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Abstract

When building recommendation systems, we seek to output a helpful set of items to the
user. Under the hood, a ranking model predicts which of two candidate items is better, and
we must distill these pairwise comparisons into the user-facing output. However, a learned
ranking model is never perfect, so taking its predictions at face value gives no guarantee
that the user-facing output is reliable. Building from a pre-trained ranking model, we
show how to return a set of items that is rigorously guaranteed to contain mostly good
items. Our procedure endows any ranking model with rigorous finite-sample control of
the false discovery rate (FDR), regardless of the (unknown) data distribution. Moreover,
our calibration algorithm enables the easy and principled integration of multiple objectives
in recommender systems. As an example, we show how to optimize for recommendation
diversity subject to a user-specified level of FDR control, circumventing the need to specify
ad hoc weights of a diversity loss against an accuracy loss. Throughout, we focus on the
problem of learning to rank a set of possible recommendations, evaluating our methods on
the Yahoo! Learning to Rank and MSMarco datasets.

1 Introduction

The digitization of all manner of services has introduced recommendation systems into many aspects of our
day-to-day lives. In particular, recommendation systems are now being applied to safety-critical domains such
as making lifestyle recommendations to patients in healthcare (Hammer et al., 2015; Tran et al., 2021). It is
therefore increasingly important that deployed recommender systems do not output recommendations devoid
of uncertainty annotations. Meaningful recommendations should come with transparent and reliable statistical
assessments. To date, the majority of deployed systems have fallen far short of this desideratum (Covington
et al., 2016; Liu et al., 2017; Geyik et al., 2018).

Augmenting recommendation systems with internal tracking of statistical error rates would unlock new
capabilities and applications. One such capability is the ability to enforce auxiliary constraints while still
guaranteeing a baseline number of high-quality items in each slate of recommendations. For example, we
could diversify slates whose quality we are confident in, while leaving lower-confidence slates untouched.
Furthermore, the strong guarantees provided by uncertainty quantification are a prerequisite for applying
recommendation systems to safety-critical tasks such as medical diagnosis, where a misdiagnosis due to
uncertain predictions can be fatal.

1.1 Our Goal

In this paper, we develop a method for quantifying uncertainty for the task of learning to rank (L2R). In
particular, we consider the setting where we seek to return only items of some quality level, and can return
sets of variable size. When returning variable-sized sets, a canonical notion of statistical error is the false
discovery rate (FDR) (e.g., Efron, 2010). We will focus on this quantity in this work.

Formally, let {1, . . . ,K} be the items under consideration, let Y ∗ ⊂ {1, . . . ,K} be the ground-truth subset of
the items that are of acceptable quality, and let Ŝ ⊂ {1, . . . ,K} be the set of items returned by the algorithm.
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Figure 1: Examples of easy and hard queries. The violin plots show the distribution of document quality
scores output by a LambdaRank model for the five queries on the right. For easy queries, the model can
distinguish between the qualities of different documents, so the violin has a wide spread, and vice-versa for
hard queries.

The false discovery rate of an algorithm is

FDR = E

[
|Ŝ ∩ Y ∗|

max(|Ŝ|, 1)

]
,

and we ask the algorithm to control this quantity at some user-specified level α.

In words, controlling for FDR means that the algorithm returns sets that are mostly items of high quality.
When queries return large sets, it indicates that the model can confidently identify many high-quality items.
Conversely, when queries return small sets, it indicates that the model cannot identify high-quality items
with confidence. To control for FDR in recommendation systems, we propose a calibration algorithm that
returns set of items with FDR guaranteed to be lower than a user-specified level with high probability; see
Figure 1 for an example. This algorithm applies to any L2R model, including neural net models trained with
LambdaRank (Burges, 2010). The algorithm comes with finite-sample statistical guarantees whatever the
model, and these guarantees enable users to interact with recommendations with confidence.

