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Abstract

The goal of meta-learning is to learn to adapt001
to a new task with only a few labeled examples.002
Inspired by the recent progress in large lan-003
guage models, we propose in-context tuning004
(ICT), which recasts task adaptation and pre-005
diction as a simple sequence prediction prob-006
lem: to form the input sequence, we concate-007
nate the task instruction, labeled in-context ex-008
amples, and the target input to predict; to meta-009
train the model to learn from in-context ex-010
amples, we fine-tune a pre-trained language011
model (LM) to predict the target label given012
the input sequence on a collection of tasks.013

We benchmark our method on two collections014
of text classification tasks: LAMA and Bina-015
ryClfs. Compared to MAML which adapts the016
model through gradient descent, our method017
leverages the inductive bias of pre-trained018
LMs to perform pattern matching, and out-019
performs MAML by an absolute 6% average020
AUC-ROC score on BinaryClfs, gaining more021
advantage with increasing model size. Com-022
pared to non-fine-tuned in-context learning023
(i.e. prompting a raw LM), in-context tuning024
meta-trains the model to learn from in-context025
examples. On BinaryClfs, ICT improves the026
average AUC-ROC score by an absolute 10%,027
and reduces the variance due to example order-028
ing by 6x and example choices by 2x.029

1 Introduction030

Few-shot learning (FSL) refers to a system’s ability031

to quickly adapt to new tasks when very few labeled032

examples are available for training. FSL is a key033

feature of human learning (Lake et al., 2016), but034

current machine learning systems often rely on035

large amounts of labeled training data (Silver et al.,036

2016; He et al., 2016; Adiwardana et al., 2020).037

Recently, prompting large pre-trained language038

models (LMs) for FSL has achieved remarkable039

progress (Brown et al., 2020; Schick and Schütze,040

2021a). LM prompting with in-context learning041

reduces the “task learning and predict” process to 042

a simple sequence prediction problem. To perform 043

a new task, Brown et al. (2020) prompt a raw LM 044

(i.e., a pre-trained LM not fine-tuned on any labeled 045

data) with the concatenation of the task instruction, 046

some input-output examples, and the target input 047

to be predicted on; then they extract the answer 048

from the LM’s continuation of the concatenated 049

sequence (Figure 1 left). For example, to coax the 050

model into performing sentiment classification on 051

the target input “This movie is a waste of time”, we 052

prompt the LM with the sequence “I like the movie! 053

Positive review? Yes. Horrible Movie! Positive 054

review? No. This movie is a waste of time. Positive 055

review? ___”, and predict “positive” if the next 056

word is more likely to be “Yes” rather than “No”. 057

However, raw LMs are not optimized for in- 058

context FSL during pre-training, and exhibit unde- 059

sirable behavior when used for FSL. For example, 060

Zhao et al. (2021) observed that LMs suffer from 061

the “recency bias”, which assigns higher probabil- 062

ity to labels that appear closer to the target input. 063

As a result, the accuracy becomes extremely sen- 064

sitive to the ordering of the in-context examples. 065

Previous work has also shown that prompting raw 066

LMs is often oversensitive to example choices and 067

instruction wording (Schick and Schütze, 2021a; 068

Jiang et al., 2020; Gao et al., 2021; Liu et al., 2021). 069

We address this weakness through a meta- 070

learning lens and directly fine-tune the LM for 071

FSL. Under the meta-learning framework, we meta- 072

train a model to learn to adapt to new tasks from a 073

few examples on a wide range of tasks, so that it 074

learns to leverage the few-shot examples to adapt 075

to new tasks at test time. Since LM prompting 076

already reduces the “task learning and predict” pro- 077

cess to a simple sequence prediction problem, we 078

meta-train a LM by directly fine-tuning it to op- 079

timize for this sequence prediction problem on a 080

wide range of tasks (Figure 1 left). Since we fine- 081

tune our model to learn in-context learning, we 082
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Instruction x1 y1 x’ Y’x2 y2

Meta-Update via 
Gradient Descent

In-Context Tuning 

θ := θ−Δ
Few-shot Adaptation via 

In-context Learning

MAML  

y1x1Instruction

y2x2Instruction

θ′ := θ−Δ
y'x’Instruction

Calculate loss
with θ′ 

Meta-Update: Optimize     to 
minimize the loss.

