
Under review as a conference paper at ICLR 2024

RESONATOR-GATED RNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence learning tasks frequently involve data with repetitive and periodic tem-
poral patterns. Detecting these patterns is essential for accurate predictions and
informed decision-making in various domains. There is, however, still huge poten-
tial in augmenting sequence learning algorithms in this regard. In RNN-based se-
quence learning, gated RNNs, such as long short-term memory networks (LSTMs)
and gated recurrent units (GRUs), are the de facto standard. While adept at captur-
ing longer-term dependencies, gated RNNs still sometimes struggle with periodic
data components, because their gating mechanism is designed to prioritize retain-
ing transient relevant information. As a result, these networks often challenged by
periodicity in the data. We present a novel memory unit that incorporates a simple
resonator circuit. The resonator facilitates the recognition of periodic data pat-
terns, focusing on data-specific time scales and respective frequencies. Moreover,
it enables the forward propagation of information through resonating dynamics
while stably channeling the gradient backwards. We show that our resonator-gated
RNN (RG-RNN) accelerates the training convergence on multiple sequence clas-
sifications tasks. Moreover, it significantly outperforms vanilla LSTMs on three
out of four benchmark tasks in terms of accuracy. We conclude that resonator-
based gating offers a new inductive bias to gated RNNs, focusing learning on the
detection and processing of periodic data patterns.

1 INTRODUCTION

Sequence learning involves various domains such as, speech recognition (Sutskever et al., 2014),
biomedical signal analysis Nurmaini et al. (2021), or time series forecasting in climate sci-
ence (Granata & Di Nunno, 2021). Models in these domains are mainly used for prediction, classi-
fication, generation, and comprehensive learning of and from time sequence information (Sutskever
et al., 2014; Graves, 2013). Among the most popular techniques are recurrent neural networks
(RNNs) which include long short-term memories (LSTMs) (Hochreiter & Schmidhuber, 1997) or
gated recurrent units (GRUs) (Cho et al., 2014).

Data in this area of research often contains repetitive and periodic temporal patterns, e.g. seasonality
in climate data. Regardless of the underlying RNN architectures, the ability to generate or differ-
entiate these signals requires models to learn seasonal patterns, fundamental frequencies, and shifts
therein. While gated RNNs are good at capturing longer-term dependencies over time, they often
fail to recognize reoccurring or periodic patterns as they operate on fixed time scales or lack the
necessary inductive biases (Neil et al., 2016; Liu et al., 2020). Therefore, targeting periodic signals
can be a viable approach to boost performance in sequence learning tasks Neil et al. (2016); Huang
et al. (2022).

These inductive biases can be found in a class of neurons called resonators. In contrast to integrators,
resonators have the capability of responding to spike patterns that arise at specific frequencies rather
than integrating over a short period of time. The same input experienced at different times can unfold
both an inhibitory and excitatory effect. This effectively allows these neurons to naturally extract
frequency patterns within the time domain and enables bridging of the temporal information gap if
relevant information is sparsely scattered across time (Izhikevich, 2000; 2001).

While the value of resonator neurons in physiological neural networks has been discussed (Izhike-
vich, 2001; Tolmachev et al., 2018; AlKhamissi et al., 2021), the applicability in ANNs has not
yet been investigated deeply. Examples of RNN extensions that facilitate the detection of periodic

1

Under review as a conference paper at ICLR 2024

signals indicate the demand for such capabilities (Neil et al., 2016; Huang et al., 2022). Similarly,
recent advances in sequence models pushed the performance boundaries of RNNs (Gu et al., 2021;
Smith et al., 2023; Orvieto et al., 2023).

We believe that the integration of resonators in ANNs and RNNs, in particular, can be of high interest
for sequence learning, since their inductive bias has the potential to overcome the above mentioned
shortcomings of gated-RNNs.

As a possible solution to fill this gap, we here propose the resonator-gated RNN (RG-RNN), a novel
memory unit that incorporates a simple resonator circuit facilitating the recognition of periodic data
patterns. We implement the RG-RNN by using an LSTM as a framework. This enables us to directly
compare the models with almost identical hyper parameters and uses an established model with clear
intuition as a carrier.

2 BACKGROUND

Resonator neurons respond favorably to incoming spike patterns matching their resonating fre-
quency. This behavior can be modeled by a complex-valued state z ∈ C or equivalently by a two
dimensional state vector z ∈ R2, where z = [v, u]

T , as opposed to the scalar state of an integrator
neuron. The integration inside the resonator is coupled to the position of z around its origin (Izhike-
vich, 2000; 2001).

In Izhikevich (2001) the resonate-and-fire neuron is defined by two differential state equations.

dv

dt
= bv − ωu (1)

and
du

dt
= ωv + bu, (2)

where b ∈ R≤0 and ω ∈ R≥0 are parameters that represent the dampening and the resonating
frequency of the resonator neuron, respectively. Input signals to the resonator can be handled in
different ways. Izhikevich (2001) uses a simple summation in the real axis of the complex state.
The resonators response can be measured by its excitation i.e. the magnitude of z.

Via Euler integration the differential state equations 1 and 2 can be transferred into discrete time
with time step t ∈ N0 and step size δ ∈ R≥0:

vt = vt−1 + δ(bvt−1 − ωut−1 + xt) (3)

and
ut = ut−1 + δ(ωvt−1 + but−1) (4)

where xt is an input signal at time step t, that is added to vt. The dependence on the previous state
vt−1 and ut−1 acts as a local recurrence similar to internal cell state of an LSTM or the membrane
potential regular spiking neurons.

Parameterizations of the resonate-and-fire neuron will express different behavior towards (periodic)
signals including the capability of “skipping” the resonating mechanism entirely, thus being able to
emulate integrators. Figure 1 shows the response of a resonator to an arbitrary input signal and the
resonating frequency of the resonator through a Bode diagram. The resonating frequency generates
the strongest response—strongest growth—in the resonator state. Because the integration of the
differential equations 1 and 2 are directly dependent on δ, it is a key parameter in this method.

