
Published at the GEM workshop, ICLR 2025

MOLECULAR DESIGN USING GRAPH BAYESIAN OPTI-
MIZATION WITH SHORTEST-PATH KERNELS

Yilin Xie⋆, Shiqiang Zhang⋆, Jixiang Qing, Ruth Misener†, Calvin Tsay†
Department of Computing, Imperial College London, UK

ABSTRACT

Past decades have seen the great potential of generative machine learning in molec-
ular design while also exposed the gap between research contributions and practical
applications. Considering the expensive-to-evaluate nature of molecular properties
and hard-to-satisfy validity of molecular structures, this paper tackles molecular
design from graph Bayesian optimization viewpoint, i.e., generating feasible and
optimal molecular graph with compatible features given limited number of evalua-
tions. Our proposed method, BoGrape, uses shortest-path graph kernels to measure
the similarity between molecules and utilizes mixed-integer programming to allow
global exploration of molecular space while maintaining the feasibility of generated
candidates. Preliminary results show promising performance of BoGrape.

1 INTRODUCTION

The natural graph representations of (bio)molecules enable the application of graph machine learning
to molecular prediction and generation tasks (Gaudelet et al., 2021; Xia et al., 2019; Xiong et al.,
2021). To increase the validity and quality of generated candidates, numerous labeled molecules are
needed to learn the underlying structure-property relationships, making molecular design data-hungry,
and thus expensive. From optimization perspectives, the aim of molecular design is to learn and then
optimize an unknown objective using a few data points, leading researchers to Bayesian optimization
(BO) (Frazier, 2018). However, the discrete molecular space hinders the direct implementation of BO
techniques, which mostly operate on continuous inputs, motivating works that introduce a continuous
latent space and apply BO on it (Jin et al., 2018; Maus et al., 2022; Rittig et al., 2022). Nevertheless,
the validity of solutions is still measured on the original molecular space, whose counterpart on a
learned latent space is hard to define explicitly.

Alternatively, molecular generation can be viewed as a constrained graph optimization problem, i.e.,
finding desired graph structures and features subject to given constraints. Considering the black-box
objective and limited data, recent advances in graph BO seem to be promising alternatives. Existing
graph BO approaches mostly adopt Gaussian processes (GPs) with various graph kernels to fit graph
functions (Ramachandram et al., 2017; Borovitskiy et al., 2021; Ru et al., 2021; Zhi et al., 2023).
However, these works are impractical for (bio)molecular generation since they either (i) limit the
search space to a given fixed graph (Oh et al., 2019; Wan et al., 2023; Liang et al., 2024), directed
labeled graphs (White et al., 2021; Ru et al., 2021; Wan et al., 2021), unlabeled graphs (Cui & Yang,
2018), etc., or (ii) rely on task-specific similarity metrics (Kandasamy et al., 2018). Additionally,
acquisition functions in graph BO are mostly optimized using evolutionary algorithms (Kandasamy
et al., 2018; Wan et al., 2021) or sampling (Ru et al., 2021; Wan et al., 2023), which cannot efficiently
explore the search domain, flexibly handle constraints, or guarantee optimality.

This paper proposes Bayesian optimization over graphs with shortest-path encoded, or BoGrape,
as a paradigm for optimal molecular generation. GPs are chosen as the surrogates, using global
acquisition function optimization methods introduced by Xie et al. (2024). We develop four variants
of the classic shortest-path graph kernel (Borgwardt & Kriegel, 2005) for use in BoGrape. By
precisely representing the shortest paths as decision variables, the acquisition function optimization
is formulated as a mixed-integer program (MIP) with a mixed-feature search space, graph kernel, and

⋆Equal contributions. Corresponding authors: {yilin.xie22,s.zhang21}@imperial.ac.uk
†Equal contributions.

1

Published at the GEM workshop, ICLR 2025

Figure 1: Key components of BoGrape. Graph kernel comprises kG and kF on the graph and feature
levels respectively. Graph GP is then trained using the chosen kernel and samples. GP posterior is
used to build the acquisition, e.g., LCB. Note that graph GP includes discrete graph domains; the
continuous domain is only for illustration. Acquisition optimization is formulated as a MIP using
the encoding of shortest paths and graph kernels. Solving the MIP gives the next query point.

relevant problem-specific constraints. Figure 1 illustrates the BoGrape pipeline. Numerical results on
QM7 and QM9 datasets highlight the performance and sample efficiency of BoGrape in generating
good candidate molecules.

2 PRELIMINARIES

Bayesian optimization: BO is a derivative-free optimization framework designed to iteratively
approach the optimum of an expensive-to-evaluate, black-box function f : X → R (Frazier, 2018).
At each iteration, a surrogate model (usually GP) is trained on observed dataset, followed by selecting
the next query point through optimizing an acquisition function, i.e., lower confidence bound (LCB).

Optimization over trained ML models: A trained ML model is encoded into an optimization
formulation, enabling decision-making problems over model predictions. Many classic models are
studied in this area, e.g., GPs (Schweidtmann et al., 2021), trees (Mistry et al., 2021; Thebelt et al.,
2021; Ammari et al., 2023), neural networks (Anderson et al., 2020; Tsay et al., 2021), etc..

Global acquisition optimization: Xie et al. (2024) introduce a global acquisition optimization
framework based on mixed-integer quadratic programming (MIQP) named PK-MIQP, which is useful
because of its (i) compatibility with various kernels, and (ii) theoretical guarantee on regret bounds.

Graph kernels: Graph kernels extend the concept of kernels to graph domains and evaluate the
similarity between graphs. Past research develops graph kernels using various graph patterns, e.g.,
neighborhoods, subgraphs, walks, paths. We refer to Vishwanathan et al. (2010); Borgwardt et al.
(2020); Kriege et al. (2020); Nikolentzos et al. (2021) for more details about graph kernels.

