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Abstract

Language models are transforming the ways that their users engage with the world.
Despite impressive capabilities, over-consumption of language model outputs risks
propagating unchecked errors in the short-term and damaging human capabilities
for critical thinking in the long-term. How can we develop scaffolding around
language models to curate more appropriate use? We propose selective frictions
for language model experiences, inspired by behavioral science interventions, to
dampen misuse. Frictions involve small modifications to a user’s experience, e.g.,
the addition of a button impeding model access and reminding a user of their
expertise relative to the model. Through a user study with real humans, we observe
shifts in user behavior from the imposition of a friction over LLMs in the context
of a multi-topic question-answering task as a representative task that people may
use LLMs for, e.g., in education and information retrieval. We find that frictions
modulate over-reliance by driving down users’ click rates while minimally affecting
accuracy for those topics. Yet, frictions may have unintended effects. We find
marked differences in users’ click behaviors even on topics where frictions were
not provisioned. Our contributions motivate further study of human-AI behavioral
interaction to inform more effective and appropriate LLM use.

1 Introduction

There is a colloquial adage that “just because you can, does not mean you should.” Large language
models (LLMs) have seen unprecedented rates of use: OpenAI’s ChatGPT had 100 million users
within the first two months of release [41]. However, characterizing regimes of appropriate use is
non-trivial: LLMs are general-purpose technologies with a plethora of use cases. LLMs may not
be appropriate to deploy in all contexts as we have seen LLMs perform poorly at mathematics and
arithmetic [10, 16], avoiding biased and hateful statements [19], and debugging code [44]. To better
modulate when LLMs are used, we study the selective use of LLMs, thereby limiting access to their
responses for specific queries, for specific users.

Mechanisms like reinforcement learning with human feedback [38] and direct preference optimiza-
tion [40] take steps to steer LLM responses away from illegal, undesired, and toxic content. However,
there are reasons beyond safety why it could be desirable to curb LLM use. In some contexts, dis-
couraging the use of LLMs for particular users can yield economic or personal benefits. For example,
encouraging students to solve problems on their own instead of accessing answers provided by LLMs
may encourage a deeper understanding of and engagement with educational material [42, 53]. To
prevent over-reliance on LLMs, dubbed “algorithm appreciation” [31], we advocate for thoughtful
interactions with LLMs where users are vigilant about when they use these tools [52].
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Figure 1: Frictions permit continued model access, but require more effort to procure access.
Left: unrestricted access; middle: restricted access; right: frictioned access. We explore the use of
selective frictions with respect to user expertise as a way to modulate the ease of model access across
task instances.

To promote disuse, a spartan option is to restrict access to the LLM response entirely. For example, in
deferral schemes, models abstain from providing predictions on specific task instances [33, 35]. As
opposed to strict disuse wherein the LLM response is hidden, which could impair user freedoms, we
consider selectively adding friction to an individual’s experience with an LLM. Adapting a definition
from Etzioni [15], we define a friction in the context of LLM assistance as:

A deliberate design element for increasing the time, effort, or cognitive load of accessing an
AI-generated output by prompting conscious consideration of the task at hand.

Also referred to as a nudge [51], microboundary [12], or cognitive forcing [13], frictions assuage
algorithm appreciation and promote vigilant use of LLMs: users are encouraged to think twice before
relying on an LLM. Similar to selecting when to abstain, introducing selective frictions can depend
on model behavior, human expertise, or sociotechnical factors [3]. For instance, a friction could be
selectively applied for a user who is relatively stronger than the LLM at some topic like mathematics.

