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Abstract. Transformers are the highest accuracy segmentation frame-
works in computer vision for natural imagery from the past few years. In
contrast, medical imaging approaches, except a select few (for example,
SwinUNETR and SMIT), are still dominated by the nnU-Net architec-
ture family. In this paper, we investigate the application of a hierarchical
vision transformer to the FLARE-23 challenge.
Specifically, we benchmark our results using a relatively lightweight ar-
chitecture, Swin-X Seg. We use multi-model self-training, wherein we
use nnU-Net for predicting pseudo labels on partially labeled cases and
then optimize the transformer architecture for memory requirements.
Our network achieved the average DSC scores of 83.13 % and 35.19 %
on the open validation set (50 cases) for organs and tumors, respectively,
while staying under a max GPU memory utilization of 4GB at evalua-
tion runtime. Our results show that there is potential for the transformer
architecture to perform at par or better than conventional convolutional
approaches, and we hope our findings encourage more research in the
area.
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1 Introduction

Accurate, fast, and automated volumetric segmentation of organs and tumors
is essential for radiotherapy treatment planning. It often constitutes one of the
time-consuming parts of radiation treatment planning workflows [37]. Abdominal
organs are particularly time-consuming to segment owing to the presence of a
large number of organs as well as due to the random and large variation in the
appearance and shape of gastrointestinal organs and limited soft-tissue contrast
on clinically used computed tomography (CT) images. Hence, deep learning
methods to generate segmentation are under active development [20,2].

Deep learning methods have shown the capability to generate multi-organ
segmentation for abdomen [16,18,34,1] and other disease sites. The availability
of well-curated public challenge datasets [20,2] has enabled the evaluation of
various methods using the same reference benchmark with well-defined metrics.
However, a fundamental prerequisite of well-curated pixel-wise annotations or
volumetric segmentations of the various organs for training these networks must
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be more expensive and time-consuming to generate on large datasets. One re-
cent promising approach to alleviate the need for large, curated datasets is the
self-supervised pretraining followed by a fine-tuning approach that has demon-
strated success in medical image analysis, mainly when using transformer-based
architectures[34,18]. Swin UNETR [34] and SMIT [18] have shown that using
self-supervised learning (SSL) improves the performance of transformer-based
networks on semantic segmentation, as compared to training the networks from
scratch. Our approach builds on these methods and utilizes a transformer archi-
tecture [21] for segmentation with a pretraining step (self-supervised learning)
using labeled and unlabeled examples followed by fine-tuning.

We also follow the FLARE-23 rules, whereby, unlike prior works[34,18], which
used a large number of CT scans from various disease sites for pretraining, we
used only the 4,000 example scans provided as part of the training set for self-
supervised pretraining. Furthermore, keeping with the requirements for using
a relatively small architecture with limited memory requirements, we also con-
structed a lightweight transformer architecture.

Our learning framework uses multi-model self-training [41,42,32], where the
teacher is an fine-tuned nnU-Net [15] that generates pseudo labels for the various
categories. The student network uses a Swin transformer backbone [21] segmen-
tation network (here on referred to as Swin-X Seg) that accepts a combination
of FLARE-23 and pseudo labeled examples for fine-tuning (Fig. 1). Our initial
studies show that naively using the partially labeled dataset, with a transformer
backbone to obtain pseudo labels, results in poor performance across multiple
categories [36,5,40]. . Hence, we resort to this combination of semi-supervised
learning, wherein the teacher is an nnU-Net and the student is Swin-X Seg.

Our approach allows us to fully utilize the partially-labeled training dataset
to its fullest extent, while leveraging fundamental augmentation techniques shown
to be effective in natural image analysis. This mitigates the need for requiring
complex approaches like the CutMix [43] or ClassMix [29], wherein extensive
registration would be required before mixing two 3D scans so that the networks
do not lose understanding of organ placements, especially with architectures that
rely heavily on positional information.

Our key contributions are (a) a lightweight 3D vision transformer applied
to multi-organ and tumor segmentation, (b) the SSL approach extending prior
works by learning the downstream task using partial labels, and the application
of this approach on an open-source FLARE-23 dataset.