3 METHODOLOGY

3.1 SHORTEST-PATH GRAPH KERNELS

We focus on variants of the shortest-path (SP) kernel. For graph G, denote lu as the label of node u,
eu,v as the shortest path from u to v (which may not be unique), and du,v as the shortest distance
from node u to v (which is unique). Borgwardt & Kriegel (2005) define an SP kernel between graphs
G1 = (V 1, E1) and G2 = (V 2, E2) as:

kSP (G
1, G2) =

∑
u1,v1∈V 1,u2,v2∈V 2

k(eu1,v1 , eu2,v2)

k(·, ·) compares the labels and lengths of two shortest paths:

k(eu1,v1 , eu2,v2) = kv(lu1 , lu2) · ke(du1,v1 , du2,v2) · kv(lv1 , lv2)

2

Published at the GEM workshop, ICLR 2025

where kv is a kernel comparing node labels, ke is a kernel comparing path lengths. Both kv and ke
are usually chosen as Dirac kernels, giving the explicit representation of the SP kernel as:

kSP (G
1, G2) =

1

n2
1n

2
2

∑
u1,v1∈V 1,u2,v2∈V 2

1(lu1
= lu2

, du1,v1 = du2,v2
, lv1 = lv2) (SP)

where 1
n2
1n

2
2

is normalizing coefficient with n1, n2 as node number in graph G1, G2, respectively.

Note that each node may have more problem-specific features beyond a single label. From here on,
we use X = (G,F) to denote an attributed graph with G as the underlying labeled graph and F as
node features. Intuitively, we can compare the features of two nodes instead of labels in kv . However,
this could unnecessarily reduce the number of matching paths between two graphs. Therefore, we
borrow from Cui & Yang (2018) the idea to separate the implicit and explicit information of graphs,
i.e., the kernel value between two attributed graphs X1, X2 becomes:

k(X1, X2) = α · kG(G1, G2) + β · kF (F 1, F 2) (1)

where kG is any graph kernel, kF is any kernel over features, and α, β are trainable parameters
controlling the trade-off between graph similarity and feature similarity.

We also propose a simplified shortest-path (SSP) kernel corresponding to an unlabeled SP kernel:

kSSP (G
1, G2) =

1

n2
1n

2
2

∑
u1,v1∈V 1,u2,v2∈V 2

1(du1,v1 = du2,v2) (SSP)

Observe that both the SP and SSP kernels are linear kernels if we pre-process all shortest paths in each
graph and count the number of each length of shortest path. To improve the representation ability,
non-linear kernels are considered which demonstrate better empirical performance in exchange
of the additional difficulties for optimization. Motivated by the practically strong performance of
exponential kernels such as RBF kernel, Matérn kernel, graph diffusion kernel (Oh et al., 2019), etc.,
we propose the following two nonlinear graph kernels based on SP and SSP kernels:

kESP (G
1, G2) = exp(kSP (G

1, G2))/σ2
k (ESP)

kESSP (G
1, G2) = exp(kSSP (G

1, G2))/σ2
k (ESSP)

where variance σ2
k is added to control the magnitude of kernel value. Note that we could also add

variance to SP and SSP kernels, but it would be absorbed by α, β.

3.2 GLOBAL ACQUISITION OPTIMIZATION

We begin with the optimization formulation for the LCB acquisition function from Xie et al. (2024):

min µ− β
1/2
t σ (3a)

s.t. µ = KxXK−1
XXy (3b)

σ2 ≤ Kxx −KxXK−1
XXKXx (3c)

KxXi = k(x,Xi), ∀1 ≤ i < t (3d)
x = (G,F) ∈ X = G × F (3e)

To maintain consistency with the general BO setting, we denote x = (G,F) as the next sample and
X = {(Gi, F i), yi}t−1

i=1 as the prior samples at the t-th iteration. The difference is that now we need
to optimize over both the graph domain G ∈ G and the feature domain F ∈ F .

The advantages of formulation Eq. (3) are: (i) it is compatible with discrete variables, a key challenge
of graph optimization, (ii) Eq. (3e) allows problem-specific constraints over the graph domain, (iii)
Eq. (3d) is generic to the choice of graph kernel, and (iv) nonlinear kernels can be piecewise-linearly
approximated and incorporated into Eq. (3) with theoretical guarantees on regret bounds.

3.3 ENCODING OF GRAPH KERNELS

The explicit formulation of Eq.(3e) needs expressions of KxXi and Kxx, both of which involve the
shortest path between any two nodes. Deriving shortest paths for a given graph is straightforward

3

Published at the GEM workshop, ICLR 2025

Figure 2: Predictive performance of GP with different kernels. 100 samples are randomly chosen
from the QM7 dataset, 30 of which are used for training. The predictive mean with one standard
deviation (predicted y) of the remaining 70 graphs are plotted against their real values (true y).

using classic shortest-path algorithms, while representing them into decision variables is quite
complicated and thus the major contribution of this work. Due to space limit, we put all details about
the encoding of shortest paths in Appendix A, where Theorem A.2 and Theorem A.3 guarantee the
equivalence of our encoding for directed graphs. With shortest paths encoded, Appendix B formulates
graph kernels introduced in Section 3.1. All encoding could be further simplified for undirected
graphs, e.g., molecules (see Appendix B.3).

4 EXPERIMENTS

In this preliminary work, we consider the performance of our method in both prediction and optimiza-
tion tasks. Datasets QM7 (Blum & Reymond, 2009; Rupp et al., 2012) and QM9 (Ruddigkeit et al.,
2012; Ramakrishnan et al., 2014) are chosen as real-world case studies, each of which consists of
molecules with quantum mechanic properties. Each molecule is represented as a graph with F = 15
node features, including L = 4 labels. Since the maximal size of molecules is 7 and 9 for QM7 and
QM9, respectively, we follow Zhang et al. (2023) and train a GNN as a predictor for each dataset.

All experiments are performed on a 4.2 GHz Intel Core i7-7700K CPU with 16 GB memory. We use
GPflow (Matthews et al., 2017) to implement GP models, PyG (Fey & Lenssen, 2019) to implement
GNNs, and Gurobi v11.0.0 (Gurobi Optimization, LLC, 2024) to solve MIPs. Random sampling is
a common baseline, but is excluded here since it rarely produces even feasible solutions. Instead,
we use Limeade (Zhang et al., 2024b) to randomly generate feasible molecules, which is further
enhanced by incorporating the composition constraints and symmetry-breaking constraints proposed
by Zhang et al. (2023). Appendix C.2 compares random sampling and Limeade.