We contribute a case study of the imposition of selective frictions, focusing on selectivity with respect
to user expertise. Specifically, we consider a question-answer setting, reminiscent of “information-
seeking”, knowledge retrieval tasks that users may engage in with AI-based search summaries, e.g.,
Perplexity or Google Summaries. We extend the user interface, Modiste, from Bhatt et al. [4] to
explore the imposition of an extra-click selectively (on only some topics, for some users) before the
user can receive LLM assistance. We explore the impact of friction on users’ click rates and attainable
accuracy on multiple choice question from the popular and challenging NLP benchmark, MMLU [22]
and other auxiliary measures, such as a user’s confidence in their performance and that of the LLM.
We observe marked behavior in users’ click rates from the introduction of friction, providing initial
evidence that frictioning LLM access can serve as one effective “lever” to design to modulate user
experiences and help titrate overreliance. Yet, our study urges caution—to our surprise, we observe
potential “spillover” effects where user behavior changes (i.e., reduced LLM engagements) even
when no friction was imposed. Our study motivates further interdisciplinary human-centric work
studying the interplay of human behavior, pragmatic inferences, and LLM predictions.

2 A Case Study in Selective Frictions

2.1 Task

We begin to explore the design and deployment of selective frictions for LLM experiences. Specifi-
cally, we consider assisted question-answering. Prior studies including Bhatt et al. [4], Mozannar
et al. [36] have explored LLM assistance in answering multiple-choice questions from MMLU [22];
in particular, we build on the set-up and Modiste interface from Bhatt et al. [4], which supports
rapid prototyping of user studies under various forms of assistance. Participants answer a total of
60 multiple-choice questions sampled from four topics of MMLU: US foreign policy, elementary
mathematics, high school computer science, and high school biology.
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In the baseline condition, participants can press a button to “query” the LLM and receive assistance
on the current multiple-choice question (as shown in Figure 5), which then highlights one of the four
multiple-choice options (as shown in Figure 6). As in many real-world settings, we selected a pool
of questions where the model is not always correct, as it may not be in many real-world settings, as
discussed in Appendix C.3.

2.2 Instantiation of Selective Friction

We propose a selective friction on top of this button by presenting the user with a second button
requiring them to click again, indicating that they are certain that they want to see the model prediction.
While the first button can be considered a friction in and of itself [6]; rather, we treat it as a baseline
to compare selective frictions.

When to impose a friction? There are a variety of reasons for which a friction could benefit user
subgroups, depending on the context. In our case study, we study one characteristic: user expertise.
If one is already good at computer science, one may not benefit from access to the LLM prediction,
particularly if the model has low accuracy.

To assess user expertise across the MMLU topics, we first have the user take a brief quiz (5 questions
for each of the 4 topics). If they achieve higher performance than the LLM in a particular topic, then
they will be presented with the friction for all questions of that topic in the “test” phase. If the user
achieves the same expected topic performance as the model, when they indicate they want to see
the model’s prediction, there is no friction on access. We decide to friction a new question x if the
following quantity is nonzero:

friction(x) = 1[LLMt(x) > Usert(x)] (1)

where t(x) represents the topic of the query at hand, LLMt(x) represents the expected topic perfor-
mance of the LLM, and Usert(x) represents the expected topic performance based on the brief 5
question quiz. Details on the LLM performance for each topic are included in Appendix C.3.

How to present the friction? The friction takes the form of clicking a second button to view the
LLM prediction. But what should this friction say? Small changes in wording can induce markedly
different behavior in humans [20, 47]. To selectively friction by user expertise, we remind users of
their expertise (relative to the model). We present performance as a frequency drawing on Lai and
Tan [27] using the following template: Do you really want to see the prediction? The AI
model gets an average of X out of 10 questions correct on Math. Based on your
warmup answers, we estimate that you get an average of Y out of 10 questions
correct. We present an example interface in Figure 3.

2.3 Participants

We recruit 100 participants from Prolific [39] in an institutionally-ethics reviewed study; participants
are recruited from the US and required to speak English as a first language. Participants are randomly
assigned to either the selective-friction or baseline condition (N = 47 and 53). In the friction
condition, based on Eq. 1, 42 of 53 participants received friction for foreign policy, 49 for mathematics,
12 for computer science, and none for biology. We include more details in Appendix C.

2.4 Metrics

We focus on three metrics: (i) user accuracy over the questions for a given topic, (ii) click rate for
questions in a given topic, which is the proportion of times that the user clicks to see the LLM
prediction for M questions within a topic1, and at the end of the study, (iii) the users’ self-reported
belief in their performance, as well as the LLM’s performance, on each topic.

