
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING A VISION-LANGUAGE MODEL FOR DIVERSE
EXPLORATION IN OPEN GUI WORLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language models have emerged as capable computer-use agents, showing
increasing potential to automate a wide range of computer tasks through graphical
user interfaces. However, their effectiveness remains bounded by a fundamental
limitation: current LLM- or VLM-based agents struggle to generalize to unfamiliar
applications and remain heavily dependent on large-scale, human-curated datasets.
To address this, we introduce ScreenExplorer, a novel VLM-based agent designed
for autonomous exploration in real, dynamic, open-ended GUI environments.
Through end-to-end training with an exploration-driven objective, our approach
enables sustained interaction and diverse discovery without relying on predefined
task structures. Specifically, we introduce a world model-inspired curiosity reward
that helps the agent to overcome the cold-start phase of exploration, coupled with
state-change-based exploration rewards to encourage agent’s intrinsic motivation
for venturing into novel states. Additionally, an experience stream distillation
mechanism is designed to systematically accumulate and refine exploratory policies,
enabling continual learning from gathered experiences. Extensive evaluations
demonstrate that ScreenExplorer achieves remarkable generalization and diverse
exploration capabilities in unseen applications, significantly outperforming static
deployment baselines. This work establishes a new paradigm for GUI agents to
progressively learn through autonomous exploration, moving beyond static dataset
dependency toward adaptive, lifelong learning in complex digital worlds.

1 INTRODUCTION

Vision-language models (VLMs) have demonstrated considerable proficiency in understanding and
reasoning about visual and textual information, establishing them as a promising foundation for
autonomous computer-use agents (CUAs) capable of interacting with graphical user interfaces
(GUIs) Hu et al.. A central goal of computer-use agents is to operate in open-world environments
where interface content and task structures are dynamic and unpredictable. To this end, enabling
agents to generalize robustly across diverse and evolving open-world contexts represents a compelling
yet under-explored research direction Zhang et al. (2025a); Tan et al. (2024b).

However, open-world GUI environments pose two major challenges: First, the content of the interface
is dynamic. For example, pages in news websites or file browsers often change over time, requiring
agents to adapt to evolving states. Second, the state space is virtually unbounded, making it infeasible
to manually collect sufficient diverse data to support robust generalization. Current approaches,
however, are predominantly based on frozen models that cannot update their parameters through
interaction. This architectural constraint prevents them from learning from trial and error Zhang
et al. (2024; 2025b); Wu et al. (2024c); Agashe et al. (2025a;b); Hong et al. (2024) and ties their
performance permanently to the limited scope and high cost of human-annotated datasets Deka
et al. (2017); Zhang et al. (2021b); Deng et al. (2023); Wu et al. (2024b); Niu et al. (2024); Chen
et al. (2024). Therefore, the ability to effectively interact with new environments and autonomously
perform diverse/ active exploration emerges as the central challenge for the evolution of GUI agents.

To address these limitations, we introduce ScreenExplorer, a VLM-based agent trained through
reinforcement learning (RL) in a real, dynamic GUI environment. During training, we design state-
change-based rewards to encourage actions that lead to successful interaction in novel environments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 50 100 150
Episode

0.1

0.2

0.3

0.4

0.5

D
iv

er
si

ty
S

co
re

ScreenExplorer-3B

ScreenExplorer-7B

OpenAI Computer Use

OpenAI gpt-4o

Qwen2.5-VL-3B

Qwen2.5-VL-72B

Qwen2.5-VL-7B

doubao-1.5-ui-tars

Figure 1: ScreenExplorer RL training
leads to better GUI exploration diversity
versus static models.

To further incentivize exploration, we introduce a World
Model(WM) that learns the environment’s transition dy-
namics. The discrepancy between the predicted and ac-
tual state transitions serves as an intrinsic curiosity sig-
nal, measuring state novelty and guiding the agent toward
under-explored regions of the state space. Additionally,
we collect the experience streams generated during explo-
ration and distill the original model. This learning strategy
is designed to mitigate exploration bottlenecks and enable
sustained capability improvement, aiming to lead to bet-
ter initialization. As shown in Figure 1, ScreenExplorer
demonstrates significant improvement from the worst to
the best in exploring diversity through RL training.

Our results suggest that training agents via RL in open
GUI environments fosters both effective interaction and
diverse/autonomous exploration. By combining these abil-
ities with experience stream distillation, agents can grad-
ually reduce reliance on manually collected data and con-
tinuously evolve. Our contributions are as follows:

• We propose ScreenExplorer, a vision-language model (VLM) agent trained via world-model-based
RL in a real, dynamic, and open-ended GUI environment. The agent is rewarded for both successful
interaction and exploration novelty, enabling generalization to previously unseen interface states.

• We introduce a curiosity mechanism that leverages a world model to estimate state novelty in
transition dynamics. This encourages the agent to actively explore diverse states, addressing the
challenge of sparse supervision in open-ended GUI environments.

• We develop an experience stream distillation pipeline, where each generation’s exploration experi-
ence is reused to fine-tune future agents. This strategy improves exploration efficiency, reduces
reliance on manually curated datasets, and enables continuous capability evolution.

2 RELATED WORK

2.1 OPEN-WORLD EXPLORATION

Open-world or open-ended environments are characterized by vast state spaces, variable objectives,
and sparse rewards, where agents must engage in active exploration to acquire rewards and accomplish
tasks. Researchers have focused on enhancing RL agents’ exploration capabilities through various
approaches, including intrinsic motivation (such as curiosity-driven rewards) Burda et al. (2018);
Zhang et al. (2021a), unsupervised skill discovery Eysenbach et al. (2018); Sharma et al. (2020);
Wang et al. (2023), goal-oriented policy learning Campero et al. (2021), and exploration rewards
Li et al. (2025). Random Network Distillation (RND) Burda et al. (2018) efficiently drives agent
exploration to novel states by utilizing the prediction error between a fixed random target network
and a trainable predictor network as an intrinsic reward signal. These methods aim to enable agents
to autonomously discover meaningful behavioral patterns in the absence of external rewards, thereby
achieving broader skill sets and higher sample efficiency in complex environments. In Li et al.
(2025), the authors tackle the open-world 3D environment of Minecraft by first generating simulated
trajectories that progressively zoom in on a target object, then use a task reward model to score these
image sequences and train a world model to predict environmental dynamics. This world model
produces an affordance map indicating feasible regions for the target object, which is then used as
an intrinsic reward to drive the agent to approach the object and complete the task. In our work,
inspired by Burda et al. (2018) and Li et al. (2025), we introduce a world model into the exploration
process to approximate environmental state transitions. We use the discrepancy between the world
model’s predictions and actual post-action states as an intrinsic exploration reward, driving the model
to interact effectively with the environment and reach unexplored states.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 DIVERSE EXPLORATION BY LM

For statically deployed models, various decoding strategies can be employed to control output
diversity, such as adjusting temperature sampling or top-p decoding parameters. Additionally,
researchers have explored using Monte Carlo Tree Search (MCTS) to generate diverse solution paths,
followed by validation through external tools or Process-supervised Reward Models (PRM) to verify
path correctness, thereby enhancing the model’s capability to solve practical problems Xin et al.
(2024); Lightman et al. (2023); Qi et al. (2024). In Pan et al. (2025), researchers evaluate LLMs’
exploration capabilities through the Little Alchemy 2 game, revealing that most LLMs—with the
exception of the OpenAI o1 model—performed worse than humans, highlighting the need to improve
LLMs’ ability to explore open environments. In Dou et al. (2025), researchers find that LLMs’ early
promising solutions are often forgotten during RL fine-tuning due to policy gradient updates. Their
proposed RRL algorithm stores and replays valuable early trajectories, enabling models to revisit
previous approaches as their capabilities grow. This highlights the value of sustained exploration in
RL-based LLM optimization. Another research Wang et al. (2025b) shows that training LLMs by RL
can reduce exploration as models tend to repeat early high-reward responses, leading to repetitive
outputs rather than exploring diverse solutions.