4.1 MOLECULAR PROPERTIES PREDICTION

We first test the predictive performance of GPs with the four graph kernels. Based on the molecular
size N , we consider two settings: (a) if the dataset includes molecules of size N , we randomly choose
molecules from the dataset and use their real properties, and (b) for larger N , we use Limeade to
generate molecules and use the trained GNN to predict their properties. To show the performance
of different kernels on representing similarity between graphs, we apply setting (a) and perform a
property prediction task using GPs equipped with the various kernels in Figure 2. For larger graph
sizes, we apply setting (b) and report the root mean square errors and mean negative log likelihoods of
GP regression in Tables 2 and 3 (see Appendix C.1). Figure 2 concludes the four graph kernels have
comparable prediction performance in terms of accuracy, while two exponential kernels may more
accurately quantify uncertainty (which is also observed in Table 3). When graph size N is larger,
Table 2 shows that the more complicated kernels, i.e., SP and ESP, are generally better at predicting
graph properties since they impose stronger criteria on comparing shortest-paths between two graphs.

4.2 OPTIMAL MOLECULAR DESIGN

Now we have presented all the pieces needed to implement an end-to-end BO procedure. We employ
the trained GNNs used in Section 4.1 as oracle predictors, i.e., the functions that we seek to optimize.

4

Published at the GEM workshop, ICLR 2025

(a) QM7, N = 10 (b) QM7, N = 20 (c) QM7, N = 30

(d) QM9, N = 10 (e) QM9, N = 20 (f) QM9, N = 30

Figure 3: Bayesian optimization results on QM7 and QM9 with N ∈ {10, 20, 30}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

At each iteration, we train a GP with a graph kernel and extract trained model parameters α, β, σ2
k to

calculate KXX and represent Kxx,KxXi
appearing in Eqs. (3b)–(3d). Eq. (3e) defines the search

domain, which is already set up in Zhang et al. (2024a) for QM7 and QM9. Solving the final MIP
suggests the next molecule to query. Algorithm 1 outlines BoGrape.

Algorithm 1 BoGrape at t-th iteration.

1: Input: dataset X = {(Gi, F i), yi}t−1
i=1 , graph kernel ∈ {SSP, SP, ESSP, ESP}.

2: Model training: kernel parameters α, β, σ2
k ▷ graph GP fit to X .

3: Acquisition formulation:
4: define objective in Eq. (3a) ▷ definition of LCB.
5: encode KxXi and Kxx in Eqs. (3b) – (3d) ▷ Appendix B.
6: search space X in Eq. (3e) ▷ problem-specific.
7: Optimization: optimal solution (Gt, F t) ▷ solve Eq. (3) (with warm start).
8: Output: proposed sample (Gt, F t).

In our experiments, 10 molecules generated by Limeade are used as the initial dataset, and 50 BO
iterations are performed with 600s as the time limit for each iteration. To initialize the algorithm
with some feasible solutions, i.e., good primal solutions, we use 20 molecules generated by Limeade
together with previously sampled molecules to warm start Eq. (3) before solving it. For each BO run,
we show the mean with 0.5 standard deviation of the best objective value over 10 replications.

Results in Figure 3 show that BoGrape outperforms Limeade regardless of which graph kernel is used.
The SSP kernel displays the best performance in most cases, especially when the graph size N is large.
This observation suggests that this simpler encoding reduces model complexity and produces better
solutions within the given computational time. The SP kernel, which includes stricter comparison
between graphs and has outstanding predictive performance as shown in Table 2, outperforms the
SSP kernel in some cases, e.g. Figures 3a, 3b, 3d. Exponential kernels have good representation
ability, at the trade-off that their formulations result in more complicated MIPs and require more
computational resources for good performance. We hypothesize that BO with the exponential kernels
may be more capable of providing high-quality solutions giving longer computational time.

5

Published at the GEM workshop, ICLR 2025

5 CONCLUSION

This work proposes BoGrape to optimize black-box functions over graphs. Four shortest-path graph
kernels are presented and tested on both prediction and Bayesian optimization tasks. The underlying
mixed-integer formulation provides a flexible and general platform including mixed-feature search
spaces, graph kernels, acquisition functions, and problem-specific constraints. BoGrape shows
its ability to generate feasible and qualified molecular graphs, leveraging the data-insufficiency
and validity requirement in practice. Numerical results show promising performance and suggest
trade-offs between query-efficiency and computational time when choosing a suitable kernel.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from a Department of Computing Scholarship (YX),
BASF SE, Ludwigshafen am Rhein (SZ), Engineering and Physical Sciences Research Council
[grants EP/W003317/1, EP/X025292/1, and EP/Y028775/1] (RM, CT, JQ), a BASF/RAEng Research
Chair in Data-Driven Optimisation (RM), and a BASF/RAEng Senior Research Fellowship (CT).

REFERENCES

Bashar L. Ammari, Emma S. Johnson, Georgia Stinchfield, Taehun Kim, Michael Bynum, William E.
Hart, Joshua Pulsipher, and Carl D. Laird. Linear model decision trees as surrogates in optimization
of engineering applications. Computers & Chemical Engineering, 178, 2023.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3–39, 2020.

Lorenz C. Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database GDB-13. Journal of the American Chemical Society, 131(25):
8732–8733, 2009.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, Bastian Rieck, et al.
Graph kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine
Learning, 13(5-6):531–712, 2020.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In International
Conference on Data Mining, 2005.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Peter
Deisenroth, and Nicolas Durrande. Matern Gaussian processes on graphs. In International
Conference on Artificial Intelligence and Statistics, 2021.

Jiaxu Cui and Bo Yang. Graph Bayesian optimization: Algorithms, evaluations and applications.
arXiv preprint arXiv:1805.01157, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

Robert W Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345–345, 1962.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph ma-
chine learning within drug discovery and development. Briefings in Bioinformatics, 22(6):bbab159,
2021.

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2024. URL https://www.
gurobi.com.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, 2018.

