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Abstract

The primate visual system is typically divided into two streams — the ventral
stream, responsible for object recognition, and the dorsal stream, responsible for en-
coding spatial relations and motion. Recent studies have shown that convolutional
neural networks (CNNs) pretrained on object recognition tasks are remarkably
effective at predicting neuronal responses in the ventral stream, shedding light on
the neural mechanisms underlying object recognition. However, similar models
of the dorsal stream remain underdeveloped due to the lack of large scale datasets
encompassing dorsal stream areas. To address this gap, we present STSBENCH,
a dataset of large-scale, single neuron recordings from over 2,000 neurons in the
superior temporal sulcus (STS), a nearly 50-fold increase over existing dorsal
stream datasets, collected while Rhesus macaques viewed thousands of unique,
natural videos. We show that our dataset can be used for benchmarking encoding
models of dorsal stream neuronal responses and reconstructing visual input from
neural activity.

1 Introduction

A principal goal of systems neuroscience is to characterize the map between external stimuli and
neuronal responses [1]. This question has often been studied by probing neurons with simple
parametric stimuli to explain the relationship between stimulus parameters and neuronal responses
[2, 3]. In particular, these studies have proven instrumental in shaping our understanding of single-
neuron response properties throughout the primate visual system [e.g. 4] as well as its functional
organization [e.g. 5]. However, these classic approaches fail to adequately capture complex neuronal
responses to natural scenes [6], particularly in higher-level visual areas where neurons encode
increasingly abstract and nonlinear features [7].

Visual processing within the primate visual system is accomplished by functionally specialized, quasi-
separable neural circuits. The output of the primate retina consists of distinct classes of ganglion cells
distinguished by their relative specialization for spatiotemporal or object vision [8]. The vast majority
of retinal output is transmitted to primary visual cortex (V1) via anatomically distinct layers of the
dorsal lateral geniculate nucleus in which the above specializations remain largely segregated. That
segregation continues in V1 and to a large extent in V2. Beyond these areas lie many additional visual
representations extending dorsally into the parietal lobe where neurons specialize in spatiotemporal
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vision and ventrally into the temporal lobe where neurons specialize in object vision (Figure 1a)
[9]. For example, whereas neurons in ventral visual areas tend to be more selective to shape and
color (e.g. area V4) [10–12] and to foveal stimuli (e.g. inferotemporal cortex) [13], neurons in dorsal
areas are more selective to motion and spatial processing (e.g. area MT) [14, 15]. More crucially,
selective impairments of object identification follow damage to ventral visual areas whereas more
spatial deficits follow damage to dorsal visual areas [16].

In recent years, convolutional neural networks (CNNs) have been applied to predict neuronal response
to natural images in ventral stream areas such as V4 and the inferior temporal (IT) cortex with
considerable success [7, 17–20]. These advances were accelerated by the release of a suite of
large-scale datasets and benchmarks for predicting ventral stream neuronal responses to natural
images, including BrainScore [21, 22], MacaqueITBench [23], and the Things Ventral Stream Dataset
(TVSD) [24], among others [e.g. 25]. In contrast, datasets and models of dorsal stream neuronal
responses to naturalistic stimuli remain scarce. To date, the largest such dataset contains 45 neurons
recorded from area MT [26, 27] which is orders of magnitude smaller than ventral stream datasets
such as TVSD that contain thousands of neurons [24]. The limited scale of existing datasets has
constrained the development of deep learning-based models for predicting neuronal responses in the
dorsal stream [but see 28].

In the past several years, high-channel-count electrophysiological recording devices such as Neuropix-
els probes have transformed neuroscience by enabling simultaneous recordings from large, densely
localized populations of neurons anywhere in the brain. These recording probes were deployed
initially in rodents [29], and subsequently in primates [30]. The capabilities provided by such probes
have already led to several novel discoveries [31, 32]. Short-length (10 mm) probes were first used to
record neurons in both human and nonhuman primates (NHPs), allowing access to superficial targets.
More recently, Neuropixels probes were adapted for greater suitability in primates by extending
the probe length in order to achieve large-scale recordings in deep structures including visual areas
located deep within the convolutions of the posterior visual cortex, such as the superior temporal
sulcus (STS) [33]. Neuropixels probes are thus ideally suited to build large datasets from the entirety
of the primate visual system including both the dorsal and ventral streams. Here, we leveraged these
probes to address the relative lack of data from the primate dorsal stream by recording from thousands
of neurons in area MT/MST in the STS. We recorded neuronal activity while monkeys viewed natural
videos, and used this large-scale dataset to develop new encoding and reconstruction models for the
dorsal stream (Figure 1b-e).

Our main contributions in this paper are: (i) We release STSBENCH, a dataset of single neuron
recordings in the STS with 2,244 neurons recorded while monkeys viewed ∼4,500 unique natural
videos. (ii) We use STSBENCH to benchmark an extensive suite of encoding models, and identify
gaps in current models of visual processing in MT/MST. (iii) We use a neural-conditional latent
diffusion model for reconstructing visual stimuli from neural activity, and demonstrate successful
reconstructions on STSBENCH and TVSD.