Rigorously tracking statistical error rates opens the door to further performance improvements within a
system. In this work, we will focus on the diversity of the items returned—a central goal when designing
recommender systems. In particular, we will show how to return sets that are optimized for diversity while
maintaining finite-sample FDR guarantees. That is, we will seek to approximately solve

max
D

E
[
Diversity

(
D(X)

)]
s.t. P

(
FDR

(
D
)
> α

)
< δ.

Here, D is a model that maps an input to a set of returned items, Ŝ, and Diversity is a user-specified metric
for the diversity of a set of items. See Section 2.3 for details. To our knowledge, this is the first such statistical
result in the recommendation systems literature.

1.2 Related Work

Accurately quantifying model uncertainty has long been a desirable feature in information retrieval systems.
Early work simply aimed to score the relevance of each item (Robertson & Jones, 1976; Koren et al.,
2009). However, these methods are not calibrated, therefore their output scores can not be interpreted
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as probabilities. To remedy this issue one line of work models the problem through a Bayesian lens (Zhu
et al., 2009; Freudenthaler et al., 2011; Gopalan et al., 2014; Wang et al., 2018). While these methods can
improve upon their uncalibrated counterparts, they must be developed from scratch and require making
strong assumptions about user interactions.

Our work aims to quantify the reliability of recommendations in the learning-to-rank setting. Recent work
shows that neural learning-to-rank models suffer from poor calibration (Penha & Hauff, 2021), highlighting
the importance of our goals.

Our approach is based on recent developments in conformal prediction (Vovk et al., 1999; Papadopoulos
et al., 2002; Vovk et al., 2005; Angelopoulos & Bates, 2021) and distribution-free uncertainty quantification
more broadly (Park et al., 2020; Bates et al., 2021a; Angelopoulos et al., 2021). This line of work provides a
formal approach to defining set-valued statistical predictions and it has been applied to various learning tasks,
such as distribution estimation (Vovk et al., 2020), causal inference (Lei & Candès, 2020; Jin et al., 2021),
weakly-supervised data (Cauchois et al., 2022), survival analysis (Candès et al., 2021), design (Fannjiang
et al., 2022), model cascades (Fisch et al., 2020; Schuster et al., 2021), the few-shot setting (Fisch et al., 2021),
handling dependent data (Chernozhukov et al., 2018; Dunn et al., 2020), and handling or testing distribution
shift (Tibshirani et al., 2019; Cauchois et al., 2020; Hu & Lei, 2020; Bates et al., 2021b; Gibbs & Candès,
2021; Vovk, 2021; Podkopaev & Ramdas, 2022). Most closely related to the present work, there have been
recent proposals applying conformal prediction to recommender systems. One line of work aims to apply
conformal prediction to quantify the uncertainty in predicted ratings (Himabindu et al., 2018; Ayyaz et al.,
2018), while another aims to quantify the uncertainty in a set of recommended items when only implicit
feedback is available (Kagita et al., 2017; Penha & Hauff, 2021).

Diverging from these proposals, we go beyond conformal prediction and use the more general risk-control
framework (Bates et al., 2021a; Angelopoulos et al., 2021). As a result, our work allows recommender systems
to be optimized with respect to metrics other than accuracy while maintaining reliability guarantees. While
we focus on diversity as a case study (Kunaver & Požrl, 2017), our work is applicable to the broader literature
on alternative metrics, including reachability, serendipity and fairness (Singh & Joachims, 2018; Yao & Huang,
2017; Dean et al., 2020; Herlocker et al., 2004; Kaminskas & Bridge, 2016). As prior work has shown, focusing
solely on accuracy can harm performance with respect to these alternate metrics (Adomavicius et al., 2013;
Nguyen et al., 2014; Fleder & Hosanagar, 2009), underscoring the necessity of designing recommender systems
that can be optimized with respect to multiple objectives.

1.3 Our Contribution

We introduce a method for calibrating learning-to-rank models to control the false discovery rate. The
calibration procedure is supported by finite-sample statistical guarantees that apply to any model and dataset.
Controlling the false discovery rate enables downstream tasks like optimizing recommendations for diversity;
we explicitly extend our algorithm to produce sets of high diversity that are certified to control the false
discovery rate. This concrete example also serves as a template for how to handle desiderata beyond diversity
while providing statistical guarantees.