6

https://www.gurobi.com
https://www.gurobi.com

Published at the GEM workshop, ICLR 2025

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with Bayesian optimisation and optimal transport. NeurIPS, 31, 2018.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

Huidong Liang, Xingchen Wan, and Xiaowen Dong. Bayesian optimization of functions over node
subsets in graphs. arXiv preprint arXiv:2405.15119, 2024.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research, 18(40):1–6, 2017.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner. Local
latent space Bayesian optimization over structured inputs. In NeurIPS, 2022.

Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M. Lee, and Ruth Misener. Mixed-
integer convex nonlinear optimization with gradient-boosted trees embedded. INFORMS Journal
on Computing, 33(3):1103–1119, 2021.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943–1027, 2021.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial Bayesian
optimization using the graph cartesian product. NeurIPS, 2019.

Dhanesh Ramachandram, Michal Lisicki, Timothy J Shields, Mohamed R Amer, and Graham W
Taylor. Structure optimization for deep multimodal fusion networks using graph-induced kernels.
arXiv preprint arXiv:1707.00750, 2017.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):1–7, 2014.

Jan G. Rittig, Martin Ritzert, Artur M. Schweidtmann, Stefanie Winkler, Jana M. Weber, Philipp
Morsch, Karl Alexander Heufer, Martin Grohe, Alexander Mitsos, and Manuel Dahmen. Graph
machine learning for design of high-octane fuels. AIChE Journal, pp. e17971, 2022.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via Bayesian optimisation with Weisfeiler-Lehman kernels. In ICLR, 2021.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of
166 billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical
Information and Modeling, 52(11):2864–2875, 2012.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical Review
Letters, 108(5):058301, 2012.

Artur M Schweidtmann, Dominik Bongartz, Daniel Grothe, Tim Kerkenhoff, Xiaopeng Lin, Jaromił
Najman, and Alexander Mitsos. Deterministic global optimization with Gaussian processes
embedded. Mathematical Programming Computation, 13(3):553–581, 2021.

Alexander Thebelt, Jan Kronqvist, Miten Mistry, Robert M. Lee, Nathan Sudermann-Merx, and
Ruth Misener. Entmoot: A framework for optimization over ensemble tree models. Computers &
Chemical Engineering, 151:107343, 2021.

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks. In NeurIPS, 2021.

Stefan Vigerske and Ambros Gleixner. SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optimization Methods and Software, 33(3):563–593,
2018.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. The Journal of Machine Learning Research, 11:1201–1242, 2010.

7

Published at the GEM workshop, ICLR 2025

Xingchen Wan, Henry Kenlay, Binxin Ru, Arno Blaas, Michael Osborne, and Xiaowen Dong.
Adversarial attacks on graph classifiers via Bayesian optimisation. In NeurIPS, 2021.

Xingchen Wan, Pierre Osselin, Henry Kenlay, Binxin Ru, Michael A Osborne, and Xiaowen Dong.
Bayesian optimisation of functions on graphs. NeurIPS, 2023.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In AAAI, 2021.

Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, and Zhenming Liu. Graph-based
generative models for de Novo drug design. Drug Discovery Today: Technologies, 32:45–53, 2019.

Yilin Xie, Shiqiang Zhang, Joel Paulson, and Calvin Tsay. Global optimization of Gaussian
process acquisition functions using a piecewise-linear kernel approximation. arXiv preprint
arXiv:2410.16893, 2024.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
networks for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

Shiqiang Zhang, Juan S. Campos, Christian Feldmann, David Walz, Frederik Sandfort, Miriam
Mathea, Calvin Tsay, and Ruth Misener. Optimizing over trained GNNs via symmetry breaking.
In NeurIPS, 2023.

Shiqiang Zhang, Juan S Campos, Christian Feldmann, Frederik Sandfort, Miriam Mathea, and
Ruth Misener. Augmenting optimization-based molecular design with graph neural networks.
Computers & Chemical Engineering, 186:108684, 2024a.

Shiqiang Zhang, Christian W Feldmann, Frederik Sandfort, Miriam Mathea, Juan S Campos, and
Ruth Misener. Limeade: Let integer molecular encoding aid. arXiv preprint arXiv:2411.16623,
2024b.

Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong. Gaussian processes on graphs via spectral kernel
learning. IEEE Transactions on Signal and Information Processing over Networks, 2023.

8

Published at the GEM workshop, ICLR 2025

A ENCODING OF SHORTEST PATHS

A.1 NOTATIONS

We provide details for all variables introduced in this paper in Table 1. Recall that the search domain
considered here consists of all connected graphs with node number ranging from n0 to n, each node
has M binary features with the first L node features as the one-hot encoding of node label. Use [n] to
denote set {0, 1, . . . , n− 1}.

Table 1: All variables introduced in the optimization formulation for graph kernels.

Variables Domain Description

Au,v, u, v ∈ [n] {0, 1} the existence of edge from u to v
du,v, u, v ∈ [n] [n+ 1] the length of shortest path from u to v

δwu,v, u, v, w ∈ [n] {0, 1} if w appears at the shortest path from u to v

dsu,v, u, v ∈ [n], s ∈ [n+ 1] {0, 1} indicator: 1(du,v = s)
Ds, s ∈ [n] [n2 + 1] # shortest paths with length s

Dc
s, s ∈ [n], c ∈ [n2 + 1] {0, 1} indicator: 1(Ds = c)

ps,l1,l2u,v , u, v, s ∈ [n], l1, l2 ∈ [L] {0, 1} indicator: 1(Fu,l1 = 1, du,v = s, Fv,l2 = 1)
Ps,l1,l2 , s ∈ [n], l1, l2 ∈ [L] [n2 + 1] # shortest paths with length s and labels l1, l2

P c
s,l1,l2

, s ∈ [n], l1, l2 ∈ [L], c ∈ [n2 + 1] {0, 1} indicator: 1(Ps,l1,l2 = c)

Nm, m ∈ [M] [N + 1] sum of m-th feature over all nodes
Nc

m, m ∈ [M], c ∈ [M + 1] {0, 1} indicator: 1(Nm = c)

A.2 SHORTEST PATH ENCODING FOR GRAPHS WITH FIXED SIZE

For the sake of exposition, we start with all connected graphs G with fixed size, i.e., node number n
is given. The optimization formulation for graph kernels involves constant graph information and
their variable counterparts. For each variable Var , we use Var(G) to denote its value on a given
graph G. For example, du,v(G) is the shortest distance from node u to node v in graph G.