θFew-shot Adaptation 
via Gradient Descent

Instruction: “Is the comment positive?”
x1: “Good movie!” y1: “yes”
x2: “Bad  movie!”  y2: “no”

Figure 1: MAML (right): MAML aims to learn a task-agnostic model initialization θ that can adapt fast to new
tasks. To adapt the model initialization to a new task T̃ , a task-specific model θ′ initialized with θ is updated
with gradient descent using task examples from T̃ . Meta-training of MAML involves bi-level optimization, where
the inner optimization learns a task-specific model θ′ using task examples from T̃ , and the outer optimization
learns a meta-initialization θ to minimize few-shot prediction loss of θ′ on task T̃ . In-context Tuning (ours)
(left): our approach adapts to new tasks via in-context learning, and learns a single model θ shared across all tasks
that is directly optimized with the FSL objective (Section 2.2). Because model parameters are frozen during task
adaptation, our approach does not involve bi-level optimization during meta-training.

call our approach in-context tuning (ICT). Unlike083

optimization-based meta learning approaches such084

as MAML (Finn et al., 2017), in-context tuning085

adapts to new tasks through in-context learning086

where model parameters are frozen, thus it avoids087

the challenging nested optimization problem in088

MAML (Figure 1).089

We benchmark our algorithm on LAMA (Petroni090

et al., 2019), a dataset for testing models’ factual091

knowledge, and BinaryClfs (Zhong et al., 2021),092

a wide range of binary classification tasks each093

annotated with a few language descriptions of the094

task. Compared to prompting raw LMs, in-context095

tuning improves performance by 7.6 Precision@1096

points on LAMA and 10.6% AUC-ROC score on097

BinaryClfs. In addition, in-context tuning mitigates098

the over-sensitivity of raw LM prompting, signifi-099

cantly reducing the variance of the performance100

with respect to example ordering (by 68% on101

LAMA and 83% on BinaryClfs), example choices102

(by 56% on LAMA and 40% on BinaryClfs), and103

instruction wording (by 19% on LAMA).104

Our approach also out-performs MAML, which105

adapts the model by gradient descent on a few ex-106

amples and learns an initialization that can adapt107

to a new task through a few gradient steps (Finn108

et al., 2017; Nichol et al., 2018). Since our ap-109

proach better takes advantage of the inductive bias110

of LMs to extrapolate from in-context examples,111

our approach out-performs first-order MAML by112

2.8 points on LAMA and 5.1 points on BinaryClfs,113

with increasing advantage as models become larger.114

Given the empirical effectiveness of in-context 115

tuning (Section 4.1), we conjecture that the few- 116

shot learning potential of large LMs (e.g., GPT-3) 117

may be broadly underestimated if prompted with- 118

out any direct optimization for FSL. We also con- 119

jecture that in-context tuning can mitigate vari- 120

ous undesirable properties of LM prompting, such 121

as over-sensitivity to example ordering, example 122

choices, and instruction wording (Section 4.2). 123

2 Approach 124

We introduce the problem setup (Section 2.1), de- 125

scribe our in-context tuning algorithm (Section 2.2), 126

compare our algorithm to gradient-based adapta- 127

tion methods (Section 2.3) and other baselines (Sec- 128

tion 2.4). 129

2.1 Problem Setup 130

We focus on the few-shot classification problem, 131

where the model first learns from a set of training 132

tasks T ∈ Ttrain, each associated with its natural 133

language instructions IT and a large amount of 134

task input-output examples DT = {(xiT , yiT )} (see 135

Figure 1 left for examples). At test time, we ask the 136

model to learn a new task T̃ given its instruction 137

and only a few (K) labeled examples, i.e. ST̃ ⊆ 138

DT̃ , |ST̃ | = K. We denote the task input to be 139

predicted at test time as xtarget
T̃

. 140

Note that “task input” is different from “model 141

input”. For example, on the left panel of Figure 1, 142

the task input is “Good movie!” while the model 143

input can be a concatenation of the instruction, task 144
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inputs and task outputs.145

2.2 In-context Tuning Algorithm146

In-context tuning directly optimizes pre-trained147

LMs with the few-shot in-context learning objec-148

tive (Brown et al., 2020): task-agnostic LMs are149

meta-trained to perform few-shot in-context learn-150

ing on a wide variety of training tasks. Similar to151

in-context learning, LMs trained with in-context152

tuning adapt to a new task by using few-shot train-153

ing examples as the input prefix.154

Formally, during meta-training, we build the155

model input by concatenating the task instruction156

IT , task input-output pairs ST ⊆ DT , and the task157

input xtarget
T

1 to be classified. We then fine-tune a158

pre-trained LM to predict ytarget
T and hope that the159

model learns to use the in-context examples ST .160

Here is the few-shot in-context tuning objective L:161

LT (θ) :=
∑

(x
tgt
T ,y

tgt
T )∈DT

[− log pθ(y
tgt
T |x

tgt
T , ST , IT )]

(1)