2 Methods

We begin by describing the learning-to-rank problem in recommendation systems. We then present a
calibration algorithm for controlling the FDR in recommendation systems with provable guarantees.

2.1 Learning to Rank

The learning-to-rank problem refers to a task where we receive a query from a user and seek to return a list
of responses ranked by their relevance. Formally, for any particular query, we have K ∈ N possible responses,
i.e., items that could be output. Note that K varies per query in our experiments; however, we suppress this
dependence in our notation. We also have a list of features X =

{
X(j)}K

j=1 in some space X , where X(j)

encodes all relevant information about the jth response, including any interactions with the user’s identity
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and query. One can think of the features as being an embedding from a neural network. Furthermore, we
have a ranking Y that takes values in Y = SK , the space of permutations on K items, and determines which
of the possible responses are most relevant (earlier-ranked items are more relevant). We use the notation
Y (j) to refer to the rank of the jth response, and Y (i:j) to mean the subvector of Y from index i to index j,
inclusive. Finally, we have a model π̂ that takes the input X and returns a probability π̂i,j , where π̂i,j is an
estimate of the probability that item i is preferred to item j:

π̂i,j(X) = P̂
(
Y (i) ≤ Y (j)

)
.

The model is usually trained from data to approximate the mapping from the features to the ranking.

As a motivating example of our setup, the reader can think of a search engine: K is the number of hits for a
query, X(j) is the content within the jth hit, and Y is the ideal order in which the hits should be presented
on the page. Since we do not know which webpages match the user’s query in advance, we estimate it with a
machine-learning model π̂, then select which results to display. In the next section, we propose an algorithm
for returning a short list of provably high-quality responses to the user using the machine-learning model.

2.2 FDR-Controlling Sets

Based on the output of π̂, we seek to output a final set Ŝ ⊂ {1, . . . ,K}, that contains mostly good items.
Formally, we will seek sets that have a low false discovery proportion:

FDP(Ŝ, Y ) = |Ŝ ∩ Y
(m+1:K)|

max(|Ŝ|, 1)
.

That is, for any prediction Ŝ, the FDP is the fraction of Ŝ that does not fall in the top m items. Here, m is a
parameter set by the analyst. For example, we might take m = .2 ·K, the top 20% of items.

A family of set-valued functions

We next explain how to produce good sets Ŝ from the model output. Note that the π̂i,j need not be properly
calibrated. Nonetheless, they do encode our model’s assessment of the quality of each item. Therefore, we
will create sets that include the most promising items, as judged by the model. In particular, we will rank
items based on their total quality:

si(X) = 1
K − 1

∑
j 6=i

π̂i,j(X).

A larger si represents a more promising item; if the model’s probabilities were correct, then si would be the
expected fraction of other items that item i is better than. We consider sets that include only the best items,
as judged by the score above:

Tλ(X) = {i : si(X) ≥ λ},

for λ ∈ [0, 1].

Calibrating λ with Learn then Test

We want to find a rule Tλ that has good FDR properties. That is, we want it to control the risk:

FDR(Tλ) = E [FDP(Tλ(X), Y )] .

Using Learn then Test (Angelopoulos et al., 2021), we can select a parameter λ̂ that controls the risk

P (FDR(T
λ̂
) > α) < δ, (1)

where α and δ are parameters set by the user.

We next review how to achieve the risk control in (1) with Learn then Test. Conceptually, the algorithm
starts with small recommendations that are certain to control the FDR, and progressively grows them until
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Algorithm 1 The Learn then Test calibration procedure for L2R
Input: Calibration data, (Xi, Yi), i = 1, . . . , n; risk level α; error rate δ; underlying predictor π̂; step size
dλ > 0.