If graph G is given, Au,v, du,v, δ
w
u,v in Table 1 can be computed using classic shortest-path algorithms,

such as the Floyd–Warshall algorithm (Floyd, 1962). In graph optimization tasks, however, we need
to encode the relationships between these variables as constraints. Motivated by the Floyd–Warshall
algorithm, we first present the constraints in Eq. (4) and then prove that there exists a bijective
between the feasible domain given by these constraints and all connected graphs with size n.

Av,v = 1, ∀v ∈ [n] (4a)
dv,v = 0, ∀v ∈ [n] (4b)

du,v

{
= 1, if Au,v = 1

> 1, if Au,v = 0
, ∀u, v ∈ [n], u ̸= v (4c)

du,v

{
= du,w + dw,v, if δwu,v = 1

< du,w + dw,v, if δwu,v = 0
, ∀u, v, w ∈ [n], u ̸= v (4d)

δwv,v =

{
1, if w = v

0, if w ̸= v
, ∀v, w ∈ [n] (4e)

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v (4f)∑
w∈[n]

δwu,v

{
= 2, if Au,v = 1

> 2, if Au,v = 0
, ∀u, v ∈ [n], u ̸= v (4g)

Eq. (4) are necessary conditions that Au,v, du,v, δ
w
u,v should satisfy:

• Eq. (4a) initializes the diagonal elements.

9

Published at the GEM workshop, ICLR 2025

• Eq. (4b) initializes the shortest distance from v to itself.
• Eq. (4c) forces the shortest distance from node u and v be 1 if edge u → v exists, and larger

than 1 otherwise.
Rewrite Eq. (4c) as:

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

where n is a big-M coefficient using du,v ≤ n− 1.
• Eq. (4d) is the triangle inequality for distance matrix d.

Rewrite Eq. (4d) as:
du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

where 2n is a big-M coefficient since du,w + dw,v < 2n.
• Eq. (4e) initializes δwv,v by definition.
• Eq. (4f) initializes δuu,v and δvu,v by definition.
• Eq. (4g) ensures that there is at least one node at the shortest path from node u to v if there

is no edge from node u to v. Otherwise, no node except for u and v could appear at the
shortest path from u to v.
Rewrite Eq. (4g) as:∑

w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ 2 + (1−Au,v), ∀u, v ∈ [n], u ̸= v

where n− 2 is a big-M coefficient since
∑

w∈[n]

δwu,v ≤ n.

Replacing disjunctive constraints accordingly in Eq. (4) gives the final formulation Eq. (MIP-SP):

Av,v = 1, ∀v ∈ [n]

dv,v = 0, ∀v ∈ [n]

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

δvv,v = 1, ∀v ∈ [n]

δwv,v = 0, ∀v, w ∈ [n], v ̸= w

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ 2 + (1−Au,v), ∀u, v ∈ [n], u ̸= v

(MIP-SP)

Lemma A.1. (Au,v(G), du,v(G), δwu,v(G)) is a feasible solution of Eq. (MIP-SP) with size n = n(G)
given any connected graph G.

Proof. Trivial to verify by definition.

Theorem A.2. Given any n ∈ Z+, for any feasible solution (Au,v, du,v, δ
w
u,v) of Eq. (MIP-SP) with

size n, there exists a unique graph G such that:
(Au,v(G), du,v(G), δwu,v(G)) = (Au,v, du,v, δ

w
u,v)

i.e., there is a bijective between the feasible domain of Eq. (MIP-SP) with size n and the set consisting
of all connected graphs with n nodes.

10

Published at the GEM workshop, ICLR 2025

Proof. If such G exists, it is unique since Au,v gives the existence of every edge. Thus it suffices to
show that (du,v(G), δwu,v(G)) = (du,v, δ

w
u,v) for G defined with Au,v .

We are going to prove it by induction on the shortest distance sd from node u to v in graph G.
Specifically, we want to show that for any 0 ≤ sd < n, and for any pair of (u, v) such that
min(du,v(G), du,v) = sd, we have du,v(G) = du,v and δwu,v(G) = δwu,v, ∀w ∈ [n].

For sd = 0, min(du,v(G), du,v) = 0 if and only if u = v. For any v ∈ [n], it is obvious to have:

dv,v(G) = 0 = dv,v

δvv,v(G) = 1 = δvv,v

δwv,v(G) = 0 = δwv,v, ∀w ̸= v

For sd = 1, consider every pair (u, v) such that du,v(G) = 1, we have Au,v = Au,v(G) = 1, then it
is easy to obtain:

du,v(G) = 1 = du,v

δwu,v(G) = 1 = δwu,v, ∀w ∈ {u, v}
δwu,v(G) = 0 = δwu,v, ∀w ̸∈ {u, v}

where δwu,v = 0, ∀w ̸∈ {u, v} since:∑
w ̸∈{u,v}

δwu,v =
∑
w∈[n]

δwu,v − δuu,v − δvu,v = 0

On the contrary, du,v = 1 gives Au,v = 1, thus Au,v(G) = 1 and δwu,v(G) = δwu,v, ∀w by definition.

Now assume that for any pair of (u, v) such that min(du,v(G), du,v) ≤ sd, we have du,v(G) = du,v
and δwu,v(G) = δwu,v, ∀w. Since δwu,v(G) = δwu,v, ∀w ∈ {u, v} always holds by definition, we only
consider w ̸∈ {u, v}.

Part 1: We first consider every pair of (u, v) such that du,v(G) = sd + 1. Since sd + 1 ≥ 2, we
know that Au,v = Au,v(G) = 0 and there exists w ̸∈ {u, v} on the shortest path from node u to v in
graph G.

Case 1.1: For every w ̸∈ {u, v} such that δwu,v(G) = 1, since du,w(G) ≤ sd and dw,v(G) ≤ sd, we
have:

du,v ≤ du,w + dw,v = du,w(G) + dw,v(G) = du,v(G) = sd+ 1

The equality has to hold, otherwise, du,v ≤ sd gives du,v(G) = du,v ≤ sd by assumption. Therefore,
δwu,v = 1 = δwu,v(G).