2 Related works

Neural network encoding models of dorsal and ventral visual cortex. A landmark study by
Yamins et al. [7] found that CNNs trained on object recognition tasks are highly predictive of neuronal
activity in inferior temporal (IT) cortex. Subsequent work demonstrated that the hierarchy of layers
in CNNs aligns with the hierarchy of ventral visual areas, with early layers predictive of V1 and
later layers predictive of V4 and IT [17, 34]. These models have provided insight into the neuronal
mechanisms underlying object recognition, including the functional organization of feature-selectivity
in V4 [19] and face-selectivity in IT [35].

Although the functional properties of neurons in the dorsal stream have been extensively investigated
using parametric stimuli, there have been comparatively few studies that used naturalistic stimuli. In
a pioneering study, Nishimoto and Gallant [26] introduced a model for predicting neuronal responses
in area MT to natural videos that consists of a bank of 3D Gabor filters convolved with the video
followed by a linear readout. Mineault et al. [28] compared this model to 3D ResNets, trained either
on action recognition (ResNet3D-18) or self-motion estimation (DorsalNet) tasks, and concluded that
the dorsal stream is optimized for ‘self-motion estimation’. A separate line of work has applied these
approaches to functional magnetic resonance imaging (fMRI) data, which captures activity in both
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Figure 1: Summary of STSBENCH. (a) Diagram of dorsal and ventral visual streams in the macaque
brain. The dorsal stream includes the middle temporal area (MT), and the medial superior temporal
area (MST), located in the superior temporal sulcus (STS). The ventral stream includes visual area 4
(V4), and inferior temporal cortex (IT). (b) Encoding models map from stimuli to neural activity. Plot
displays example encoding model results for a neuron in STSBENCH. (c) Reconstruction models
map from neural activity to stimuli. Images show example reconstruction model results for neurons
in the ventral stream (top) and dorsal stream (bottom). (d) (Left) Example probe trajectory overlayed
on an MR image of the STS from monkey T. Inset displays 3D reconstruction of medial superior
temporal (MST; blue) and middle temporal (MT; gold) areas from the anatomical MRI in monkey A.
(Right) Extracellular voltage traces recorded from sample channels on the Neuropixels probe. (e)
Diagram of the video fixation task.

dorsal and ventral visual stream areas [36, 37]. While this line of work has provided valuable insight
into large-scale cortical representations, the limited spatial and temporal resolution of fMRI makes it
unsuitable for modeling single-neuron activity, which is the focus of STSBENCH.

Neural network reconstruction models for generating stimuli from neural activity. The task of
reconstructing visual stimuli from neural activity has been extensively studied in the fMRI literature,
spurred by the public release of large scale fMRI natural image datasets. A wide range of models
have been proposed for this task, including Bayesian decoders [38] generative adversarial networks
(GANs) [39], and conditional latent diffusion models [40]. STSBENCH, complements this body
of work by providing neural data from a fundamentally different recording modality, single-neuron
electrophysiology, for the reconstruction task.

3 STSBENCH

Overview of dataset. STSBench contains the activity of 2,244 neurons in the STS in response
to ∼4,500 unique, 200 ms natural video clips from the Ego4D dataset, along with the stimuli and
metadata associated with each neuron. We provide a complete description of the neural data files in
the data repository, and we describe the tasks, recording setup, and preprocessing steps below.

Subjects. Neural recordings were collected in a total of eight sessions from two male Rhesus
macaques (A: age 14 years, weight 11 kg, T: age 11 years, weight 10 kg). All surgical and exper-
imental procedures were approved by the Stanford University Institutional Animal Care and Use
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Committee and were in accordance with the policies and procedures of the National Institutes of
Health.

Task and recording setup. Neural recordings were conducted in the STS while monkeys performed
receptive field mapping and video fixation tasks. The location of the STS was identified using
anatomical MRIs in both monkeys (Figure 1d) and confirmed based on the functional properties
of recorded neurons. Neural data was recorded with a Neuropixels 1.0 NHP probe, a high-density
extracellular electrode with 384 recording contacts [33], positioned in the STS (Figure 1d).

Experiment code was written in MATLAB (MathWorks, version R2020b) using the Psychophysics
Toolbox [41]. Stimuli were presented on a ViewPixx LCD monitor with 1920×1080 pixels resolution
and 100 Hz refresh rate (VPixx Technologies). The monkeys viewed the display from a distance of
42 cm. Eye position was monitored at 1000 Hz using monocular corneal reflection and pupil tracking
with an Eyelink 1000 Plus (SR Research Ltd., Ottawa, ON, Canada). Eye-tracker calibration was
performed with a five point protocol at the beginning of each recording session.