162

L(θ) :=
∑

T∈Ttrain

LT (θ) (2)163

To adapt to a new task T̃ at test time, we di-164

rectly concatenate the few-shot examples ST̃ with165

the instruction IT̃ and the target task input xtarget
T̃

166

to be classified to form the model input, and ask167

the model to predict its corresponding output. No168

gradient update is performed during adaptation.169

2.3 Gradient-based Task Adaptation170

We compare in-context tuning with two classical171

few-shot learning methods: multi-task fine-tuning172

(instruction tuning + fine-tuning) and MAML. Both173

methods adapt the model parameters to new tasks174

by gradient descent on few-shot examples.175

Instruction Tuning + Fine-tuning (InsT + FT)176

We extend the recent work on zero-shot instruc-177

tion tuning (Wei et al., 2021) to the FSL setting178

as a multi-task fine-tuning baseline. During meta-179

training, the model is optimized to predict the task180

output given the task instruction and the task in-181

put on a wide range of tasks (Zhong et al., 2021).182

Formally, we train the model parameter θ to pre-183

dict yiT given IT ◦ xiT , where θ is shared across all184

tasks and ◦ represents the concatenation operation.185

During the few-shot adaptation phase, the model is186

1We sometimes abbreviate “target” as “tgt” to save space.

presented with a new task T̃ , its natural language 187

instruction IT̃ and a small set of (K) task input- 188

output examples ST̃ = {(xi
T̃
, yi
T̃
)|i ∈ [K]}. We 189

then fine-tune the model to predict the task output 190

yi
T̃

from the new task given IT̃ ◦ x
i
T̃

and update θ 191

with a few gradient steps to get θT̃ . Finally, we use 192

the updated model θT̃ to predict the output from 193

the task input xtarget
T̃

and the instruction IT̃ under 194

the test task T̃ . 195

MAML The few-shot adaptation stage of 196

MAML is the same as instruction tuning + fine- 197

tuning, where we update the model parameters (ini- 198

tialized with θ) by gradient descent on K examples 199

ST̃ ⊆ DT̃ . However, during meta-training, MAML 200

aims to learn a task-agnostic model initialization 201

θ such that, θT , which is to be found by initializ- 202

ing with θ and performing gradient descent on ST , 203

would lead to good performance (Finn et al., 2017). 204

Therefore, MAML involves two levels of opti- 205

mization, an inner optimization to learn θT given θ 206

and ST ⊆ DT , and an outer optimization to learn 207

θ given θT . Due to the bi-level structure in this op- 208

timization problem, MAML has been found to be 209

empirically unstable, sensitive to hyperparameters, 210

and computationally expensive (Finn et al., 2017; 211

Nikolaev et al., 2020). Even worse, few-shot task 212

adaptation is known to be highly sensitive to opti- 213

mization hyperparameters (Antoniou et al., 2019), 214

while a large labeled validation set for hyperpa- 215

rameter tuning may not be available under a FSL 216

setting (Perez et al., 2021). 217

In comparison, in-context tuning simplifies the 218

two-stage process of (1) few-shot task adaptation 219

and (2) task-specific prediction as one sequence 220

prediction problem, where task-specific examples 221

are concatenated to the model input to provide in- 222

formation about the task. Hence, in-context tun- 223

ing removes the bi-level optimization during meta- 224

training, which can be empirically unstable and 225

expensive. Additionally, since model weights are 226

frozen during task adaptation, it is not sensitive to 227

adaptation hyperparameters. 228

2.4 Other Baselines 229

Raw In-context Learning (Raw IC-L) We di- 230

rectly evaluate a raw LM on a new task using the 231

same evaluation set-up for in-context tuning, with- 232

out fine-tuning the LM on any labeled data. 233

Instruction Tuning (InsT) The model learns to 234

predict the target output only based on the instruc- 235
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Method Adaptation Meta-train
In-context Tuning In-context Few-shot
MAML Gradient Few-shot
InsT None Zero-shot
InsT + FT Gradient Zero-shot
Raw IC-L In-context LM

Table 1: We categorize our approach and the baselines
according to 1) how the few-shot examples (if any) are
used for adaptation, and 2) the meta-training objective.
Ins-T refers to instruction tuning.