Case 1.2: For every w ̸∈ {u, v} such that δwu,v(G) = 0, if δwu,v = 1, then du,w+dw,v = du,v = sd+1,
which means that du,w ≤ sd and dw,v ≤ sd. By assumption, we have du,w(G) = du,w, dw,v(G) =
dw,v and then:

du,w(G) + dw,v(G) = du,w + dw,v = du,v = du,v(G)

which contradicts to δwu,v(G) = 0. Thus δwu,v = 0.

Part 2: Then we consider every pair of (u, v) such that du,v = sd + 1. Similarly, we have
Au,v = Au,v(G) = 0.

Case 2.1: For every w ̸∈ {u, v} such that δwu,v = 1, since du,w ≤ sd and dw,v ≤ sd, we have
du,w(G) = du,v and dw,v(G) = dw,v , then:

du,v(G) ≤ du,w(G) + dw,v(G) = du,w + dw,v = du,v = sd+ 1

This equality also has to hold, otherwise, du,v(G) ≤ sd, by assumption du,v = du,v(G) ≤ sd, which
is a contradiction.

Case 2.2: For every w ̸∈ {u, v} such that δwu,v = 0, if δwu,v(G) = 1, then du,w(G) = dw,v(G) =
du,v(G) = sd+ 1, which means that du,w(G) ≤ sd and dw,v(G) ≤ sd. Therefore,

du,w + dw,v = du,w(G) + dw,v(G) = du,v(G) = du,v

which contradicts to δu,v = 0.

11

Published at the GEM workshop, ICLR 2025

A.3 SHORTEST PATH ENCODING FOR GRAPH WITH UNKNOWN SIZE

The formulation becomes more complicated when the graph size is unknown (but bounded). Denote
n0 and n as the minimal and maximal number of nodes, respectively, and use Av,v to represent the
existence of node v. We need to assign proper values to du,v and δwu,v when either of u or v does not
exist. Moreover, we extend the domain of du,v from [n] to [n+ 1] and use n to denote infinity.

We extend constraints listed in Eq. (4) to handle changeable graph size:

Av,v ≥ Av+1,v+1, ∀v ∈ [n− 1] (5a)∑
v∈[n]

Av,v ≥ n0, (5b)

2Au,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v (5c)
dv,v = 0, ∀v ∈ [n] (5d)

du,v

{
= 1, Au,v = 1

> 1, Au,v = 0
, ∀u, v ∈ [n], u ̸= v (5e)

du,v

{
< n, if Au,u = Av,v = 1

= n, if min{Au,u, Av,v} = 0
, ∀u, v ∈ [n], u ̸= v (5f)

du,v

{
= du,w + dw,v, if δwu,v = 1

< du,w + dw,v, if δwu,v = 0
, ∀u, v, w ∈ [n], u ̸= v (5g)

δwv,v =

{
1, if w = v

0, if w ̸= v
, ∀v, w ∈ [n] (5h)

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v (5i)

∑
w∈[n]

δwu,v


= 2, if Au,v = 1

> 2, if Au,v = 0, Au,u = Av,v = 1

= 2, if min{Au,u, Av,v} = 0

, ∀u, v ∈ [n], u ̸= v (5j)

where:

• Eq. (5a) forces nodes with smaller indexes exist.
• Eq. (5b) gives the lower bound of the number of existed nodes.
• Eq. (5c) means that there is no edge from node u to v if any of them does not exist.
• Eq. (5d) initializes the shortest distance from one node to itself, even it does not exist.
• Eq. (5e) forces the shortest distance from node u and v be 1 if there is one edge from u to v,

and larger that 1 otherwise.
Rewrite Eq. (5e) as:

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

where n is a big-M coefficient using the fact that du,v ≤ n.
• Eq. (5f) sets the shortest distance from node u to v as n, i.e., ∞, if any of them does not

exist. Otherwise, the shortest distance is less than n.
Rewrite Eq. (5f) as:

du,v ≥ n · (1−Au,u), ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Av,v), ∀u, v ∈ [n], u ̸= v

• Eq. (5g) is the triangle inequality for the distance matrix d.
Rewrite Eq. (5g) as:

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

where 2n is a big-M coefficient since du,w + dw,v ≤ 2n.

12

Published at the GEM workshop, ICLR 2025

• Eq. (5h) initializes δwv,v by definition, even node v does not exist.
• Eq. (5i) initializes δuu,v and δvu,v by definition, even node u or v does not exist.
• Eq. (5j) makes sure that there is at least on node at the shortest path from node u to v if there

is no edge from node u and v and these two nodes both exist. Otherwise, only δuu,v and δvu,v
equal to 1.
Rewrite Eq. (5j) as:∑

w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Au,u, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Av,v, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ Au,u +Av,v + (1−Au,v), ∀u, v ∈ [n], u ̸= v

where n− 2 is a big-M coefficient since
∑

w∈[n]

δwu,v ≤ n.

To conclude, the formulation for shortest paths of all connected graphs with at least n0 nodes and at
most n nodes is:

Av,v ≥ Av+1,v+1, ∀v ∈ [n− 1]∑
v∈[n]

Av,v ≥ n0,

2Au,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v

dv,v = 0, ∀v ∈ [n]

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Au,u), ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Av,v), ∀u, v ∈ [n], u ̸= v

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

δwv,v =

{
1, if w = v

0, if w ̸= v
, ∀v, w ∈ [n]

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Au,u, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Av,v, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ Au,u +Av,v + (1−Au,v), ∀u, v ∈ [n], u ̸= v

(MIP-SP-plus)

Theorem A.3. There is a bijective between the feasible domain of Eq. (MIP-SP-plus) with size [n0, n]
and all connected graphs with number of nodes in [n0, n].