3 Results

Key Finding 1: Selective frictions can reduce click rates while maintaining accuracy. We
analyze participant accuracy and click rates and conduct Ordinary Least Squares Regressions with

1In the frictioned setting, since the user technically needs to click twice before accessing the model, we only
tally the second click.
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Figure 2: Frictioning reduces clicks to see LLM predictions. We measure the click rate for each
user across topics. We find that, for all topics, click rates are statistically significantly reduced
(p < 0.05) in the selective friction condition. Error bars indicate standard error over participants.

Benjamini-Hochberg correction, using a significance level of 0.05. We find that frictioning user
experiences, in the way we have done here, indeed significantly lowers user click-through rates as
shown in Figure 2 (p < 0.05). These results are encouraging, demonstrating friction may be one
way to encourage users to solve problems independently. This finding is buttressed by minimal, not
significant change in the users’ accuracy, furthering the benefits of friction to users’ critical thinking.

Key Finding 2: Frictions can induce unintentional spillover effects. However, to our surprise,
we see that click rates drop for participants in the friction condition for biology—even though no
participants were frictioned specifically for biology. This observation is important; frictioning users’
experience in one region of the task space may influence users’ decisions in other regions. We
speculate why this may be happening, and encourage future work to empirically investigate this
phenomenon further.

When a user is frictioned, we inform them of their own performance and that of the model (which, by
definition of seeing the friction, is necessarily lower than the users’). The user may overgeneralize the
lower model behavior on the frictioned topics to non-frictioned topics. We do observe a drop in users’
predicted model accuracy in Table 1, across all topics. Alternatively, or additionally, frictions may
encourage a user’s own abilities and increase self-confidence in other questions. We correspondingly
observe in Table 1 that users’ self-confidence tends to increase in the frictioned setting.

4 Discussion

As users increasingly access powerful AI systems, buttressed by lightweight natural language inter-
faces, questions around how system designers can encourage and safeguard appropriate use grows
more urgent. Our study demonstrates that small changes to user interfaces in the form of frictions
can modulate user behavior, while preserving general user freedoms. We show that appropriately
designed frictions can reduce user engagement and instances of over-reliance with minimal change in
user accuracy. It is thus possible that frictions can serve as a critical tool in promoting the respon-
sible use of LLMs. By incorporating barriers that encourage users to engage more critically with
AI-generated content, policymakers can help ensure that LLMs are used thoughtfully and selectively,
thus preserving and fostering users’ impartiality and autonomy [2, 14, 46].

Here, we focused on adding hurdles along a user’s path to engaging an LLM. Much work in the
behavioral sciences has studied positive interventions to encourage particular kinds of behavior
by “nudging” [47]. Next steps can explore nudges in our MMLU and other settings, as well as
alternate mechanisms for instantiating selective frictions drawing on computational models of human
behavior [8]. Further, while our selective frictioning design permits tailored user experiences, e.g., by
expertise as we have shown, personalization of LLM experiences can come with risks [26].

While we find that our frictions can dampen excess engagement with an LLM when a user has
appropriate expertise, we find that targeted frictions can have “spillover effects” wherein users’
behavior changes even on topics where frictions were not added nor intended to be added. Our
preliminary observations urge caution for designers of interventions around AI systems – human
behavior is complex, and small changes in the realm of interaction may ripple into another. We are
excited by future research at the intersection of AI and the behavioral sciences towards more effective
“thought partners” [11].
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Limitations