2 Method

2.1 Overview

We studied the performance of hierarchical vision transformer-based U-Net ar-
chitecture on the FLARE-23 challenge. Vision transformers require large amounts
of data [36,5,40,19] to achieve high generalization performance. Hence, FLARE-
23, which consists of 4,000 training images, provides a nice test bed for evaluating
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(a) Self-supervised Learning

(b) Supervised  Fine-tuning

(c) Inference

MPseudo

MGT

MRefined

Fig. 1. Our three-stage pipeline: (a) self-supervised training of the backbone net-
work [17], (b) uses a combination of pseudo labels (MPseudo) [15] and FLARE-23
provided annotations (MGT ) to obtain refined labels (MRefined) for learning segmen-
tation, and (c) inference on a new unseen volumetric scan.

vision transformer architectures. However, 1800 CTs in FLARE-23 are unlabeled
with the remaining 2200 CTs provided with partial labels, wherein some but not
all the 14 different organs and tumors were segmented, which makes supervised
training challenging. Therefore, we used a two-step training approach consisting
of: (i) self-supervised pretraining performed on the entire dataset of 4,000 CTs
without using any segmentations for supervised training, and (ii) supervised fine-
tuning that combined fully labeled CTs together with CTs with pseudo labels
created using a different model. We discuss each part of our approach in detail,
and the specificities involved in our final implementation.

2.2 Preprocessing

We used the following preprocessing steps in all our experiments:

– Reorient the scans to the right-anterior-superior (RAS) view.
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– Clip the intensities based on the Hounsfield units to [-250, 250].
– We resize all scans to x, y, z volumetric spacings of 1.0, 1.0, 1.0 during training

and inference.
– In addition, we randomly sample 4 scans of 96 × 96 × 96 size from each scan

as training examples, representing 2 positive and 2 negative samples for the
network at every instance.

2.3 Proposed Method

Choice of Transformer:
Hierarchical Vision Transformers [21,8] are pyramid-shaped architectures

that rely on gradual down-sampling, similar to convolutional neural networks,
while maintaining a global look-out with their multi-scale designs. We use the
Swin-Transformer backbone for our approach as it has been widely adopted for
3D medical auto segmentation [34,18] and shown to be more accurate than the
vanilla vision transformer[7].

Swin UNETR [34] and SMIT [18] have over 60 million (M) parameters.
Whereas Swin UNETR processes data at 96 × 96 × 96, SMIT processes data at
128 × 128 × 128 resolution. Both methods use sliding windows for generating
final inference. The FLARE-23 constraints require memory efficient inference. A
straightforward memory efficient approach to reduce the total number of flops
used for inference would be to utilize CT scans reduced to 96 × 96 × 96 pixels,
at the risk of decreasing the image resolution, which can impact accuracy for
smaller organs. Hence, we reduced the number of parameters used in the network
by decreasing the total number of blocks per depth to the final 2−2−2−2 con-
figuration as well as reduced the total number of channels through the UNETR
architecture using 1×1 convolutions. This reduced the network size from 60M
parameters to 31M parameters, a relatively lightweight architecture compared to
current state-of-the-art methods. This is also crucial towards keeping the GPU
requirements under 4GB as stipulated under FLARE-23 rules.
Self-supervised Learning: The SSL approach made use of the self-distillation
based pretext tasks used in the SMIT [18], including namely Masked Image
Modeling (MIM), Masked Patch self-Distillation (MPD) and Image Token self-
Distillation (ITD). SMIT performs self distillation by concurrently maintaining
an online teacher model (NETT ) with the same network architecture as the
student model (NETS) [35]. The loss functions used to optimize the network
are briefly discussed here and we refer interested details to the original paper[18]
for more details.

Suppose {x1, x2} are two augmented views of a 3D image x. N image patches
are extracted from the images to create a sequence of image tokens [7]. The image
tokens are then corrupted by randomly masking image tokens based on a binary
vector, with a probability p, and then replacing with mask token [3]. The second
augmented view v is also corrupted but using a different mask vector instance.
In this order, the three losses deal with the views in the following manner:
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– Masked Image Prediction (MIP) → x1, NETS , involves dense pixel
regression of image intensities within masked patches using the context of
unmasked patches [12].

– Masked patch token self-distillation (MPD): → x1, NETS , NETT ,
trains the student network to predicts the tokens of the teacher network
(distillation).

– Global image token self-distillation (ITD): → x1, x2, NETS , NETT ,
learns to match the global image embedding of the view-scan seen by the
student network to the view-scan seen by the teacher network.

SSL training is performed by optimizing the network using all three afore-
mentioned losses. FLARE-23 rules dictate that no external data be used. Hence,
following the rules, SSL used the same 4,000 CTs provided as part of the training
set. No segmentations provided with the data was used for network optimization
in this step.
Supervised Fine-tuning:

In order to fully utilize all available training data to improve accuracy, we
used the best performing nnU-Net model, the winner from FLARE22[15] to pro-
vide pseudo labels for the partially labeled and unlabeled datasets the FLARE
23 training sets. We only use 735 examples from the 2200 images that contain
a labeled instance of tumor, with the combination of FLARE-23 and nnU-Net
pseudo labels (Fig. 1). We trained our network sing a combination of Dice loss
and cross-entropy loss following previous approaches [24,16,34,18].

