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Abstract

The ability to modify images to add new objects into a scene stands to be a powerful
image editing control. However, object insertion is not robustly supported by
existing diffusion-based image editing methods. The central challenge is predicting
where an object should go in a scene, given only an image of the scene. To address
this challenge, we propose DreamPlace, a two-step method that inserts objects of
a given class into images by 1) predicting where the object is likely to go in the
image and 2) inpainting the object at this location. We train our object placement
model solely using synthetic data, leveraging diffusion-based image outpainting
to hallucinate novel images of scenes surrounding a given object. DreamPlace,
using its learned placement model, can produce qualitatively more realistic object
insertion edits than comparable diffusion-based baselines. Moreover, for a limited
set of object categories where benchmark annotations exist, our learned object
placement model, despite being trained entirely on generated data, makes up to
35% more accurate object placements than the state-of-the-art supervised method
trained on a large, manually annotated dataset (>80k annotated samples).

1 Introduction

One of the central challenges of generative AI-based image synthesis involves developing mechanisms
to more precisely control the output of generative models. In this work, we seek to modify an existing
image by adding new objects at plausible locations in the scene. This form of control is useful both
in image editing workflows and as a mechanism for generating synthetic datasets.

Existing methods for controlling diffusion-based image generation are limited in their ability to
perform object insertion edits due to a lack of automated control over object placement locations.
(see Figure 1). State-of-the-art iterative editing-based paradigms (3) also often ignore commands to
add objects to an existing scene, particularly when the objects are small in the image. Other editing
approaches (29; 24) perform better at inserting objects, but they assume explicit guidance on where
to inpaint the object and its orientation and shape (e.g., a mask).

We introduce DreamPlace, an algorithm for modifying an image to contain a new object of a given
class (e.g., add a laptop to an image of a scene containing a desk, or add a cup to an image depicting
a coffee table). DreamPlace divides the problem into two phases: 1) learning a model that predicts
where objects of the given class are likely to belong in an image (where the object should be “placed"
in the scene); and 2) leveraging diffusion-based inpainting to generate new image pixels that depict
the object at the predicted location while ensuring visual harmony with the surrounding scene context.

In this setup, the challenge is: how, given only an image of a scene, do we predict where an object can
go? Our insight is that although existing text-guided diffusion models do not directly support object
additional edits, they — having been trained in Internet-scale data (25) — have learned a strong prior
on plausible object placements within the context of larger scenes. Given images of an object class
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Figure 1: Prior diffusion-based methods do not provide controls for inserting objects into scenes,
given only an input image with no location and scale information. From left to right: input scene,
Stable Diffusion in-painting (21) with large masks, Instruct Pix2Pix (3). These methods modify the
background scenes significantly, insert objects with unrealistic scale, or fail to generate the object.

Figure 2: Examples of generated training pairs. The outpainted scene, containing a laptop, is shown
on the left. The red box indicates the laptop position. We remove the laptop using inpainting (12)
(right) to produce the input image. The generated images may contain diffusion and inpainting
artifacts as well as distortions. Despite these imperfections, we find that given sufficient quantity, we
can still extract sufficient information to train a placement model.

we wish to add, we leverage this prior by using diffusion-based image outpainting to hallucinate
images of plausible full scenes containing the object. We then use these generated images as a large
and diverse training dataset to learn an object placement predictor via weakly supervised learning.
In other words, we learn to place objects in scenes by using off-the-shelf diffusion models to place
scenes around objects.

We compare DreamPlace to both diffusion-based and object placement baselines. Using its learned
object placement guidance, DreamPlace generates qualitatively more realistic object insertion edits
than prior diffusion-based approaches on a range of common tabletop, indoor, street-view, and aerial
object classes (section 4.1). Moreover, for a small set of object categories (tabletop objects like cups,
laptops, etc.) with labeled evaluation data, our predicted object placements (learned purely from
synthetic training data) quantitatively outperform those of prior state-of-the-art models trained on a
large human-annotated placement dataset (13). DreamPlace achieves an average of 25.2% increase in
our Intersection over Area (IoA) metrics across tabletop object categories and a 35.1% improvement
in mean displacement (µD) from plausible surfaces to predicted bounding boxes (section 4.2).