Output: Parameter λ̂ for computing RCPS.
1: λ← 1
2: fdp← 1
3: while fdp ≤ α do
4: λ← λ− dλ
5: for i = 1, ..., n do
6: FDPi ← FDP

(
Tλ(Xi), Yi

)
7: fdp← 1

n

n∑
i=1

FDPi +
√

1
2n log 1

δ . Can replace with any valid upper-confidence bound on the risk.

8: λ̂← λ+ dλ . Backtrack by one because we overshot.

the liminal point where making them any bigger would violate the FDR. Each time we grow the set of
recommendations, we must calculate a p-value telling us if the FDR is controlled, and stop if that p-value is
greater than δ. Normally, calculating many p-values would incur a multiple testing penalty, but this can be
avoided using a protocol known as fixed sequence testing; see Wiens (2003). First, we consider a discrete set
of values, Λ = (.99, .98, . . . , .01). For each λ ∈ Λ, we consider the null hypothesis:

H0,λ : FDR(Tλ) > α.

We test this null hypothesis using independent and identically distributed (i.i.d.) calibration data,
(X1, Y1), . . . , (Xn, Yn), together with a concentration result. For example, one valid test based on Hoeffding’s
inequality is to reject H0,λ if

1
n

n∑
i=1

FDP(Tλ(Xi), Yi) +
√

log(1/δ)/(2n) < α. (2)

That is, if the empirical risk on the calibration set is far enough below α that we can conclude that the result
is not due to chance. With these tests in mind, we do the following. In decreasing order, we test each λ ∈ Λ
and stop for the first value of λ that we fail to reject, i.e., for the largest value of λ where (2) fails to hold.
Then, we select λ̂ to be the preceding value: the smallest value of λ considered such that (2) holds. This
procedure is valid, as stated next:

Proposition 1 (Validity of calibration (Angelopoulos et al., 2021)) With λ̂ selected as in Algo-
rithm 1, we have that (1) holds.

This proposition follows from the general result of Learn then Test calibration (Angelopoulos et al., 2021).

2.3 Optimizing for Diversity While Controlling the FDR

Often, producing a high-quality recommendation involves more than simply predicting items with high ratings.
For example, we may want the set to include a diversity of items—movies of different genres, search results
from different sources, and so on—so the user has a more interesting set of options. Loosely, our goal might
be to optimize for diversity while maintaining our rigorous FDR guarantee:

max
λ∈Λ

E
[
Diversity

(
Dλ(X)

)]
s.t. P

(
FDR

(
Dλ
)
> α

)
< δ.

(3)

The following technique will work for any diversity measure, although we describe it for one particular choice.
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Figure 2: Results on the Yahoo! L2R dataset.
We work in the setting where we wish to recommend no more than M ∈ N items to a user due to, for example,
constraints on the number of items that can be displayed on a webpage. Furthermore, we assume access to a
set of embeddings for each possible response, E(j) ∈ Rd for j ∈ {1, ...,K} and d ∈ N. A natural notion of
diversity is based on the average distance among embeddings for responses in a prediction set S ⊆ {1, ...,K},

Diversity
(
S
)

=

∑
j,j′∈S

∣∣∣∣E(j) − E(j′)
∣∣∣∣

2

max
(
M, |S|

) .

The diversity is a deterministic function that takes as input a set of responses S and computes a positive
real-valued number: the average distance between elements in S. It grows when the embeddings of the
elements in S are far apart from each other. Furthermore, the diversity grows when we add more elements until
we reach a set size of M , after which only the average distance matters. This particular choice of a measure
for diversity is not critical; any other metric could be substituted in while maintaining the error-control
guarantees below.

Next, we pick our family of sets to maximize the diversity at each choice of λ. This reduces to subsetting the
original prediction set Tλ to the top M most diverse items,

Dλ(X) = arg max
S⊆Tλ(X)
|S|≤M

Diversity(S).

In practice, we do not do the full combinatorial search over items in Tλ(X); instead, we do a greedy
approximation, removing the elements that contribute least to diversity first; see Algorithm 3.