RNNs utilize their recurrent connections to capture long-term dependencies in data. In practice,
gated-RNNs like LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al., 2014) are the de
facto standard for gated RNNs. The incorporated gating allows information to be selectively passed
through the control flow of the unit or forgotten if the need arises. The internal mechanisms are
trained with back-propagation through time (BPTT) (Werbos, 1988), which is largely trivialized in
modern automatic differentiation frameworks (Paszke et al., 2019).

The internal function of an LSTM is usually denoted with four equations for the gate activation and
two equations for the state update. The gate activations are as follows

2

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Time

Vo
lta

ge
(a) Input signal

0 2 4 6 8 10

0

0.05

0.1

Time

Vo
lta

ge

(b) Activation

0 10 20 30 40 50

0.02

0.04

0.06

0.08

Frequency

M
ea

n
vo

lta
ge

(c) Bode diagram

0 2 4 6 8 10

0

0.05

0.1

Time
M

ea
n

vo
lta

ge

(d) Phase averaged activation

Figure 1: Responses of a resonator (b = −7.808, ω = 18.966, δ = 0.01) to input signals. (a) Input
signal to the resonator. The periodic part is arbitrarily chosen. (b) Norm of the state, i.e. activation
of the resonator. The resonator responds to the periodic input with a pattern similar to a square wave
with oscillations. (c) Bode diagram of the resonator over frequencies in f ∈ [0, 50]Hz. It shows the
averaged response to an input of similar structure as (a) with frequency f . The peak indicates the
resonating, i.e. most favourable, frequency. (d) Averaged response of the resonator at its resonating
frequency when the phase of the input is shifted randomly between 0 and 2π for 200 samples. The
small standard deviation (shaded area) demonstrates the invariance to phase shifts at the resonating
frequency.

gt = tanh
(
xtWg,i + bg,i + ht−1Wg,h

)
(5)

it = σ
(
xtWi,i + bi,i + ht−1Wi,h

)
(6)

f t = σ
(
xtWf,i + bf,i + ht−1Wf,h

)
(7)

ot = σ
(
xtWo,i + bo,i + ht−1Wo,h

)
(8)

where gt, it, f t, and ot are the cell input, input gate, forget gate, and output gate, respectively. The
current time step is denoted by t. The input is given by xt and the last hidden state by ht−1. The
parameters are contained in matrices Wgate,connection. To calculate the activation and hidden state of
the LSTM the following equations are used

ct = f t ⊙ ct−1 + it ⊙ gt (9)

ht = ot ⊙ tanh(ct) (10)

Here ct denotes the internal activation of the LSTM. In Equations 6-8 σ refers to the sigmoid acti-
vation and tanh to the hyperbolic tangent activation functions, the output of the LSTM is calculated
by iteratively processing each input step in the input sequence and evaluating the hidden state. The
last hidden state or the full hidden state sequence can then be used as output. In multi-layer LSTMs
the input of the next recurrent layer is the hidden state of the previous layer at the current time step.

3 RESONATOR-GATED RNN

Our definition and implementation of the resonator-gated RNN (RG-RNN) combines the properties
and inductive biases of RNNs and resonator neurons by extending an LSTM with a resonator-gating
unit. The resonator is derived and implemented based on Equations 3 and 4. Its state is calculated

3

Under review as a conference paper at ICLR 2024

CEC

(a)

CEC

(b)

Figure 2: (a) Schematic of the LSTM. It has four input paths for passing xt and ht−1. tanh trans-
formations are indicated with tanh and sigmoid activations with a stylized “S” in the nodes. Small
nodes labeled ⊙ depict element wise multiplication (Hadamard product). During the computation
of step t the CEC out-edge leading towards the forget gate holds the activation from the previous
step t − 1. (b) Extension of the LSTM with a resonator. Notation and schematic are similar to
Figure 2a. The resonator neuron is placed after the affine transformation of the input gate and before
the activation. Because the resonator output is >= 0, the activation is replaced by a tanh activation
to cover the range [0, 1]

by

vt = vt−1 + δ(bvt−1 − ωut−1 + xt
r) (11)

ut = ut−1 + δ(ωvt−1 + but−1) (12)

zt =
[
vt ut

]
(13)

and its activation by
rt = |zt| − ∥δ∥2 (14)

with |zt| being the magnitude of the two dimensional state and not the full vector.

The parameters b, ω, and δ are trainable and initialized randomly in the ranges (0, 1) for b and ω,
and (0.01, 0.1) for δ. To guarantee that the parameters adhere to the numerical ranges described in
Section 2 they need to be transformed accordingly. This was achieved by taking the absolute value
of the real underlying parameters b̂, ω̂, and δ̂ and further negating it in the case of b.

Because the resonator unit is derived from the Euler integrated differential equations, its stability
greatly depends on the parametrization of δ. To aid the stability of the resonator, the magnitude of
the resonator state is regularized by the magnitude of δ itself. This reduces the potential for δ to
grow during training, destabilizing the resonator. In initial tests, which omitted the regularization
term, the state of the resonator was able to grow into regimes where the numerical range of floating
point numbers was exhausted and even simple random input signals would drive the resonator into
self-oscillation with δ ≥ 0.8.

b = −|b̂|, ω = |ω̂|, δ = |δ̂| (15)

The resonator unit is implemented as a differentiable module using PyTorch (Paszke et al., 2019).
It can be inserted into the gating of an LSTM, where we can keep track of the resonator state and
execute it as part of the forward pass of the LSTM. The control flow of the implemented unit is
depicted in Figure 2b.