2.3 COMPUTER USE AGENTS

The GUI environment provides a natural testbed for training LLM/VLM agents, combining textual
and visual elements to leverage large models’ multimodal capabilities. Recent work explores end-to-
end training of VLMs for controlling desktops Zhang et al. (2024); Lin et al. (2024), mobile phones
Wu et al. (2024a); Wang et al. (2024), browsers Deng et al. (2023), and games Tan et al. (2024a;b),
with commercial systems such as OpenAI Operator1, Claude Computer Use2 and Manus3 also
demonstrating practical deployment. RL-based approaches further enhance adaptability: DigiRL Bai
et al. (2024) introduces an offline-to-online pipeline, while DistRL Wang et al. (2025a) scales up RL
training for Android tasks. More recent efforts emphasize reasoning and generalization—InfiGUI-R1
Liu et al. integrates spatial reasoning via a two-stage Actor2Reasoner framework, UI-R1 Lu et al.
applies rule-based reinforcement fine-tuning for efficient GUI action prediction, and GUI-R1 Luo
et al. extends this paradigm across platforms with unified rule modeling. Unlike these offline-data-
driven approaches, our work targets open online environments, using heuristic-based rewards to
cost-effectively collect large-scale streams of GUI interaction experiences.

3 FRAMEWORK

In this section, we present the overall framework of our ScreenExplorer model, which is designed to
train Vision-Language Model (VLM) agents to perform autonomous and exploratory interactions
within graphical user interface (GUI) environments. To support this, we construct a GUI-based
operating system as a RL environment, where the VLM agent interacts with GUI in a human-like
manner by outputting function calls for mouse and keyboard operations. Technical details of this
environment are provided in Appendix A. We formulate GUI exploration as a Markov Decision
Process (MDP), where the agent perceives the environment through visual and textual signals,
and outputs structured actions and intent descriptions using a VLM-based policy. The framework
integrates several core components: a reward system tailored for encouraging exploration and
meaningful interaction, a world model that predicts state transitions to support curiosity-driven
behavior, and a training pipeline that combines RL with supervised distillation. The experience
stream distillation allows the model to efficiently inherit and build upon past exploration knowledge,
improving both exploration breadth and behavioral robustness. The subsequent subsections detail the
MDP formulation, reward design, world model learning, and policy optimization with GRPO.

1https://openai.com/index/introducing-operator/
2https://www.anthropic.com/news/3-5-models-and-computer-use
3https://manus.im/

3

https://openai.com/index/introducing-operator/
https://www.anthropic.com/news/3-5-models-and-computer-use
https://manus.im/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

s

s′

WMa

 parallel env× M

Rollout Buffer

Rollout Step

Rewards

i

GRPO
Calculate Group Advantages

(All steps in one group)

Update PolicyVLM

World Model
WM

s

̂s
LWM

̂s (s, s′ , a, i, ̂s, r) a

s′

Rewards

s s′

3. Immediately Change

ie e′

5.Intent-Obs. Alignment

Visual Textual

2.World Model

WM

All 9 Rewards

6. Intent-Action Alignment

a OCR Box

Similarity

a

4. Subsequent Change
s0 s′ <t

1

2

1.Format Reward

1

a

VLM ai(,)
s0

sT

9 Rewards

r (s, a, i, r)

VLM

(s, s′ , a, ̂s)

Rollout Episode

 Steps× T

Minimize Reconstruction Loss

(a) One episode rollout collection and training progress.

Rewards

s s′

3. Immediately Change

ie e′

5.Intent-Obs. Alignment

Visual Textual

2.World Model

WM s′

2

All 9 Rewards

6. Intent-Action Alignment

a OCR Box i

̂s

Similarity

a

4. Subsequent Change
s0 s′ <t s′ >t

11

2

1.Format Reward

21

a

VLM ai(,)

(b) Reward function.

Figure 2: Framework overview: (a)We run M parallel environments for T steps per episode. At
each step, the VLM takes state s and outputs an intent i and action a, the environment returns the
post-action state s′, and the world model predicts the next state ŝ. All transitions are stored in a
rollout buffer, where a reward function computes an exploration reward for each action. The VLM is
then updated via GRPO, while the world model learns transitions by minimizing reconstruction error;
(b)The reward function consists of nine terms that enforce correct action formatting, encourage large
state changes, and align intents with observed states.

3.1 MODELING EXPLORATION IN GUI AS A MARKOV DECISION PROCESS (MDP)

We model GUI exploration as an MDP with state s = (o, e), where o is the screenshot and e is the
OCR text embedding. A Vision-Language Model (VLM) serves as the policy πθ, which, given s,
outputs an action a (as a textual function call) and an intent i: (a, i) = πθ(s). Executing a yields a
new state s′, while a world model predicts ŝ.

Each step produces a tuple (s, a, i, s′, ŝ, r) stored in the rollout buffer B. An episode starts from s0
(initial desktop) and proceeds for T steps to sT . With N parallel environments, N × T such tuples
are collected to update πθ (e.g., via GRPO) and train the world model. Details of the optimization
procedure are provided in Appendix C.

3.2 REWARD FUNCTION

To encourage the agent’s effective interaction with the environment while promoting exploration of
unseen states, we design a set of reward functions. Effective interaction requires the model to output
correct actions that induce state changes in the environment. In GUI environments, this means the
Vision-Language Model (VLM) must output actions in the proper format, and the execution of the
action should result in substantial changes to the screen’s visual or textual content. Specifically, our
designed rewards include the following categories:

• Format Reward (rformat): At each action step, the environment verifies whether the model’s
output is in the correct format.
i) If the format is correct, the reward rformat ← 1.

ii) If the format is incorrect, the reward rformat ← 0, and the action a is set to a null action.
• Exploration Reward: To encourage the agent to explore novel environment states, we design

the exploration reward. We use cosine similarity, denoted as sim(·, ·), to measure the similarity
between states (e.g., visual and textual representations). Lower similarity between states indicates
higher exploration diversity. For action at, the exploration reward is composed of the following
terms:
i) Instantaneous Change Reward (rvisinst & rtextinst): Measures the degree of state change (e.g., visual

and textual representations) immediately before and after the action: rvisinst(t) := 1−sim(ot, o
′
t),

rtextinst(t) := 1− sim(et, e
′
t). Where ot, et are the visual and textual representations before the

action, and o′t, e
′
t are those after the action.

ii) Subsequent Change Reward (rvisseq & rtextseq): To measure the diversity gain brought by action at
to the overall state sequence, we evaluate the average similarity between all state pairs before and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

after the action occurs. The difference from this average similarity is attributed to the action’s
subsequent change reward, encouraging the agent to take actions that lead to novel long-term
state sequences: rvisseq(t) := Ei<t,j>t[1 − sim(o′i, o

′
j)], r

text
seq (t) := Ei<t,j>t[1 − sim(e′i, e

′
j)].

Where Ei<t,j>t[·] denotes the expectation of similarity calculated over all state pairs with i < t
and j > t.

iii) World Model Curiosity Reward (rvisworld & rtextworld): Captures the agent’s ”surprise” by comparing
the actual post-action states with the states predicted by a world model, thereby encouraging
the agent to explore uncertain or difficult-to-predict areas of the environment: rvisworld(t) :=
1 − sim(o′t, ôt), r

text
world(t) := 1 − sim(e′t, êt). Where ôt, êt are the visual and textual states

predicted by the world model after the action.

• Intent-State Alignment Rewards: To encourage the model to observe the environment more
carefully and generate intents (or explanations) related to its actions or the environment state, we
design two intent-state alignment rewards. These rewards are computed by comparing the text
embeddings of the agent’s output intent string it with text embeddings obtained from screen OCR:

i) Environment Description Reward (rdes): Encourages the agent’s intent string it to be related to
the overall environment content by calculating similarity with pre- and post-action text et, e′t:
rdes(t) := sim(it, et) + sim(it, e

′
t).

ii) Intent Interpretation Reward (rinter): Encourages the agent’s intent string it to be related
to the specific UI element located at the action coordinates. We extract the text ebox from the
OCR box where the action coordinates are located and compute its similarity with the intent
text: rinter(t) := sim(it, ebox). Where ebox denotes the text embedding generated from the text
within the OCR box containing the action coordinates.