Video fixation task. In the video fixation task, each trial started when the monkey fixated a central
spot (blue, 0.5° for monkey T; red, 1° for monkey A) for 300 ms. The fixation spot was presented
offset from the center of the screen (location reported individually for each session in the dataset) on
a mid-gray (33 cd/m2) background. A sequence of full-screen videos (9 for monkey T, 6 for monkey
A) were then displayed, each for 200 ms with no inter-stimulus interval (Figure 1e). The monkey
received a juice reward for maintaining fixation for the duration of the trial.

The videos shown in each trial were selected from a collection of 4,533 egocentric videos from
the Ego4D dataset [42]. Videos were resized to 640 x 360 to match the aspect ratio of the display
and sampled at 24 frames per second such that each 200 ms video contained 5 frames. From this
collection, we randomly selected 40 videos as test stimuli and used the remaining 4,493 videos as
train stimuli. In each session, test stimuli were shown in a fixed proportion of trials (30% for T; 20%
for A) and train stimuli were shown in the remaining trials. In each trial, stimuli to display were
drawn randomly without replacement from the train or test set, and test set stimuli were cycled once
all test set stimuli had been displayed. In total, 1,003-3,822 (mean 2,215) unique train videos were
shown per session.

Receptive field mapping task. In the receptive field mapping task, the monkey fixated a central
spot (white, 0.5° for T; red, 1° for A) on a mid-gray (33 cd/m2) background for 300 ms to initiate
a trial. A series of receptive field mapping stimuli (20 for monkey T, 13 for monkey A) were then
presented at various eccentricities, each for 100 ms with no inter-stimulus interval. The stimuli in the
RF mapping task were sinusoidal gratings (spatial frequency 1 cycle/°) inside a Gaussian envelope
(sigma 1°) with eight different carrier orientations. The carrier wave changed phase continuously at
15 Hz. The monkey received a juice reward for maintaining fixation for the duration of the trial.

Neural data preprocessing. Neural data was spike-sorted using the Kilosort4 algorithm with
default parameters to obtain spike times for individual neurons and waveform templates [43]. All
single and multi-units identified by Kilosort4 were grouped together and are referred to as ‘neurons’
hereafter. The firing rate for each neuron in the video fixation task was computed over the window
40-240 ms after stimulus onset, selected based on the minimum response latency of neurons in
MT/MST [44]. For each neuron, firing rates on the train and test set were z-scored using train set
statistics. Firing rate on the test set was then averaged over repeated presentations of the same stimuli.
We included neurons with reasonable average firing rates (>2 Hz on train set) and reliable visual
responses (‘reliability’ > 0.5) in subsequent analyses, where ‘reliability’ is a bootstrapped estimate of
the Pearson correlation coefficient between a neuron’s firing rate computed over separate subsets of
stimulus repeats. High response ‘reliability’ indicates that a neuron responds similarly to repeated
presentations of the same stimulus and differently to presentations of different stimuli.

To identify putative cell types in the dataset, neuronal waveform templates were classified as axonal-
spiking (AS), regular-spiking (RS; putative excitatory neurons), and fast-spiking (FS; putative
inhibitory) based on their trough-to-peak duration [45–47]. Waveforms with initial peaks (i.e.,
negative trough-to-peak duration), were classified as AS. Waveforms with trough-to-peak durations
between 0 and 200 µs, were classified as FS, and those with trough-to-peak durations greater than 200
µs, were classified as RS. Figure 2a-c shows an example waveform of a regular-spiking neuron and
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example visual receptive field, along with the distribution of waveforms and receptive fields along the
length of the probe in each of the eight recording sessions in the dataset. Figure 2d-f illustrate the
temporal dynamics of neural activity around stimulus onset. Taken together, these results highlight
the scale and diversity of the data in STSBENCH and its potential utility for modeling efforts.

Figure 2: Overview of neural data in STSBENCH. (a) Waveform template for an example neuron,
and corresponding visual receptive field mapped with drifting gratings. In the receptive field plot,
white dashed lines indicate the horizontal and vertical meridians, and units are degrees of visual
angle. (b) Waveform templates for all neurons plotted along the length of the probe in each recording
session. (c) Receptive fields for eight example neurons per session at different positions along the
probe. Schematic of Neuropixels probe is shown on the right in (b-c) (not to scale). (d-e) Raster plots
display activity of a single neuron across all trials in a session (d) and activity of the population of
neurons in a single trial (e) aligned to stimulus onset. (f) Peristimulus time histograms (PSTHs) are
plotted for single neurons (light grey) and averaged over all neurons in a session (black).

4 Encoding and reconstruction models

4.1 Encoding models

The encoding models evaluated here consist of a feature extractor that embeds an input video
followed by a readout layer that predicts a neuron’s firing rate from that embedding (Figure 3a). The
parameters of the feature extractor are shared across neurons while the parameters of the readout are
unique to each neuron. The input to the model is a 150× 150 crop of the 360× 640 video shown
to the monkey, selected to cover the receptive fields of most neurons in the dataset. The output of
the model is a scalar that represents a prediction of the z-scored firing rate of a single neuron. We
provide an overview of the encoding models below and more detail in Appendix A.