4

Under review as a conference paper at ICLR 2024

The resulting RG-RNN modifies LSTM Equation 6 as

it = tanh
(
rt
)

(16)

with resonator input
xt
r = xtWi,i + bi,i + ht−1Wi,h (17)

The resonator sits after the affine transformation and before the non-linearity of the LSTM gate
(Figure 2b). The activation of the gate was converted to a tanh activation, because the output r is
always positive. With a sigmoid activation the range would be restricted to [0.5, 1] while providing
a gradient even when z = 0.

Note that the integration of the resonator as a building block is of course not limited to LSTMs. It
could, for instance, also be integrated into the GRU model replacing the update gate. Moreover, it is
thinkable to implement the resonator as a standalone layer, which could be flexibly arranged within
RNN architectures.

4 EXPERIMENTS

The RG-RNN was evaluated against an LSTM baseline. For each experiment and model type five
models were trained from scratch and evaluated using the mean loss and mean accuracy of the five
runs. The training was based on a per-time step evaluation i.e. the models calculated a prediction
after each presented time step. The labels were either uniform across all time steps or a segmentation,
in the case of the QT Database (QTDB1). We found that using a single-label approach, where the
training is only based on the last time step, did not deviate greatly from the results of the per-time
step training. We used the cross-entropy loss as the training criterion and RMSprop (Hinton, 2018)
as the optimizer during training. Between 1 and 2 recurrent layers followed by a single linear layer
were used. The input to the linear layer was the hidden state sequence of the recurrent layers which
was input per time step. The full list of model hyper parameters is provided in Table A1.

4.1 DATASETS

To evaluate the implementation of the RG-RNN we trained LSTMs and RG-RNNs on three sequence
datasets chosen from the benchmarks presented in Yin et al. (2021) and a dataset of time-series sen-
sor data. The datasets were sequential MNIST (SMNIST), including permuted sequential MNIST
(PMNIST) (Le et al., 2015), Speech Commands V2 (Warden, 2018), QTDB (Goldberger et al.,
2000), and a multivariate gait analysis (MGA) dataset from Helwig & Hsiao-Wecksler (2022).

4.1.1 SMNIST AND PMNIST

MNIST is a dataset consisting of hand written digits collected by the US postal service. Each sample
is a 28 by 28 pixel gray scale image. The associated label of each sample represents the digit.

The SMNIST variation of MNIST is a popular benchmark for sequence models. In SMNIST the
28×28 pixel images are converted into sequences of length T = 28 · 28 = 784 where the rows (or
columns) are concatenated one after another.

PMNIST raises the complexity of the problem by permuting the 784 steps of the sequence in a
random fashion. While the permutations are chosen randomly it is necessary to fix the permutation
for each run since learning the problem would otherwise be impossible.

The periodicity in SMNIST is expressed through the regular arrangement of signals in the samples.
The data is condensed in the center of each image which leads to patterns when concatenating
the rows into sequences. In PMNIST this periodicity is deliberately disrupted through the random
permutation. This removes the original causal relationship between signal and placement in the
sequence.

While the loss is calculated based on each time step the accuracy is calculated using only the last
prediction of the model.

1QT referres to the QT waveform interval in the ECG

5

Under review as a conference paper at ICLR 2024

4.1.2 SPEECH COMMANDS V2

The speech commands V2 dataset contains one second audio recordings. The recordings contain
word utterances recorded across a wide range of devices. Each sample is labeled with on of 21
classes representing the uttered word. The dataset includes utterances which do not correspond to
a class label but are instead placed into the unknown class. The classes are: unknown, yes, no, up,
down, left, right, on, off, stop, go, zero, one, two, three, four, five, six, seven, eight, nine.

The task of the models is to predict the class of the utterance. As a pre-processing step the raw
16000Hz audio signals are converted into MFCC frames. The length of the sequences would other-
wise prevent the models from learning anything meaningful in a feasible amount of time (Sutskever,
2013). The conversion was performed using torchaudio. The training setup was roughly based
on Bernardo et al. (2020). We modified the parameters of the MFCC transformation to produce
sequences of length 801 because we estimated that this would be most beneficial for the learning of
meaningful temporal dynamics. The complete set of parameters for the MFCC feature extraction
can be taken from Table A3.

The conversion into MFCC frames transforms the problem such that the underlying frequencies are
not immediately apparent. This poses an additional challenge for the RG-RNN. In its un-processed
form Speech Commands V2 presents itself as an interesting study of inherently periodic data that is
unfortunately computationally infeasible. The conversion into MFCC spectra transforms the prob-
lem such that the underlying frequencies are not immediately apparent. To leverage the resonator,
repeating patterns in frequency bands have to be present and extracted by the RG-RNN.

While the loss is calculated based on each time step the accuracy is calculated using only the last
prediction of the model.

4.1.3 QTDB

The last dataset from Yin et al. (2021) is generated from QTDB Goldberger et al. (2000). QTDB
holds ECG records collected from different resources for a total of 105 patients. The ECG signals are
two channel 15 minute recordings, recorded at or converted to a 250Hz sampling rate and annotated
by two experts for a selection of the beats in each recording. In addition to the expert annotations
machine annotations were calculated for each sample. Similar to Yin et al. (2021) we use sequences
of length 1300. We omit the termination signal that is included in Yin et al. (2021). To ensure
the best possible quality of the training data we only considered the expert annotated samples of
expert one in our experiment. Records from Sudden Death were excluded in the training similar
to Nurmaini et al. (2021) since they show vast differences to all other signals. Additionally, record
sel232 was excluded due to the use of the undocumented label A.

The remaining signals were cut into 1300 long sequences starting from the first annotation, until the
end of the sequence. The last segment was omitted if it was shorter than 1300 steps, additionally all
segments that only contained 0-label steps, i.e. unannotated baseline signals, were also omitted to
reduce class imbalance. The class weights to compensate against the remaining class imbalance can
be found in Table A2. Lastly, there were cases were the annotations had large gaps, which can be
observed in sample sel104. This lead to challenges to automate the pre-processing and selection of
samples, because the signal which contained the proper wave forms was not fully annotated. This
would lead to problems in training. For these cases the samples were manually sighted and selected
to exclude such cases. The total number of samples in the resulting dataset was 379 which was
further split into a train and test set with a 80/20 split.

