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ABSTRACT

Exploiting large language models (LLMs) to tackle deductive reasoning has gar-
nered growing attention. It still remains highly challenging to achieve satisfac-
tory results in complex deductive problems, characterized by plenty of premises
(i.e., facts or rules) entailing intricate relationships among entities and requiring
multi-hop reasoning. One intuitive solution is to decompose the original task into
smaller sub-tasks, and then chain the multiple casual reasoning steps together in
a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction.
However, these techniques inevitably necessitate a large number of overall stages,
leading to computationally expensive operations and a higher possibility of mak-
ing misleading steps. In addition to stage-by-stage decomposition, we draw in-
spiration from another aspect of human problem-solving. Humans tend to distill
the most relevant information and organize their thoughts systematically (e.g.,
creating mind maps), which assists them in answering questions or drawing con-
clusions precisely and quickly. In light of this, we propose a novel reasoning ap-
proach named Concise and Organized Perception (COP). COP carefully analyzes
the given statements to efficiently identify the most pertinent information while
eliminating redundancy. It then prompts the LLMs in a more organized form that
adapts to the model’s inference process. By perceiving concise and organized
proofs, the deductive reasoning abilities of LLMs can be better elicited, and the
risk of acquiring errors caused by excessive reasoning stages is mitigated. Fur-
thermore, our approach can be combined with the aforementioned ones to further
boost their performance. Extensive experimental results on three popular deduc-
tive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that
COP significantly outperforms previous state-of-the-art methods.

1 INTRODUCTION

The field of large language models (LLMs) has witnessed significant progress in complex reason-
ing with the advent of Chain-of-thought (CoT) prompting (Wei et al., 2022) and a series of related
works (Kojima et al., 2022; Zhou et al., 2023; Qiao et al., 2022). These breakthroughs have yielded
remarkable achievements in various applications, including arithmetic, commonsense, symbolic rea-
soning, etc., and have sparked widespread enthusiasm within the community to continuously explore
the immense potential of LLMs in tackling complex reasoning tasks. In this work, we focus on de-
ductive reasoning, which is considered as one of the most rigorous forms of logical reasoning, built
upon logical rules of inference, such as modus ponens (Johnson-Laird, 1999; Goel, 2007; Adler &
Rips, 2008; Johnson-Laird et al., 2015). It begins with a set of given premises and employs log-
ically valid arguments to draw necessary conclusions. In domains such as science, mathematics,
medicine and law, deductive reasoning plays a crucial role as it enables the derivation of definite
inferences (Metaxiotis et al., 2002; Goswami, 2010; McCarty, 2013). Moreover, it serves as an in-
herent guiding mechanism, implicitly involved in problem-solving steps within the aforementioned
arithmetic or commonsense reasoning scenarios.

Recently, the emergence of new datasets (Clark et al., 2021; Tafjord et al., 2021; Saparov & He,
2023; Saparov et al., 2023) has greatly promoted research in this area. Samples of these datasets
are constructed from synthetically generated data and provided as natural language sentences. They
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Fact1: Anne is big. Fact2: Anne is nice. Fact3: Bob is not big. 
Fact4: Gary is blue.𝟏 Fact5: Gary is not quiet.𝟑 […]
Rule1: If Gary is quiet and Gary is big then Gary is nice.  
Rule2: If someone is nice and not quiet then they are big.𝟒

Rule3: All blue people are nice.𝟐

Rule4: If someone is big and quiet then they are blue. 
Rule5: All big people are green.𝟓

Rule6: If Gary is quiet and Gary is big then Gary is young. 
Rule7: Green people are smart.𝟔

Rule8: If someone is smart then they are not young.𝟕 […]
Question: Gary is young? Answer: False.

[…] Gary is blue. Gary is not quiet. If Gary is quiet and Gary is big then Gary is nice. Therefore we do not 
know if Gary is nice. […] Therefore we do not know if Gary is young. The given statement is Unknown.

CoT Inference with Original Input

Gary is blue. All blue people are nice. Therefore Gary is nice. Gary is not quiet. If someone is nice and not 
quiet then they are big. Therefore Gary is big. […] If someone is smart then they are not young. Therefore Gary 
is not young. If Gary is quiet and Gary is big then Gary is young. Therefore the given statement is False.

CoT Inference with Organized Input

Gary is blue. Therefore Gary is nice. Gary is not quiet. Therefore Gary is big. […] If someone is smart then 
they are not young. Therefore Gary is not young. The given statement is False.

CoT Inference with Concise Input

Gary is blue.𝟏 All blue people are nice.𝟐 Gary is not quiet.𝟑
If someone is nice and not quiet then they are big.𝟒 All big 
people are green.𝟓 Green people are smart.𝟔 If someone is 
smart then they are not young.𝟕 Anne is big. Anne is nice. 
Bob is not big. […] If Gary is quiet and Gary is big then 
Gary is young. […]

Gary is blue.𝟏 Gary is not quiet.𝟑 If someone is nice and not 
quiet then they are big.𝟒 All blue people are nice.𝟐 All big 
people are green.𝟓 Green people are smart.𝟔 If someone is 
smart then they are not young.𝟕
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Figure 1: (a) A 5-hop example of ProofWriter dataset, showcasing the premises, question, and
corresponding gold proof path for reference. Some facts and rules are omitted for brevity. (b) Corre-
sponding reconstruction of concise and organized perception. Superscript serial numbers represent
the logical order according to the gold proof. The concise input contains only relevant informa-
tion but lacks organizational structure, while the organized input arranges statements in a consistent
manner with the gold proof path, albeit including some redundant information. (c) LLMs output
results. (d) Results of a confirmatory experiment.

describe the process of logical reasoning, primarily based on deduction rules. Figure 1(a) presents
an example of ProofWriter (Tafjord et al., 2021), consisting of input premises (facts and rules)
and a hypothesis whose truth is to be determined based solely on the in-context information. The
complexity of the context directly affects the difficulty of deductive reasoning. When the attributes
of entities and relations among entities become more intricate or the depth of the proof increases (i.e.,
multi-hop reasoning is required), the models face a higher risk of selecting the wrong step at some
stage. This often leads to an incomplete proof and subsequently an incorrect answer. Figure 1(c)
illustrates such a misleading step, where the original CoT incorrectly selects Rule1 (highlighted in
red). This observation indicates that LLMs usually struggle with proof planning for more complex
deductive reasoning problems, as thoroughly investigated in Saparov & He (2023).