2.4 Post-processing

No data specific post processing was used following pixel-level classifications
generated by the segmentation methods. Sliding window inference with 50%
overlap was used for generating segmentations for the whole 3D image volumes.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE-23 challenge is an extension of the FLARE 2021-2022 [26][27], aim-
ing to promote the development of foundation models in abdominal disease anal-
ysis. The segmentation targets cover 13 organs and various abdominal lesions
around the organs. The dataset comprises scans from more than 30 medical
centers, including TCIA [6], LiTS [4], MSD [33], KiTS [13,14], autoPET [10,9],
TotalSegmentator [39], and AbdomenCT-1K [28], with appropriate licensing.
The training set includes 4,000 abdomen CT scans, 2,200 CT scans with par-
tial segmentation labels for some of them, and 1,800 CT scans without any
segmentation labels. The validation and testing sets include 100 and 400 CT
scans, respectively, covering various abdominal cancer types, such as liver, kid-
ney, pancreas, colon, and gastric, to name a few. The organ annotation process
used ITK-SNAP [44], nnU-Net [16], and MedSAM [25].
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Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU AMD EPYC 7543P 32-Core Processor @ 2.8 Ghz
RAM 128 GB
GPU (number and type) NVIDIA A100 80 GB × 4
CUDA version 11.8
Programming language Python 3.8
Deep learning framework Pytorch 1.13 ± CUDA 11.7 [30]
Specific dependencies MONAI, SimpleITK, Nibabel
Code https://github.com/The-Veeraraghavan-Lab/FLARE23

Table 2. Training protocols.

Network initialization SSL-FLARE-23 [18]
Batch size 4
Patch size 96 × 96 × 96
Total epochs 100
Optimizer AdamW [23]
Initial learning rate (lr) 2e-4
Lr decay schedule Linear Warmup with Cosine Annealing [22,11]
Training time 33 hours
Loss function Cross-Entropy Loss /w Dice Loss

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and instantaneous GPU maximum memory consump-
tion.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1. We provide all the requirements in our released codebase
on GitHub.

Training protocols The model training protocols are shown in in Table 2. An
image patch size of 96 × 96 × 96 with random 3D flips performed on the data
to provide augmented samples was used for network training.

https://github.com/The-Veeraraghavan-Lab/FLARE23
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Table 3. Quantitative evaluation results. Segmentation accuracy results (DSC and
NSD with mean and standard deviation) are reported on the publicly provided 50
validation cases made available by the FLARE-23 organizers.

Target
Public Validation
DSC(%) NSD(%)

Liver 96.08 ± 4.230 93.58 ± 10.66
Right Kidney 87.00 ± 20.81 83.37 ± 21.81
Spleen 93.24 ± 9.730 90.92 ± 14.23
Pancreas 80.47 ± 7.860 89.99 ± 7.020
Aorta 90.55 ± 14.80 91.61 ± 16.30
Inferior vena cava 87.88 ± 6.800 86.97 ± 9.300
Right adrenal gland 77.35 ± 17.46 87.78 ± 19.00
Left adrenal gland 72.44 ± 15.83 82.03 ± 16.59
Gallbladder 75.61 ± 28.21 71.61 ± 30.06
Esophagus 74.81 ± 16.56 84.85 ± 15.99
Stomach 89.17 ± 9.110 87.60 ± 11.85
Duodenum 70.78 ± 10.77 84.21 ± 9.240
Left kidney 85.65 ± 21.81 82.33 ± 23.22
Tumor 35.19 ± 30.17 22.99 ± 22.10
Average (Organ) 83.13 ± 8.440 85.55 ± 12.58
Average 79.70 ± 11.43 81.08 ± 14.93

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 shows our Swin-X Seg’s performance on the 50 validation cases provided
by the FLARE-23 organizers. The network was slightly less accurate (< 80%
DSC) for organs such as the adrenal glands, gallbladder, esophagus, duodenum,
as well as for tumors compared to larger organs like the liver, spleen, left and right
kidneys, and the stomach. The tumor segmentation accuracy was low because
of the larger variability in the types of tumors analyzed and the relatively few
examples with complete labels. Overall, the network accuracy was lower for
smaller organs like the adrenal glands and gallbladder when compared to larger
organs like the liver. Poor accuracy for organs also resulted when they were
adjacent to the tumors.