The task was to predict the current label that represents the phase of the ECG signal, i.e. p, N, t, or
u representing the corresponding complex (Ashley & Niebauer, 2004).

ECGs hold the possibility to learn both the periodic components of the signal itself and the patterns
of the recurring complexes across the sequence.

Both the loss and the accuracy are calculated per-time step as opposed to the other datasets.

6

Under review as a conference paper at ICLR 2024

Table 1: Average test results of all experiments after the final training epoch. For an exhaustive list
of all collected metrics see Table A4

Benchmark LSTM RG-RNN (ours)

SMNIST 98.44% 98.51%
P-SMNIST 89.49% 93.55%
QTDB 72.86% 84.46%
Speech Commands V2 92.30% 91.79%
MGA 96.83% 96.62%

4.2 MGA

For an additional diversification of the experiments the MGA dataset was analysed. It consists of
the measured joint angles collected from ten subjects during walking on a treadmill. Each subject
performed ten repetitions i.e. step cycles and was measured under three conditions. (1) unbraced,
(2) with a knee brace, and (3) with an ankle brace. The samples were constructed by concatenating
the angles for a subject under a repetition into a vector x ∈ R6,101 where 6 is the number of joint
angles (three per leg) and 101 is the number of time steps in a repetition. The task is to classify the
condition of the subject.

4.3 RESULTS

The training results on all experiments follow a similar pattern. We observe a fast decline in the loss
and rise in the accuracy, immediately superseding the LSTM in both measures. This can be observed
in all experiments in Figure 3 and 7 during the first epochs. Additionally, the training stability is
vastly improved which is indicated by the small error bands around the training trajectory. The
difference compared to the LSTM is most clearly visible in the SMNIST and PMNIST experiment
in Figures 3, 8, and 9. The overall performance also seems to benefit from the addition of the
resonator. The model performance is recorded in Table 1 and Table A4 for all measures. While it is
not possible for the RG-RNN to outperform the LSTM in the Speech Commands V2 experiment the
other two experiments show improvements in both accuracy and loss. It is to note that the difference
in both the SMNIST and the Speech Commands V2 experiment was small but occurred consistently
over multiple evaluations. The experiment on MGA in Figure 7 shows a similar convergence profile
as the previously discussed experiments. The results suggest that the problem itself is easily handled
by both LSTM and RG-RNN. More detailed evaluation and convergence curves can be taken from
Figures 8, 9, 10, and 11 in Appendix A.4.

In addition to these standard benchmarks we performed additional supplemental experiments on
SMNIST. We studied the robustness against recurrent sparsity which gives indications on the self-
sufficiency of the internal state by restricting access to memory. The curves for the RG-RNN in
Figure 5 largely retain a similar pattern as in the SMNIST experiment across all sparsity rates. A
slight impact to convergence and performance can be observed starting at 75% sparsity with an
even more pronounced impact when no recurrences are retained, essentially blocking the access to
memory. The LSTMs performance was heavily influenced by all sparsity rates, as evident from
Figure 6. First slightly decreasing the convergence and increasing the variance between runs at 25%
and 50% sparsity. At 75% sparsity the convergence is suprisingly improved with only a small impact
in accuracy. Lastly, removing all recurrent connections has the greatest impact on the LSTM severly
reducing its accuracy. The performance of the RG-RNN and the LSTM can be taken from Tables A6
and A7, respectively. Additional information on this experiment is provided in Appendix A.3.

5 DISCUSSION

The experiments on SMNIST have shown a great response of the resonator to highly regular inputs.
The structure of the samples in MNIST places the signals into predictable intervals corresponding
to the center of the image. This can be exploited by the resonator through its ability to anticipate
signals, leading in principle to a fast training result and fast convergence. An analytical analysis
presented in Appendix A.2 further suggests that the states gradient flow is best when following the

7

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(a) SMNIST accuracy

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) PMNIST accuracy

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(c) Speech Commands V2 accuracy

LSTM
RG-RNN (ours)

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) QTDB accuracy

LSTM
RG-RNN (ours)

LSTM RG-RNN (ours)

Figure 3: Averaged test accuracy of the main experiments as described in Section 4. The orange
curve depicts the RG-RNN and the blue curve the LSTM. The shaded area is the standard devia-
tion between recorded runs. The curves show similar patterns across all four experiments. There
is a sharp rise in performance during the first few epochs with an early convergence for the RG-
RNN,compared to the LSTM. Additionally, the variance between each run is almost non-existing,
while the LSTM shows large deviations in curves (a), (b), and (c).

parametrized frequency, because the resonator poses as an additional CEC that rotates the gradient
based on δ and ω.

We were pleasantly surprised to see the RG-RNNs convergence and performance on PMNIST to
follow a similar trend as in SMNIST. While the regular structure of the samples is disrupted, the
RG-RNN is still able to quickly converge to a level that is almost on-par with current SotA-RNNs
on PMNIST Wisdom et al. (2016); Cooijmans et al. (2016). Additionally, we suspect that the use
of a the sequence-labeled training regime (Section 4) leads to faster propagation of information
compared to a conventional single-label training. Nevertheless, because the recorded performance
of the LSTM is comparable to the values recorded in literature Arjovsky et al. (2015) we consider
our approach as a valid alternative.

The improved convergence and performance on QTDB demonstrates the practical applicability of
resonators and the RG-RNN on real-world data. The added inductive bias appears to facilitate the
detection of key frequencies in the ECG samples. At the same time, the convergence behavior of the
RG-RNN on the speech commands dataset reveals a limited advantage here. This is due to the fact
that the preprocessing already extracts frequency components in form of short-term spectra. Repet-
itive patterns have to be extracted from within these spectrograms and the time signal directly. This
suggests that, although computationally demanding, future experiments should also be performed
on raw audio data to correctly access the impact of resonators on speech detection.