Our case study focuses on a single type of friction surrounding selective reminders with respect to
user and model expertise; future work is needed to explore whether there are more effective frictions
in terms of click rate modulation that may reduce spillover effects. Additionally, from our current
study design, we cannot observe whether the user really needed and/or benefited from the LLM
prediction. For example, some users clicked simply out of curiosity or to double-check their answers
as noted in some post-survey responses (see Appendix D.1), which likely reduced the observed effect.
As we only obtain the user’s final prediction, future work might consider an alternative study design
that asks the user for their answer before they see the LLM prediction, which may change the user’s
decision-making process. Another limitation of this work is our focus on a single dataset, MMLU.
Since some of the tasks in question are quite challenging. We do not see any participants achieve
high enough biology performance to be frictioned; many people may feel they need support from
the LLM regardless. It is possible, as well, that our quiz does not obtain an adequate appraisal of
participant expertise. We only evaluate participants on 5 questions per topic; as such, the expertise
profile procured is necessarily an estimate – and we employ a necessarily reductive binary jurisdiction
as to whether or not to apply a friction according to this coarse assesment of expertise. Future work
is needed to explore alternative expertise elicitation schemes, and to understand whether click rate
modulation and possible spillover effects in LLM experiences generalize to other settings and user
populations.
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A Ethics Statement and Potential Risks

As in the use of nudges from behavioral economics, there are critical conversations that warrant
conversation around risks of selective frictions. While we take the stance as Thaler and Sunstein [47]
that the choice to not adjust any access to users’ experiences is still a choice, there are important
questions around who is deciding when to impose frictions and on which user populations. While
selective frictions could be one way to encourage critical thinking, as we begin to demonstrate here,
without responsible design, they could negatively shape users’ choice environments [46]. More
pressingly, selective use of frictions may lead to disparate treatment of users, as some sub-populations
of users may be frictioned on specific task instances more than others [24]. For instance, user
expertise may be distributed unequally across a protected attribute; our friction framework would
then disparately friction users increasing the effort required for some users to access the LLM
output [21, 49]. Systems designers ought to be aware of such disparities and take the necessary
precautions when deploying frictioned access to LLMs.

Table 1: Frictioning induces minimal change in accuracy and may sway user belief in self- and
model performance. Per topic, we report average user accuracy and reported belief of expected self-
and model performance (i.e., S-Belief and M-Belief respectively). Error bars indicate standard error
over participants.

US Foreign Policy Math CS Bio
Variant Acc S-Belief M-Belief Acc S-Belief M-Belief Acc S-Belief M-Belief Acc S-Belief M-Belief

Baseline 0.40 ± 0.04 0.35 ± 0.07 0.53 ± 0.06 0.67 ± 0.06 0.47 ± 0.08 0.63 ± 0.08 0.55 ± 0.04 0.25 ± 0.06 0.58 ± 0.07 0.67 ± 0.05 0.40 ± 0.07 0.60 ± 0.06
Friction 0.46 ± 0.05 0.47 ± 0.06 0.45 ± 0.06 0.66 ± 0.05 0.58 ± 0.07 0.57 ± 0.08 0.58 ± 0.04 0.36 ± 0.06 0.53 ± 0.07 0.67 ± 0.04 0.48 ± 0.06 0.55 ± 0.06

B Related Work

In this work, we focus on LLM-assisted user interactions and decision-making [18, 28]. Prior studies
studying these contexts have shown the tendency for humans to overrely on AI support [9, 25, 48].
As such, recent works have considered adapting when AI support is provided to users: Ma et al. [32]
fit a decision tree to offline users’ decisions to decide when to show AI support to users, Buçinca et al.
[7] use offline reinforcement learning to estimate if AI support would be helpful, and Bhatt et al. [4]
employ online learning techniques to personalize a decision support policy to individuals. Relatedly,
others have considered selectively delegating entire tasks to the AI model [17, 29, 33, 35, 50]. In
many cases, it may not be possible (or desirable even if possible) to have an LLM make the final
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Figure 3: Interface for selective friction; here the user scored higher than the model in their pre-quiz
on mathematics. If the user presses the “Show AI Prediction” button (first button) they are then
presented with the red block (second button) which they are forced to click if they still want to see
the prediction.

decision, and in others, it may not be justifiable to withhold user access to LLMs These constraints
motivate our study of frictions, which permit continued model access but require more effort on the
user’s end to procure access.