tion and the target input. Only the instruction236

is available during the adaptation phase, and this237

setup is also known as zero-shot learning.238

We categorize all approaches in our paper based239

on their meta-training objective and how they use240

task-specific examples in Table 1. In-context tuning241

is the only method that directly optimizes the FSL242

objective without gradient-based adaptation.243

3 Experimental Setup244

3.1 Datasets and Metrics245

We experiment with two meta-datasets that contain246

a wide range of tasks, LAMA and BinaryClfs. Each247

task is associated with several different natural lan-248

guage descriptions, and we call them instructions249

for convenience, even though some of them are250

realized as questions.251

LAMA LAnguage Model Analysis (Petroni252

et al., 2019) is a dataset that tests the factual and253

commonsense knowledge learned by LMs. In our254

experiments, we use the TREx-UHN portion of255

LAMA (Poerner et al., 2020), which consists of256

(subject, relation, object) triples from Wikidata.257

LAMA is an entity prediction task, where a model258

is asked to predict the object entity given the sub-259

ject entity and the relation. In our experiments, we260

treat one relation as a task as in Perez et al. (2021).261

Initial experiments on LAMA showed that LMs262

take significant advantage of “majority label bias”263

(Zhao et al., 2021), where they assign higher prob-264

ability to object entities that have appeared in the265

in-context examples, thus inflating the accuracy. To266

reflect the improvement due to few-shot learning267

rather than this simple heuristic to copy answers,268

for all tasks we prune the LAMA dataset so that all269

object entities appear less than 2.5% of times. Our270

final filtered LAMA dataset consists of 29 relations271

(tasks) and 12k (subject, relation, object) examples.272

We use task instructions from two datasets: 273

LAMA and LPAQA (Jiang et al., 2020). LAMA 274

contains one task instruction for each task, and the 275

auxiliary LPAQA dataset contains on average 10 276

additional instructions for each LAMA task. 277

We use the same evaluation protocol as in 278

Petroni et al. (2019): 1) the object entity is pre- 279

dicted from a pre-defined vocabulary set of 21k 280

words (each LAMA task is 21k-way classification); 281

2) we compute mean precision at one (P@1) for 282

each task, and report the average across tasks. We 283

report the train-dev-test split in Appendix B. 284

BinaryClfs This dataset contains a wide range 285

of binary classification tasks, and each task can be 286

described by 1-4 “yes/no" questions, which we con- 287

catenate to the input context as instructions. There 288

are in total 204 different tasks, and 73 of them are 289

used for testing, which include sentiment classi- 290

fication, topic classification, definition detection, 291

stance classification, etc. We use the same eval- 292

uation protocol as in Zhong et al. (2021): 1) we 293

group the tasks by similarity and do not allow train- 294

ing tasks to be similar to testing tasks; 2) we treat 295

“Yes” answer as the positive class and calculate the 296

AUC-ROC score for each instruction of each task. 297

To fit model inputs (concatenation of in-context 298

examples and task input to classify) within the max- 299

imum context length (1024) of our LMs, we leave 300

out five evaluation tasks where the maximum task 301

input length exceeds 230 BPE tokens. We also 302

leave out the spam classification task due to its 303

small test set. BinaryClfs does not come with an 304

official validation set. To perform hyperparameter 305

tuning, for each testing group, we randomly sample 306

another testing group as its validation group. 307

3.2 Implementation Details 308

Architecture We use BERT models for LAMA 309

(BERT-Base [110M parameters], BERT-Large 310

[340M] and DeBERTa-XLarge-V2 [900M]) and 311

GPT2 models for BinaryClfs (GPT2-Medium 312

[345M] and GPT2-Large [774M]). We use the Hug- 313

gingface implementation (Wolf et al., 2020). 314

Hyperparameters We select hyperparameters 315

based on few-shot classification accuracy on vali- 316

dation tasks. Our validation tasks and testing tasks 317

are disjoint, so hyperparameter tuning on validation 318

tasks does not use extra labeled examples on the 319

testing tasks (Perez et al., 2021). See Appendix A 320

for the hyperparameters we tuned. 321
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LAMA BinaryClfs

BERT-Base BERT-Large DeBERTa-xlarge GPT2-M GPT2-L

0-S 1-S 2-S 5-S 0-S 1-S 2-S 5-S 0-S 1-S 2-S 5-S 0-S 5-S 0-S 5-S

Raw IC-L 10.3 8.5 10.8 14.1 12.7 12.1 15.4 18.6 11.2 12.6 20.6 23.7 50.5 57.8 51.0 58.3

InsT + FT / 17.5 18.6 20.0 / 21.6 22.6 23.9 / 24.7 25.6 27.0 / 67.0 / 69.4

ICT 14.6 16.3 17.6 19.6 18.0 21.6 23.4 24.3 21.9 26.0 27.5 28.8 62.9 67.4 66.3 69.8

Raw IC-L w/o Ins 1.5 4.9 8.7 12.3 1.4 3.5 7.0 12.5 2.7 13.0 19.5 22.6 / / / /

ICT w/o Ins 7.1 14.6 17.0 18.2 9.3 19.4 19.9 22.9 10.6 23.5 26.0 27.6 / / / /

Table 2: Few-shot learning accuracy of our in-context tuning approach (ICT) compared to in-context learning
with raw LMs (Raw IC-L) and instruction tuning + fine-tuning (InsT + FT). K-S: K-shot learning. GPT2-M:
GPT2-Medium. GPT2-L: GPT2-Large. Task instructions are used except the last two rows labeled with “w/o
Ins”. By definition, InsT + FT is the same as ICT for 0-S. We only experiment with the no-instruction setting on
the LAMA dataset. Since we modify the LAMA dataset and BinaryClfs dataset (Section 3.1, Appendix B), the
numbers reported in our work are not directly comparable to other work.