One prevailing paradigm is to decompose complex problems into smaller sub-tasks (Creswell et al.,
2023; Jung et al., 2022; Creswell & Shanahan, 2022; Kazemi et al., 2023; Wang et al., 2023), as
LLMs tend to perform fairly well at single step inference, which helps compensate for their lim-
itations in complex reasoning. It appears intuitive that these methods directly guide or constrain
the planning process of LLMs. For example, Creswell et al. (2023) (SI) suggest alternating be-
tween selection and inference to generate a series of casual reasoning steps, while Kazemi et al.
(2023) (LAMBADA) employ a more explicit manner to introduce backward chaining for high-level
proof planning. Although they achieve considerable accuracy improvements, when confronted with
more complex logical reasoning problems, it is still inevitable to engage in a substantial search for
determining each step and still requires a relatively large number of overall steps. Consequently,
this leads to computationally expensive operations and a higher possibility of making misleading or
invalid steps.

In this paper, we draw inspiration from another perspective of human problem-solving. Rather than
immediately searching for a solution when faced with a large amount of information and a question,
humans are prone to streamline and organize the provided information in an orderly manner, such
as constructing a mind map. This allows them to address the question more quickly and accurately
by referring to the mind map. Drawing a parallel to LLMs, apart from the aforementioned methods
from the perspective of how to plan, this insight inspires us to consider an alternative angle, which
is reducing the difficulty of planning, or in other words, easy to plan.

We further obtain two sources of inspiration that offer practical implementation ideas. The first is the
field of strategic rules, which mean the relevant rules supporting deduction to arrive at the intended
conclusion (Jaakko & Sandu, 2006). To illustrate this, we can use the analogy of playing chess: the
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vanilla rules determine whether one plays chess or something else whereas strategic rules determine
whether one is a good or a bad chess player (Jaakko & Sandu, 2006). The same applies to deductive
reasoning: to be an effective reasoner involves eliminating redundant or irrelevant information and
making the relevant information more explicit. Secondly, as demonstrated in Saparov & He (2023),
traversal direction affects reasoning. As the number of hops increases, the model becomes sensitive
to the traversal direction of the ontology. This reveals that we need to organize the ordering of the
context sentences in a progressively logical fashion that aligns with the model’s inference process.

Taking the above factors into account, we propose a novel reasoning approach named Concise and
Organized Perception (COP). Specifically, COP initially generates concept maps1 which depict the
hierarchical relationships among the given facts and rules, following deduction rules. This allows
a comprehensive understanding of the input context. Next, based on the query that needs to be
proved, COP identifies the most relevant information from the concept maps while eliminating re-
dundancy, resulting in a mind map-like structure centered around the query node. After that, LLMs
are prompted by the context sentences which are organized in a progressively ordered manner within
one or more sequential sub-mind maps, in order to better adapt to the inference process of the model.
We believe that such reconstruction perceives more concise and organized information, which no-
ticeably reduces the difficulty of model inference and better elicits the deductive reasoning ability.
Figure 1(b)(c) shows an example where LLMs are empowered to obtain the correct answer.

Meanwhile, we further conducted a simple confirmatory experiment by randomly selecting 196
samples and reconstructing the context based on the provided ground-truth proofs, as shown in Fig-
ure 1(b) 2. The results in Figure 1(d) demonstrate that combining our approach with the CoT baseline
yields a relative performance improvement of over 100% (35.9% vs 71.9%) in a 5-hop setting. The
results also indicate the complementarity between concise and organized perception. Furthermore,
since our approach naturally comes from a different perspective, it can be seamlessly combined with
other popular methods, such as SI or LAMBADA, to further enhance their performance.

In summary, we make the following contributions:

1. We introduce the Concise and Organized Perception (COP) approach, which significantly
reduces the difficulty of LLMs proof planning (i.e., easy to plan), and better elicits their
deductive reasoning abilities.

2. “Concise” and “Organized” are both effective strategies, and simply combining them with
vanilla CoT achieves excellent performance. Moreover, integrating our method with other
approaches like SI or LAMBADA can provide additional benefits.

3. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter,
PrOntoQA and PrOntoQA-OOD) demonstrate that our method achieves state-of-the-art
performance.

2 RELATED WORK

Large language models (LLMs) have demonstrated impressive few-shot learning capabili-
ties (Brown et al., 2020; Raffel et al., 2020; Chung et al., 2022; Ouyang et al., 2022; Touvron et al.,
2023). However, they often struggle when it comes to logical reasoning tasks (Rae et al., 2021). The
deductive reasoning problem we discuss in this paper is one of the most rigorous and common types
of logical reasoning (Johnson-Laird, 1999), and recent work has shown that LLMs, combined with
in-context learning (ICL) and chain-of-thought (CoT) prompting, are capable of deductive reasoning
to an extent (Huang & Chang, 2022; Qiao et al., 2022; Nye et al., 2021; Wei et al., 2022; Kojima
et al., 2022; Lewkowycz et al., 2022).

Those works in adapting LLMs for logically deductive reasoning tasks can be broadly categorized
into three groups: 1) approaches that aim to fine-tune LLMs in order to directly produce the final
answer, keeping reasoning implicit (Clark et al., 2021; Lewkowycz et al., 2022); 2) approaches

1Concept maps are free-form diagrams representing relationships between concepts and ideas, helping peo-
ple organize and structure knowledge.https://en.wikipedia.org/wiki/Concept map.

2The detailed prompt is omitted, see Appendix A.1, and notice that this implementation is merely demon-
strative, and differs from the actual method as no ground-truth can be utilized, see Section 3 and Figure 2 for
details.
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that encourage LLMs to explicitly generate reasoning steps, but all of them are produced in a
single stage (Cobbe et al., 2021; Dalvi et al., 2021; Zelikman et al., 2022; Wei et al., 2022; Ko-
jima et al., 2022); and 3) approaches that utilize LLMs to generate each reasoning step one at a
time. Jung et al. (2022) regard the output of each stage as a separate new question while Zhou et al.
(2023) break the problem down into simpler components that can be solved individually. Selection-
Inference (Creswell et al., 2023) alternates between selection and inference to generate a series of
casual reasoning steps, and LAMBADA (Kazemi et al., 2023) develops a backward chaining algo-
rithm to decompose reasoning into sub-modules. The latter is currently the prevailing paradigm, and
as we mentioned above, our method is complementary to these existing approaches.