Our work builds on the wealth of prior research into the design and effect of nudges on human
behavior [23, 43, 47]. The notion of nudges is increasingly permeating machine learning, whether
in the use of techniques from machine learning to design nudges [8] or nudging to support more
appropriate use of AI systems [5, 30]. Relatedly, “microboundaries” [12], are small, intentional
barriers integrated into user interfaces to promote more mindful interactions. Microboundaries can
reduce the likelihood of users making errors or engaging in habitual, potentially harmful behaviors
by interrupting their flow and requiring them to take an additional step before proceeding. There
are several potential advantages of microboundaries (a la warning signals) as a type of design
friction [1, 34, 45]. To our knowledge, we are the first work to explore selective frictioning of LLM
use.

C Additional Details on Human Experiments

C.1 Participant Recruitment

We provide additional details on our user study. Participants receive the quiz for all conditions. The
same questions are presented across both conditions, selected from three batches of 60 questions,
as in [4]. The “test” phase involves 10 questions per topic. Participants are provided feedback as to
whether they (and the model, if seen) are correct after each test trial. Feedback is not given in the
quiz phase. Participants are paid at a base rate of $9 per hour for an expected 30 minute experiment
with an optional bonus up to $10 per hour for correct answers; we apply the bonus to all participants.
All data is anonymized, and participants provided informed consent before beginning the study.

C.2 Eliciting Perceived Self- and Model-Ability

At the end of the study, users are presented with a questionarre asking them to judge their own and
the model’s ability per topic. Specifically, we asked, for each topic: “Out of 100 questions on TOPIC,
how many do you think the AI would get correct?” and “Out of 100 questions on TOPIC, how many
do you think you could get correct (without the help of the AI-based model)?” For each question,
users responded on an slider ranging from 0 to 100.
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Figure 4: Comparing per-topic click rates people within the friction condition (N = 53) who did or
did not see a friction. No one was frictioned for biology.

C.3 LLM Predictions

We use the same model predictions as in [4], which were sampled from InstructGPT3.5
text-davinci-003 [38]; however, we randomly dampen model performance for the foreign policy
and computer science topics such that the models achieve 30% and 60% performance on each,
respectively. The model achieves approximately 30% and 90% performance on mathematics and
biology. MMLU is challenging for humans [4, 22, 37]; our selective friction is triggered by user
performance relative to the model’s average performance on a topic – if the latter is too high, the
friction will not be triggered. Accordingly, we expect with the dampening that we should have high
trigger rates for mathematics and foreign policy, moderate rates for computer science, and low rates
for biology – enabling us to study user click behavior across a range of model performances and
settings wherein in some cases it is indeed rationale to rely on the model whereas in others, it may be
disastrous for a user to regularly rely on the model (e.g., in elementary mathematics).

C.4 User Study Interface

We include example screenshots of the button interface and friction in Figures 5 and 3, respectively.
When the user does click through to the LLM prediction, it is displayed as in 6, following Bhatt et al.
[4].

D Additional Human Experiment Results

We include additional exploratory investigations into user behavior. We report average time spent for
each topic in Table 2. We observe that the average time spent per problem appears to increase across
topics.

We also decompose user behavior in Figure 4 within the frictioned condition according to whether
the participant received a friction on that topic or not. Here, we can more clearly see that click rates
decrease for participants who are explicitly frictioned. However, we caveat these results in that the
friction intervention itself induces biases in the user samples across the groups. Participants only see
a friction if they are necessarily better than the model; hence, users may already be inclined to click
less often.

Table 2: Average time (seconds) per user per topic per question. We do not generally observe a
significant difference in the amount of time spent as a result of the selective frictioning.

US Foreign Policy Math CS Bio
Variant Time (sec) Time (sec) Time (sec) Time (sec)

Baseline 18.53 ± 1.59 23.23 ± 3.31 18.58 ± 2.50 22.80 ± 8.49
Friction Condition 23.29 ± 2.49 27.25 ± 3.15 18.85 ± 1.74 23.48 ± 3.72

D.1 Example User Responses

We asked participants in a post-survey questionarre what factors led them to click. We include a few
exemplary responses below:
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• “On questions where I didn’t immediately know the answer, I clicked to see
the model predicted answer in case it would help me. On questions where I
didn’t know the answer at all, I clicked to see the model predicted answer
to help me know where to start.”