Table 4 shows that inference requirements of under 4GB GPU memory con-
sumption were satisfied for all cases. However, all except two cases (0001, 0019)
did not satisfy the running time requirement under 60 secs owing to sliding
window-based inference, with 50% overlap. A natural option is to use sliding
window inference without any overlap (0%). However, this results in a poor
overall score (77% DSC average on organ, 27% DSC on tumor); hence, we did
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Table 4. Quantitative evaluation of segmentation efficiency of the reported cases using
running time and maximum GPU memory consumption (< 4096 MB). Evaluation GPU
platform: A100 (80GB).

Case ID Image Size Running Time (s) Max GPU (MB)
0001 (512, 512, 55) 28.01 3464
0051 (512, 512, 100) 65.86 3850
0017 (512, 512, 150) 73.94 3896
0019 (512, 512, 215) 48.00 3616
0099 (512, 512, 334) 69.28 3756
0063 (512, 512, 448) 84.76 3776
0048 (512, 512, 499) 74.73 3748
0029 (512, 512, 554) 102.5 4032

not pursue it. In addition, we optimized for test-time efficiency by performing
foreground thresholding to use only the body regions for analysis by ignoring the
surrounding air for inference. Our analysis showed that in cases with larger field
of view, wherein the body occupied higher volume the inference time utilization
increased (e.g. 0017 > 0019, 0063 > 0048).

4.2 Qualitative results on validation set

Figures 2 and 3 show the segmentations generated by our network on represen-
tative examples taken from the validation set of FLARE-23. As shown in Fig.2,
whereas the model tends to consistently segment the normal tissues with high
accuracy, misclassifications occur within tumor regions, tumor voxels classified
as the kidney, despite achieving a relatively high DSC accuracy for the tumors.
The higher DSC accuracy for tumors is not surprising given the larger tumor
volumes. On the other hand, as shown in Fig. 3 for really large tumors such
as #0057 and #0095, the algorithm generated highly inaccurate segmentation,
misclassifying the tumors occurring on the left side of anatomy as liver. #0027
shows an example where the kidney tumor was correctly segmented together
with the kidney adjacent to the tumor, although the esophagus occurring dis-
tally to the pancreatic head was misclassified as pancreas. Similarly, in #0089,
the pancreas is oversegmented by the model, whereas the kidney tumor encased
within the kidney is undersegmented, highlighting the challenges, particularly
when the tumor and the healthy tissues are adjacent to each other.

4.3 Segmentation efficiency results on validation set

We optimized for segmentation inference efficiency by extracting the foreground
or the body as a preprocessing step using standard image thresholding. No ad-
ditional optimization was performed in terms of training or testing. Even this
simple approach showed that it is possible to improve inference efficiency as seen
in Table 4.
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FLARE23Ts_ 0083
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Left 
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Fig. 2. Example scans showing relatively good performance in terms of misclassifica-
tions by the trained Swin-X Seg model. DSC_T refers to tumor DSC and DSC_O
refers to average multi-organs DSC.
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DSC_T: 50.85

DSC_O: 71.63

DSC_T: 84.83

DSC_O: 74.47

DSC_T: 5.370

DSC_O: 88.05
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Fig. 3. Example scans showing relatively poor performance in terms of misclassifica-
tions by the trained Swin-X Seg network. DSC_T refers to tumor DSC and DSC_O
refers to average multi-organs DSC.
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4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI
(2023.10.8). (This is to be left as is.)

4.5 Limitation and future work

Our goal was to evaluate the capability of transformer-based approach for multi-
organ and tumor segmentation. We used a relatively lightweight (31M) in order
to satisfy the memory requirements of the competition as well as to study to
what extent such methods are successful in comparison to convolutional-based
approaches such as the nnU-Net used in the previous iteration of the competi-
tion [15,38]. Our approach to use nnU-Net generated pseudo labels was motivated
by prior results using Semiformer [40], which showed poor accuracy with vision
transformer with small labeled training samples can be improved when combined
with pseudo labels produced by convolutional neural networks (CNN). However,
VITs have generally shown to be more accurate than CNN models. Hence, one
approach is to use VIT instead of a CNN for providing pseudo labels. its impor-
tant to note that the approach combining pseudo labels with CNN and larger
VIT models becomes impractical due to increasing memory needs. Another lim-
itation of our approach is the poor segmentations we observed on the tumor and
tissue interface, which we plan to address in the future.

5 Conclusion

We presented our approach, multi-model self-training, that used nnU-Net to
generate pseudo labels and then Swin transformer to establish a foundation for
research into auto segmentation with pseudo labels. In addition, we also identify
limitations and discuss research approaches to mitigate them, including knowl-
edge distillation and semi-supervised learning. We believe that our framework
serves as a good foundation for further research into efficient network designs
and methodology for accurate medical image segmentation.
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Table 5. Checklist Table. Please fill out this checklist table in the answer column.
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