Our approach is inspired in part by the following work (Creswell et al., 2023; Saparov & He,
2023). Creswell et al. (2023) carried out a comprehensive evaluation of LLMs on 50 tasks that
probe different aspects of logical reasoning. They observed that the performance of vanilla lan-
guage models tends to decrease when they get presented with irrelevant facts alongside the ones
relevant for reasoning, when they have to infer the relevant facts from memory, and as the questions
start to require more steps of reasoning. These findings motivate us to focus on identifying the most
relevant information and eliminating redundancy in our approach. In another study, Saparov & He
(2023) investigated how reasoning ability is affected by the traversal direction of the ontology. They
discovered that traversal direction affects reasoning, which prompted us to organize the ordering of
the context sentences in a progressively logical fashion that adapts to the model’s inference process.

Several recent works, such as LOGIC-LM (Pan et al., 2023) and Scallop (Zhang et al., 2023), inte-
grate LLMs with symbolic reasoning to improve logical problem-solving. LOGIC-LM first utilizes
LLMs to translate a natural language problem into a symbolic formulation. Afterward, a determinis-
tic symbolic solver performs inference on the formulated problem. Scallop is similar to LOGIC-LM,
but with probabilistic reasoning engine. However, this complex conversion for LLMs poses chal-
lenges and limits their performance. In contrast, we leave the logical rules (i.e., conjunction and
disjunction) to be handled by LLMs in the final reasoning stage, therefore greatly increases the ac-
curacy of generating the simplified representations of rules and facts. Another work, MindMap (Wen
et al., 2023), introduces knowledge graph (KG) prompting that endows LLMs with the capability of
comprehending KG inputs and facilitates LLMs to infer with a combined implicit knowledge and the
retrieved external knowledge. Unlike our focus, MindMap primarily aims to enhance reasoning abil-
ity based on the knowledge graph. On the other hand, ToT (Yao et al., 2023) and GoT (Besta et al.,
2023) generalize over the CoT from tree-like or graph-like structures. These methods allow LLMs
to make decisions by considering multiple different reasoning paths. On the contrary, our method
concentrates on reducing the difficulty of proof plan by reconstructing in-context information.

3 APPROACH

We present the Concise and Organized Perception (COP) reasoning approach, aiming to leverage
the semantic comprehension and reasoning ability of LLMs to address complex deductive reasoning
problems. Given a reasoning context consists of multiple deductive rules R = {r1, r2, ..., rn} and
facts F = {f1, f2, ..., fn}, which may include relevant, irrelevant, or misleading information, the
task is to determine the veracity of the answer to a question Q.

As illustrated in Figure 2, the proposed COP initially creates concept maps that highlight the hier-
archical relationships among the provided rules and facts to obtain a comprehensive understanding
of the problem context. Next, based on the provided question, COP identifies relevant contexts on
the concept maps and generates a mind map-like structure centered around the query node. Subse-
quently, owing to the progressively organized manner of the mind map, COP creates a more concise
and organized reasoning context which can be easily adapted to the inference process of LLM mod-
els. The details of these steps will be described in the following subsections.

3.1 GENERATION OF CONCEPT MAPS

It is generally not a wise strategy to hastily answer questions without fully grasping the entire context
when performing reasoning tasks; otherwise, it easily leads to inaccurate or incomplete reasoning.
Therefore, instead of starting with looking for relevant clues based on local information as previous
methods (e.g., SI and LAMBADA) do, the first step of the proposed COP is to generate concept maps
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Figure 2: Overview of the proposed COP.

to obtain a comprehensive and structural understanding of the reasoning context, thus enabling the
context reconstruction in the subsequent steps.

As mentioned previously, deductive reasoning problems involve a set of rules and facts. Each rule
(i.e., a hypothetical proposition) describes an antecedent and a consequent which can be expressed as
“If antecedent then consequent”. The antecedent contains either a single condition or a combination
of multiple conditions, with either conjunction (i.e., and) or disjunction (i.e., or) connecting each
other in logic.

Imitating the process of human beings organizing thoughts, concept maps can be generated by lever-
aging directed edges to connect each rule to facts as well as rules whose consequents satisfy one or
more of the conditions specified in the current rule.

Simplified Representations of Rules and Facts. The rules and facts are expressed in a variety of
linguistic patterns (e.g., all smart things are furry, if something is smart then it is furry, smart people
are furry), which makes it challenging to determine if the conditions of rules can be fulfilled by other
rules or facts. In viewing of that, we take advantage of the strong information extracting ability of
LLMs, with few-shot prompts, to create a unified and simplified representation for the facts and the
rules presented in various language patterns as shown in Figure 2.

Given a fact “The dog likes the cat”, it is changed into “dog(like, cat)”, where “dog”, “like” and “cat”
are the subject, predicate and object respectively. As for rules such as “If someone likes the cat and
the dog chases the cat then it eats the mouse”, its conditions and consequents are transformed into
“[X(like, cat), dog(chases, cat)]” and “[X(eat, mouse)]” respectively, where “X” can be substituted
by any entities.

Notably, previous methods such as LogicLM utilize LLMs to convert the facts and rules into first-
order logic languages then perform reasoning with a symbolic solver rather than LLMs. However,
it is a great challenge to accurately translate a problem statement into a valid logical format using
LLMs. On the contrary, we leave the logical rules (i.e., conjunction and disjunction) to be handled
by LLMs in the final reasoning stage, therefore greatly increases the accuracy of generating the
simplified representations of rules and facts.

Connecting of Rules and Facts. With the simplified representations of rules and facts, it naturally
becomes easy to pair facts and rules. Facts like “dog(like, cat)” can be connected to rules with a
condition “X(like, cat)” or “dog(like, cat)”. Rules with consequent such as “[X(eat, mouse)]” can be
connected to rules with a condition “X(eat, mouse)” or “cat(eat, mouse)”. In this way, facts and rules
are connected with directed edges, eventually forming one or more concept maps, as there might be
isolated rules or facts, representing the structural understanding of the entire context.

3.2 GENERATION OF MIND MAP

In section 3.1, concept maps representing the structural understanding of the entire reasoning context
are generated. Once a query (the target fact to be proved/disproved) is given, we identify relevant
clues from the concept maps to create a mind map with the question node at its center.
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Figure 3: An example of sub-mind map pruning and context reconstruction.

Simplified Representation of the given question. Similar to the simplifying process of facts and
rules in section 3.1, LLMs are employed to create simplified representations of the given question.
For example, “The tiger does not eat the rabbit” is transformed as “tiger(not eat, rabbit)”. If there
are multiple statements in the question, “Max is kind and a gorpus” and “Wren is brown or a tum-
pus” for instance, they are simplified as “[Max(is, kind), Max(is, gorpus)]” and “[Wren(is brown),
Wren(is, tumpus)]” respectively. Notably, we ignore the logical relationship contained in the ques-
tion (i.e. conjunction and disjunction) which keeps consistent with the reconstruction of the rules.
We leave that to be handled by LLMs in the final reasoning step. Moreover, to increase the accuracy
of identifying relevant clues, we also generate the contrary statements of the given question. There-
fore, the final reconstruction result of the given question “Max is kind and a gorpus” is “[Max(is,
kind), Max(is not, kind), Max(is, gorpus), Max(is not, gorpus)]”. The above process is done in one
inference call of LLMs with few-shot prompts.