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

MAML 16.9 21.4 63.3 63.9

ICT 19.6 24.3 67.4 69.8

Table 3: In-context tuning consistently out-performs
MAML on both datasets and all model sizes under
the 5-shot setting. BB: BERT-Base. BL: BERT-Large.
GPT2-M: GPT2-Medium. GPT2-L: GPT2-Large.

Sampling Different instructions and few-shot ex-322

ample choices can lead to different predictions323

(Section 2.2). At training time, we expose the324

model to diverse task instructions and few-shot325

choices by randomly sampling task instructions326

and few-shot examples for each target example.327

At test time, we report the average accuracy328

across task instructions and few-shot choices.329

Since computing the average across all few-shot330

choices is intractable (there are combinatorically331

many distinct few-shot choices), we thus calculate332

the average accuracy of multiple random samplings333

of few-shot choices as approximation.334

4 Results335

In-context tuning out-performs MAML and vari-336

ous baselines on the two text classification meta-337

datasets (Section 4.1). It also significantly reduces338

model sensitivity to instruction wording, example339

choices, and example ordering compared to prompt-340

ing raw LMs (Section 4.2).341

4.1 Few-shot Learning Performance 342

In-context tuning improves in-context learning 343

accuracy over raw LMs. We compare ICT with 344

Raw IC-L in Table 2. In-context tuning consistently 345

out-performs raw LM prompting by 7.6 points on 346

LAMA and 10.6 points on BinaryClfs (averaged 347

across model size and number of few-shots). As ex- 348

pected, directly optimizing the few-shot in-context 349

learning objective (Section 2.2) improves the few- 350

shot in-context learning accuracy. 351

Few-shot examples lead to more effective task 352

adaptation. We compare few-shot in-context 353

tuning with instruction tuning (equivalent to 0- 354

shot ICT) in Table 2. Few-shot in-context tun- 355

ing consistently out-performs instruction tuning 356

on both LAMA and BinaryClfs, with increasing 357

performance gains as number of shots increases. 358

Specifically, we observe that 5-shot in-context tun- 359

ing out-performs instruction tuning by 6.1 points 360

on LAMA and 4.0 points on BinaryClfs. Results 361

show that demonstration examples besides task in- 362

structions facilitate more effective task adaptation. 363

In-context tuning better leverages the induc- 364

tive bias for pattern matching. By comparing 365

MAML (the first row of Table 3) to instruction 366

tuning (equivalent to 0-shot ICT) of Table 2, we 367

see that MAML out-performs instruction tuning 368

in most evaluation settings, which indicates that 369

MAML is indeed able to take advantage of the 370

few-shot task examples for task adaptation. How- 371

ever, Table 3 shows that our approach of 5-shot 372

in-context tuning out-performs 5-shot MAML con- 373

sistently on both datasets with an accuracy gain 374
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of 2.8 points on LAMA and 5.1 points on Bina-375