Feature extractors. We compare a suite of convolutional neural network (CNN) feature extractors
with weights that were either hand-tuned, pre-trained, or trained end-to-end. The hand-tuned 3D
Gabor model and pretrained ResNet models were proposed in previous studies as models of MT/MST
[28, 26, 48, 49]. The 3D CNN models that are trained end-to-end have 1-7 layers, 32 channels
per layer, and batch normalization and ReLU nonlinearities between layers. As in previous studies
[17, 34, 24], we compare the effect of using layers at different depths in the pretrained networks
and the interaction between layer and input size. Testing different input sizes is important for
pretrained models where filter weights are fixed but not for models trained end-to-end that can learn
the appropriate filters at different resolutions.
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Figure 3: Overview of encoding and reconstruction models. (a) Encoding models consist of a feature
extractor that embeds the input video using 3D convolutions and a factorized readout layer that
predicts a neuron’s firing rate from that embedding using spatial (Ws) and feature (Wf ) weights. The
feature extractor is either hand-tuned/pretrained and frozen or trained end-to-end. Scatter plot shows
predicted firing rate vs true firing rate on the test set for two example neurons predicted with the 3D
ResNet-Kinetics, Layer 2 model. (b) Reconstruction models consist of a VQ-VAE (ε and D) that
maps an image (X) to a latent representation (z), and a latent diffusion model that generates an image
conditioned on neural activity (c).

Readouts. For each neuron, the readout maps a video embedding x ∈ Rc×d×w×h (channels, depth,
width, height) to a scalar that represents the neuron’s response. The mapping is affine with weights
w ∈ Rc×d×w×h. As in previous studies [50–52, 24], we factorize w into a set of feature weights
wf

i,j and spatial weights ws
k,l such that wi,j,k,l = wf

i,jw
s
k,l.

4.2 Reconstruction models

The primary reconstruction model evaluated here is a conditional latent diffusion model that is trained
to generate an image from neural activity (Figure 3b). The model consists of a vector-quantized
variational autoencoder (VQ-VAE) and denoising U-Net. The input to the reconstruction model is
the vector of firing rates of all MT/MST neurons in STSBENCH or all V4 neurons in TVSD, and
the output is a 256 × 256 color image. In STSBENCH, this is a resized version of the 150 × 150
encoding model crop described above, and in TVSD this is a resized version of an uncropped image.

Our reconstruction model is based on Stable Diffusion [53], a text-conditional latent diffusion model.
In Stable Diffusion, cross-attention layers in the U-Net backbone incorporate information from a text
embedding (e.g., from CLIP [54]) during generation. In our reconstruction model, cross-attention
layers incorporate information from a neural activity vector that contains the firing rates of neurons
in response to a particular stimulus. Concretely, we replace the text embedding e ∈ RB×T×D (Batch
size, Tokens, Dimension of text embedding) in Stable Diffusion with neural activity c ∈ RB×1×N

(Batch size, 1, Neurons). This approach worked out-of-the-box with the same hyperparameters used
to train text-conditional latent diffusion models. Our implementation, hyperparameter choices, and
training details follow the text-conditional latent diffusion model in the StableDiffusion-PyTorch
repository [55]. Both the VQ-VAE and diffusion model are trained from scratch on the data in
STSBENCH or TVSD. We document all hyperparameters and training settings in the associated
code.

To quantify model performance, we report the peak-signal to noise ratio (PSNR) which is inversely
related to mean-squared error and quantifies pixel-level similarity between two images, and Learned
Perceptual Image Patch Similarity (LPIPS) which captures perceptual similarity by comparing deep
feature representations in a pretrained network (here, AlexNet) [56]. We compare the diffusion model
to two null models. The ‘shuffled’ null model compares each test set image to other images drawn
from the test set to estimate the performance of an unconditional generative model. The ‘mean’
null model compares each test set image to the mean image to quantify the optimal PSNR of an
unconditional generative model.
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Figure 4: Encoding model results. (a) Performance (R2, mean ± s.e.m.) of each encoding model
on the test set, separated by training scheme (hand-tuned, pretrained, end-to-end) and layer used to
readout neural activity. (b) Performance (R2, mean ± s.e.m.) of the 3D CNN-5 encoding model
trained end-to-end, separated by functional cell type. (c) 3D convolutional filters in the 3D CNN-1
encoding model trained end-to-end, with (top) and without (bottom) averaging over color channels.
Filters were manually grouped based on shared features, such as similarity to drifting Gabors.