Overall Reward: We combine the above reward terms to construct the final reward function as:

r := rformat × (rvisinst + rtextinst + rvisseq + rtextseq + rvisworld + rtextworld + rdes + rinter). (1)

Here, rformat, r
vis
inst, . . . are used as shorthand for rformat(t), r

vis
inst(t), . . . to simplify notation.

This formula indicates that the sum of other reward terms is included in the total reward only when
the action format is correct (rformat = 1); otherwise (rformat = 0), the total reward is zero.

3.3 LEARNING STATE TRANSITIONS WITH A WORLD MODEL

The world modelMϕ : S ×A → S predicts the next state given the current state and action: ŝ←
Mϕ(s, a). The action’s word tokens, image’s visual tokens and text embedding e are concatenated
to form the input sequence for the world model, illustrate as, ŝ := (ô, ê) =Mϕ(o, e, a). The world
model parameters ϕ are optimized to minimize the reconstruction loss between predicted and actual
next states as follows. More details of the world model can be found in Appendix B.

LWM(ϕ) = E(s,a,s′)∼B
[
∥Mϕ(s, a)− s′∥2

]
(2)

= E(o,e,a,o′,e′)∼B
[
∥ô− o′∥2 + ∥ê− e′∥2

]
.

3.4 TRAINING VLM AGENT WITH GRPO

We optimize VLM Agent policy by Group Relative Policy Optimization (GRPO)Shao et al. (2024).
All samples in the buffer are treated as a GRPO group and the advantage of each action Ai is estimated
as: Ai = (ri −mean({rj}|B|

j=1))/std({rj}
|B|
j=1).

GRPO optimizes the policy model by maximizing the following objective function:

JGRPO(θ) = E
[
(o, a, r) ∼ B, {ai}|B|

i=1 ∼ πθold(a | o)
]

1

|B|
B∑

i=1

{
min

[
πθ (ai | oi)
πθold (ai | oi)

Ai, clip

(
πθ (ai | oi)
πθold (ai | oi)

, 1− εlow, 1 + εhigh

)
Ai

]
− βDKL (πθ∥πref)

}
,

(3)

where ϵlow and ϵhigh controls the clip range; DKL (πθ∥πref) measures the KL divergence between
the current policy πθ and a reference policy πref . β weights the KL divergence regularization term,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which prevents the optimization process from deviating too far from the original policy:

DKL (πθ∥πref) =
πref (ai | oi)
πθ (ai | oi)

− log
πref (ai | oi)
πθ (ai | oi)

− 1. (4)

In the RL phase, starting from the base model, the agent learns to interact with the environment,
explores it diversely, and collects trajectories to form a data set of experience stream. Next, these
streams are passed through a quality and diversity filter, which selects the most informative and
diverse trajectories. In the distillation phase, we reinitialize from the base model and perform
supervised fine-tuning (SFT) using the filtered data to distill a new model. Through supervised
fine-tuning, the experience gained from RL training can be efficiently transferred to the distilled
model, avoiding the need to learn from scratch. Our training approach, which combines RL and
distillation, gradually enhances the capacity of VLM agents to perform meaningful, diverse actions
in complex GUI environments. More details of the distillation process are provided in Appendix D.

4 EXPERIMENT

We constructed a Linux-based desktop operating system as our environment, which includes basic
software such as web browsers and the LibreOffice suite. The VLM Agent can interact with the
environment by outputting action commands in JSON format. The task prompt is fixed as ”Your
goal is to explore this environment as much as possible within a limited number of steps”, thereby
encouraging the model to engage in diverse exploration within the environment. Details of the
environment configuration and the complete prompt can be found in Appendix A.

4.1 EVALUATION METRICS ON EXPLORATION DIVERSITY

We evaluate the performance of agents’ diverse exploration in GUI environments by measuring both
the diversity of environmental states within individual trajectories and the diversity of states across all
trajectories within a group. We use the cosine similarity sim(·, ·) to measure the similarity between
environmental states, as defined in subsection 3.2.

Trajectory-level Diversity: For a trajectory τ consists of T states {s1, . . . , sT }, the corresponding
visual representations are {o1, . . . , oT }, and textual representations are {e1, . . . , eT }, define the
visual and textual sequence diversity of trajectory τ as:

dvisseq(τ) =
1

T (T − 1)

∑
1≤k<l≤T

[
1− sim(o′k, o

′
l)
]
; dtextseq (τ) =

1

T (T − 1)

∑
1≤k<l≤T

[
1− sim(e′k, e

′
l)
]
.

(5)

Group-level Diversity: For a group of trajectories G = {τ1, . . . , τM}, each trajectory τ consists
of T states. We flatten all M trajectories into a set of N = M × T different states and denote their
visual and textual embeddings by {(ok, ek)}Nk=1, define the visual and textual diversity of group G as:

Dvis
grp(G) =

1

N(N − 1)

∑
1≤k<l≤N

[
1−sim(o′k, o

′
l)
]
;Dtext

grp (G) = 1

N(N − 1)

∑
1≤k<l≤N

[
1−sim(e′k, e

′
l)
]
.

(6)

4.2 EXPLORATION PERFORMANCE

Baselines and Evaluation Settings. We adopt Qwen2.5-VL-7B and Qwen2.5-VL-3B as the back-
bone of ScreenExplorer. All baselines are categorized into two groups: General Used Models and
GUI-specific models, which are accessible via API or static deployment. Our model includes variants:
ScreenExplorer-3B, ScreenExplorer-7B and ScreenExplorer-3B-Distill. ScreenExplorer-3B-Distill
refers to the model after experience stream distillation. Our variant model is statically deployed
under identical experimental conditions as baselines, we selected the best-performing checkpoint
for evaluation. Except for OpenAI Computer Use, all other models are tested under two sampling
temperatures, t = 1.0 and t = 0.5. More details regarding prompts and other settings are provided in
Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall Performance in Correct Formatting and Exploration. box indicates the lowest
scores, while bold text denotes the highest scores.

Model Setting Correct
Format

Trajectory-level Group-level Avg.
Diversity

dvisseq(τ) dtextseq (τ) Dvis
grp(G) Dtext

grp (G)
General Used Models

OpenAI gpt-4o t = 1.0 0.95 0.25 0.16 0.35 0.25 0.25
t = 0.5 1.00 0.13 0.17 0.18 0.26 0.18

Qwen2.5-VL-72B t = 1.0 0.96 0.39 0.26 0.69 0.39 0.43
t = 0.5 1.00 0.23 0.16 0.39 0.22 0.25

Qwen2.5-VL-7B t = 1.0 0.68 0.44 0.26 0.57 0.37 0.41
t = 0.5 0.75 0.37 0.21 0.34 0.29 0.32

Qwen2.5-VL-3B t = 1.0 0.62 0.16 0.10 0.40 0.19 0.21
t = 0.5 0.84 0.15 0.08 0.31 0.14 0.17

GUI-specific Models
OpenAI Computer Use default 0.95 0.28 0.21 0.60 0.32 0.35

doubao-1.5-ui-tars t = 1.0 0.82 0.41 0.24 0.76 0.38 0.45
t = 0.5 0.75 0.30 0.17 0.64 0.32 0.36

Ours

ScreenExplorer-3B t = 1.0 0.99 0.57 0.33 0.68 0.45 0.51
t = 0.5 1.00 0.57 0.33 0.72 0.46 0.52

ScreenExplorer-7B t = 1.0 0.98 0.65 0.42 0.64 0.45 0.54
t = 0.5 0.995 0.64 0.44 0.64 0.49 0.55

ScreenExplorer-3B-Distill t = 1.0 0.93 0.64 0.37 0.68 0.43 0.53
t = 0.5 0.99 0.66 0.41 0.67 0.44 0.55

Overall Results. Table 1 summarizes the results across all baselines and our models. We observe
that ScreenExplorer consistently outperforms both general-purpose and GUI-specific models on all
exploration diversity metrics.