ryClfs (averaged across model size). We argue that376

in-context tuning out-performs MAML because377

in-context tuning better leverages the existing in-378

ductive bias of pre-trained LMs to perform pattern379

matching with in-context examples.380

We also compare in-context tuning to the381

pipeline of instruction tuning + task-specific fine-382

tuning (Table 2). Surprisingly, fine-tuning an383

instruction-tuned model on as few as one task-384

specific example significantly improves task accu-385

racy, without over-fitting to the few labeled exam-386

ples. We observe that instruction tuning + 1-shot387

fine-tuning out-performs instruction tuning (equiv-388

alent to 0-shot ICT) by 3.1 points on LAMA (Ta-389

ble 2). Our in-context tuning approach performs390

comparable or better than instruction tuning + fine-391

tuning, with increasing accuracy gains as models392

get bigger (Table 2). For DeBERTa-XLarge-v2393

(the largest models we use in this work), in-context394

tuning out-performs InsT + FT across all numbers395

of shots, achieving an accuracy gain of 1.7 points396

on LAMA (averaged across all numbers of shots).397

We conjecture that in-context tuning will be in-398

creasingly effective for bigger models that have a399

stronger inductive bias of pattern matching.400

In-context tuning reduces the need of task in-401

structions. As coming up with good task instruc-402

tions can be hard (Schick and Schütze, 2021a;403

Jiang et al., 2020), we further investigate the ef-404

fectiveness of in-context tuning without task in-405

structions (Table 2). In-context tuning is effective406

in the no-instruction setting as well, consistently407

out-performing raw in-context learning with no in-408

structions by an average margin of 9.5 points on409

LAMA. Comparing raw in-context learning with410

(Raw IC-L) and without instructions (Raw IC-L411

w/o Ins) (Table 2), we observe that task instruc-412

tions yield the most significant performance gains413

when model size is relatively small (+2.5 points on414

BERT-Base, +7.7 points on BERT-Large, only +0.6415

points on DeBERTa-xlarge). We conjecture that416

smaller models may be weaker at inferring patterns417

from in-context examples alone compared to larger418

models, which is why instructions yield larger per-419

formance gains on smaller models. On BERT-Base420

and BERT-Large models where task instructions421

are most helpful, in-context tuning reduces the im-422

provement gain from task instructions from 5.1423

points (raw in-context learning) to 1.8 points (aver-424

aged across BERT-Base and BERT-Large), which425

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

Raw IC-L 1.82 2.14 9.26 8.84

ICT 0.66 0.61 1.41 1.58

Table 4: In-context tuning is significantly less sensitive
to example ordering compared to in-context learning
with raw LMs.

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

Raw IC-L 3.74 6.30 18.52 20.33

ICT 1.78 2.57 11.46 11.62

Table 5: In-context tuning is significantly less sensi-
tive to example choices compared to in-context learn-
ing with raw LMs.

indicates that in-context tuning reduces the need 426

of task instructions compared to raw in-context 427

learning. However, we note that instructions still 428

yield performance improvement even if in-context 429

tuning is applied. 430

4.2 Sensitivity Analysis 431

We analyze the sensitivity of in-context tuning ac- 432

curacy with respect to example ordering, example 433

choices, and instruction wording, and compare it 434

with prompting raw LMs. Let I denote a random se- 435

lection of task instruction, ST a random unordered 436

set of few-shot training examples with size K, σ a 437

random permutation of K examples. The accuracy 438

µ is a function of these three random variables, i.e. 439

µ : (ST , σ, I) 7→ [0, 1]. We can decompose the to- 440

tal variance of µ into its variance w.r.t. each of the 441

three random variables, since they are independent 442

(order variance is independent to choice variance 443

because ST is unordered): 444

VarST ,σ,I [µ] = VarI [EST ,σ[µ|I]]︸ ︷︷ ︸
instruction wording variance

445

+ EI [VarST
[Eσ[µ|I, ST ]]]︸ ︷︷ ︸

example choice variance

446

+ EI,ST
[Varσ[µ|I, ST ]]︸ ︷︷ ︸

example order variance

447

We analyze each type of variance below. 448

In-context tuning is significantly less sensitive 449

to example ordering. We compare the variance 450
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BERT-Base BERT-Large

Raw IC-L ICT Raw IC-L ICT

1-shot 35.38 26.31 34.03 28.78
2-shot 33.79 25.40 17.71 19.35

5-shot 24.90 15.64 6.36 5.16

Table 6: In-context tuning is much less sensitive to
task instruction wording compared to in-context learn-
ing with raw LMs.