2 Background and Related Work

Text-guided image diffusion models (21; 20; 22) are capable of synthesizing high-quality images
and recent extensions such as (2; 1; 29; 30; 24; 28) aim to control the diffusion models. These
approaches are capable of adding an object to the scene given an explicit location or layout as input;
they do so via inpainting (21; 2; 28; 29; 11) or spatial conditioning in the form of masks, layers, or
segmentation (29; 1; 24; 30). However, they do not solve the problem when given a scene without
explicit input on where (and how) to add the object. For example, an artist needs to draw the shape
and location of the edit. This is important because requiring a human to designate locations to
add objects does not scale, when the goal of object edits is to generate or augment data for other
downstream tasks. (3) enables instruction-based editing of images, but the text-specified edits do
poorly at inserting a new object (Figure 1). Our goal is to enable object-insertion edits using a
diffusion model but to have the system decide in full where and how the object is placed.

Similar object insertion tasks have been studied in the computer vision literature. Foreground
object search (32; 34) for image compositing retrieves semantically compatible and correctly posed
objects given an image, specified location (e.g., placement box), and database of place-able objects.
Object placement (for 2D images) is the task of predicting plausible locations in an image where
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an object may go. Approaches include both supervised (33; 27; 31; 15; 35) and weakly-supervised
approaches (34; 5). The former is trained using human annotated datasets such as OPA (13).

However, unlike foreground object search and inpainting, OPA (13) does not model object geometry
or pose; consequently, while a model trained on OPA may learn that tableware such as a plate often
appears on a tabletop, the resulting composite is often unrealistic (Figure 7). We observe that models
trained on OPA generalize poorly to more diverse and realistic scenes; the labels in OPA are often
of low quality or biased (see Figure 6 for details), highlighting the difficulty of manually collecting
data. Weakly-supervised approaches employ brute-force processing of large image datasets (18; 7) in
order to find the relevant images containing the objects of interest and sufficient scene context (34),
or they work on limited domains such as street images (31; 5). DreamPlace differs in that it generates
a dataset of images for a particular set of object classes; this means that DreamPlace does not need to
explicitly preprocess or filter millions of images or restrict itself to domains where wide scene images
are easy to acquire. However, DreamPlace does depend on the pretrained diffusion model to generate
sufficiently plausible scenes for training.

DreamPlace is loosely related to (23; 26; 6) which use diffusion models to synthesize training data for
classification or image similarity tasks. Instruct Pix2Pix (3) uses a large language model (LLM) (4)
and Stable Diffusion (21) to generate a paired dataset of image editing examples. DreamPlace adopts
a similar approach to (3) but for the challenges of the object insertion task.

3 Methods

DreamPlace uses a two-step process to insert an object of a given category into a given input image.
First, the placement network, P , analyzes the empty scene image and proposes a coarse location and
scale for the object, represented as a bounding box (section 3.1). P is trained using synthetic data
generated by a pre-trained Stable Diffusion (21) in-painting model, which we refer to as D. Then,
D is used to synthesize (inpaint) the new object in the proposed bounding box (section 3.2). We
describe the key details of DreamPlace and delegate full implementation details to Appendix A.

3.1 Placement Module

Given only an image depicting a scene, the goal of the placement module is to propose a bounding
box in the image that represents a coarse placement instruction. Since the list of object classes is
known, we generate data for each class and train independent, specialized placement models for
each object class. We train the placement network, P , to predict a plausibility score given an RGB
image x ∈ R128×128×3 and a binary mask m ∈ {0, 1}128×128, which encodes a bounding box for a
proposed object. P is a ResNet-18, with 4 input channels — x and m concatenated — and is trained
using positive and negative pairs; i.e., a mask encoding a plausible box vs. a randomly generated box.
The loss used in training is binary cross-entropy, common to classification tasks.

To infer placements across the entire image at test time, we generate candidates for m using a grid
and different box scales, similar to (34), and we aggregate the predicted scores into a 2D heatmap.
Then, we rank the boxes according to a weighted sum of the confidence score of the box and the
average value of the heatmap in this region. Boxes with the top combined scores are the predicted
plausible regions. Further details and intuitions are provided in section A.1.