5 Results

5.1 Encoding

We first tested whether we could predict the activity of individual neurons in STSBENCH from the
video shown to the monkey. We tested encoding models with feature extractors that were either
hand-tuned, pretrained, or trained end-to-end. Our motivation for developing and benchmarking such
video-computable encoding models with STSBench was twofold. First, by testing encoding models
trained end-to-end against pretrained or hand-tuned baselines, one might identify gaps in current
conceptual models and theories of dorsal stream processing. Second, by examining the features
learned by encoding models trained end-to-end, one might gain an intuitive understanding of the
features of the visual world that the dorsal stream encodes without imposing restrictive inductive
biases. We found that 3D CNN models trained end-to-end outperformed a suite of baseline models
proposed in previous studies (Figure 4a), including a model that uses features from a 3D ResNet
pretrained on a self motion estimation task [28] and a model that uses a pyramid of hand-tuned 3D
Gabor filters [26]. This result suggests that while models based on hand-tuned Gabor filter banks
[26] or filters optimized for self-motion estimation [28] provide solid baselines, they may not capture
responses in MT/MST as well as models trained end-to-end.

We next examined the dependence of model performance on overall network depth. For the 3D
CNN models trained end-to-end, we found that performance increased with increasing depth and
plateaued after five layers, highlighting the importance of deep nonlinear computations for predicting
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responses in MT/MST (Figure 4a). For the 3D ResNet model pretrained on Kinetics, features in
earlier layers were better predictors of neural activity than features in later layers, suggesting that
neurons in MT/MST are more selective to lower level visual representations than features necessary
for classifying actions (Figure 4a). Additionally, encoding model performance depended on putative
cell type, with better performance for regular-spiking (putative excitatory) neurons than fast-spiking
(putative inhibitory) neurons (Figure 4b; two-sample t-test, p <10-5). This observation is consistent
with evidence of weaker selectivity among cortical interneurons compared to pyramidal neurons [57].
We analyze the dependence of these results on input size and report additional quantitative results in
Appendix B.

Finally, we examined the filters learned by the 1-layer 3D CNN model trained end-to-end to under-
stand the features that MT/MST neurons encode. Interestingly, 10 out of the 32 filters learned by the
1-layer 3D CNN were similar to drifting Gabor patches with different orientations (Figure 4c), which
aligns with our current conceptual understanding of MT [26]. The remaining filters showed a mixture
of more complex properties such as ‘on-off’ responses and rotations. We also observed chromatic
features in many of the filters which are not present in the textbook model of MT/MST [although
see 58]. We leave a more thorough investigation of the nonlinear features and circuits learned by the
deeper and more performant 5-layer 3D CNN to future studies.

5.2 Reconstruction

We next asked whether we could reconstruct the visual stimulus shown to the monkey from neural
activity in STSBENCH. In early visual structures, such as the retina, that encode all features of a
visual scene, reconstructions should be able to capture all features of an input stimulus veridically. In
contrast, in higher visual areas where visual representations are factorized, reconstructions should only
capture the features encoded by neurons in that area. Thus, if our conceptual model of the dorsal and
ventral visual streams is correct, then reconstructions from the dorsal stream should capture primarily
motion statistics and low-spatial frequency contours (‘where’) whereas reconstructions from the
ventral stream should capture high-spatial frequency details, including color, texture, form, and object
identity (‘what’) [59, 10]. To assess whether information about motion statistics and low-spatial
frequency contours is encoded by neurons in STSBENCH, we trained an image reconstruction model
to reconstruct the first frame of each video from neural activity (Figure 5a), a decoder to predict the
average motion direction of each video (Appendix D), and a grayscale video reconstruction model to
reconstruct all frames of each video (Appendix E). We also trained the image reconstruction model
on neural data from the mid-level ventral stream area V4 [9] from TVSD for reference (Figure 5b).

We found that image reconstructions from neural activity in the dorsal stream qualitatively captured
low-spatial frequency luminance contours, such as the edges of computers, shelves and tables (Figure
5a). High-spatial frequency and object identity information, such as the water bottles on the shelf
and apple logo on the computer, were notably absent (Figure 5a). Quantitatively, the conditional
diffusion model performed substantially better than ‘shuffled’ and ‘mean’ null models on both PSNR
and LPIPS (Table 1), indicating that the model utilizes neural activity to condition image generation.
Moreover, results from the motion direction decoder (Appendix D) and video reconstruction model
(Appendix E) suggest motion information is encoded by neurons in STSBENCH.

In the ventral stream, reconstructions captured detailed information about form, object identity and
color, such as the shape of a dough ball, presence of a monkey, and color of a mango (Figure 5b).
Quantitatively, the conditional diffusion model performed substantially better than the ‘shuffled’ and
‘mean’ null models on LPIPS but not PSNR (Table 1).

Table 1: Reconstruction results for dorsal and ventral streams. Best value for each metric in each
column is bolded (max for PSNR, min for LPIPS).

Dorsal Stream (MT/MST) Ventral Stream (V4)
Model PSNR LPIPS PSNR LPIPS

Mean 11.335 0.873 12.192 0.912
Shuffled 9.848 0.751 9.333 0.690

Diffusion 14.161 0.668 10.631 0.589
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Figure 5: Dorsal (MT/MST) and ventral (V4) stream reconstruction results. Example test set images
(top row), and their corresponding reconstructions from neural activity (bottom row). (a) The
dorsal stream reconstructions primarily capture low spatial frequency components of the scene, a
characteristic feature of dorsal stream representations. (b) The ventral stream reconstructions capture
form, color, and object identity, key characteristics of ventral stream representations.