With this new family of sets, we choose λ̂ as before, replacing T with D everywhere it appears. We state
the calibration procedure explicitly in Algorithm 2. Despite the seeming mathematical complexity of our
diversity optimization, we maintain precise control over the FDR, as stated next.

Proposition 2 (Validity of calibration with approximate diversity optimization) Let λ̂ be the re-
sult of Algorithm 2. With Tλ as the function given by Algorithm 3, we have that the FDR control in (1)
holds.

3 Experiments

We consider two popular L2R datasets: the Yahoo! Learning to Rank challenge (Chapelle & Chang, 2011)
and the MS MARCO document re-ranking challenge (Nguyen et al., 2016). In each, we use a LambdaRank
neural network model (Burges, 2010) with an input size of 700, two hidden layers of size 16 and 8, ReLU
activations (Nair & Hinton, 2010), and the Adam optimizer (Kingma & Ba, 2014) with its default parameters:
a learning rate of 0.001, momentum parameters β = (0.9, 0.999), and ε = 1e− 7. The evaluation protocol is
shared between both datasets, so we describe it here. First, we randomly split the data into disjoint train
and validation sets. We then train our model on the training set. Next, we repeat the following procedure
100 times:
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Algorithm 2 The Learn then Test calibration procedure for L2R with approximate diversity optimization
Input: Calibration data, (Xi, Yi), i = 1, . . . , n; embeddings for each calibration point E(j)

i , j = 1, . . . ,K;
risk level α; error rate δ; underlying predictor π̂; step size dλ > 0.

Output: Parameter λ̂ for computing RCPS.
1: λ← 1
2: fdp← 1
3: while fdp ≤ α do
4: λ← λ− dλ
5: for i = 1, ..., n do
6: Dλ(Xi)← Tλ(Xi)
7: while |Dλ(Xi)| > M do
8: leastDiverse ← Dλ(Xi)1
9: leastDiversity ←∞

10: for t ∈ Dλ(Xi) do
11: if Diversity

(
Dλ(Xi) \ t

)
≤ leastDiversity then

12: leastDiverse ← t
13: leastDiversity ← Diversity

(
Dλ(Xi) \ t

)
14: Dλ(Xi)← Dλ(Xi)\ leastDiverse
15: FDPi ← FDP

(
Dλ(Xi), Yi

)
16: fdp← 1

n

n∑
i=1

FDPi +
√

1
2n log 1

δ . Can replace with any valid upper-confidence bound on the risk.

17: λ̂← λ+ dλ . Backtrack by one because we overshot.

Algorithm 3 Producing calibrated predictions on a new test-point with diversity optimization in L2R
Input: Calibrated parameter λ̂; underlying predictor π̂; fresh test point (X,Y ); maximum number of
recommendations M .

Output: RCPS Dλ(X).
1: D

λ̂
(X)← T

λ̂
(X)

2: while |D
λ̂
(X)| > M do

3: leastDiverse ← D
λ̂
(X)1

4: leastDiversity ←∞
5: for t ∈ D

λ̂
(X) do

6: if Diversity
(
D
λ̂
(X) \ t

)
≤ leastDiversity then

7: leastDiverse ← t
8: leastDiversity ← Diversity

(
D
λ̂
(X) \ t

)
9: D

λ̂
(X)← D

λ̂
(X)\ leastDiverse

1. Split the validation set into a calibration set and a test set.

2. Using the calibration set, compute λ̂ as in Proposition 1.

3. Using the test set, and setting λ equal to λ̂ wherever it appears, compute the FDR risk as in 2.2,
and the set size, |T

λ̂
(X)|, for a uniformly random choice of X in the validation set.