Generation of the mind map. Then we are able to identify the relevant rules and facts with the
simplified question using the same way as we connect rules and facts when constructing the concept
maps. Once we find the relevant rules and facts, we perform a D-depth searching starting from each
of them on the concept maps, where D is the max reasoning depth. In this way, a mind map based
on the given question is constructed.

3.3 CONTEXT RECONSTRUCTION

Figure 3 presents an example of a mind map. Given a question “Alex is young” and its mind map
generated in previous steps, the question is relevant with Rule3 and Rule4, whose simplified con-
sequents are “X(is, young)” and “Alex(is, young)” respectively. Therefore the mind map naturally
consists of two sub-mind maps. Every sub-mind map consists of several logically related rules and
facts with directed connections.

To determine whether the given question is true or not, a reasoning context for each possible sub-
mind map should be constructed to prompt the reasoning of LLMs. Therefore, to reduce the cost of
reasoning, we perform sub-mind map pruning before conducting the final reasoning.

Sub-Mind map Pruning. Due to the structural and connective nature of sub-mind maps, there
are some strong priors we can utilize to prune the sub-mind maps. Figure 3 presents an example
of sub-mind map pruning. Even though the logical relations between the conditions of a rule are
ignored in the sub-mind map, it can be easily inferred that “X” in the conditions of Rule3 should be
substituted by “Alex”, otherwise it is impossible to prove whether the given question is true based
on this sub-mind map. Similarly, it can be inferred that the “X” in the conditions of Rule1 should
be substituted by ’Stella’, yet the Fact1 connecting to Rule1 does not support that. Therefore Fact1
is removed from the sub-mind map. After that, none of the facts can be used with Rule1 to perform
any reasoning, so it is also removed. By recursively repeating this process, the number of proposals
of sub-mind maps can greatly reduces.

Context Reconstruction. After pruning the sub-mind maps, we reconstruct a reasoning context for
each remaining sub-mind map. As illustrated in Figure 3, the rules and facts in the reconstructed
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context are organized by traversing the sub-mind map from its leaf nodes to the root node which
naturally adapts to the LLMs as we demonstrate in Figure 1, thus eliciting the deductive reasoning
ability of LLMs. Moreover, compared with the original reasoning context, the reconstructed one has
the advantage of being concise and greatly reduces the impact of misleading proofs. Subsequently,
the reconstructed contexts are successively used to prompt the reasoning of LLMs until a true or
false statement regarding the given question is made.

4 EXPERIMENTS

4.1 DATASETS

(1) ProofWriter is a commonly used logical reasoning dataset for testing LLMs’ deductive rea-
soning ability. We used the open-world assumption (OWA) subset for testing. Each example in
ProofWriter consists of four parts: known facts, known rules, target question, and label. The target
question is the fact to be proved and the label is one of {PROVED, DISPROVED, UNKNOWN}.
The dataset has five subsets, named d5, d3, d2, d1 and d0 respectively. dx(x ∈ {0, 1, 2, 3, 5}) part
requires ≤ x hops for reasoning. We randomly sampled 600 examples in each part and ensured a
balanced label distribution for testing.

(2) PrOntoQA is a synthetic logical reasoning dataset, in which each example is generated from
a synthetic world model. We used the hardest fictional characters version of the dataset based on
the open-source data generation3. Each example in PrOntoQA consists of three parts: known rules,
target question, and label. The target question is the rule or the fact to be proved and the label is
one of {TRUE, FALSE}. Similar to ProofWriter, PrOntoQA is divided into five parts depending
on the depth of reasoning chains required, named hop5, hop4, hop3, hop2, and hop1 respectively.
hopx(x ∈ {1, 2, 3, 4, 5}) part requires x hops for reasoning. We randomly sampled 500 examples
in each part and ensured a balanced label distribution for testing.

(3) PrOntoQA-OOD is another synthetic logical reasoning dataset, which contains different types
of deduction rules. Similar to PrOntoQA, each example in PrOntoQA-OOD consists of three parts:
known rules, target question and label. We used the generated data file generated ood data.zip based
on the open-source repository4 to construct a test set consisting of three types of deduction rules (i.e.,
AndIntro, AndElim and OrIntro). We randomly selected 100 samples for each type of rule from the
original hop2 part.

4.2 EXPERIMENTAL RESULTS

4.2.1 PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we perform a thorough comparison between our proposed method and the existing
state-of-the-art methods (Standard Few-Shot, CoT (Wei et al., 2022), SI (Creswell et al., 2023)
LOGIC-LM (Pan et al., 2023) and LAMBADA (Kazemi et al., 2023)) for deductive reasoning.
Unless otherwise specified, all the experimental results of COP are based on GPT-3.5-Turbo Ouyang
et al. (2022).

Table 1 shows the results on subsets of ProofWriter and ProntoQA with various reasoning depths.
The results of SI and LAMBADA are taken from (Kazemi et al., 2023). COP consistently achieves
the highest label accuracy across all experimental settings. Notably, COP outperforms SOTA
methods by a large margin on the the hardest Depth-5 subset of ProofWriter. It shows a remark-
able 65.74% relative improvement compared to CoT and 23.15% compared to LAMBADA, which
clearly demonstrates the effectiveness of COP.

Intuitively, the reasoning becomes more challenging as the depth of reasoning increases. (Saparov
& He, 2023) demonstrated that the difficulty in proof planning might be an important cause why
LLMs perform poorly on multi-hop reasoning tasks. We highlight that COP creates a concise and
organized reasoning context which greatly simplifies the proof planning process, as a result of which
notably enhances the reasoning accuracy of LLMs on multi-hop problems.