3.1.1 Training dataset generation

To train P , we synthesize a large dataset of training pairs, consisting of images and corresponding
object placements (locations and scales). For the model to learn non-trivial placements, the images
need to have a wide field of view so that context is visible (e.g., the room around the table, in addition
to the table surface, for tabletop object placement). Obtaining such images from the Internet or
existing datasets is challenging (34), which motivates our generative approach.

We use a text-image diffusion in-painting model, D, which takes an image ∈ R512×512×3, binary
in-painting mask ∈ {0, 1}512×512, and text prompt as input. As starting images, we download a small
number of instance segmented seed objects (e.g., 50 laptops). These objects do not require scene
context and are easily scraped from any major web search engine. We randomly paste the object and
its segmentation mask in a 512 × 512 canvas and use D to outpaint the pixels outside of the mask.
Descriptive text prompts are helpful for the diffusion model to generate realistic and coherent images,
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Figure 3: Data generation pipeline for object placement. We query a LLM (16) for a two-level
hierarchy of locations of an object to create prompts for image generation. We use the prompts to
outpaint around the object using the diffusion model, D. Finally, we inpaint, using LaMa (12), the
object from the scene to create space for placing an object. The final synthetic training example is the
inpainted scene and the object placement (green box).

so we query a large-language model (LLM) (16) for text prompts that define the relationships for
the object class and its context: e.g., “a laptop on a desk”. Given the above inputs, D produces an
outpainted 512× 512 image that contains the seed object. Finally, we use LaMa (12) to remove the
seed object (via inpainting). The final inpainted image and bounding box mask of the seed object are
used as a pseudo-labeled training pair, x and m, for the placement network.

Figure 3 illustrates the full data generation pipeline. We repeat this process for different text
prompts, seed objects, and randomly generated canvases to synthesize a large training set. A minor
optimization that we find to improve generated image quality is to outpaint the context progressively
(e.g., outpainting twice); the first round of out-painting generates a moderately wide context and the
second round generates the remaining context in the final image. Since each round of out-painting is
only required to synthesize a smaller fraction of the pixels in the final image, it avoids a common
failure case for D to ignore the seed object and generate a new, large object when the outpainted
region is too large (see examples in Figure 5 in the appendix).

3.2 Object Synthesis using Text-Guided Image Diffusion

Given a proposed object placement bounding box produced by P , we use the diffusion model D
to synthesize (via text-guided inpainting) an object of the desired category within the proposal
box (x1, y1, x2, y2 coordinates). This is done by padding the proposal box by 50%, cropping, and
inpainting the non-padded region using D. The text prompt specifies the category to place; for
example, to add a laptop, the prompt would be “a laptop”. Figure 4 shows examples of the inserted
objects. We find that given coarse placement guidance, Stable Diffusion (D) is able to inpaint
reasonably posed and harmonized objects while preserving the rest of the scene.

4 Experiments

We evaluate DreamPlace’s ability to place objects against diffusion-based baselines (section 4.1) as
well as state-of-the-art baselines for object placement (trained on OPA (13); section 4.2).

4.1 Qualitative Comparison to Diffusion-based Approaches

We compare DreamPlace to two naive Stable Diffusion (SD) in-painting baselines and Instruct
Pix2Pix (3). First, we consider using SD to inpaint a large box covering most of the image — i.e.,
let SD decide the placement. Second, we consider SD given a randomly chosen location and scale.
These two naive baselines confirm that SD, by itself, lacks the planning ability to place objects and
that random boxes are unlikely to be plausible placements. Instruct Pix2Pix (3) is a recent approach
for targeted image editing using text; we show that it too is insufficient to make the object placement
edits that are the focus of this paper.

We test these methods on diverse Internet images of real world scenes such as offices, living rooms,
city streets, etc. As evaluation categories, we choose common objects, including tabletop objects
such as laptops, bowls, cups, and keyboards; street-view objects such as cars and pedestrians; and
other categories such as paintings, clocks, and birds. These categories can be generated by Stable
Diffusion and often take up very small portions of a scene.
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Figure 4: Qualitative results of our method compared against the baseline methods, across different
categories of objects. DreamPlace avoids common failure cases of the baseline methods described
in section 4.1. See appendix Figure 12 for full results with examples from more classes.