These results were achieved with only a small addition of trainable parameters as can be taken
from Table A5 and compared to a model with an increased number of parameters in Figure 4.
This further suggests that the inductive bias encoded by the resonator-gating is responsible for the

8

Under review as a conference paper at ICLR 2024

improved performance rather that just an increase in parameters as is often suspected (Frankle &
Carbin, 2018).

In addition to the capability to respond to specific frequency ranges within the data, another ad-
vantage of RG-RNNs is that the resonator effectively pursues an anticipatory forward propagation
of information through time via its local recurrence. This shields the information from outer dis-
turbances and noise. At the same time, the resonator provides a “gradient highway” in backward
direction similar to CEC-forget gate dynamics in LSTMs but with a constant period, which seems
to stabilize the overall training behavior further.

Over the last decade advances in sequence learning gave rise to new models that differ from the
classic gated RNNs, namely Transformers (Vaswani et al., 2017), temporal convolutional networks
(TCNs) (van den Oord et al., 2016) and more recently state space model (SSM) such as S4 (Gu
et al., 2021), S5 (Smith et al., 2023), and similar. While transformers are powerful due to the use
of the attention mechanism and their ability to process sequences in parallel, the computation can
be costly as they scale in the order O(n2) with the input size (Vaswani et al., 2017; Gu et al., 2021;
Orvieto et al., 2023). TCNs utilize dilated convolutions and deep networks to build powerful em-
beddings (van den Oord et al., 2016). In S4 and S5 the model is derived from SSMs and leverages
HiPPO theory and the diagonalization of complex matrices to achieve high performance on long
range dependency tasks without the use of attention (Gu et al., 2021). Interestingly, slight parallels
can be drawn from the recurrent matrix in S4 to the resonator when rewriting the state in Equation 13
with complex parameters. If and which relation there is to SSMs can be an interesting approach to
explore in future works that focus on the theoretical embedding of resonators. Lastly, the recently
published linear recurrent unit (LRU) (Orvieto et al., 2023) aims to solve known issues in RNNs
by applying insights from S4-based models to linear RNNs. LRUs bring a number of enhance-
ments into the vanilla RNN framework that increase the parallelization and especially performance
on long-range dependencies. This promising advancement in sequence learning and in particular
RNN literature can pose as an opportunity for research to focus more on applications that employ
RNNs and may offer an option to integrate resonators into LRUs. Future work could extend on the
possibility of integrating the RG-RNNs inductive bias into LRUs as well as conduct comprehensive
performance studies of the RG-RNN against current baselines.

6 CONCLUSION

We have introduced the resonator as a means to add to the inductive bias of RNNs by enabling
the detection and response to periodic signals in sequence data. The implemented RG-RNN shows
improved convergence on all tested benchmarks and better performance in three out of four experi-
ments. Even when obvious patterns in the data are disrupted through randomization or the ablation
of recurrent connections the RG-RNN can still learn and retain relevant information. All achieved
with only a small change in the number of trainable parameters.

We conclude that resonator-based gating offers a strong, new inductive bias for gated RNNs that
is applicable to a variety of problems, but excels at detecting patterns and periodicity in the input
sequence. This can be attributed to the addition of an additional internal CEC which enables the
interplay of rotation and decay and opens the possibility to tune into periodicity in the data.

The resonators introduce an anticipatory forward propagation, effectively bridging information gaps
across time, which we propose to be beneficial for the overall stability of the training procedure.
In addition, the internal dynamics of the resonator appear to allow the RG-RNN to learn more
effectively without the utilization of a memory.

As future work we intend to explore possible synergies of RG-RNNs embedded within larger-scale
recurrent architectures, balancing resonating and non-resonating components, as well as the use of
smaller resonator units without the need to be embedded in LSTMs. Additionally, a rigorous com-
parison of performance of RG-RNNs with current S4, LRUs, or Transformers and the integration
of resonators into these models can show the standing of resonator-gated and resonator-enhanced
models in practice.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

We actively try to contribute to make research more reproducible. In this effort we want to disclose
all information necessary to reproduce the work in this paper. Sections 2 and 3 cover the necessary
basis to implement the introduced method. Section 4 as well as Tables A2, A3, and A1 include the
information needed to reproduce the performed experiments and benchmarks. Lastly, the Figures
in Section 4 and in the Appendix provide information about the convergence of the implemented
models. In addition we plan to release the code used for all experiments and implementations
publicly to GitHub.

REFERENCES

Badr AlKhamissi, Muhammad N. ElNokrashy, and David Bernal-Casas. Deep spiking neural net-
works with resonate-and-fire neurons. CoRR, abs/2109.08234, 2021. URL https://arxiv.
org/abs/2109.08234.

Martı́n Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
CoRR, abs/1511.06464, 2015. URL http://arxiv.org/abs/1511.06464.

Euan A Ashley and J Niebauer. Cardiology Explained. Chapter 3, Conquering the ECG, 2004. URL
https://www.ncbi.nlm.nih.gov/books/NBK2214/.

Paul Palomero Bernardo, Christoph Gerum, Adrian Frischknecht, Konstantin Lübeck, and Oliver
Bringmann. Ultratrail: A configurable ultralow-power tc-resnet ai accelerator for efficient key-
word spotting. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4240–4251, 2020. doi: 10.1109/TCAD.2020.3012320.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C. Courville. Recurrent batch normal-
ization. CoRR, abs/1603.09025, 2016. URL http://arxiv.org/abs/1603.09025.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody,
C.K. Peng, and H.E. Stanley. Physiobank, physiotoolkit, and physionet: Components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134386/.