Among general-purpose models, gpt-4o achieves strong scene understanding but suffers from in-
accurate coordinate localization, resulting in repeated failed actions due to its static deployment.
Within the Qwen2.5-VL family, the 72B variant demonstrates the strongest performance, while the
Qwen2.5-VL-3B version performs the worst. The Qwen2.5-VL-7B variant yields better exploration
diversity than 3B and approaches 72B, though it remains limited in correct formatting compared to
larger-scale models.

In the category of GUI-specific models, OpenAI Computer Use and doubao-1.5-ui-tars are able to
localize UI elements precisely and perform responsive operations, leading to competitive sequence-
and group-level diversity. Nevertheless, they fall short of the exploration breadth achieved by our
RL-trained models.

Our models achieve near-perfect format accuracy while substantially improving exploration diversity.
Specifically, ScreenExplorer-7B attains the best overall performance, reaching the highest textual
sequence diversity (0.44) and group-level textual diversity (0.49), with an average diversity of 0.55.
ScreenExplorer-3B improves format correctness from 0.62/0.84 to 0.99/1.00 (at t = 1.0/0.5) through
RL training.

We also note that sampling temperature strongly influences the trade-off between correctness and
diversity. Higher temperatures (t = 1.0) generally encourage more diverse actions and trajectories,
while lower temperatures (t = 0.5) favor stricter instruction-following and correct formatting. This
observation aligns with prior findings on diversity–fidelity trade-offs in decoding strategies.

Distillation Results. We trained the ScreenExplorer-3B-Distill version by distilling the experience
streams of ScreenExplorer-3B into the original Qwen2.5-VL-3B backbone. ScreenExplorer-3B-Distill
achieves exploration performance on par with ScreenExplorer-3B, which demonstrate that experience
stream distillation can directly transfer the environmental interaction and exploration capabilities of
the previous generation into the student model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150

Episode

0

1

2

3

4

5
Overall Reward

0 50 100 150

Episode

100

150

200

Intent Length

0 50 100 150

Episode

0.0

0.2

0.4

0.6

rvisinst

0 50 100 150

Episode

0.1

0.2

0.3

rtextinst

0 50 100 150

Episode

0.0

0.2

0.4

0.6

0.8

rvisseq

0 50 100 150

Episode

0.0

0.1

0.2

0.3

0.4

rtextseq

0 50 100 150

Episode

3.0

3.5

4.0

4.5

LWM

0 50 100 150

Episode

0.6

0.8

1.0

rformat

0 50 100 150

Episode

0.2

0.4

0.6

dvis
seq(τ)

0 50 100 150

Episode

0.1

0.2

0.3

dtext
seq (τ)

0 50 100 150

Episode

0.2

0.4

0.6

Dvis
grp(G)

0 50 100 150

Episode

0.1

0.2

0.3

0.4

0.5
Dtext

grp (G)

ScreenExplorer-7B ScreenExplorer-3B 7B w/o World Model 3B w/o World Model

Figure 3: The reward dynamics and performance metrics of ScreenExplorer-7B and ScreenExplorer-
3B during the RL training process.

0 20 40 60 80 100
Step

10

5

0

5

A
dv

an
ta

ge

All

0 20 40 60 80 100
Step

Only World Model

0 20 40 60 80 100
Step

w/o Visual

0 20 40 60 80 100
Step

w/o Intent-State Alignment

0 20 40 60 80 100
Step

w/o World Model

Figure 4: Advantage Range. By introducing the world model reward increases the variance of GRPO
advantage, enabling smoother cold-start optimization and more effective exploration through better
gradient differentiation across sample groups.

4.3 TRAINING DYNAMICS

To better understand the progression of model’s different capabilities, we analyze the key metrics in RL
training process. As illustrated in Figure 3, all rewards from ScreenExplorer-7B and ScreenExplorer-
3B increase as training progresses, leading to a gradual improvement in overall reward. In the initial
training phase, the Format Reward shows rapid improvement first. Subsequently, four exploration
diversity rewards begin to rise, indicating that the model gradually learns to interact effectively with
the environment and explore deeper into pages. After about 100 steps, visual and textual exploration
diversity rewards gradually saturate, leading the model to enhance its intent outputs to achieve
higher intent interpretation rewards. Throughout the training process, the world model loss LWM

first slightly decreases, then oscillates at a high value, indicating that the world model maintains a
consistently high level of curiosity.

Why World Model? To evaluate the effectiveness of the world model, we conducted two ablation
experiments by removing the curiosity reward from the world model, denoted as 7B w/o world model
and 3B w/o world model. As shown in Figure 3, in the ablation groups, the policy network struggles
to improve format rewards and establish effective interaction with the environment. In contrast, both
experiments incorporating the world model successfully overcome the cold start phase, as evidenced
by continuous improvements in both reward and diversity metrics.

Furthermore, we analyzed the GRPO advantage values of both the ablation and full-rewards groups,
illustrated in Figure 4. Adding curiosity rewards from the world model increased advantage variance,
which smooths the score gradients within a group of samples, enabling the RL process to more
rapidly identify optimization directions in the cold start phase of exploration. Similar observations
were also noted in Razin et al. (2025), which argues that an effective reward function not only needs
to be accurate but also requires sufficient variance. For additional ablation studies on other reward
components, refer to Appendix G.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

s0 s′ 1 s′ 2 s′ 3 s′ 4 s′ 5 s′ 6 s′ 7 s′ 8 s′ 9

90

0

Episode

50

100

Figure 5: Examples of Trajectories from ScreenExplorer-3B. Through RL training, the model
developed increasingly effective interactions with the environment, enabling exploration of deeper
pages.

Case Study Figure 5 shows training trajectories that demonstrate how the model developed effective
environmental interactions and explored deeper pages through RL. Our case study demonstrates that
as reinforcement learning training advances, the model develops diverse exploration strategies. These
exploratory capabilities enable the model to better adapt and generalize in open-world environments.
Additionally, the model can extract action intent labels from the intent field without manual annotation,
offering a scalable method for building large-scale datasets in the future. Additional case studies are
presented in Appendix H.

5 DISCUSSION

Capability Compositionality. Small-scale VLMs possess basic capabilities like OCR, computer
knowledge, and visual detection/localization, but struggle to combine these effectively. In Appendix
F, our cases show these models often fail to coordinate their skills, with conflicts arising between
language generation and visual processing abilities. Through training in GUI environment, models
can combine these inherent capabilities into higher-level exploration skills;

Noisy TV Problem and Exploration Dilemma. Curiosity-driven exploration in RL faces the ”Noisy
TV problem.” Burda et al. (2018); Mavor-Parker et al. (2024) We find that agents get stuck on
irrelevant, perpetually novel stimuli (e.g., clicking the first news item or opening video sites). We
found long period of training LLMs with RL can reduce exploration, as they tend to repeat early
high-reward responses, leading to exploration traps. To improve exploration diversity and prevent
stagnation, experience stream distillation was implemented.

Limitations. We mainly use screenshots and text content to measure environmental state similarity.
However, structured state information from operating system, such as process running status and
variables, are also suitable choices. But, achieving this requires a considerable amount of systems
engineering work. Although we introduced vLLM Kwon et al. (2023) to accelerate VLM decoding,
the time cost of sampling and training the VLM agent in a real GUI environment is prohibitively
high, which limits our ability to conduct larger-scale experiments. We plan to implement distributed
sampling and training methods in the future to speed up the learning process.