Taken together, the dorsal stream reconstruction results illustrate that the features of visual stimuli
known to be represented by the dorsal stream, such as motion and luminance contrast, can be
recovered from neuronal activity in STSBENCH. The ventral stream reconstruction results validate
our modeling approach and provide a qualitative reference, but direct comparisons between the
datasets cannot be made due to differences in neuron counts, preprocessing techniques (spike-sorted
in STSBENCH vs threshold-crossing in TVSD), and stimuli (natural videos in STSBENCH vs
natural images in TVSD). See Appendix C for additional results with linear and CNN baselines.

6 Conclusion

Here, we presented STSBENCH, a large-scale dataset of neuronal recordings from the STS collected
while monkeys viewed natural videos. We showed that STSBENCH can be used for training encoding
models of MT/MST and reconstructing visual stimuli from neural activity. Although the encoding and
reconstruction models used here are simple extensions of standard approaches in machine learning,
our results highlight the power of leveraging these techniques to better understand neural circuits
in the brain and stress test theories of visual processing. Our encoding results demonstrate that
simple 3D CNNs trained end-to-end outperform other baseline models of MT/MST, underscoring
the potential of STSBENCH to refine models of dorsal stream visual processing. Our reconstruction
results highlight the utility of STSBENCH for studying the features of the visual world represented
by populations of neurons in the dorsal stream.

The dataset and baselines presented here are an important first step towards developing a more
comprehensive understanding of dorsal stream visual areas and pave the way for future studies with
STSBENCH. Though we aimed to incorporate a representative set of encoding models, the set of
models we tested was not exhaustive. For example, there are other variants of the Gabor filter bank

9



model [26] and different readout mechanisms for predicting activity from pretrained networks that
could be examined [52]. By providing STSBENCH to the community, we hope to enable more
complete and comprehensive evaluations of models of MT/MST in future studies. Another promising
direction for future work is to apply interpretability methods [e.g. 60] to understand the nonlinear
computations in the 5-layer 3D CNN model of MT/MST that outperformed other baselines. This
effort could give rise to a more nuanced and complete mechanistic understanding of MT/MST.

7 Limitations

There are a number of important limitations of the dataset and the analyses presented here. First,
although the recordings in STSBench primarily encompass neurons in MT/MST, a few of the
superficial neurons in sessions 1-3 may be from the adjacent higher level dorsal stream area 7a and a
few of the superficial neurons in sessions 4-5 may be from adjacent white matter. Second, although
we applied a standard automated preprocessing method for assigning spikes in the voltage trace to
individual neurons (Kilosort 4.0), this preprocessing pipeline can overcount neurons (“split” errors)
or incorrectly group spikes from two real neurons into a single neuron (“merge” errors). Third, our
use of RS and FS waveform characteristics to distinguish between putative excitatory and inhibitory
neurons, though common in the extracellular neurophysiology, likely underestimates the diversity of
cell types.

8 Societal Impact

This work contributes to our understanding of the fundamental neural mechanisms underlying visual
processing in the primate brain. More broadly, we hope that developing a deeper understanding of
biological vision algorithms will aid efforts to improve the efficiency, robustness, and interpretability
of computer vision models.
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A Encoding model methods

A.1 Feature extractors

End-to-end - 3D CNNs. We evaluate a family of simple 3D convolutional neural network (3D CNN-X)
models with 1, 3, 5, or 7 layers and 32 channels per layer. Each convolutional layer is followed
by batch normalization and a ReLU nonlinearity. The first convolutional layer uses kernels of size
5 × 11 × 11 (depth × width × height), and all subsequent layers use 3 × 3 × 3 kernels. The first
three layers use a spatial stride of 2, while subsequent layers use a stride of 1. For the 1-layer model,
we add an average pooling layer with a stride of 4 to match the size of output feature map of deeper
models.

Pretrained - 2D and 3D ResNets. We evaluate three pretrained ResNet models: an 18-layer 3D ResNet
pretrained on the Kinetics action recognition task (3D ResNet-Kinetics, weights from torchvision)
[49, 61], a 6-layer 3D ResNet pretrained on a self motion estimation task (3D ResNet-Self Motion)
[28], and an 18-layer 2D ResNet pretrained on ImageNet (2D ResNet-ImageNet, weights from
torchvision) [48, 61]. The 2D ResNet processes only the first frame of each video. The layer
numbering conventions for the 3D ResNet-Self Motion model follow Mineault et al. [28], while the
conventions for the other ResNet models follow the PyTorch implementations.

Hand-tuned - 3D Gabor model. We evaluate a classic spatiotemporal receptive field model, in which
3D Gabor filters with different drift directions, phases, and spatial frequencies are convolved with the
input video to generate a feature map [26, 28]. Our implementation follows Mineault et al. [28], and
includes both a simple cell layer where a ReLU nonlinearity is applied to the feature map before the
readout, and a complex cell layer where the input to the readout is the norm of pairs of filters with
identical parameters but 90◦ phase offsets [26].