Francesco Granata and Fabio Di Nunno. Forecasting evapotranspiration in different climates using
ensembles of recurrent neural networks. Agricultural Water Management, 255:107040, 2021.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.
URL http://arxiv.org/abs/1308.0850.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. CoRR, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.
00396.

Nathaniel Helwig and Elizabeth Hsiao-Wecksler. Multivariate Gait Data. UCI Machine Learning
Repository, 2022. DOI: https://doi.org/10.24432/C5861T.

Geoffrey Hinton. Neural networks for machine learning, lecture 6e, 2018. URL https://www.
cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf. Slide
26.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.
1997.9.8.1735.

10

https://arxiv.org/abs/2109.08234
https://arxiv.org/abs/2109.08234
http://arxiv.org/abs/1511.06464
https://www.ncbi.nlm.nih.gov/books/NBK2214/
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1603.09025
http://arxiv.org/abs/1803.03635
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134386/
http://arxiv.org/abs/1308.0850
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2111.00396
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Under review as a conference paper at ICLR 2024

Bingqing Huang, Haonan Zheng, Xinbo Guo, Yi Yang, and Ximing Liu. A novel model based
on da-rnn network and skip gated recurrent neural network for periodic time series forecasting.
Sustainability, 14(1), 2022. ISSN 2071-1050. doi: 10.3390/su14010326. URL https://www.
mdpi.com/2071-1050/14/1/326.

Eugene M Izhikevich. Neural excitability, spiking and bursting. International journal of bifurcation
and chaos, 10(06):1171–1266, 2000.

Eugene M. Izhikevich. Resonate-and-fire neurons. Neural Networks, 14(6-7):883–894,
2001. doi: 10.1016/S0893-6080(01)00078-8. URL https://doi.org/10.1016/
S0893-6080(01)00078-8.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of
rectified linear units. CoRR, abs/1504.00941, 2015. URL http://arxiv.org/abs/1504.
00941.

Ziyin Liu, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions
and how to fix it. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1160453108d3e537255e9f7b931f4e90-Abstract.html.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. NIPS, 2016. doi: 10.5167/uzh-149394.

Siti Nurmaini, Alexander Edo Tondas, Annisa Darmawahyuni, Muhammad Naufal Rachmatul-
lah, Jannes Effendi, Firdaus Firdaus, and Bambang Tutuko. Electrocardiogram signal classi-
fication for automated delineation using bidirectional long short-term memory. Informatics in
Medicine Unlocked, 22:100507, 2021. ISSN 2352-9148. doi: https://doi.org/10.1016/j.imu.
2020.100507. URL https://www.sciencedirect.com/science/article/pii/
S2352914820306584.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/
abs/1912.01703.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling, 2023.

Ilya Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, Canada,
2013. URL http://hdl.handle.net/1807/36012.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

Pavel Tolmachev, Rishi R. Dhingra, Michael Pauley, Mathias Dutschmann, and Jonathan H. Manton.
Modeling the Respiratory Central Pattern Generator with Resonate-and-Fire Izhikevich-Neurons.
In Neural Information Processing, volume 11301, pp. 603–615. Cham, 2018.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. CoRR, abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

11

https://www.mdpi.com/2071-1050/14/1/326
https://www.mdpi.com/2071-1050/14/1/326
https://doi.org/10.1016/S0893-6080(01)00078-8
https://doi.org/10.1016/S0893-6080(01)00078-8
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
https://proceedings.neurips.cc/paper/2020/hash/1160453108d3e537255e9f7b931f4e90-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1160453108d3e537255e9f7b931f4e90-Abstract.html
https://www.sciencedirect.com/science/article/pii/S2352914820306584
https://www.sciencedirect.com/science/article/pii/S2352914820306584
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://hdl.handle.net/1807/36012
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2024

P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv
e-prints, April 2018. URL https://arxiv.org/abs/1804.03209.

Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural Networks, 1(4):339–356, 1988. doi: 10.1016/0893-6080(88)90007-X. URL https:
//doi.org/10.1016/0893-6080(88)90007-X.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/d9ff90f4000eacd3a6c9cb27f78994cf-Paper.pdf.

Bojian Yin, Federico Corradi, and Sander M. Bohté. Accurate and efficient time-domain clas-
sification with adaptive spiking recurrent neural networks. Nat. Mach. Intell., 3(10):905–
913, 2021. doi: 10.1038/s42256-021-00397-w. URL https://doi.org/10.1038/
s42256-021-00397-w.

12

https://arxiv.org/abs/1804.03209
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1016/0893-6080(88)90007-X
https://proceedings.neurips.cc/paper_files/paper/2016/file/d9ff90f4000eacd3a6c9cb27f78994cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d9ff90f4000eacd3a6c9cb27f78994cf-Paper.pdf
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1038/s42256-021-00397-w

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 HYPER PARAMETERS

The following Tables A1, A2, and A3 show the hyper parameters used to achieve the results pre-
sented in Section 4. Table A4 lists the full list of test statistics gathered during training and Table A5
lists the number of trainable parameters for the trained LSTM and RG-RNN as well as the number
of trainable parameters for an LSTM with an additional hidden unit per-layer. An experiment on
SMNIST which considers this is presented in Figure 4.

Table A1: Model hyper parameters for all performed experiments. The hyper parameters were the
same for LSTM and RG-RNN which lead to a small increase in the number of trainable parameters
for the RG-RNN. The number of trainable parameters is listed in Table A5.

Hyper Parameter S/P-MNIST Speech Commands V2 QTDB MGA

Layers 1 LSTM, 1 Linear 1 LSTM, 1 Linear 2 LSTM, 1 Linear 1 LSTM, 1 Linear
Hidden units 128 128 512 32
Batch size 64 64 128 64
Learning rate 0.0005 0.0005 0.0001 0.0005
Epochs 150 150 400 200

Table A2: Class weights calculated on the training set during the QTDB experiment. Weights are
calculated by dividing the number of labels of any class against the number of labels of the largest
class (0-label).