6 CONCLUSION

In this work, we identified a critical limitation of current GUI agents: their inability to generalize be-
yond their training data and their heavy reliance on large-scale, human-curated datasets. To bridge this
gap, we introduced ScreenExplorer, a novel VLM-based agent grounded in a paradigm of autonomous
exploration. We first design an intrinsic motivation mechanism that combines a world model-inspired
curiosity reward with state-change-based signals. This combination effectively guides the agent
through the initial cold-start phase and incentivizes deep exploration of novel states. Coupled with
experience stream distillation for continual learning, our agent achieves remarkable generalization
in unseen applications, significantly outperforming static baselines. This work demonstrates that
exploration-driven learning is a scalable and effective alternative to static datasets, paving the way for
adaptive, self-improving GUI agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

USE OF LLMS

• The ideas, methods, experimental designs, and writing structure of this paper were independently
developed by the authors. LLMs were used for translation, phrasing refinement, and grammatical
corrections, without contributing to the generation of viewpoints, methodologies, or conclusions.

• During code development, GitHub Copilot was used to assist with code completion and refactoring;
however, all key implementations, algorithm designs, and experimental pipelines were written,
reviewed, and validated by the authors through reproduction experiments.

• The experimental data, training logs, and figures presented in the paper are derived from actual
runs and statistics, containing no data generated or fabricated by LLMs.

• For revision suggestions provided by LLMs, the authors reviewed each recommendation individ-
ually and made adjustments when necessary to ensure accurate representation aligned with the
authors’ intentions.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S: An
Open Agentic Framework that Uses Computers Like a Human. In International Conference on
Learning Representations (ICLR), 2025a. URL https://arxiv.org/abs/2410.08164.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A
compositional generalist-specialist framework for computer use agents, 2025b. URL https:
//arxiv.org/abs/2504.00906.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.11896.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation, 2018. URL https://arxiv.org/abs/1810.12894.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B. Tenenbaum, Tim Rocktäschel, and
Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals, 2021. URL
https://arxiv.org/abs/2006.12122.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language models to versatile gui agents, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST ’17, pp. 845–854, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349819. doi: 10.1145/3126594.3126651. URL https://doi.org/
10.1145/3126594.3126651.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Shihan Dou, Muling Wu, Jingwen Xu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
Improving rl exploration for llm reasoning through retrospective replay, 2025. URL https:
//arxiv.org/abs/2504.14363.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function, 2018. URL https://arxiv.org/abs/1802.
06070.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL https://arxiv.org/abs/2312.08914.

10

https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2006.12122
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://arxiv.org/abs/2504.14363
https://arxiv.org/abs/2504.14363
https://arxiv.org/abs/1802.06070
https://arxiv.org/abs/1802.06070
https://arxiv.org/abs/2312.08914

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling
Tao, Xiangxin Zhou, Ziyu Zhao, Yuhuai Li, Shengze Xu, Shenzhi Wang, Xinchen Xu, Shuofei
Qiao, Zhaokai Wang, Kun Kuang, Tieyong Zeng, Liang Wang, Jiwei Li, Yuchen Eleanor Jiang,
Wangchunshu Zhou, Guoyin Wang, Keting Yin, Zhou Zhao, Hongxia Yang, Fan Wu, Shengyu
Zhang, and Fei Wu. OS agents: A survey on MLLM-based agents for general computing devices
use. URL http://arxiv.org/abs/2508.04482.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jiajian Li, Qi Wang, Yunbo Wang, Xin Jin, Yang Li, Wenjun Zeng, and Xiaokang Yang. Open-world
reinforcement learning over long short-term imagination, 2025. URL https://arxiv.org/
abs/2410.03618.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent, 2024. URL https://arxiv.org/abs/2411.17465.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. InfiGUI-r1: Advancing multimodal GUI agents from reactive actors to deliberative
reasoners. URL http://arxiv.org/abs/2504.14239. version: 1.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. UI-r1: Enhancing efficient action prediction of GUI agents
by reinforcement learning. URL http://arxiv.org/abs/2503.21620.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. GUI-r1 : A generalist r1-style vision-language
action model for GUI agents. URL http://arxiv.org/abs/2504.10458.

Augustine N. Mavor-Parker, Kimberly A. Young, Caswell Barry, and Lewis D. Griffin. How
to stay curious while avoiding noisy tvs using aleatoric uncertainty estimation, 2024. URL
https://arxiv.org/abs/2102.04399.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. In Kate Larson
(ed.), Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI-24, pp. 6433–6441. International Joint Conferences on Artificial Intelligence Organization, 8
2024. doi: 10.24963/ijcai.2024/711. URL https://doi.org/10.24963/ijcai.2024/
711. Main Track.

Lan Pan, Hanbo Xie, and Robert C. Wilson. Large language models think too fast to explore
effectively, 2025. URL https://arxiv.org/abs/2501.18009.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning
makes smaller llms stronger problem-solvers, 2024. URL https://arxiv.org/abs/2408.
06195.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, and Sanjeev Arora. What
makes a reward model a good teacher? an optimization perspective, 2025. URL https://
arxiv.org/abs/2503.15477.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills, 2020. URL https://arxiv.org/abs/1907.01657.

11

http://arxiv.org/abs/2508.04482
https://arxiv.org/abs/2410.03618
https://arxiv.org/abs/2410.03618
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2411.17465
http://arxiv.org/abs/2504.14239
http://arxiv.org/abs/2503.21620
http://arxiv.org/abs/2504.10458
https://arxiv.org/abs/2102.04399
https://doi.org/10.24963/ijcai.2024/711
https://doi.org/10.24963/ijcai.2024/711
https://arxiv.org/abs/2501.18009
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1907.01657

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, Yifei Bi, Pengjie Gu, Xinrun Wang, Börje F. Karlsson,
Bo An, and Zongqing Lu. Towards general computer control: A multimodal agent for red dead
redemption II as a case study. In ICLR 2024 Workshop on Large Language Model (LLM) Agents,
2024a. URL https://openreview.net/forum?id=pmcFzuUxsP.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yujie Wu,
Xiaoqiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chaojie
Wang, Xinrun Wang, Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle: Em-
powering foundation agents towards general computer control. arXiv preprint arXiv:2403.03186,
2024b.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023.
URL https://arxiv.org/abs/2305.16291.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception, 2024.
URL https://arxiv.org/abs/2401.16158.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asynchronous
distributed reinforcement learning framework for on-device control agents, 2025a. URL https:
//arxiv.org/abs/2410.14803.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in
llm agents via multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/
2504.20073.

Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhiwei Zhang, Yunchao Wei, and Ling Chen. Founda-
tions and recent trends in multimodal mobile agents: A survey. arXiv preprint arXiv:2411.02006,
2024a.

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, and Shuo
Shang. Mobilevlm: A vision-language model for better intra- and inter-ui understanding, 2024b.
URL https://arxiv.org/abs/2409.14818.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
2024c.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo,
and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. 2024. URL https://arxiv.org/abs/2408.08152.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A UI-Focused Agent for Windows
OS Interaction. arXiv preprint arXiv:2402.07939, 2024.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language model-
brained gui agents: A survey, 2025a. URL https://arxiv.org/abs/2411.18279.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian,
Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. UFO2:
The Desktop AgentOS. arXiv preprint arXiv:2504.14603, 2025b.

12

https://openreview.net/forum?id=pmcFzuUxsP
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2409.14818
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2411.18279

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and
Yuandong Tian. Noveld: A simple yet effective exploration criterion. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 25217–25230. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/d428d070622e0f4363fceae11f4a3576-Paper.pdf.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and Jeffrey P. Bigham. Screen recognition:
Creating accessibility metadata for mobile applications from pixels, 2021b. URL https://
arxiv.org/abs/2101.04893.

13

https://proceedings.neurips.cc/paper_files/paper/2021/file/d428d070622e0f4363fceae11f4a3576-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d428d070622e0f4363fceae11f4a3576-Paper.pdf
https://arxiv.org/abs/2101.04893
https://arxiv.org/abs/2101.04893

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TECHNICAL DETAILS OF GUI ENVIRONMENT AND VLM AGENT

Our GUI environment is constructed on a Linux desktop system and wrapped as a Gymnasium 4

environment for reinforcement learning training. The observation space consists of RGB screenshots
with configurable resolution. The action space is structured as a dictionary space, supporting a variety
of mouse and keyboard interactions, with detailed action types and examples shown in Table 2.