A.2 Training and evaluation details

The Adam optimizer was used to train all encoding models with a learning rate of 0.001. Training data
was divided into train and validation sets with a 90/10 split. We optimized a loss function consisting of
three terms: a mean squared error term for predicting firing rates, a Laplacian regularization term that
encourages spatial smoothness in the receptive field weights [51, 24], and an L2 penalty to prevent
overfitting. The regularization strengths λ1 and λ2 of the Laplacian and L2 terms, respectively, were
selected for each model separately via a grid search to maximize performance on the validation set.
This grid search required ∼1-10 hours on a single L40S GPU depending on the feature extractor used.
R2 between the predicted and true neuronal response on the held-out test set is reported in all tables
and figures.
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B Encoding model results

Table 2: Full encoding model results. R2 results on the test set are reported as mean ± s.e.m.

Training Scheme Model Name Layer Input Size (px) R2

Hand-tuned 3D Gabor Simple 112 0.244± 0.004

224 0.266± 0.004

Complex 112 0.232± 0.004

224 0.252± 0.004

Pretrained 2D ResNet - ImageNet Layer 1 112 0.185± 0.003

224 0.181± 0.003

Layer 2 112 0.185± 0.003

224 0.182± 0.003

Layer 3 112 0.143± 0.003

224 0.165± 0.003

Layer 4 112 0.066± 0.002

224 0.090± 0.002

3D ResNet - Kinetics Layer 1 112 0.301± 0.004

224 0.295± 0.004

Layer 2 112 0.293± 0.004

224 0.303± 0.004

Layer 3 112 0.206± 0.003

224 0.234± 0.004

Layer 4 112 0.082± 0.002

224 0.147± 0.003

3D ResNet - Self Motion Layer 1 112 0.260± 0.004

224 0.249± 0.004

Layer 2 112 0.289± 0.004

224 0.259± 0.004

Layer 3 112 0.275± 0.004

224 0.248± 0.004

Layer 4 112 0.250± 0.004

224 0.222± 0.004

End-to-end 3D CNN-1 Layer 1 64 0.206± 0.004

3D CNN-3 Layer 3 64 0.276± 0.004

3D CNN-5 Layer 5 64 0.338± 0.005

3D CNN-7 Layer 7 64 0.332± 0.005
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C Reconstruction model baselines and results

We also evaluated linear and CNN decoders as minimal baselines to test the feasibility of directly
reconstructing images from neural activity. The linear decoder consists of a single fully connected
layer that maps the neural activity vector to a flattened image tensor. The CNN decoder uses a fully
connected layer to project the neural activity vector into a latent representation of size 128× 8× 8.
This latent code is then upsampled through a sequence of transposed convolution layers with batch
normalization and ReLU nonlinearities to the final image resolution. For both the linear and CNN
decoder, the output is passed through a scaled sigmoid activation (2 · sigmoid(x)− 1) to generate
a 32× 32 image with pixel values in the [−1, 1] range. Linear and CNN baselines were trained to
minimize mean-squared error between the predicted and true image using the Adam optimizer with
a learning rate of 0.001. The qualitative and quantitative reconstruction results for these models,
compared to the diffusion model and other controls, are illustrated below.

Training the linear and CNN reconstruction models required < 1 hour on one L40S GPU. Training
the diffusion models was more compute intensive. Pretraining the VQ-VQE model reqiured ∼3 hours
on one L40S GPU for each dataset and training the latent diffusion model required ∼24 hours on one
L40S GPU for each dataset.

Figure 6: Dorsal stream (STS) reconstruction results with additional baselines. Example test set
images reconstructed from neural activity with a conditional diffusion model, CNN, or linear model.
Ground truth test image is shown in the top row.

Table 3: Dorsal stream (STS) reconstruction results with baselines. Best value for each metric is
bolded (max for PSNR, min for LPIPS).

Model PSNR LPIPS

Mean 11.335 0.873
Shuffled 9.848 0.751

Linear 14.818 0.820
CNN Decoder 11.463 0.838
Diffusion 14.161 0.668
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Figure 7: Ventral stream (V4) reconstruction results with baselines. Example test set images
reconstructed from neural activity with a conditional diffusion model, CNN, or linear model. Ground
truth test image is shown in the top row.

Figure 8: Additional ventral stream (V4) reconstruction results with baselines.

Table 4: Ventral stream reconstruction results with baselines. Best value for each metric is bolded
(max for PSNR, min for LPIPS).

Model PSNR LPIPS

Mean 12.192 0.912
Shuffled 9.333 0.690

Linear 13.313 0.920
CNN Decoder 12.821 0.954
Diffusion 10.631 0.589
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D Decoding optic flow

Figure 9: Decoding optic flow from neural activity in STSBENCH. (a) Diagram of optic flow
calculation and decoding for an example test set video. Dense optical flow is computed using the
Farneback method across adjacent frames, then averaged over time and space to assign a single
motion direction vector to each video. A linear regression model is trained to predict the motion
direction vector from neural activity in STSBENCH. (b) Decoding performance (cosine similarity)
on the held-out test set as a function of the number of neurons used for decoding. The horizontal
line denotes the performance of a target-shuffled control. (c) Feature importance analysis. The
normalized firing rates of the top eight features (neurons) in the decoder are plotted as functions of
motion direction.