Class Weight

0 1.0000
p 3.4879
N 3.7712
t 1.3838
u 7.5885

Table A3: Set parameters for MFCC pre-processing of the Speech Commands V2 experiment. The
features were extracted using the torchaudio library version 2.0.2. Unreferenced parameters
were kept at default values.

Parameter Value

FFT features 160
MFCC features 20
Mel filter banks 20
Hop size 1.25ms/20 steps
Window length 10ms/160 steps

13

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

0 20 40 60 80 100 120 140

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Epoch

L
os

s

(c) Test loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM RG-RNN (ours) LSTM (+1 hidden unit)

Figure 4: SMNIST experiment including an LSTM with additional hidden unit. Shown are averaged
measures and standard deviation of the LSTM (blue), the RG-RNN (orange), and the LSTM with
the additional unit (green) for (a) train loss, (b) train accuracy, (c) test loss, and (d) test accuracy.

14

Under review as a conference paper at ICLR 2024

Table A4: Average results of all experiments after the final training epoch. An explicit validation set
was only given in the Speech Commands V2 experiment. Please note, that the test set of the SMNIST
and the QTDB data sets was used in the same fashion as one would usually use a validation set.

SMNIST PMNIST QTDB Speech Commands V2 MGA
Metric LSTM RG-RNN LSTM RG-RNN LSTM RG-RNN LSTM RG-RNN LSTM RG-RNN

Train loss 0.6491 0.5898 0.3086 0.1625 0.4435 0.1696 0.9466 0.9678 0.1298 0.1013
Train accuracy 99.14% 99.85% 93.32% 99.09% 75.69% 90.74% 98.24% 97.59% 95.54% 96.67%
Test loss 0.6681 0.6574 0.4484 0.3926 0.5370 0.4319 1.1918 1.2006 0.1155 0.1244
Test accuracy 98.44% 98.51% 89.49% 93.55% 72.86% 84.46% 92.30% 91.79% 96.83% 96.62%
Validation loss - - - - - - 1.1887 1.1919
Validation Accuracy - - - - - - 92.67% 91.97%

Table A5: Number of trainable parameters by experiment for the LSTM, RG-RNN and an LSTM
with an additional hidden unit.

Model P/S-MNIST SpeechCommandsV2 QTDB MGA

LSTM 68362 79509 3160581 5219
RG-RNN 68746 79893 3163653 5315
LSTM (+1 Hidden Unit) 69412 80646 3172910 5514

A.2 ON THE RESONATOR’S INTERNAL GRADIENT FLOW

One explanation of the cleaner and steeper convergence of the RG-RNN compared to the conver-
gence of LSTMs, may be that the resonator itself establishes a similar but more advantageous struc-
ture of a constant error carousel (CEC).

Analogously to the input of the resonator being passed or blocked depending on the current resonator
state zt, the gradient that flows through the resonator underlies the same principle. However, the
more important question of what happens to the gradient within the resonating circuit remains.

For simplicity consider the following equations for just a single resonator cell:

vt = vt−1 + δ(bvt−1 − ωut−1 + xt
r) (18)

ut = ut−1 + δ(ωvt−1 + but−1) (19)

zt =
[
vt ut

]
(20)

To uncover the local state change dependency, we derive the resonator state zt with respect to the
previous state. u and v additionally influence themselves through the explicit recurrent connections
in the network, that is, the output of the resonator is part of input to the resonator in the next time
step. For simplicity we ignore these outer recurrencies.

We get:

∂zt

∂zt−1
=

[
∂vt

∂vt−1
∂vt

∂ut−1

∂ut

∂vt−1
∂ut

∂ut−1

]
(21)

15

Under review as a conference paper at ICLR 2024

where

∂vt

∂vt−1
=

∂

∂vt−1

(
vt−1 + δ(bvt−1 − ωut−1 + xt

r)
)

= 1 + δb (22)

∂vt

∂ut−1
=

∂

∂ut−1

(
vt−1 + δ(bvt−1 − ωut−1 + xt

r)
)

= −δω (23)

∂ut

∂vt−1
=

∂

∂vt−1

(
ut−1 + δ(ωvt−1 + but−1)

)
= δω (24)

∂ut

∂ut−1
=

∂

∂ut−1

(
ut−1 + δ(ωvt−1 + but−1)

)
= 1 + δb (25)

which results in:
∂zt

∂zt−1
=

[
1 + δb −δω
δω 1 + δb

]
(26)

If we now assume a sufficiently small δ, we approximately obtain:

∂zt

∂zt−1
≈

[
1 0
0 1

]
(27)

We can see that the gradient state transition matrix (which is multiplied with the back flowing gra-
dient at each time step) provides the characteristic of an identity matrix. This essentially means that
the gradient is kept alive within the resonator during BPTT and stabilizes the gradient flow through
the input gate. In practice, δ is usually not 0 and therefore the gradient slowly decays depending on
b and is rotated with ω.

A.3 RECURRENT SPARSITY

We studied the robustness against ablations of recurrent connections which we call “recurrent spar-
sity”. This experiment can provide information about the learning progress of the model. The
restricted access to memory gives indications on the self-sufficiency of the internal state. We com-
pare the recurrent sparsity at 25%, 50%, 75%, and 100%, where the weights are disabled randomly
with the respective percentage. The performance of the RG-RNN in Figure 5 largely retains a sim-
ilar pattern as in the SMNIST experiment across all sparsity rates. A slight impact to convergence
and performance can be observed starting at 75% sparsity with an even more pronounced impact
when no recurrences are retained, essentially blocking the access to memory.

The LSTMs performance was influenced by all sparsity rates, as evident from Figure 6. First slightly
decreasing the convergence and increasing the variance between runs at 25% and 50% sparsity. At
75% sparsity the convergence is improved with only a small impact in accuracy. Lastly, removing
all recurrent connections has the greatest impact on the LSTM, severly reducing its accuracy. The
performance of the RG-RNN and the LSTM can be taken from Tables A6 and A7, respectively.