3https://github.com/asaparov/prontoqa/tree/v1
4https://github.com/asaparov/prontoqa
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Table 1: Comparison of label accuracy on ProofWriter and PrOntoQA.
Datasets/ ProofWriter PrOntoQA
Methods d5 d3 d2 d1 d0 average 5-hop 3-hop 1-hop average
Standard 41.67 49.83 51.00 55.50 63.67 52.33 49.60 52.00 65.60 55.73

CoT 53.50 61.17 61.33 62.33 62.83 60.23 69.80 74.20 86.20 76.73
SI 46.00 51.00 56.00 61.00 97.00 62.2 45.00 52.00 97.00 64.67

LogicLM 70.11 - - - - - 93.20 - - -
LAMBADA 72.00 82.00 87.00 90.00 98.00 85.80 96.00 99.00 98.00 97.67

COP 88.67 90.67 91.43 92.50 98.50 91.72 99.20 99.60 100.00 99.60

4.2.2 PERFORMANCE COMPARISON ON DIFFERENT TYPES OF DEDUCTIVE RULES

Table 2: Test on PrOntoQA-OOD.
Methods AndIntro AndElim OrIntro Overall
Standard 75.00 11.00 44.00 43.33
CoT 93.00 96.00 68.00 85.67
LAMBADA 23.12 57.21 34.50 38.33
COP 92.00 95.00 95.00 94.00

To validate the performance on different deductive
rules, we tested three deductive rules (i.e., AndIntro,
AndElim, OrIntro) on PrOntoQA-OOD dataset as
all the samples in ProofWriter and PrOnto belong to
only one type of rule (i.e., modus ponens). For each
of the three rules, we randomly selected 100 samples
as the test set. The experimental results are reported
in Table 2. Though LAMBADA archives relatively
high performance on ProofWriter and ProntoQA, it
is limited to the modus ponens rule therefore losing efficacy to any other types of deductive rules. On
the contrary, the proposed method is effective on various types of deductive rules (e.g., disjunction
elimination). COP achieves comparable performance on AndIntro and AndElim, and significantly
outperforms CoT on OrIntro with a relative improvement of 39.71%.

4.2.3 PROOF ACCURACY ANALYSIS

Previous studies have demonstrated the phenomenon that CoT predicts a correct label with incorrect
reasoning chains (Saparov & He, 2023). To validate if it is the case for COP, we randomly selected
100 correctly answered samples from the Depth-5 setting of ProofWriter and manually checked the
reasoning chain produced by LLMs with COP. According to our observation, only 7 out of 100
samples contain invalid reasoning steps, which indicates that the proposed COP does arouse the
reasoning ability of LLMs and the experimental results reported above are faithful.

4.2.4 IS COP BENEFICIAL TO OTHER METHODS?
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Figure 4: (a) Comparison of LAMBADA and LAMBADA+COP on Proofwriter. (b) The propor-
tions of different error reasons of LAMBADA. (c) The proportions of different error reasons of
LAMBADA + COP. Incorrect reasoning errors include selection errors, goal decomposition errors
and sign agreement errors. And selection errors include fact check errors and rule selection errors.

The performance of LAMBADA and LAMBADA+COP on the ProofWriter d5 subset with differ-
ent inference depths are listed in Figure 4 (a). All the results are based on the LAMBADA code
we reproduced and the base model of this experiment is GPT-3.5-turbo. Compared with the origi-
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nal LAMBADA method, the performance of LAMBADA+COP under different inference depths is
improved, proving the effectiveness of COP.

Figure 4(b)(c) show the proportion of correct reasoning and the proportion of different types of
incorrect reasoning. We selected 100 test samples from the ProofWriter d5 subset to manually
check the error types of incorrect reasoning examples. As shown in the figure, equipped with COP,
the proportion of selection errors (including fact check and rule selection modules in LAMBADA)
drops significantly. The proportion of goal decomposition errors and sign agreement errors (goal
decomposition and sign agreement modules are not affected by the context redundancy and disorder)
are almost unchanged, which further proves that our COP can improve the success rate of other
methods in the fact and rule selection steps.

4.2.5 PERFORMANCE WITH DIFFERENT LARGE LANGUAGE MODELS

The majority of experiments conducted in this paper were performed on ChatGPT-3.5-turbo(Ouyang
et al., 2022). To study if the proposed COP is effective across different base models, we conducted
experiments on text-davinci-003 with the Depth-5 set of ProofWriter. Table 3 illustrates a compar-
ison between text-davinci-003 and gpt-3.5-turbo by reporting the label accuracy for samples with
different reasoning hops. As shown in Table 3, COP consistently achieves high label accuracy using

Table 3: The performance comparisons using different LLMs.
Base Models/ text-davinci-003 GPT-3.5-turbo

Methods 5-hop 4-hop 3-hop 2-hop 1-hop 0-hop 5-hop 4-hop 3-hop 2-hop 1-hop 0-hop
CoT 34.38 49.30 56.71 45.36 46.77 51.98 45.31 54.93 65.67 48.45 47.58 58.19
COP 84.38 87.32 82.09 85.42 81.30 97.74 87.50 88.73 85.07 85.58 83.87 98.31

different LLMs, revealing its effectiveness across different LLMs.

4.2.6 NUMBER OF INFERENCE CALLS
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Figure 5: Comparison of in-
ference calls.

In Figure 5, we compared the average number of inference calls
per example under different reasoning depths. COP requires sig-
nificantly fewer inference calls compared to LAMBADA, and the
number of inference calls remains relatively stable as the number
of hops increases, demonstrating our proposed COP’s superiority
in both effectiveness and efficiency.

5 CONCLUSION AND FUTURE WORK

In this study, we propose a reasoning approach called Concise and
Organized Perception (COP) to effectively handle complex deduc-
tive reasoning problems, which serves as a valuable complement
to previous stage-by-stage decomposition methods. By combining
“Concise” and “Organized” strategies with vanilla CoT, we have
achieved state-of-the-art performance on three popular deductive benchmarks. Besides, COP re-
quires significantly fewer inference calls compared to decomposition-type methods (e.g., LAM-
BADA), highlighting our superiority in terms of both effectiveness and efficiency.

We believe our key insight on the proposal of easy-to-plan method has broader implications. How-
ever, when dealing with real-world scenarios, the measuring of retrieval ability and reasoning ability
may confound. In addition, for more general reasoning tasks, the generation of a more appropriate
concept or mind map-like structure requires further exploration. We plan to address these in future
research.
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A PROMPTS

A.1 PROMPTS USED FOR PROOFWRITER:

For generating simplified representation of rules on ProofWriter:

You are given some known rules. Extract the conditions and consequents of each rule and output
follow the format of the given examples:

Examples:

Rules:

If someone sees the cat and they are not green then they see the cow. If the rabbit is kind and the
rabbit sees the squirrel then the squirrel needs the rabbit. Rough people are cold. If someone sees
the rabbit then they are not round. If someone sees the squirrel and they are not green then they need
the squirrel. If someone eats the cow then they see the rabbit. Cold things are rough. If someone is
cold then they eat the cow. Kind, rough people are round.