with respect to example ordering for in-context451

tuning and in-context prompting with raw LMs in452

Table 4. Results show that in-context tuning is sig-453

nificantly less sensitive to ordering of in-context ex-454

amples compared to in-context prompting with raw455

LMs, reducing the sensitivity by 68% on LAMA456

and 83% on BinaryClfs.457

In-context tuning is significantly less sensitive458

to example choices. We compare the variance459

with respect to example choices for in-context tun-460

ing and in-context prompting with raw LMs in461

Table 5. Results show that in-context tuning is sig-462

nificantly less sensitive to selection of in-context463

examples compared to in-context prompting with464

raw LMs across both datasets and all model sizes,465

reducing the sensitivity by 56% on LAMA and 40%466

on BinaryClfs (averaged across model sizes). We467

conjecture that in-context tuning is significantly468

less sensitive to example ordering and selection469

because the model is exposed to various example470

orderings and selections during in-context tuning.471

In-context tuning is less sensitive to instruction472

wording. We report the variance with respect to473

instruction wording for in-context tuning and in-474

context prompting with raw LMs in Table 6. Re-475

sults show that in-context tuning is less sensitive to476

instruction wording compared to in-context prompt-477

ing with raw LMs in five out of six evaluation set-478

tings, reducing the variance by 19% on LAMA479

(averaged across model size and number of shots).480

We also observe that in-context tuning is espe-481

cially effective on task instructions with low accu-482

racy under raw in-context learning. For each task,483

we compute the Pearson correlation between the484

raw in-context learning accuracy and the accuracy485

gain from in-context tuning (over raw in-context486

learning) on all instructions. On the LAMA dataset,487

we see a strong negative correlation of -0.563 (aver-488

aged across all tasks), with p-value < 0.05 on 63%489

of the tasks. We conjecture that in-context tuning is490

much less sensitive to instruction wording because 491

the model is exposed to a wide variety of different 492

task instructions during in-context tuning. 493

In-context examples are complementary to in- 494

structions. We observe that in-context tuning is 495

especially effective on task instructions with low 496

accuracy under instruction tuning. For each task, 497

we compute the Pearson correlation between the 498

instruction tuning accuracy and the accuracy gain 499

from in-context tuning (over instruction tuning) on 500

all instructions. On the LAMA dataset, we see 501

a strong negative correlation of -0.910 (averaged 502

across all tasks), with p-value < 0.01 on 91% of 503

the tasks. We conjecture that in-context tuning is 504

much less sensitive to instruction wording because 505

few-shot in-context examples provide additional 506

task information besides the task instructions. 507

5 Related Work 508

LM Prompting for FSL Pre-trained LMs can be 509

used to perform various FSL tasks when prompted 510

with a natural language task instruction and several 511

task examples (Radford et al., 2019; Brown et al., 512

2020; Schick and Schütze, 2021b; Li and Liang, 513

2021; Lester et al., 2021; Qin and Eisner, 2021). 514

However, prompting pre-trained LMs directly for 515

FSL is known to be sensitive to various artifacts, 516

such as the wording of the task instruction and the 517

selection and ordering of few-shot training exam- 518

ples (Schick and Schütze, 2021a; Jiang et al., 2020; 519

Zhao et al., 2021; Gao et al., 2021; Liu et al., 2021). 520

Our work is the first to show that meta-learning 521

with an explicit FSL objective significantly reduces 522

the sensitivity of LM prompting. 523

Meta-learning for FSL Meta-learning is a 524

widely used technique in NLP to improve cross- 525

domain transfer (Yu et al., 2018; Geng et al., 2019; 526

Holla et al., 2020; Deng et al., 2020) and cross- 527

task transfer (Gu et al., 2018; Bansal et al., 2020; 528

Dou et al., 2019). Existing optimization-based 529

meta-learning methods mostly perform task adap- 530

tation by fine-tuning a task-agnostic model on task- 531

specific examples using gradient descent (Finn 532

et al., 2017; Jiang et al., 2019; Nichol et al., 2018). 533

However, fine-tuning on few-shot task examples is 534

sensitive to hyperparameters (Antoniou et al., 2019) 535

and nested optimization during meta-training is of- 536

ten unstable (Nichol et al., 2018; Antoniou et al., 537

2019; Rajeswaran et al., 2019). In contrast, our ap- 538

proach performs few-shot task adaptation by using 539
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task-specific examples as part of the model input540