After this procedure, we have 100 values of the risk and set size, each of which was taken from a different
random split of the calibration and test data. We report these values as histograms. Since we know (1) holds,
we expect that the histogram of risks will not exceed the chosen value of α except with probability δ; this is
indeed the case in our experiments, and the procedure is also not conservative.
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Figure 3: Results on the MS Marco Dataset.
In addition to providing statistical coverage, risk-controlling sets of recommendations should preferably not
make systematic errors. One way to check this is by stratifying the risk along some axis and checking the risk
within each stratum. If the risk is equal within each stratum, that means systematic errors are not being
made along the axis of stratification. We choose to stratify along a generally applicable axis, namely set size.
On the validation set, we compute the prediction sets and then compute the risk within each quartile of the

set sizes. That is, letting
{(
X

(val)
i , Y

(val)
i

)}n′

i=1
be the validation examples, we form the bins

Bj =
[

Quantile
({∣∣∣T

λ̂

(
X

(val)
i

) ∣∣∣}n′

i=1
,
j − 1

4

)
,Quantile

({∣∣∣T
λ̂

(
X

(val)
i

) ∣∣∣}n′

i=1
,
j

4

)]
,

for j ∈ {1, 2, 3, 4}. Then, we calculate the empirical FDR within each bin, i.e.,

F̂DRj =

n′∑
i=1

FDP
(
T
λ̂

(
X

(val)
i

)
, Y

(val)
i

)
1

{∣∣∣T
λ̂

(
X

(val)
i

)∣∣∣ ∈ Bj}
n′∑
i=1

1

{∣∣∣T
λ̂

(
X

(val)
i

)∣∣∣ ∈ Bj} .

We report each of the four stratified risks as a bar in a barplot, labeled ‘Short,’ ‘Short-Medium,’ ‘Medium-Long,’
and ‘Long’ respectively.

3.1 Yahoo! Learning to Rank

The Yahoo! Learning to Rank dataset (Chapelle & Chang, 2011) contains 36251 Yahoo! search queries,
where the ith query comprises an anonymized embedding vector for each website X(j)

i and the ranking of the
jth website, Y (j)

i , for j = 1, ...,K. We subset the dataset to a smaller version with only 26090 queries and
use 13045 random points for model training, n = 8000 for LTT calibration, and 5045 for testing.

We report the results of the FDR calibration procedure (Algorithm 1) in Figure 2, where we seek FDR control
at level α = 30% with a δ = 10% tolerance level. We find that the risk is controlled and that it is nearly
tight. Moreover, there is a large spread in the size of the returned set, indicating that the model is effectively
discriminating between high-uncertainty and low-uncertainty inputs.

3.2 MS Marco

The MS Marco document re-ranking dataset (Nguyen et al., 2016) consists of 367013 text queries sampled
from Bing. Each query has 100 documents associated with it, with each document consisting of a title
and a body. This task emulates the common real-world scenario where an expressive ranking model must
order documents provided to it by a lightweight nominator model. We convert each document and query
into a 768-dimensional vector by passing them through a DistilBERT pre-trained model (Sanh et al., 2019)
(distilbert-base-uncased in the HuggingFace library (Wolf et al., 2019)). We then concatenate the query and
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Figure 4: Diversity improvements as a function of α when optimizing for diversity subject to FDR control.
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Figure 5: Fraction of elements selected for diversity optimization.

document vectors together for each document-query pair, which we then use as our feature vectors. We subset
the dataset to include the first 20, 000 queries and use 10, 000 random points for model training, n = 1, 500
for LTT calibration, and 8, 500 for testing.

We report the results of the FDR calibration procedure (Algorithm 1) in Figure 3, where we seek FDR control
at level α = 50% with a δ = 10% tolerance level. As before, we find that the risk is controlled and that it is
nearly tight. We again see a reasonable spread in the size of the returned set, as desired.

3.3 Experiments to Optimize Diversity

We also implement experiments on the Yahoo! L2R dataset to understand the properties of the diversity
optimization procedure outlined in Section 2.3. As suggested by the optimization problem in (3), there is
the diversity of the final set trades off with the stringency of the risk-control guarantee. For a sufficiently
loose choice of α, the optimal strategy is simply to pick the M most diverse responses out of the K possible
ones. As we tighten α, the ability to tolerate suboptimal responses decreases, Tλ shrinks, and the diversity
optimization has fewer (but higher quality) responses to choose from.