Output:

{”Rule1”: {”conditions”: [”X(see, cat)”, ”X(is not, green)”], ”consequents”: [”X(see, cow)”]},

”Rule2”: {”conditions”: [”rabbit(is, kind)”, ”rabbit(see, squirrel)”], ”consequents”: [”squirrel(need,
rabbit)”]}, [...]

”Rule9”: {”conditions”: [”X(is, kind)”, ”X(is, rough)”], ”consequent”: [”X(is, round)”]}}
Rules:

If something visits the mouse and the mouse visits the dog then it is cold. If mouse likes the cat then
it visits the dog. If something is cold then it likes the cat. If something is green then it sees the dog.
If something likes the mouse then it sees the cat. If dog is green and cold then it likes the cat. If
something is big and it visits the bear then the bear is green. Round things are rough.

Output:

{”Rule1”: {”conditions”: [”X(visit, mouse)”, ”mouse(visit, dog)”], ”consequents”: [”X(is,
cold)”]},

”Rule2”: {”conditions”: [”mouse(like, cat)”], ”consequents”: [”X(visit, dog)”]},
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”Rule8”: {”conditions”: [”X(is, round)”], ”consequents”: [”X(is, rough)”]}}
Rules:

{{The Rule to be simplified}}
Output:

For generating simplified representation of facts on ProofWriter: You are given some known
facts. Output the facts following the format of the given examples:

Examples:

Facts:

The bear is green. The bear likes the cat. The bear likes the dog. The bear visits the dog. The cat is
young. The cat does not see the bear. The cat sees the dog. The cat visits the bear. The dog is round.
The mouse is not big. The mouse is cold.

Output: ”Fact1”: [”bear(is, green)”], ”Fact2”: [”bear(like, cat)”], ”Fact3”: [”bear(like, dog)”],
”Fact4”: [”bear(visit, dog)”], ”Fact5”: [”cat(is, young)”], ”Fact6”: [”cat(not see, bear)”], ”Fact7”:
[”cat(see, dog)”], ”Fact8”: [”cat(visit, bear)”], ”Fact9”: [”dog(is, round)”], ”Fact10”: [”mouse(is
not, big”], ”Fact11”: [”mouse(is, cold)”]

Facts: {{The facts to be simplified}}
For generating simplified representation of questions on ProofWriter: You are given some
known facts. Output the facts following the format of the given examples:

Examples:

Facts:

The bear is green.

Output:

[”bear(is, green)”, ”bear(is not, green)”]

Facts:

The bear likes the cat.

Output:

[”bear(like, cat)”, ”bear(not like, cat)]

Facts:

The cat does not see the bear.

Output:

[”cat(not see, bear)”, ”cat(see, bear)”]

Facts:

The mouse is not big.

Output:

[”mouse(is not, big)”, ”mouse(is, big)”]

Facts: {{Question to be simplified}}
For reasoning on ProofWriter:

Given a context consists of some known facts and rules, think step by step is the given statement
true or false or unknown.

Examples:

Context:
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The mouse is cold. If something is cold then it likes the cat. The mouse eats the dog. If something
likes the cat and it eats the dog then it likes the rabbit. If something likes the rabbit then it visits the
dog.,

Statement:

The mouse visits the dog.

Output:

The mouse is cold. If something is cold then it likes the cat. Therefore the mouse likes the cat. The
mouse eats the dog. If something likes the cat and it eats the dog then it likes the rabbit. Therefore
the mouse likes the rabbit. If something likes the rabbit then it visits the dog. Therefore the mouse
visits the dog. Therefore the given statement ’The mouse visits the dog’ is True.

Context:

The cat visits the dog. The mouse likes the rabbit. If something likes the rabbit and the cat visits the
dog then it likes the dog. The mouse eats the dog. If something likes the dog and it eats the dog then
it likes the rabbit. If something likes the ’rabbit then it visits the dog.

Statement:

The mouse does not visit the dog.

Output:

The cat visit the dog. The mouse likes the rabbit. If something likes the rabbit and the cat visit the
dog then it likes the dog. Therefore the mouse likes the dog. The mouse eats the dog. If something
likes the dog and it eats the dog then it likes the rabbit. Therefore the mouse likes the rabbit. If
something likes the rabbit then it visits the dog. Therefore the mouse visits the dog. Therefore the
given statement ’The mouse does not visit’ is False.

... Context:

{{The context used to perform reasoning}}
Statement:

{{The question to be proved}}
Output:

A.2 PROMPTS USED FOR PRONTOQA:

For generating simplified representation of rules on PrONtoQA:

You are given some known rules. Extract the conditions and consequents of each rule and output
follow the format of the given examples:

Examples:

Rules:

Jompuses are not shy. Jompuses are yumpuses. Each yumpus is aggressive. Each yumpus is a
dumpus. Dumpuses are not wooden. Dumpuses are wumpuses. Wumpuses are red. Every wumpus
is an impus. Each impus is opaque. Impuses are tumpuses. Numpuses are sour. Tumpuses are not
sour. Tumpuses are vumpuses. Vumpuses are earthy. Every vumpus is a zumpus. Zumpuses are
small. Zumpuses are rompuses.’

output:

{”Rule1”: {”conditions”: [”X(is, jompus)”], ”consequents”: [”X(is not, shy)”]},

”Rule2”: {”conditions”: [”X(is, jompus)”], ”consequents”: [”X(is, yumpus)”]},

”Rule3”: {”conditions”: [”X(is, yumpus)”], ”consequents”: [”X(is, aggressive)”]},

[...]
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”Rule17”: {”conditions”: [”X(is, zumpus)”], ”consequents”: [”X(is, rompus)”]}
}
Rules:

{{The Rule to be simplified}}
For generating simplified representation of facts on PrONtoQA:

You are given some known facts. Output the facts following the format of the given examples:

Examples:

Facts:

Sally is a numpus. Fae is a dumpus. Stella is shy.

Output:

{”Fact1”: [”Sally(is, numpus)”], ”Fact2”: [”Fae(is, dumpus)”], ”Fact3”: [”Stella(is, shy)”]}
Facts:

{{The Facts to be simplified}}
Output:

For generating simplified representation of question on PrONtoQA:

You are given some known facts. Output the facts following the format of the given examples:

Examples:

Facts:

Max is sour

Output:

[”Max(is, sour)”, ”Max(is, sour)”]

Facts:

Wren is not metallic.

Output:

[”Wren(is not, metallic)”, ”Wren(is, metallic)”]

Facts:

Fae is not opaque.