• “If I simply had no idea what the answer was to a question, I would click
to see what the prediction would say and then decide if I wanted to go
along with it or not. The other instance would be if I was stuck between
two choices, I’d click the button to see if the prediction was the same
answer as mine or not to have some sort of confirmation.”

• “not knowing anything about the topic or having any idea as to the right
answer i clicked on the the ai button hoping it would help or know more
than me. I also clicked it a couple times when i thought i knew the answer
but wasnt 100% sure and if it chose the same as me i felt more confident”

• “Unsure if I had the right answer and not having enough knowledge or not
having used knowledge of the subject for up to 30 years”

• “I used the prediction button if I felt unsure of the answer or if I wanted
to feel more assured of my own answer.”

• “At first it was to help me with answering the question, then I realized
the AI gave wrong answers as well, so for the ones I was sure of the answer
I still clicked to see what it would show.It was very satisfactory to see
I got it right when AI got it wrong, but very disappointing when AI gave
me wrong answer when I didn’t know the correct answer”

• “If I was unsure of the correct answer (or second guessing myself), I
checked the model prediction to see if the AI model aligned with what I
was thinking”

When asked why they clicked, we noted that a few participants did report that they were simply
curious:

• “In instances where I doubted my answer, I clicked to see the A.I model
prediction. After getting an answer wrong I had an urge to click on the
prediction. When I had no clue what to answer, I clicked the button.
Sometimes, especially, for the math questions I clicked out of curiosity
since I observed the A.I often got the answers wrong.”

• “I was mainly interested to see what it thought the answer was, independent
if I thought I knew the answer or not. I had to look.”

• “I am not familiar with the terminology and am curious how AI responds.”

We also asked participants why they chose not to click:

• “I already 100% knew the answer so I didn’t wait to see what the model
predicted answer was.”

• “I thought it would struggle to answer some of the more linguistically
complicated questions correctly (like the ones that asked which of these is
not true and 3 things are and 1 is not). I also thought for the most basic
math problems (like things that were essentially a single computation),
there wasn’t really a need.”

• “I didn’t click the button for answers where I was highly confident. (I
suppose it probably wouldn’t have hurt to click it, but it would take a
little pride out of it if the AI was correct too...)”

• “I like to challenge myself naturally, I’d prefer to make a good guess and
be wrong to learn from it than to just look up the answer (or in this case,
use AI) and immediately forget. I’d argue this is a case of disconnect
between an internal effort and reward system.”

• “If I was fairly certain I already knew the answer, then I did not click
it.”
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Figure 5: Example interface that the user is presented with for each MMLU question, where they
have the option to click a button to query the AI.

Figure 6: Example interface after the user has clicked the button to query the AI and the model
prediction is shown via highlight.

• “The prompt [the friction] that came up was a major factor. It provided
me with data that I was twice as likely to get it right than if I had not
used it at all.”

• “If I had a good idea or felt that I could answer quickly, I disregarded
the AI suggestion since that would have wasted time.”

• “[in the friction condition] Being told the AI would mostly get it wrong
and confidence in my own ability to answer”

• “[in the friction condition] Being told the AI would mostly get it wrong
and confidence in my own ability to answer”

• “I felt confident in my answer, and knowing that I was a better predictor
in certain categories than the model”

• “If I thought I knew the answer to a question, I felt no reason to consult
the AI. However, I did check the prediction when I had an answer, but I
was unsure of it.”

E Experiment Instructions

We include instructions presented in our user study in Figures 7, 8, and 9.
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Figure 7: Experiment instructions.
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Figure 8: Experiment instructions (continued).
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Figure 9: Experiment instructions (continued). The screen of Phase II is the official trial as presented
in Figures 5, 6, and 3, respectively. The Phase I interface follows the same format, but no model
access is permitted.
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