Proof of Theorem A.3. Fix the node number as n1 with n0 ≤ n1 ≤ n, Eqs. 5a – 5b force:

Av,v =

{
1, v ∈ [n1]

0, v ∈ [n]\[n1]

13

Published at the GEM workshop, ICLR 2025

substituting which to other constraints give us:

Au,v = Av,u = 0, ∀u ∈ [n1], v ∈ [n]\[n1], u ̸= v

dv,v = 0, ∀v ∈ [n]\[n1]

du,v = dv,u = n, ∀u ∈ [n1], v ∈ [n]\[n1], u ̸= v

δwu,v = δwv,u =

{
1, w ∈ {u, v}
0, w ̸∈ {u, v} , ∀u ∈ [n1], v ∈ [n]\[n1]

One can easily check that all constraints associated with non-existed nodes are satisfied. Removing
those constraints turns Eq. (MIP-SP-plus) into Eq. (MIP-SP) with size n1.

B ENCODING OF GRAPH KERNELS

For the encoding of different graph kernels, we first rewrite Eq. (3d) using Eq. (1) as:

kxXi = k(x,Xi) = α · kG(G,Gi) + β · kF (F, F i)

where kG(·, ·) is formulated in Appendix B.1 and kF (·, ·) is encoded in Appendix B.2. When only
considering undirected graphs, those encoding could be further simplified as shown in Appendix B.3.

W.l.o.g., assume that each node has M features, i.e., F i ∈ Rn(Gi)×M , and the first L features denote
the one-hot encoding of its label, i.e.,

∑
l∈[L] F

i
l = 1, ∀1 ≤ i < t.

B.1 GRAPH LEVEL

With the shortest distances du,v as decision variables, formulating kG(G,Gi) is straightforward for
SP and SSP kernels:

kSSP (G,Gi) =
1

n2n2
i

∑
u1,v1∈[n]

∑
u2,v2∈[n(Gi)]

d
du2,v2

(Gi)
u1,v1 =

1

n2n2
i

∑
u,v,s∈[n]

Ds(G
i) · dsu,v

where ni := n(Gi) is the number of nodes of Gi and dsu,v = 1(du,v = s) are indicator variables of a
big-M formulation: ∑

s∈[n+1]

dsu,v = 1,
∑

s∈[n+1]

s · dsu,v = du,v, ∀u, v ∈ [n]

Remark B.1. We introduce dsu,v for s ∈ [n+ 1] instead of s ∈ [n] to include the cases with unknown
graph size, where du,v = n means the shortest path from node u to v does not exist. But dnu,v is not
used in evaluating the kernel.

Similarly, introducing indicator variables ps,l1,l2u,v as:

ps,l1,l2u,v = 1(Fu,l1 = 1, du,v = s, Fv,l2 = 1),∀u, v, s ∈ [n], l1, l2 ∈ [L]

and counting the numbers of each type of paths in Gi:

Ps,l1,l2(G
i) = |{(u, v) | u, v ∈ [ni], lu(G

i) = l1, du,v(G
i) = s, lv(G

i) = l2}|

the SP kernel is formulated as:

kSP (G,Gi) =
1

n2n2
i

∑
u,v,s∈[n],l1,l2∈[L]

Ps,l1,l2(G
i) · ps,l1,l2u,v

There are several ways to handle the exponential kernels: (i) directly use (local) nonlinear solvers,
losing optimality guarantees, (ii) piecewise linearize the exponential function following Xie et al.
(2024), or (iii) utilize nonlinear MIP functionalities in established solvers such as Gurobi (Gurobi
Optimization, LLC, 2024) or SCIP (Vigerske & Gleixner, 2018). We choose to use Gurobi, which by
default employs a dynamic piecewise linear approximation of the exponential function.

14

Published at the GEM workshop, ICLR 2025

Note that Kxx in Eq. (3c) is not constant with a non-stationary kernel, making it the most complicated
term in the whole formulation. By definition, kSSP (G,G) has the following quadratic form:

kSSP (G,G) =
1

n4

∑
s∈[n]

D2
s

where Ds =
∑

u,v∈[n] d
s
u,v, ∀s ∈ [n]. Reusing the indicator trick and introducing Dc

s = 1(Ds =

c), ∀s ∈ [n], c ∈ [n2 + 1], the quadratic form is equivalently linearized as:

KSSP (G,G) =
1

n4

∑
s∈[n],c∈[n2+1]

c2 ·Dc
s

where indicator variables should satisfy:∑
c∈[n2+1]

Dc
s = 1,

∑
c∈[n2+1]

c ·Dc
s = Ds, ∀s ∈ [n]

Repeating the procedure for SP kernel, we have:

KSP (G,G) =
1

n4

∑
s∈[n],l1,l2∈[L],c∈[n2+1]

c2 · P c
s,l1,l2

where indicator variables P c
s,l1,l2

= 1(Ps,l1,l2 = c) satisfy:∑
c∈[n2+1]

P c
s,l1,l2 = 1,

∑
c∈[n2+1]

c · P c
s,l1,l2 = Ps,l1,l2 , ∀s ∈ [n], l1, l2 ∈ [L]

B.2 FETURE LEVEL

Assume that each graph G has a binary feature matrix F ∈ {0, 1}n(G)×M , we need to formulate
kF (F, F

i) and kF (F, F) properly. kF could be defined in multiple ways, here we propose a
permutational-invariant kernel considering the pair-wise similarity among node features. Given
two feature matrices F 1, F 2 corresponding to graphs G1, G2 respectively, define kF as:

kF (F
1, F 2) :=

1

n1n2M

∑
v1∈V 1,v2∈V 2

F 1
v1 · F

2
v2 =

1

n1n2M

∑
m∈[M]

Nm(F 1) ·Nm(F 2)

where Nm(F) = |{v | v ∈ G, Fv,m = 1}|, ∀m ∈ [M], 1
n1n2M

is the normalized coefficient.