Output:

[”Fae(is not, opaque)”, ”Fae(is, opaque)”]

Facts:

Alex is hot.

Output:

[”Alex(is, hot)”, ”Alex(is not, hot)”]

Facts:

Output:

For reasoning on PrONtoQA:

Given a context consists of some known facts and rules, think step by step is the given statement
true or false.

Example:
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Context:

Max is a yumpus. Each yumpus is a dumpus. Dumpuses are wumpuses. Every wumpus is an impus.
Impuses are tumpuses. Tumpuses are not sour.

Statement:

Max is sour.

Output:

Max is a yumpus. Each yumpus is a dumpus. Therefore Max is a dumpus. Dumpuses are wumpuses.
Therefore Max is a wumpus. Every wumpus is an impus. Therefore Max is an impus. Impuses are
tumpuses. Therefore Max is a tumpus. Tumpuses are not sour. Therefore Max is not sour. Therefore
the given statement ’Max is sour’ is False.

Cnntext:

Stella is a yumpus. Yumpuses are zumpuses. Zumpuses are impuses. Each impus is a dumpus. Each
dumpus is a vumpus. Vumpuses are bright.

Statement:

Stella is bright.

Output:

Stella is a yumpus. Yumpuses are zumpuses. Therefore Stella is a zumpus. Zumpuses are impuses.
Therefore Stella is an impuses. Each impus is a dumpus. Therefore Stella is a dumpus. Each
dumpus is a vumpus. Therefore Stella is a vumpus. Vumpuses are bright. Therefore Stella is bright.
Therefore the given statement ’Stella is bright’ is True.

{{The context used to perform reasoning}}
Statement:

{{The question to be proved}}
Output:

B HOW WE GENERATE THE CONCEPT MAPS

Algorithm 1: Generation of the Concept Maps
Input: Facts F , Rules R

1 F̂ : {f̂0, f̂1, ...f̂n} = Simplified(F)
2 R̂: {r̂0, r̂1, ...r̂n} = Simplified(R)
3 where r̂i = {”conditions” : [cdn0, ..., cdnn], ”consequents” : [cst0, ..., cstn]}
4 for r̂i in R̂ do
5 for r̂j in R̂ do
6 if Fulfilled(r̂i[”conditions”], r̂j [”consequents”]) then
7 Connect(r̂i, r̂j)
8 end
9 end

10 for f̂j in F̂ do
11 if Fulfilled(r̂i[”conditions”], f̂j) then
12 Connect(r̂i, f̂j)
13 end
14 end
15 end
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C DETAILED ERROR ANALYSIS

The proposed method consists of several steps (i.e., Generation of Concept Maps, Generation of
Mind Map, Context Reconstruction and Reasoning using LLMs). We present the detailed error
analysis in Table 4. Notably, since context reconstruction is based on rules and will not cause any
errors, it is not included in the detailed error analysis.

Table 4: Detailed Error Analysis on d5 split of ProofWriter
Stages Generation of Concept Maps Generation of Mind Map LLMs’ reasoning

Simplifying
Rules&Facts

Connecting
Rules&Facts

Simplifying
Question

Generating
mind map

Hallucination Multi
conditions

Multi-hop
planning

Error Cases 8 13 0 3 10 12 20
Accuracy 98.67%

(592/600)
97.80%
(579/592)

100%
(579/579)

99.48%
(576/579)

92.71% (534/576)

The error analysis is based on the results of d5 split on the ProofWriter dataset. The test set is made
up of 600 samples. According to Table 4, the main failure of COP is attributed to the instability
in the reasoning of LLMs even after all the previous steps are correct. We further divide these bad
cases as three types: failure caused by hallucination, failure caused by multi conditions and failure
caused by multi-hop planning. Examples of the three kinds are listed below:

Example for hallucination:

The concise and organized context: Anne is round. All round people are kind. Kind people are
blue.Anne is round.If someone is round and blue then they are white.

The statement to be proved: Anne is not white

Ground Truth: False.

Proof steps produced by LLMs: Anne is round. All round people are kind. Therefore Anne is kind.
Kind people are blue. Therefore Anne is blue. If someone is round and blue then they are white.
Therefore Anne is white. Therefore the given statement ’Anne is not white’ is True

Despite the model generate correct proof steps, it produce a wrong answer, which might be caused
by hallucination.

Example for failure caused by multi conditions:

The concise and organized context: Harry is kind.All kind, red things are green.

The statement to be proved: Harry is not green.

Ground Truth: Unknown.

Proof steps produced by LLMs: Harry is kind. All kind, red things are green. Therefore Harry is
green. Therefore the given statement ’Harry is not green’ is False.

The model happens to wrongly process rules with multi conditions like “All kind, red things are
green”.

Example for failure caused by multi-hop planning:

The concise and organized context: The cow chases the cat. If someone chases the cat then they
visit the tiger. If someone visits the tiger then they visit the bald eagle.

The statement to be proved: The cow does not visit the bald eagle.

Ground Truth: False.

Proof steps produced by LLMs: The cow chases the cat. If someone chases the cat then they visit
the tiger. Therefore the given statement ’The cow does not visit the bald eagle’ is Unknown.

The model happens to fail in proof planning for multi-hop problems even if the context is concise
and organized.
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The failure caused by multi-hop planning and the failure caused by hallucination can be further
mitigated by decomposing the reasoning steps into smaller tasks like least-to-most prompting and
the strengthening of LLMs’ fundamental ability. We leave the failure caused by multi conditions as
future work.

D EXPERIMENTS ON FOLIO

We further conduct experiments on FOLIO, a real-world logical reasoning benchmark with various
type of rules. The results are listed in Table 5.

Table 5: Comparison of label accuracy on FOLIO
Methods Accuracy
Standard 54.60

CoT 57.84
Logic-LM 61.76

COP 65.27

To adapt to FOLIO, which is more complex and contains various language patterns and rule types,
COP adopts a combination of rouge scores and semantic similarity method to generate the concept
maps and mind maps. With the slight adjustment, COP outperforms CoT and LogicLM while LAM-
BADA is not able to work on this dataset, demonstrating the general efficacy of COP. The concise
and organized context that COP provides on FOLIO facilitates the reasoning of LLMs while CoT
still suffers from redundant and out-of-order context.

E TOKEN USAGE AND NUMBER OF INFERENCE CALLS

We present a comparison of token numbers used per question on ProofWriter dataset with different
hops in Figure 6.
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Figure 6: Comparison of token usage and the number of inference calls.