Table 2: GUI Environment Action Space
Action Type Attributes Action Function Call Example

Mouse

Move (x:int, y:int) Move(960, 540)

Click (x:int, y:int) Click(960, 540)

Right Click (x:int, y:int) RightClick(960, 540)

Double Click (x:int, y:int) DoubleClick(960, 540)

Scroll Up (x:int, y:int) ScrollUp(960, 540)

Scroll Down (x:int, y:int) ScrollDown(960, 540)

Drag To (x:int, y:int) DragTo(960, 540)

Keyboard
Key or Combined-keys (key:string) Key("Space") Key("Shift+K")

Text (x:int, y:int, text:string) Text(960, 540, "Hello World!")

None - None()

The environment validates the action strings VLM agent’s output, verifying whether they conform
to valid function call formats and whether the attributes values fall within acceptable ranges. If the
format is incorrect, the action type will be set to None. Additionally, the environment invokes an
OCR module to parse both pre-action and post-action screenshots, which provides input for text
embedding generation in the world model, reward computation, and metric calculation. The GUI
environment in this paper employs the configurations specified in Table 3.

Table 3: Configuration of GUI Environment
Environment Configuration

Screen width 1920
Screen height 1080
Wait after action execution 1.0 seconds
Maximum steps per episode 10
Parallel environments 8
OCR model PP-OCRv4-mobile-det + PP-OCRv4-mobile-rec

We employ the Qwen2.5-VL series as our base VLM, where the input prompts consist of a fixed
textual prompt and a dynamically changing image of current screenshot. The screenshots maintain
their original resolution. The following presents the textual components of the prompt:

You are exploring a computer desktop environment with a screen
size of {{video_width}}x{{video_height}}. You can interact with
it using the keyboard and mouse. Your goal is to explore this
environment as much as possible within a limited number of steps.

Available action format:
- Move(x, y): Move the mouse to coordinates (x, y)
- Click(x, y): Left-click at coordinates (x, y)
- RightClick(x, y): Right-click at coordinates (x, y)
- DoubleClick(x, y): Double left-click at coordinates (x, y)
- ScrollUp(x, y): Scroll up at coordinates (x, y)
- ScrollDown(x, y): Scroll down at coordinates (x, y)
- Text(x, y, "text"): Enter text "text" at coordinates (x, y)
- Key("key"): Press a single key

4https://gymnasium.farama.org/

14

https://gymnasium.farama.org/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- Key("Shift+K"): Combination key

Note that opening icons on the desktop requires a double click.
Please select a meaningful action to continue exploring. Each
action consumes steps, so please choose the most valuable
operation.

Please reply in the following JSON format:

{
"intent": "Explanation of why this action was chosen and what
goal it aims to achieve",
"action": "Specific action, for example Click(123, 456)"

}

We utilize vLLM’s Structured Outputs feature5 to enforce model outputs as JSON strings containing
”intent” and ”action” fields. After updating the VLM weights in each episode, the parameters are
immediately synchronized to vLLM before beginning sampling for the next episode, maintaining an
online training paradigm.

B TECHNICAL DETAILS OF WORLD MODEL

We employ a LLaMA-style Transformer as the backbone of our world model, the architectural design
is illustrated in Figure 6. The model predicts the next environment states by given the current action
and state.

World Model
(LLaMA-Style Transformer)

Visual TextualAction

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
VAE

Encoder ⋅⋅

Tokenizer ⋅⋅

Text
Embedding

OCR

Text on
Screen

Action
String

ea o

̂e ̂oMulti-modal Processing World Model
Architecture

Figure 6: World Model Architecture

For action a, we use the LLaMA tokenizer to encode the action’s function-call-style string into word
tokens. For all text on the screen extracted by the OCR module, we use a pre-trained text embedding
model to project all text into one dense vector, denoted as e. For image o, we utilize a pre-trained VAE
encoder to map the screenshot to visual tokens. The world model is trained with state reconstruction
loss, which minimizes the mean squared error between predicted and target image tokens and text
embeddings.

C TRAINING PROCESS

Algorithm 1 outlines the RL training procedure. Table 4 lists the VLM training configurations and
hyperparameters used for GRPO, and Table 5 summarizes the world model’s training settings. All
experiment was conducted using one Nvidia A100 GPU. The ScreenExplorer-3B model requiring
approximately 26.8 hours to complete 200 steps, and ScreenExplorer-7B requiring approximately 25

5https://docs.vllm.ai/en/latest/features/structured_outputs.html

15

https://docs.vllm.ai/en/latest/features/structured_outputs.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

hours to complete 200 steps. The primary time consumption occurs in processes such as interacting
with the environment and OCR parsing.

Algorithm 1: RL Training Process of ScreenExplorer
Input: Maximum episodes N , environment E , actor model πθ, world model fϕ, buffer B
Output: Trained actor model πθ and world model fϕ
for episode = 1 to N do

Initialize rollout buffer B;
Reset environment E to obtain initial observation s0;
// Collect rollouts
for step t = 0 to max steps do

Select action by VLM agent: at ∼ πθ(a|ot);
Execute at in E , obtain s′t and rformat ;
World model predicts next state: ŝt = fϕ(st, at) ;
Store (st, at, s

′
t, ŝt, rformat) in B;

// Reward and advantage computation
foreach trajectory τ in B do

Compute overall reward r based on trajectory τ , store in B.
Compute GRPO advantages for all samples in B;
// World model training
for epoch = 1 to world model training epoch do

foreach batch in B do
Update ϕ to minimize reconstruction loss LWM(ϕ) ;

// VLM optimization
foreach batch in B do

Update actor model πθ using GRPO with computed advantages;

Table 4: VLM Training Configuration
and GRPO Hyperparameters

VLM
Batch size 16
Mixed precision bf16
Maximum gradient norm 1.0
LoRA rank 16
Learning rate 4e-5
Training batch size 16
Maximum completion length 128
Rollout temperature 1.0

GRPO Parameters
KL divergence coefficient(β) 0.04
PPO lower bound(εlow) 0.2
PPO upper bound(εhigh) 0.28

Table 5: World Model Training Configuration
World Model

World model base Llama-3.2-1B
Image tokenizer model Cosmos-Tokenizer-CI16x16
Text embedding model BAAI/bge-m3
Training epoch 3
Training batch size 32
Learning rate 4e-5
Mixed precision bf16
Maximum gradient norm 1.0

D EXPERIENCE STREAM DISTILLATION

The purpose of Experience Stream Distillation is to identify valuable exploratory behaviors from
historical exploration trajectories generated during RL training. The model distilled using these
actions can directly inherit the effective environmental interaction capabilities from its predecessor
generation, while maintaining diversity in exploration capabilities through data filtering and balancing.

We first filter the trajectories generated during RL training, identifying and retaining diverse explo-
ration steps that successfully complete specific tasks. These single-step actions are then organized
into datasets for Supervised Fine-Tuning (SFT) on the base model. Figure 7(a) illustrates this process.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Base
VLM ScreenExplorer-3B-E1

Base
VLM

ScreenExplorer-3B-
Distill

SFT

RL Training

Filter
Experience Streams

(a) Experience stream collection through RL training and dis-
tillation for next-generation models

Exploration
Reward

Effective
Interaction in
Environment

Discover
New States

Collecting
Experience

Streams

Experience
Stream

Distillation

(b) Data cycle for sustainable, self-
fueling learning paradigm.

Figure 7: Training Pipeline Integrating RL and Experience Stream Distillation.

We employed two filtering strategies: manual filtering and automated filtering. For manual filtering
of experience streams, we established the following criteria:

1. Begin from the 30-th episode.

2. The intent text description should clearly indicate a specific action (e.g., click, type, scroll)
and specify a target (e.g., an icon, button, field, or screen location).