Figure 4 shows qualitative results; see Figure 12-13 in the appendix for extended results). Inpainting
a large region with SD modifies the scene significantly, yielding a new image that often no longer
depicts the original scene. Random placement leads to inpainted objects that are in improbable
locations and incorrectly sized. Instruct Pix2Pix fails when prompts describe an object-level addition
to a scene. DreamPlace-guided inpainting is able to add small-scale objects in reasonable positions
while still retaining the scene context.

4.2 Quantitative Comparison to Object Placement Baselines

We also compare DreamPlace, quantitatively, to recently published object placement baselines:
TERSE (27), PlaceNet (31), and GracoNet (33). These methods predict a location and scale (e.g.,
box) given a scene image and are trained directly on the OPA (13) dataset. Code and data for
weakly-supervised methods such as GALA (34) is not publicly available.

Our evaluation dataset consists of 100 scenes for tabletop object placement and four types of objects
(laptops, keyboards, cups, and bowls). To produce a ground truth label for placements for the scene by
which to compute quantitative metrics, we manually annotate plausible surfaces for object placement
on these images. Examples of test scenes and labels are shown in Figure 9 in the appendix. Since it is
implausible to enumerate all good placement boxes in our evaluation dataset, we quantify performance
using two automatic but objective metrics. While not fully informative of good placement, performing
poorly on these metrics suggests bad placement.

Metric 1: Intersection over Area. We expect that a good object placement has area intersection
with the feasible region — i.e., be placed on a surface. Small or no intersection would imply that
the object is floating. We measure intersection over (object) area as a proxy for this heuristic; i.e,
the fraction of the object that is in the plausible region. Note that intersection-over-union (IoU) is
a common metric but is not applicable because the objects being placed are small compared to the
surface; we are unconcerned with the area of the surface not taken up by an object.

Metric 2: Mean Displacement. Suppose an object is not within a plausible region. Then we measure
its proximity to the nearest plausible region: i.e., the distance required to move a placement. We
approximate this by the average distance (in fraction of image dimension) from the bottom edge of
the predicted object bounding box to any plausible surface in the scene.

We compare to the baselines trained both on the entire OPA dataset and specialized by the class.
DreamPlace’s is most comparable to the latter since we specialize for each object class, but we include
both for completeness. Results are shown in Table 1. Overall, DreamPlace generates more localized
and accurate placement locations, outperforming all prior methods on both metrics. Figure 10
bounding boxes inferred by the baselines and the heatmaps produced by DreamPlace.
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Method Training Single- Laptop Keyboard Cup Bowl
Data Class IoA ↑ µD ↓ IoA ↑ µD ↓ IoA ↑ µD ↓ IoA ↑ µD ↓

TERSE OPA 0.212 0.254 0.152 0.213 0.231 0.265 0.204 0.222
PlaceNet OPA 0.262 0.137 0.269 0.131 0.240 0.227 0.244 0.184
GracoNet OPA 0.162 0.322 0.094 0.320 0.170 0.335 0.146 0.329

TERSE OPA ✓ 0.156 0.159 0.288 0.096 0.170 0.179 0.174 0.118
PlaceNet OPA ✓ 0.301 0.120 0.347 0.086 0.290 0.163 0.305 0.123
GracoNet OPA ✓ 0.230 0.128 0.117 0.200 0.097 0.295 0.246 0.183

DreamPlace Generated ✓ 0.389 0.059 0.432 0.081 0.313 0.095 0.424 0.068

Table 1: Quantitative placement performance compared to supervised, OPA-trained models (13). The
intersection-over-area (IoA) and mean displacement (µD) metrics are explained in section 4.2.