We characterize this tradeoff by sweeping α, and for each value, estimating the relative diversity improvement

E

Diversity
(
D
λ̂
(X)

)
Diversity

(
T
λ̂
(X)

)
 . (4)

More concretely, we repeated the following procedure 100 times.

1. Split the validation set into a calibration set and a test set.

2. Using the calibration set, compute λ̂ as in Algorithm 2.

3. Using the test set, and setting λ equal to λ̂ wherever it appears, compute the FDR risk as in 2.2,
and the set size, |D

λ̂
(X)|, for a uniformly random choice of X in the validation set.
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Figure 6: Comparison of the model’s top three predictions against those optimized for diversity.

4. Compute and store the values of Diversity
(
T
λ̂
(X)
)

(the diversity before optimization) and
Diversity

(
D
λ̂
(X)
)
(the diversity after optimization), as well as the number of sets modified by

the the diversity procedure (i.e., those such that |T
λ̂
(X)| > M).

We estimated (4) by averaging the ratio of the diversities for each set modified by the procedure. The results
are shown in Figure 4 for both datasets. The non-monotone fluctuations in the curves are a consequence
both of statistical noise and also of our greedy diversity optimization procedure, which does not always pick
the optimal set. We also plot the fraction of sets chosen for diversity optimization, i.e., where T

λ̂
> M , as a

function of α in Figure 5. More permissive choices of α allow us to optimize a larger fraction of the sets. An
example of a set before and after diversity optimization is shown in Figure 6.

To query how the diversity optimization changed our previous results, we plot the risk and set size on the
Yahoo! L2R dataset. The desired FDR level is α = 30%, with a tolerance level of δ = 10% and M = 3. The
plots in Figure 8 indicate the risk is still controlled and the sets have a spread, with most sets being of size
three. This is not surprising, since M = 3, and all sets whose size was once greater than three are collapsed
to size three after diversity optimization. Running the diversity optimization increased the average diversity
by 15%, and 40% of the prediction sets were modified by the diversity optimization.
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Figure 7: Diversity improvements as a function of M
when optimizing diversity subject to FDR control.
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Figure 8: The risk and set size on the Yahoo! L2R
dataset with diversity optimization, setting M = 3.

As a last experiment, we sweep the value of M to see how it affects the diversity of the resulting set. Keeping
α = 0.3 and δ = 0.1, we vary M ∈ {2, 3, 4, 5, 6, 7, 8, 9} and then estimate the relative diversity improvement
in (4) with the same procedure as earlier. As before, we also report the fraction of sets changed by the
optimization procedure. See the results plotted in Figure 7 for the Yahoo! L2R dataset. Increasing M
excludes smaller sets (ones where the diversity optimization procedure has little room for improvement) from
the diversity optimization, while also making the procedure select less aggressively for large sets.

4 Discussion

The control of error rates is a critical aspect of the robust, reliable, and trustworthy deployment of learning
algorithms. A key stepping stone to meeting such desiderata is to provide rigorous uncertainty quantification
for a wide range of loss functions. Providing expressive uncertainty quantification also opens the door to new
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algorithmic capabilities. We take a step in this direction for the learning-to-rank problem, showing how to
calibrate any base learning algorithm to return sets of items that control the false discovery rate. Further, we
show how tracking uncertainty internally allows us to optimize for item diversity, while ensuring that the sets
we return have high utility.

We wish to highlight that the framework we leverage here is entirely modular; other components can be
grafted in to handle variations of the tasks we consider here. For example, the FDR notion of statistical
error can be replaced with others such as the false negative rate, with minimal change to the calibration
algorithm. Secondly, we could seek good performance on axes of performance other than set diversity by
swapping in another performance criterion in (3). Going even farther, we could optimize for another quantify
while requiring that both FDR and diversity are maintained at some level. Many recommender system tasks
can be handled—with finite-sample statistical guarantees—in the distribution-free risk-control framework.
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