3. The executed action should accomplish the goal described in the intent.

4. The language in the intent should flow smoothly and contain no word repetitions.

In addition to manual filtering, we implemented an automated filtering process without human
intervention, based on the following criteria:

1. Begin from the 30-th episode.

2. The output format is correct, where rformat = 1.

3. Advantages greater than 0.

4. The intent text should clearly indicate a specific action, evaluated by gpt-4o-mini-2024-07-
18.

The automated filtering employs the following prompts:

You are evaluating whether an intent string clearly specifies a
computer operation instruction.

A good intent should:
1. Clearly indicate a specific action (e.g., click, type, scroll)
2. Specify a target (e.g., an icon, button, field, or screen
location)
3. Be unambiguous about what the user wants to accomplish
4. The language flows smoothly and there are no words repeated.

Intent to evaluate: "{{intent}}"

If the intent meets the criteria above, rewrite it as a clear
task objective.
If the intent does not meet the criteria, mark it as not good and
use an empty string as the task.
Keep using the same language as the input intents.

Provide your evaluation in the following JSON format:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

‘‘‘json
{

"is_good_intent": true/false,
"reasoning": "Your detailed explanation for why this intent is

good or not",
"task": "Rewritten clear task objective if good, or empty

string if not"
}
‘‘‘

During both filtering processes, we did not introduce or construct additional data. Table 6 presents the
exploration metrics of models after SFT using both manual filtering and automated filtering datasets.
The results indicate that, compared to the baseline model, SFT training on either datasets effectively
enhances the model’s exploration capabilities and diversity. Compared to automatic filtering, manual
filtering provides higher quality data for distillation by additionally verifying the consistency between
intent descriptions and actually executed actions.

Table 6: Impact of Different Filtering Strategies in Experience Stream Distillation on Model Explo-
ration Performance
Model # SFT Training Set Setting Correct

Format
Trajectory-level Group-level Avg.

Diversity
dvisseq(τ) dtextseq (τ) Dvis

grp(G) Dtext
grp (G)

Base Model

Qwen2.5-VL-3B - t = 1.0 0.62 0.16 0.10 0.40 0.19 0.21
t = 0.5 0.84 0.15 0.08 0.31 0.14 0.17

Ours
ScreenExplorer-3B
(RL training from scratch) - t = 1.0 0.99 0.57 0.33 0.68 0.45 0.51

t = 0.5 1.00 0.57 0.33 0.72 0.46 0.52

ScreenExplorer-3B-Distill
(Manual Filtering) 216 t = 1.0 0.93 0.64 0.37 0.68 0.43 0.53

t = 0.5 0.99 0.66 0.41 0.67 0.44 0.55

ScreenExplorer-3B-Distill
(Automated Filtering) 199 t = 1.0 0.94 0.64 0.39 0.71 0.46 0.55

t = 0.5 1.0 0.62 0.42 0.62 0.45 0.53

Figure 7(b) illustrates the data cycle process where an agent explores and collection experience
stream data in an open-world environment, ultimately achieving continuous improvement through
experience stream distillation. This data cycle mechanism enables the model to transcend the
limitations of ”static corpus + offline training,” advancing toward a sustainable, self-fueling learning
paradigm—representing a viable pathway for enhancing agent capabilities when human-generated
data becomes exhausted in the future.

E BASELINE SETTINGS

For the General Used Models OpenAI gpt-4o and Qwen2.5-VL variants, we employed a fixed
prompt designed to encourage free exploration. For OpenAI Computer Use, we utilize the officially
recommended invocation method, with prompts that are not publicly disclosed. For doubao-1.5-ui-
tars, we employ the following system prompts:

You are a GUI agent. You are given a task and your action history,
with screenshots. You need to perform the next action to complete
the task.
Output Format
‘‘‘
Thought: ...
Action: ...
‘‘‘
Action Space
click(start_box=’[x1, y1, x2, y2]’)
left_double(start_box=’[x1, y1, x2, y2]’)
right_single(start_box=’[x1, y1, x2, y2]’)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

drag(start_box=’[x1, y1, x2, y2]’, end_box=’[x3, y3, x4, y4]’)
hotkey(key=’’)
type(content=’’) #If you want to submit your input, use "\n" at
the end of ‘content‘.
scroll(start_box=’[x1, y1, x2, y2]’, direction=’down or up or
right or left’)
wait() #Sleep for 5s and take a screenshot to check for any
changes.
finished(content=’xxx’) # Use escape characters \\’, \\", and \\n
in content part to ensure we can parse the content in normal
python string format.
Note
- Use Chinese in ‘Thought‘ part.
- Write a small plan and finally summarize your next action (with
its target element) in one sentence in ‘Thought‘ part.
User Instruction

We employ the following task prompts:

Your goal is to explore this environment as much as possible
within a limited number of steps. Please select a meaningful
action to continue exploring. Note that opening icons on the
desktop requires a double click. You must only use mouse and
keyboard inputs. No other tools or input devices are permitted.

F ORIGINAL CAPACITY IN VLM

We find the Qwen2.5-VL model has demonstrated some fundamental capabilities in GUI exploration,
as evidenced by the following representative cases in Figure 8 to 11.

Intent: “Move the cursor to the top-left
corner of the screen to begin navigation.”
Action: “Move(100, 100)”

Figure 8: The Qwen2.5-VL-3B model demonstrates spatial awareness capabilities. When the intent
specifies ”top-left corner of the screen”, the model outputs coordinates (100, 100), which accurately
corresponds to the screen’s top-left position.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Intent: “To start the process of accessing
something specific on this presumably not
fully explored environment.”
Action: “DoubleClick(123, 456)”

Figure 9: The Qwen2.5-VL-3B model followed the instructions in the prompt, attempting to utilize
double click to interact with desktop icons. However, the specific coordinates were directly copied
from the prompt text, indicating that, the language processing capabilities dominated over the visual
localization abilities.

Intent: “To open an application, specifically
Firefox for web browsing.”
Action: “DoubleClick(67, 44)”

Figure 10: The original Qwen2.5-VL-3B model demonstrates the capability to correctly launch
applications in a limited number of cases, with the intent descriptions aligning with the target actions.
RL training can facilitate the emergence of such effective interactions.

Intent: “I chose to open the ’Applications’
folder because it may contain additional
software and utilities that aren’t immediately
visible on the desktop, allowing me to explore
more functionalities available in this environment.”
Action: “DoubleClick(720, 466)”

Figure 11: The original Qwen2.5-VL-72B model, due to its larger model scale, demonstrates enhanced
capability in interpreting action intentions, recognizing UI elements within images and generates
more precise coordinate outputs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G ABLATION ON EXPLORATION REWARD COMPONENTS

Our Exploration Reward designed comprises three categorical components: Instantaneous Change
Reward, Subsequent Change Reward, and World Model Curiosity Reward. We examine how these
three exploration reward components influence the training of exploration capabilities. We conducted
ablation studies by removing each of these rewards individually, denoted as w/o Instant, w/o
Sequence, and w/o World Model. Additionally, we included a ablation setting using only world
model reward, labeled as Only World Model. Figure 12 presents a comparison of exploration
metrics between these four ablation settings and ScreenExplorer-3B. The results demonstrate that
the ablation setting w/o World Model exhibits the poorest performance in exploration metrics, with
this group experiencing stagnation in the early exploration phase and showing limited potential for
future exploration growth. Similarly, the group using Only World Model also showed suboptimal
performance.

0 50 100
Episode

0.2

0.4

0.6
d vis

seq(τ)

0 50 100
Episode

0.1

0.2

0.3

d text
seq (τ)

0 50 100
Episode

0.2

0.4

0.6

Dvis
grp(G)

0 50 100
Episode

0.2

0.4

D text
grp (G)

ScreenExplorer-3B w/o World Model w/o Intent-State Alignment w/o Visual Only World Model

Figure 12: Impact of ablation studies on exploration metrics across different exploration reward
components.