Method Training Data Single-Class Laptop Keyboard Cup Bowl

Random Box 0.30 0.25 0.24 0.13

TERSE OPA 0.41 0.35 0.19 0.21
PlaceNet OPA 0.47 0.46 0.20 0.31
GracoNet OPA 0.29 0.23 0.13 0.17

TERSE OPA ✓ 0.19 0.34 0.07 0.16
PlaceNet OPA ✓ 0.42 0.40 0.30 0.26
GracoNet OPA ✓ 0.26 0.37 0.05 0.25

DreamPlace Generated ✓ 0.55 0.53 0.49 0.43

Table 2: Visual quality assessment for tabletop object classes. Refer to Metric 3 in section 4.2 for the
assessment criteria. The numbers are the percent of images that pass the criteria.

For an end-to-end evaluation, we test Stable Diffusion’s ability to inpaint the final object given
proposed bounding boxes from DreamPlace and the baselines; we expect that poor proposals will
also hamper the ability to synthesize the object.

Metric 3: Visual Quality Assessment. We perform a qualitative assessment of images produced by
SD, guided by different placement proposal methods. The metric is the percentage of output images
that are plausible, defined by two criteria: (1) whether the new object interacts reasonably with a
surface and (2) whether the object is of reasonable scale. Table 2 tabulates results from DreamPlace
and the baselines (27; 31; 33). We also include random placement proposals as a baseline. Overall,
DreamPlace produces a higher percentage of passable images. Because DreamPlace proposes more
accurate edit regions, it also results in fewer scene-level changes during the object insertion. Refer
to Figure 10 in the appendix for examples and analysis.

5 Discussion, Limitations, and Conclusion

DreamPlace is a proof of concept that existing text-image diffusion models can be leveraged as
both weakly-labeled dataset generators and object synthesizers to perform the object placement
task. We identify several improvements for future work. First, the set of objects can be expanded.
Currently, DreamPlace requires an instance segmenter to seed objects for data-generation; a zero-shot
model (10) would enable arbitrary objects. Second, newer approaches for object generation (29) can
be used as a drop in replacement for Stable Diffusion (21). Third, DreamPlace is not optimized for
speed and efficiency — heatmap generation is expensive. Optimizations from recent object placement
literature (35) or training a general, multi-class DreamPlace model can provide efficiency gains.

The quality of the text-image diffusion model on which DreamPlace is based is both a limitation and
a cause for optimism. Stable Diffusion (21) struggles to generate certain object classes (e.g., scissors,
toothbrush), which limits the quality of both placement and object synthesis (see Figure 14 in the
appendix). Diffusion models such as (17; 14; 19; 22; 9) are advancing at a rapid pace, however, and
future models are likely to succeed on objects that are challenging today. Moreover, we anticipate that
DreamPlace and approaches like it to leverage generative models as dataset generators will become
viable for a broader palette of vision and graphics tasks.
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A Implementation Details

A.1 DreamPlace

We optimize DreamPlace’s placement model, P , with the AdamW optimizer with a learning rate of
0.0001. As mentioned in the main text, P is a standard ResNet (8) classifier and is trained using
cross-entropy loss. During training, we apply standard data augmentations such as random cropping,
random flipping, color jitter, etc. This is in addition to the already randomized object scales during
dataset generation.

During inference, we divide input scenes into a 32× 32 grid. We generate a set of candidate square
bounding boxes at five discrete scales centered at each grid intersection point (excluding the edge
coordinates). This results in a total of 31 × 31 × 5 candidate boxes across the entire image. We
further eliminate candidate boxes that extend beyond the borders of the scenes. Predicted confidence
scores associated with each valid candidate are then aggregated to produce a heatmap. We rank the
candidates according to the sum of their confidence scores and their average values of the heatmap;
the combination ensures that we propose more robust candidate locations in regions with a high
likelihood of reasonable placement. In cases where the input scenes are non-square, the scoring
process for each candidate involves cropping a square region around the box. Our inference procedure
is described in Figure 8.

To generate the final object insertion edits, given a proposed placement, we use the Stable Diffu-
sion (21) (V2) inpainting model without fine-tuning.

