.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
first author of this paper.

Is there an erratum? No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
We plan to update the dataset by correcting any annotation errors as they are identified. The new
version will be labeled accordingly.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? No.

Will older versions of the dataset continue to be supported/hosted/maintained? No.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? Yes, the code used for data collection is available at https://github.com/
saparina/ambrosia.

29

https://github.com/saparina/ambrosia
https://github.com/saparina/ambrosia

	Introduction
	Related Work
	
	Formal Definition of Ambiguity
	Design Considerations
	Database Generation
	Question and SQL Annotation
	Dataset Analysis

	Experiments
	Zero-Shot Results
	Analysis
	Few-Shot Results

	Limitations
	Conclusion
	Acknowledgments
	Hosting, Licensing and Maintenance
	Domains
	Prompts for Key Concepts and Relations Generation
	Database Generation
	Human Annotation
	Implementation Details
	Additional Results
	