The token numbers are taken from the usage statistics returned by the OpenAI API. COP-Prompt
and LAMBADA-Prompt stand for the input token numbers of COP and LAMBADA while COP-
Total and LAMBADA-Total stand for the overall token consumed by input and output. As is shown
in the table, COP costs much fewer token numbers as well as inference calls than LAMBADA and
they remain relatively stable as the number of hops increases, demonstrating our proposed COP’s
superiority in both effectiveness and efficiency.
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F A BRIEF INTRODUCTION OF COP WITH A CONSISTENT RUNNING
EXAMPLE

In this paper, we demonstrate that LLMs excel in deductive reasoning but struggle in proof planning.
Therefore, we naturally come up with an idea to imitate of human cognition. The proposed COP
first obtains a comprehensive understanding of the reasoning context by generating a concept map
depicting the relevance between given rules and facts. Then, given a query that need to be proven
or answered, COP identifies the most relevant information from the concept maps while eliminating
redundancy, resulting in a mind map-like structure centered around the query node. After that, LLMs
are prompted by the context sentences which are organized in a progressively ordered manner within
one or more sequential sub-mind maps, in order to better adapt to the inference process of the model.

In this section, we briefly introduce COP based on the following example.

Context:
Rule1: All blue things are green.
Rule2: All rough, nice things are young.
Rule3: Green things are nice.
Rule4: If Erin is blue and Erin is furry then Erin is rough.
Rule5: Green, smart things are furry.
Rule6: All furry things are blue.
Fact1: Bob is furry.
Fact2: Bob is rough.
Fact3: Erin is blue.
Fact4: Erin is furry.
Fact5: Erin is green.
Fact6: Erin is nice.
Fact7: Erin is young.
Statement to be proved:
Bob is nice.

Firstly, to imitate the process of human beings organizing thoughts, a concept map is generated to
present the relevance of given rules and facts. The generation process further consists of two steps.

Simplified Representations of Rules and Facts. To enable connecting relevant rules and facts with
each other, we utilize LLMs with few-shot prompt to create a unified and simplified representation
for the facts and the rules. For example, Rule1 is changed into “conditions: [X(is, blue)], conse-
quents: [X(is, green)]” where “X” can be substituted by any entities. Fact1 is changed into “[Bob(is,
furry)]”.

Connecting of Rules and Facts. With the simplified representations of rules and facts, we connect
each rule to facts as well as rules whose consequents satisfy one or more of the conditions specified
in the current rule. For example, by unifying same entities, we can connect Rule1 to Fact3 since
they share the same entity “blue”.

Secondly, given a query (i.e., Bob is nice in the given example), we identify relevant clues from the
concept maps to create a mind map with the question node at its center. The process also consists of
two sub steps.

Simplified Representations of the given question. Similar to the simplifying process of facts and
rules, we utilize LLMs with few-shot prompt to change “Bob is nice” into “[Bob(is, nice)]” and its
contrary statement “[Bob(is not, nice)]”.

Generation of the mind map. With the simplified question, we use the same way as we connect
rules and facts when constructing the concept to identify the relevant rules and facts. For example,
“Bob(is, nice)” can be connected by Rule3 (i.e., Green things are nice. ). Therefore, we are able to
obtain a mind map by perform a D-depth searching starting from Rule3 in the concept map where D
is the max reasoning depth. In this way, a number of irrelevant rules and facts can be excluded from
the mind map.
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The mind map might consists of several sub mind maps, each of which is a potentially possible
reasoning path to determine whether the given question is True or False. Before we utilize LLMs to
perform the final reasoning, we reconstruct the reasoning context in two steps:

Sub-Mind map Pruning. Since we know what to prove, we can remove sub mind maps which
are obviously useless. Sub mind maps without a valid fact can not be used to reach a conclusion.
Therefore, sub mind maps like “Rule5 -¿ Rule6 -¿ Rule1 -¿ Rule3” is removed.

Context Reconstruction. We reconstruct a reasoning context for each remaining sub-mind map.
Given the sub mind map “Fact1 -¿ Rule6 -¿ Rule1 -¿ Rule3”, the context is reconstructed as “Bob is
furry. All furry things are blue. All blue things are green. Green things are nice.” by traversing the
sub-mind map from its leaf nodes to the root node which naturally adapts to the LLMs.

Finally, we use the reconstructed contexts to prompt the reasoning of LLMs until a true or false
statement regarding the given question is made.

G EXAMPLES OF PROOFS GENERATED BY COT AND COP

Rules:

If someone eats the bear and the bear likes the cow then the bear likes the dog. If someone is kind
then they chase the mouse. If someone eats the cow then the cow is young. If someone likes the
mouse then they eat the dog. If the dog likes the mouse and the mouse does not like the dog then the
mouse does not like the cow. If the cow is young and the bear does not chase the cow then the cow
is kind. If someone eats the cow then the cow eats the mouse. If someone eats the dog then they eat
the cow.

Facts:

The bear does not chase the cow. The bear is big. The bear is cold. The bear is young. The bear
likes the dog. The bear likes the mouse. The cow does not chase the dog. The cow likes the mouse.
The dog does not chase the bear. The dog does not eat the cow. The dog is not cold. The dog does
not like the bear. The dog likes the cow. The dog does not like the mouse. The mouse is kind. The
mouse likes the bear.

Question:

The cow is not young.

Context reconstructed by COP:

The bear likes the mouse. The cow likes the mouse. If someone likes the mouse then they eat the
dog. If someone eats the dog then they eat the cow. If someone eats the cow then the cow is young.

LLM’s proof steps produced by CoT based on the context reconstructed by COP:

The bear likes the mouse. The cow likes the mouse. If someone likes the mouse then they eat the
dog. Therefore the bear eats the dog and the cow eats the dog. If someone eats the dog then they eat
the cow. Therefore the bear eats the cow and the cow eats the cow. If someone eats the cow then the
cow is young. Therefore the cow is young. Therefore the given statement ’The cow is not young’ is
False.

LLM’s proof steps produced by CoT based on the original context:

If the cow is not young, it means that someone has eaten the cow. According to Rule 6, if someone
eats the cow, then the cow eats the mouse. However, based on the given facts, we know that the cow
likes the mouse, which contradicts the statement. Therefore, the statement ”The cow is not young”
is False.

LLMs with CoT based on the original context can easily produce wrong answers or unfaithful proof
steps, like “based on the given facts, we know that the cow likes the mouse, which contradicts the
statement. ” in the above example. However, with the concise and organized context reconstructed
by COP, LLMs with CoT is able to produce correct answer with faithful proof steps.
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