while keeping the model parameters frozen.541

Multi-task Learning In multi-task learning, a542

single model is trained on the union of training sets543

of multiple tasks to learn a shared representation544

(Liu et al., 2019). The multi-task model is then545

fine-tuned on task-specific examples to adapt to546

new tasks. Multi-task learning is shown to improve547

performance on various downstream tasks, espe-548

cially tasks with small training sets (Khashabi et al.,549

2020; Ye et al., 2021; Aghajanyan et al., 2021).550

Compared to meta-learning, multi-task learning551

does not optimize task adaptation directly.552

Fine-tuned LMs for Instruction Learning Re-553

cent work shows that fine-tuning LMs to learn task554

instructions on a wide variety of tasks can further555

leverage the inductive bias of LMs to perform in-556

struction learning (Zhong et al., 2021; Mishra et al.,557

2021; Wei et al., 2021). Our work is partially in-558

spired by this line of work, but we work under the559

more generic few-shot meta-learning setting, and560

show that our approach out-performs both instruc-561

tion tuning and existing few-shot meta-learning562

methods (e.g., MAML). While previous work fo-563

cuses on the accuracy improvement gained from564

instruction fine-tuning, our work also looks into565

the well-known over-sensitivity issue of FSL and566

shows that in-context tuning effectively reduces the567

sensitivity of FSL with respect to various factors.568

Concurrent to our work, Min et al. (2021) also569

explores in-context tuning under more general570

Seq2Seq tasks. In comparison, our work com-571

pares in-context tuning to a meta-learning baseline572

MAML, and shows that in-context tuning mitigates573

the well-known oversensitivity issue of LM prompt-574

ing. Contrary to our paper, Min et al. (2021) finds575

that in-context tuning under-performs InsT + FT.576

This might be because they use many more shots577

(16-shot), which could give gradient-based meth-578

ods more advantage.579

6 Future Directions580

Scaling Up and Broader Applications Our581

work only considers simple binary classification582

and knowledge retrieval tasks, at most 5 in-context583

examples, and models with fewer than 1 billion584

parameters. Nevertheless, it is straightforward to585

scale up our framework to a wider and more di-586

verse range of general sequence-to-sequence tasks587

(Ye et al., 2021), more few-shot examples (which588

requires a longer context size (Dai et al., 2019; 589

Wang et al., 2020)), and larger models (Brown et al., 590

2020; Kaplan et al., 2020). It is also straightfor- 591

ward to apply in-context tuning to a broader range 592

of scenarios that require adapting to a new setup, 593

e.g., adapting to a new label in classification tasks 594

(Xia et al., 2021), an unseen database in semantic 595

parsing tasks (Suhr et al., 2020; Lee et al., 2021), 596

or a new language pair in machine translation (Gu 597

et al., 2018; Aharoni et al., 2019), etc. 598

Meta-learning for Robustness Our work as- 599

sumed that the few-shot training examples come 600

from the same distribution as the test examples, but 601

this assumption does not necessarily hold in prac- 602

tice. For example, the test distribution might con- 603

stitute new input compositions (Lake and Baroni, 604

2018), rare subgroups (Sagawa et al., 2019), other 605

types of distribution shifts (Hendrycks and Diet- 606

terich, 2019), or even adversarial examples (Kang 607

et al., 2019). More effective meta-learning meth- 608

ods might learn a more robust learning mechanism 609

and combat these generalization challenges. 610

Understanding In-context Learning Many 611

properties of in-context learning are still unknown. 612

Is in-context learning more robust to distribution 613

shift (Lester et al., 2021)? Can we combine 614

in-context learning and gradient learning to get the 615

benefit of both worlds (Wortsman et al., 2021)? 616

7 Conclusion 617

In this work, we propose meta-learning via in- 618

context tuning, which recasts the few-shot learn- 619

ing process of task adaptation and task-specific 620

prediction as a simple sequence prediction prob- 621

lem, where few-shot labeled examples are concate- 622

nated with the target example to form the model 623

input. In-context tuning out-performs a wide va- 624

riety of baselines in terms of accuracy, including 625

raw LM prompting, MAML and instruction tun- 626

ing. Meanwhile, sensitivity study shows that our 627

FSL approach of in-context tuning is significantly 628

less sensitive to few-shot examples and instruction 629

wording compared to raw LM prompting. 630

Given the empirical effectiveness of in-context 631

tuning, we conjecture that the few-shot learning po- 632

tential of large LMs (e.g., GPT-3) might be broadly 633

underestimated, and that in-context tuning can elim- 634

inate well-known artifacts of few-shot LM prompt- 635

ing such as over-sensitivity to example ordering, 636

example selection and instruction wording. 637
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A Hyperparameters931

In this section, we report the hyperparameters we932

tuned for our approach and each baseline.933

In-Context Tuning (ours) We tune number of934

training epochs ([10, 15, 30] for LAMA and [1e-7,935

3e-7, 1e-6, 3e-6] for BinaryClfs) and learning rate936

([1e-7, 3e-7, 1e-6, 3e-6] for LAMA and [3e-6, 1e-5,937

3e-5, 1e-4] for BinaryClfs).938

MAML We assume that inner optimization and939

outer optimization use the same learning rate. We940

tuned number of adapt steps ([1, 2, 4] for both941

datasets) and learning rate ([3e-7, 1e-6, 3e-6, 1e-5,942

3e-5, 1e-4, 3e-4, 1e-3] for LAMA and [3e-6, 1e-5,943

3e-5, 1e-4, 3e-4, 1e-3] for BinaryClfs).944

Instruction-Tuning + Fine-tuning For instruc-945

tion tuning we tuned the same set of hyperparame-946

ters as in in-context tuning. The instruction tuning947

model with the highest validation performance are948

used for downstream task fine-tuning. For task fine-949

tuning, we tuned number of training epochs ([5,950

10, 15, 30, 40] for LAMA and [5, 10, 15, 30, 40]951

for BinaryClfs) and learning rate ([1e-7, 3e-7, 1e-6,952

3e-6, 1e-5, 3e-5] for LAMA and [3e-6, 1e-5, 3e-5,953

1e-4, 3e-4, 1e-3] for BinaryClfs).954

B Dataset Split of LAMA955

Because LAMA does not have an official train-956

validation-test split, we use 8-fold cross-validation957

in our experiments. We randomly partition the 29958

tasks into 8 groups of similar sizes. For each cross-959

validation split, we use six groups for training, one960

group for validation, and one group for testing.961

The test sets of the eight folds are disjoint and their962

union is the set of all tasks.963
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