Comparing ablation settings w/o Instant and w/o Sequence, w/o Instant exhibited inferior per-
formance in exploration metrics. Through analysis of training trajectories, we discovered that in
the absence of immediate rewards, the model frequently became trapped in ineffective attempts, as
illustrated by a typical case in Figure 13.

Figure 13: In a case study from the ablation group w/o Instant, while the agent successfully learned
to open the browser, it demonstrated limited capability for deeper exploration.

We conducted two additional interesting ablation studies:

In the ablation setting w/o Visual, we removed all visual reward signals, specifically eliminating
the rvisinst, r

vis
seq, and rvisworld reward components. This means that the model’s exploration was driven

solely by changes in on-screen text. Interestingly, even without rewards from visual information and
relying exclusively on text-based reward signals, the agent was still capable of effective exploration in
the GUI environment. We attribute this to the fact that the GUI is a complex environment containing
abundant textual information.

Another notable finding is that when Intent-State Alignment rewards were incorporated during
training, the model exhibited a stronger tendency to reference existing on-screen text in its intents,
thereby enhancing the correlation between intent descriptions and screen content. Figure 14 presents
a comparative analysis of intent descriptions generated by ScreenExplorer-3B and the model in
w/o Intent-State Alignment ablation setting, where the latter excludes both rdes and rinter reward
components.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Click on the article titled "明晚北京⼜要下冰雹了明天北京再迎强
对流天⽓" to explore and gather more information about the
weather situation.

Clicking on the 'Hair Dryer' product link to explore options under
the 'Top Categories in Kitchen Appliances' section.

Click on the first product titled '2.4GHz Wireless Gaming
Headset' to explore further

Scroll down the page to explore more jeans options available

Click on the Amazon Essentials Skinny Jeans to explore further
details and consider adding them to the cart

Click on the first result titled "侮辱雷军、⼩⽶、⼀博主被判道歉
并赔6万元" by Tencent News.

Highlight key features and information about the product by
clicking where the main feature is displayed

Move the cursor to the center of the screen and click the text
area to explore the content further.

Clicking on one of the bookmarked websites could lead to
further exploration or discovering new content related to the
user's interests.

Move closer to product details by scrolling down or checking
other sections like video or specifications

Move the mouse to another part of the screen to explore other
elements and see if there is anything else useful or interesting
to interact with.

Move towards understanding the product details and other
options available for purchase

ScreenExplorer-3Bw/o Intent-State Alignment

Figure 14: Intent descriptions generated by ScreenExplorer-3B and ablation w/o Intent-State
Alignment group. the ScreenExplorer-3B model demonstrates a stronger propensity to reference
existing on-screen text when generating intents, resulting in more specific and contextually grounded
intentions. In contrast, the w/o Intent-State Alignment group generates more generalized intents
with less specific task objectives and minimal reference to on-screen textual content.

The ablation studies indicate that among all exploration rewards, the World Model reward is the most
crucial, followed by the Instantaneous Change Reward. Furthermore, the incorporation of additional
rewards can effectively modify the model’s exploration preferences and Chain-of-Thought output
patterns, providing valuable insights for future reward design and the construction of task-specific
GUI datasets.

H CASE STUDY

In this section, we will present several cases during the training process of two size of ScreenExplorer
agents to understand the development of exploration capabilities throughout the reinforcement
learning training process.

H.1 CASE STUDY OF SCREENEXPLORER-7B

Figures 15 to 19 present several case studies of the 7B model, demonstrating its superior GUI
knowledge, environmental interaction and scene comprehension capabilities compared to the 3B
model. Through our training process, we were able to enhance its exploratory behavior, enabling it to
discover more diverse and deeper environmental states.

Figure 15: Episode-50 of ScreenExplorer-7B: Utilizing the ScrollDown command for web page
navigation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 16: Episode-50 of ScreenExplorer-7B: The 7B model successfully completed a web browsing
and software download sequence.

Figure 17: Episode-90 of ScreenExplorer-7B: The 7B model discovered that browsing through images
yields higher exploration rewards.

Figure 18: Episode-100 of ScreenExplorer-7B: The 7B model successfully completed a product
purchase flow, from product selection to adding items to the shopping cart.

Intent: “To continue exploring the webpage
and find relevant information about the incident
and the corresponding video. Clicking the video
link will allow us to watch the related content.”
Action: “DoubleClick(796, 841)”

Figure 19: At episode 160, the 7B model demonstrated superior image reasoning capabilities and
more precise action execution. In its intent description, it first comprehended that the news content
pertained to an incident, then identified the potential presence of a ”corresponding video” below,
subsequently articulated a clear action intent of ”clicking the video,” and accurately targeted the
video’s location in its action output.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

H.2 CASE STUDY OF SCREENEXPLORER-3B

Figure 20 demonstrates the results of the Qwen2.5-VL-3B model interacting directly with the envi-
ronment without RL training, where the model struggles to engage in effective interactions with the
environment. Figure 21 to 28 present several case studies from ScreenExplorer-3B checkpoints.

Figure 20: The original Qwen2.5-VL-3B model: The initial Qwen2.5-VL-3B model generated near-
random coordinates, making it difficult to accurately click on icons and effectively interact with the
environment, resulting in extremely low exploration rewards and diversity metrics.

Figure 21: Episode-50 of ScreenExplorer-3B: The model demonstrated the capability to output
commands for launching desktop applications, resulting in significant screen state changes, though it
had not yet developed exploration behaviors in specific apps.

Figure 22: Episode-80 of ScreenExplorer-3B: The model demonstrated the ability to navigate from
Firefox’s homepage to explore a specific webpage.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 23: Episode-100 of ScreenExplorer-3B: The model demonstrated the capability to navigate
through news feeds and access articles for reading.

Figure 24: Episode-100 of ScreenExplorer-3B: The model was exploring the LibreOffice software
interface.

Intent: “First, I need to enable DRM to watch
the stories about the children, which might be
a prerequisite before exploring content further.”
Action: “DoubleClick(1709, 121)”

Figure 25: At episode 70, the agent detected a DRM warning in the browser and observed that ”stories
about the children” were available for watching. Consequently, it opted to dismiss the DRM warning,
demonstrating its ability to reason based on the screen state and make contextually appropriate
decisions.

Intent: “Scroll down to read more content
on the webpage”
Action: “ScrollDown(0, 500)”

Figure 26: At episode 80, the agent scrolled down on the news page to acquire additional information,
demonstrating its capacity for content exploration.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Intent: “Select the first news item about the
Chinese women’s volleyball team to explore
more details”
Action: “DoubleClick(300, 558)”

Figure 27: At episode 100, the agent demonstrated cross-modal translation capabilities, recognizing
Chinese news headlines from the visual input and generating corresponding English outputs in its
intent description.

Intent: “Having reached the iPhone page at
apple.com, the next logical step would be to
learn more about the new iPhone models.”
Action: “DoubleClick(855, 332)”

Figure 28: At episode 110, the intent description from ScreenExplorer-3B demonstrates its ability to
recognize that the current page content pertains to ”apple.com”. Furthermore, the model specified the
next operational plan in its intent, and subsequently executed actions targeting the correct button.

26

	Introduction
	Related Work
	Open-World Exploration
	Diverse Exploration by LM
	Computer Use Agents

	Framework
	Modeling Exploration in GUI as a Markov Decision Process (MDP)
	Reward Function
	Learning State Transitions with a World Model
	Training VLM Agent with GRPO

	Experiment
	Evaluation Metrics on Exploration Diversity
	Exploration Performance
	Training Dynamics

	Discussion
	Conclusion
	Technical Details of GUI Environment and VLM Agent
	Technical Details of World Model
	Training Process
	Experience Stream Distillation
	Baseline Settings
	Original Capacity in VLM
	Ablation on Exploration Reward Components
	Case Study
	Case Study of ScreenExplorer-7B
	Case Study of ScreenExplorer-3B