To assess whether neural activity in STSBENCH encodes motion information, we trained a regression
model to predict the direction of motion in each video from neural activity. Motion direction
labels were computed by applying the Farneback algorithm [62] to estimate dense optical flow
between adjacent video frames. The resulting flow vectors were averaged over both space and time,
then normalized to obtain a unit vector representing the dominant motion direction for each video
(Figure 9a).

The input to the decoder was the vector of firing rates of all neurons in STSBENCH associated with a
particular video. The output of the decoder was a prediction of the x and y values of the normalized
motion direction vector (Figure 9a). The RidgeCV ridge regression model in scikit-learn was used
as the decoder [63]. The model was trained on the STSBENCH training set, then evaluated on the
held-out test set by measuring the cosine similarity between the predicted and true motion direction
vectors. As a control, we trained the same model with randomly shuffled targets and averaged results
over five shuffles.

The model accurately decoded motion direction, achieving a mean cosine similarity of 0.923 on the
test set compared to 0.051 for the shuffled control (Figure 9b), indicating that motion direction can
be robustly decoded from neural activity.

To examine the dependence of decoding performance on the number of neurons used as predictors,
we trained the decoder with subsets of the total population. We observed a linear relationship between
the logarithm of the number of neurons and cosine similarity that began to saturate at ∼ 100 neurons
(Figure 9b).
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To identify the neurons that most strongly influenced the decoder output, we computed a feature
importance score for each neuron, defined as the sum of the absolute values of its weights for
predicting the x and y components of the motion direction vector. We then examined the firing
rates of the eight most informative neurons as a function of video motion direction. The neurons
exhibited clear Gaussian-like tuning to motion direction (Figure 9c), underscoring the potential utility
of STSBENCH for studying how the dorsal stream processes motion.
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E Grayscale video reconstruction

To further assess the presence of motion information in neural activity in STSBENCH, we trained
a model to reconstruct five-frame grayscale videos conditioned on neural activity. The VQ-VAE
and diffusion model architecture and training procedure were identical to the image reconstruction
models, except that the first and last layers of the VQ-VAE were adapted to process inputs and outputs
of shape [5,W,H] rather than [3,W,H], replacing the color channels with a time dimension. For
evaluation, we report the cosine similarity between the average motion direction in the ground truth
video and its reconstruction, computed as in Appendix D.

The reconstruction model achieved a cosine similarity of 0.438 between the average motion direction
of the reconstructed and ground truth videos, substantially higher than chance (0 if motion direction
is uniformly distributed; 0.0485 with the circular mean of the training set). This is well below
the cosine similarity of 0.923 obtained in Appendix D when decoding motion direction directly
from neural activity, suggesting that there is considerable room for improving upon these results.
Example reconstructions are illustrated in Figure 10 and corresponding videos are included in the
code repository.

Figure 10: Reconstructing grayscale videos from neural activity in STSBENCH. Four example
ground truth videos and corresponding reconstructions are displayed. Arrows denote the mean optic
flow direction for adjacent frames computed using the Farneback method in either the ground truth
video (red) or reconstructed video (blue).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We released STSBench, and have demonstrated its utility for developing
encoding and reconstruction models in the dorsal stream.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a limitations section that discusses constraints of our dataset and
limitations of our encoding and reconstruction models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our main contribution is a dataset, and we have taken steps to ensure our results
are reproducible and verifiable by (a) describing the task setup, data collection, and data
preprocessing steps in extensive detail, (b) providing access to code and model checkpoints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all code and data necessary to reproduce our results, as well as
instructions to guide environment setup and data preprocessing.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The train/test split and hyperparameters for encoding models are completely
described in the paper. The hyperparameters and training pipeline for reconstruction models
are specified in clearly defined config files in the provided code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard error of mean for all of our encoding model results in
figures and tables. Due to compute cost of training the diffusion models, we do not include
error bars for the reconstruction metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify that encoding and reconstruction models were trained on L40S
GPUs and provide estimates of grid search/training time for the encoding and reconstruction
models in the relevant appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform to the code of ethics regarding data release, and do not anticipate
harmful consequences of this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts, and we do not anticipate any
negative societal impacts of this work.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risk. The dataset used here was not scraped from the
internet.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly cite the papers, code, and datasets we use in this paper including
a Pytorch Stable Diffusion implementation by Explaining AI, the Ego4D dataset, and the
Things Ventral Stream Dataset. The licenses of these datasets and codebases are respected
and noted in the code and data release that correspond with this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release a new dataset, STSBench, and document the contents of each file in
the data repository as well as the methods of data collection and preprocessing in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMS as any
important or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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