Similar to Appendix B.1, we have:

kF (F, F
i) =

1

nniM

∑
m∈[M]

Nm(F i) ·Nm

where Nm =
∑

v∈[n]

Fv,m, ∀m ∈ [M], and

kF (F, F) =
1

n2M

∑
m∈[M]

N2
m =

1

n2M

∑
m∈[M],c∈[M+1]

c2 ·N c
m

where indicators N c
m = 1(Nm = c), ∀m ∈ [M], c ∈ [M + 1] satisfy:∑

c∈[M+1]

N c
m = 1,

∑
c∈[M+1]

c ·N c
m = Nm, ∀m ∈ [M]

B.3 SIMPLIFY PATH ENCODING OVER UNDIRECTED GRAPHS

For undirected graphs, we first add the following constraints to guarantee symmetry:
Au,v = Av,u, ∀u, v ∈ [n], u < v

du,v = dv,u, ∀u, v ∈ [n], u < v

δwu,v = δwv,u, ∀u, v, w ∈ [n], u < v

15

Published at the GEM workshop, ICLR 2025

Since the inverse of any shortest path from node u to v is also a shortest path from node v to u, for
SSP and ESSP kernels, Ds, ∀s ∈ [n] are even and we can fix odd indicators as zero:

Dc
s =

{
1, if c is even
0, if c is odd

, ∀s ∈ [n], c ∈ [n2 + 1]

Similarly, for SP and ESP kernels, we have:
Ps,l1,l2 = Ps,l2,l1 , ∀s ∈ [n], f1, f2 ∈ [L]

C ADDITIONAL NUMERICAL RESULTS

C.1 KERNEL PERFORMANCE

Table 2: Model performance of GPs equipped with different graph kernels. For each graph size N ,
we use Limeade to random generate 20 and 100 molecules for training and testing, respectively, root
mean square error (RMSE) of predictive error is reported over 30 replications.

DATASET N SSP SP ESSP ESP

QM7

10 0.30(0.08) 0.28(0.06) 0.29(0.08) 0.26(0.07)

15 0.30(0.09) 0.21(0.05) 0.23(0.07) 0.21(0.06)

20 0.32(0.14) 0.22(0.08) 0.26(0.08) 0.23(0.08)

25 0.19(0.08) 0.19(0.07) 0.25(0.08) 0.22(0.08)

30 0.28(0.19) 0.26(0.15) 0.34(0.19) 0.31(0.17)

QM9

10 1.20(0.47) 0.67(0.13) 0.85(0.24) 0.68(0.12)

15 1.27(0.68) 0.45(0.16) 0.78(0.30) 0.44(0.16)

20 1.41(0.69) 0.56(0.16) 0.82(0.35) 0.55(0.15)

25 0.57(0.41) 0.34(0.20) 0.45(0.31) 0.35(0.21)

30 0.28(0.19) 0.20(0.19) 0.25(0.26) 0.23(0.24)

Table 3: Model performance of GPs equipped with different graph kernels. For each graph size N
, we use Limeade to random generate 20 and 100 molecules for training and testing, respectively,
mean negative log likelihood (MNLL) is reported over 30 replications.

DATASET N SSP SP ESSP ESP

QM7

10 6098.53(3475.83) 4.56(5.47) 0.59(0.57) 0.19(0.46)

15 472.75(414.04) 1.06(1.71) 1.12(1.31) 0.12(0.52)

20 440.53(418.42) 2.92(5.07) 2.47(3.37) 0.27(0.60)

25 309.44(344.72) 10.06(16.12) 2.77(3.58) 0.06(0.74)

30 581.49(621.67) 197.80(254.26) 1.64(2.33) 0.87(1.71)

QM9

10 116087.28(62728.04) 2.00(0.93) 2.58(1.05) 1.23(0.42)

15 15756.72(18864.45) 1.26(0.98) 1.66(0.98) 0.63(0.77)

20 7618.60(6860.77) 1.36(0.82) 2.45(2.13) 0.97(0.42)

25 1065.96(1907.33) 1.15(2.92) 0.62(2.78) -0.59(1.91)

30 61.50(148.76) -0.06(4.93) -1.28(3.50) -1.88(2.82)

All GPs are trained by maximizing the log marginal likelihood. There are two trainable parameters,
i.e., α, β, for the SP and SSP kernels, and one extra variance σ2

k for the two exponential kernels.
During GP training, we set bounds for kernel parameters to [0.01, 100] with 1 as their initial values,
and set noise variance σ2

ϵ as 10−6. Table 2 and Table 3 reports RMSE and MNLL for GPs with
different kernels and molecular size, respectively.

16

Published at the GEM workshop, ICLR 2025

(a) QM7, N = 4 (b) QM7, N = 5 (c) QM7, N = 6

(d) QM7, N = 7 (e) QM9, N = 4 (f) QM9, N = 5

(g) QM9, N = 6 (h) QM9, N = 7 (i) QM9, N = 8

Figure 4: Performance of random sampling and Limeade over QM7 and QM9 datasets with different
graph size N . Simple regret is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

C.2 RANDOM SAMPLING V.S. LIMEADE

Randomly sample feasible graphs is not trivial because the graph structure and features should be
reasonable and compatible with each other, e.g., satisfying structural feasibility, dataset-specific
constraints, etc. in molecular generation task. Here we consider random sampling over QM7 and
QM9, to guarantee the feasibility of samples and compare it with Limeade. Figure 4 plots the regret
curve over 50 iterations for both sample methods. In all cases, Limeade outperforms random sampling,
showing the limitations of random sampling. Therefore, we choose Limeade as our sampling baseline.

C.3 ADDITIONAL OPTIMAL MOLECULAR DESIGN RESULTS

Results for N ∈ {15, 25} are reported in Figure 5, supporting our analysis in Section 4.2.

17

Published at the GEM workshop, ICLR 2025

(a) QM7, N = 15 (b) QM7, N = 25

(c) QM9, N = 15 (d) QM9, N = 25

Figure 5: Bayesian optimization results on QM7 and QM9 with N ∈ {15, 25}. Best objective value
is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

18

	Introduction
	Preliminaries
	Methodology
	Shortest-path graph kernels
	Global acquisition optimization
	Encoding of graph kernels

	Experiments
	Molecular properties prediction
	Optimal molecular design

	Conclusion
	Encoding of shortest paths
	Notations
	Shortest path encoding for graphs with fixed size
	Shortest path encoding for graph with unknown size

	Encoding of graph kernels
	Graph level
	Feture level
	Simplify path encoding over undirected graphs

	Additional numerical results
	Kernel performance
	Random sampling v.s. Limeade
	Additional optimal molecular design results