A.2 Placement Dataset Generation

For each object category, we segment ≈ 50 scraped foreground objects. We query a large language
model (16) to construct 6 to 20 prompts and generate ≈ 400 outpainting scenes for each foreground
object, with randomly selected prompts. This procedure constructs category-specific datasets contain-
ing approximately 20k training samples. For each round of outpainting, we run the Stable Diffusion
(V2) inpainting model with a guidance scale of 4.0 and 50 inference steps. Finally, to remove the
seed object from the final image, we use the default settings for LaMa (12).

A.3 Baselines

The three diffusion-based baselines in section 4.1 are (1) inpainting a large box using Stable Diffusion
(SD) (21), (2) inpainting a random placement using SD, and (3) using Instruct Pix2Pix (3). The
text prompt for the first two SD baselines is a singular instance of the object category: e.g., “a
laptop”. The edit instruction provided to Instruct Pix2Pix is “add a <class>”, where class is the
object category: e.g., “add a laptop”.

We use publicly available code for GracoNet (33), PlaceNet (31), and TERSE (27). Refer to their
official implementations for hyperparameters and training details.
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Figure 5: DreamPlace adopts a hierarchical outpainting approach (2 rounds). The examples above
are images with only one round of outpainting (ablation). Since the seed object covers only a small
portion of the canvas (left), even with a detailed text prompt, Stable Diffusion fails to generate a
coherent scene with wide visual context. A common failure mode is to ignore the seed object and to
generate one or more larger instance of the object category in the outpainted region. Our hierarchical
approach (used to generate the training data in Figure 2) reduces the amount of pixel area generated
in each round of outpainting and produces more realistic/plausible scenes.

Figure 6: Examples in the OPA dataset (13) do not consider object geometry, pose, or whether there
is space for an object. This results in poor performance by models trained on this data (Figure 7).

Figure 7: Models trained on the OPA dataset (13) generalize poorly to placement problems in real-
world scenes, producing placements of implausible location, scale, and orientation.
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Figure 8: Inferring object placements with DreamPlace. We generate candidates of different scales at
locations in a 32× 32 grid; aggregate confidence scores from the placement network, P , to form a
heatmap; and rank the generated candidates by combining the confidence scores and average values
of the heatmap.

Figure 9: Example images from the evaluation dataset. We annotate the surfaces that could support
plausible placements. Red shows regions that are highly plausible, while blue regions are possible
but less likely for objects such as laptops, keyboards, etc.
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Figure 10: Qualitative placement results by DreamPlace and the OPA (13) trained baselines. The
proposed placement region (red box; upper) and the final object placement generated by object
inpainting (21). We show results from TERSE (27), PlaceNet (31), and GracoNet (33), trained on all
classes of OPA and specialized to a single class (within OPA). DreamPlace’s proposal regions are
more localized and accurate in size. The baselines often predict overly large placement bounding
boxes. While this provides Stable Diffusion flexibility to generate the target objects, it often results in
incorrect object sizes or significant alterations the scene.
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Figure 11: Unintended global scene edits produced by baseline methods. Diffusion-based inpainting
models are capable of refining the location and scale of the target object given a sufficiently large
inpainting region. If the inpainting mask (for object placement) is too large, however, the background
may also be unintentionally changed; this is a issue for the baselines (27; 31; 33), which often propose
overtly large placement masks. DreamPlace, with its more accurate proposal boxes, preserves the
background more faithfully.
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Figure 12: Qualitative object insertion results for different object categories. DreamPlace achieves
coherent visual results more consistently than the baselines. “SD inpaint with large masks” often
alters the scenes significantly. “SD inpaint with random masks” frequently fails due to poor location
guidance. Instruct Pix2Pix (3) is distracted by objects already present in the scenes, rather than
adding new objects. As a concrete example, in the clock row, “SD inpaint with large masks” changes
the room layout completely, “SD inpaint with a random mask” chooses a poor location, and Instruct
Pix2Pix changes the decorations on the wall into clocks. DreamPlace is able to select an empty
location on the wall and guide Stable Diffusion to produce a convincing output image.
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Figure 13: Additional qualitative results by DreamPlace. The list of classes is given in section 4.1.
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Figure 14: Stable Diffusion (21) struggles to generate certain categories of objects: for example,
small thin objects such as scissors and toothbrushes. This is a limitation for DreamPlace and its
current ability to generate placement data for these classes.
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