The internal dynamics of the resonator seem to enable the RG-RNN to learn more effectively with-
out the utilization of a memory. The hidden state sequence, which is masked internally, builds
oscillations which give additional information to the RG-RNN when present. The same oscillations
seem to be required for the LSTM to effectively learn the presented problem leading to a drop in
performance when ablated. An interesting addition is the increased convergence of the LSTM at
75% recurrent sparsity. Unfortunately, a closer investigation was out of the scope of this paper.

A.4 SUPPLEMENTARY FIGURES

The results of the MGA experiment from Section 4 can be taken from Figure 7. Additionally, the
full loss and accuracy results for all experiments can be taken from Figures 8, 9, 10, and 11.

16

Under review as a conference paper at ICLR 2024

Table A6: Averaged results of the RG-RNN on SNMIST with sparse recurrencies. The models were
trained with the corresponding percentage of masked recurrent connections.

Metric Sparsity 25% Sparsity 50% Sparsity 75% Sparsity 100%

Train loss 0.5977 0.6078 0.6325 0.9838
Train accuracy 99.80% 99.72% 99.35% 84.55%
Test loss 0.6549 0.656 0.6804 0.9863
Test accuracy 98.51% 98.58% 97.99% 84.30%

Table A7: Averaged results of the LSTM on SNMIST with sparse recurrencies. The models were
trained with the corresponding percentage of masked recurrent connections.

Metrics Sparsity 25% Sparsity 50% Sparsity 75% Sparsity 100%

Train loss 0.6553 0.699 0.6612 1.848
Train accuracy 98.95% 97.66% 98.68% 31.46%
Test loss 0.7028 0.7165 0.6852 1.843
Test accuracy 97.28% 96.89% 97.83% 32.02%

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)
RG-RNN (mask 25)
RG-RNN (mask 50)
RG-RNN (mask 75)
RG-RNN (mask 100)

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)
RG-RNN (mask 25)
RG-RNN (mask 50)
RG-RNN (mask 75)
RG-RNN (mask 100)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)
RG-RNN (mask 25)
RG-RNN (mask 50)
RG-RNN (mask 75)
RG-RNN (mask 100)

LSTM RG-RNN (ours) RG-RNN (mask 25)
RG-RNN (mask 50) RG-RNN (mask 75) RG-RNN (mask 100)

Figure 5: Experiment for Sparse recurrencies on SMNIST for the RG-RNN. Shown are averaged
measures and standard deviation of the LSTM (blue) and the RG-RNN (orange) for (a) train loss,
(b) train accuracy, (c) test loss, and (d) test accuracy.

17

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)
LSTM (mask 25)
LSTM (mask 50)
LSTM (mask 75)
LSTM (mask 100)

0 20 40 60 80 100 120 140

0.5

1.0

1.5

2.0

2.5

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)
LSTM (mask 25)
LSTM (mask 50)
LSTM (mask 75)
LSTM (mask 100)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)
LSTM (mask 25)
LSTM (mask 50)
LSTM (mask 75)
LSTM (mask 100)

LSTM RG-RNN (ours) LSTM (mask 25)
LSTM (mask 50) LSTM (mask 75) LSTM (mask 100)

Figure 6: Experiment for Sparse recurrencies on SMNIST for the LSTM. Shown are averaged
measures and standard deviation of the LSTM (blue) and the RG-RNN (orange) for (a) train loss,
(b) train accuracy, (c) test loss, and (d) test accuracy.

18

Under review as a conference paper at ICLR 2024

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

L
os

s

(a) Train loss

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

L
os

s

(c) Test loss

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM RG-RNN (ours)

Figure 7: MGA experiment. Shown are averaged measures and standard deviation of the LSTM
(blue) and the RG-RNN (orange) for (a) train loss, (b) train accuracy, (c) test loss, and (d) test
accuracy.

19

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)

LSTM RG-RNN (ours)

Figure 8: SMNIST experiment. Shown are averaged measures and standard deviation of the LSTM
(blue) and the RG-RNN (orange) for (a) train loss, (b) train accuracy, (c) test loss, and (d) test
accuracy.

20

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

2.5

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)

LSTM RG-RNN (ours)

Figure 9: Permuted MNIST experiment. Shown are averaged measures and standard deviation of
the LSTM (blue) and the RG-RNN (orange) for (a) train loss, (b) train accuracy, (c) test loss, and
(d) test accuracy.

21

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Epoch

L
os

s

(a) Train loss

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)

LSTM RG-RNN (ours)

Figure 10: Speech Commands V2 experiment. Shown are averaged measures and standard devia-
tion of the LSTM (blue) and the RG-RNN (orange) for (a) train loss, (b) train accuracy, (c) test loss,
and (d) test accuracy.

22

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Epoch

L
os

s

(a) Train loss

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(b) Train accuracy

LSTM
RG-RNN (ours)

0 50 100 150 200 250 300 350 400

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Epoch

L
os

s

(c) Test loss

LSTM
RG-RNN (ours)

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

A
cc

ur
ac

y

(d) Test accuracy

LSTM
RG-RNN (ours)

LSTM RG-RNN (ours)

Figure 11: QTDB experiment. Shown are averaged measures and standard deviation of the LSTM
(blue) and the RG-RNN (orange) for (a) train loss, (b) train accuracy, (c) test loss, and (d) test
accuracy.

23

	Introduction
	Background
	Resonator-gated RNN
	Experiments
	Datasets
	SMNIST and PMNIST
	Speech Commands V2
	QTDB

	MGA
	Results

	Discussion
	Conclusion
	Appendix
	Hyper Parameters
	On the Resonator's Internal Gradient Flow
	Recurrent Sparsity
	Supplementary Figures

