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ABSTRACT

Recent advancements in multimodal large language models (MLLMs) have
achieved strong performance in vision-language tasks such as visual question an-
swering (VQA). However, these models struggle with knowledge-intensive VQA
(KI-VQA) tasks that require fine-grained domain knowledge, as seen in bench-
marks such as Encyclopedic VQA and InfoSeek. To address these challenges, we
propose a novel retrieval-augmented generation (RAG) framework, referred to as
KIRA, designed to enhance the capability of MLLMs for KI-VQA without task-
specific fine-tuning. Our target is to integrate general image-text similarity with
detailed knowledge context to achieve precise entity recognition. To this end, we
leverage CLIP to obtain general image-text matching, and design a verification
mechanism according to detailed question-text relevance to improve recognition
accuracy. We evaluate our method on KI-VQA benchmarks, demonstrating sig-
nificant improvements of 47.5% on Encyclopedic VQA and 16.2% on InfoSeek,
all achieved without additional training. These results highlight the potential of
our training-free, plug-and-play framework for solving knowledge-intensive vi-
sual question answering tasks.

1 INTRODUCTION

Recent advancements in multimodal large language models (MLLMs) (OpenAI, 2023; Li et al.,
2022; Dai et al., 2023; Liu et al., 2023b;a; Lin et al., 2023b; Gao et al., 2024) have shown promising
performance in various vision-language tasks, including visual question answering (VQA), visual
grounding, and image captioning. Despite the achievements, current MLLMs typically focus on an-
swering questions requiring limited outside knowledge (e.g., commonsense knowledge), and hence
struggle with knowledge-intensive VQA tasks such as Encyclopedic VQA (Mensink et al., 2023)
and infoseek (Chen et al., 2023).

Knowledge-intensive visual question-answering (KI-VQA) is distinct from VQA tasks relying on
commonsense knowledge such as OK-VQA (Marino et al., 2019) in that the knowledge required
for answering questions is in a very fine-grain level. This adds significant complexity to the task,
as identifying the relevant information often demands precise recognition of specific entities within
the image. As illustrated in Figure 2, the model is required to recognize the ”Amazon Arena” in
the image and process the knowledge about its sustainability feature. As shown by studies (Chen
et al., 2023; Mensink et al., 2023; Vrandečić & Krötzsch, 2014), existing state-of-art MLLMs still
struggle with providing accurate answers in such specialized contexts due to the lack of specialized
knowledge in those models, limiting their applicability in real-world scenarios.

For the knowledge-intensive VQA tasks, a promising strategy is to utilize an external knowledge
base, which not only avoids the high cost of encoding knowledge into model parameters via fine-
tuning but also provides more interpretability by separating the retrieval and answer generation
processes. Retrieval-augmented generation (RAG) has been proposed as a key technique to retrieve
relevant knowledge from an external source to support the answer generation process. However,
despite the encouraging performance of RAG in unimodal tasks such as those in natural language
processing (NLP) (Rubin et al., 2021; Xiong et al., 2020), its application to multimodal tasks remains
challenging.
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Figure 1: We show a knowledge-intensive VQA sample and the core idea of this paper. To
correctly answer the question, detailed specialized outside knowledge is required. We retrieve such
knowledge in a two-step manner. Coarse-grained matching finds relevant knowledge via image-text
retrieval models and the results are improved in fine-grained matching where text retrieval models
are used to evaluate the sufficiency of retrieved knowledge.

In this work, we focus on the multimodal RAG framework targeting Knowledge-Intensive Visual
Question Answering (KI-VQA). Two main strategies have been explored to tackle multimodal
knowledge retrieval in previous work. The first strategy involves end-to-end training on large mul-
timodal datasets, enabling models to learn both entity recognition and retrieval of relevant text from
the knowledge base. However, the training requires extensive resources such as more than 1,000
TPU hours for REVEAL (Hu et al., 2022) and suffers from poor generalization due to task-specific
fine-tuning. The second strategy accomplishes the task using two-stage strategy. The methods lever-
age the multimodal retrieval model CLIP Radford et al. (2021) for entity recognition avoiding the
need for costly fine-tuning, then extracting relevant text according to recognition results. Systems
such as WikiLLaVA (Caffagni et al., 2024) adopt this approach. However, this method relies on
global image-text matching for recognition, which can miss crucial fine-grained details and result in
imprecise recognition results.

To address these limitations, we propose a novel multimodal RAG framework for knowledge-
intensive visual question-answering, referred to as Knowledge-intensive Retrieval Augmenta-
tion(KIRA), to achieve precise knowledge retrieval. As illustrated in Figure 2, we integrate both
general image-text similarity and details in knowledge context to achieve precise entity recognition,
while avoiding fine-tuning. We leverage CLIP to provide initial recognition according to general
image-text matching, then we design a verification mechanism according to detailed question-text
relevance. The verification mechanism is designed based on the following hypothesis: if the associ-
ated knowledge context of the recognition result is not sufficient to answer the question, it is likely
either the recognition result is incorrect, or the current knowledge base is unable to provide enough
information. Using this verification mechanism, we inject knowledge details into the recognition
process.

Specifically, our framework consists of three core components: an entity recognition module, a
relevant context extraction module, and an answer generation module. First, the entity recogni-
tion module combines general text-image similarity with knowledge context details to accomplish
fine-grained entity identification. Subsequently, the relevant context extraction module retrieves
knowledge based on the recognized entities. After that, we complement this with additional infor-
mation that is not directly related to entities within the image. Finally, the answer generation module
employs an MLLM to generate an answer from the retrieved knowledge contexts.

We demonstrate the effectiveness of proposed methods on knowledge-intensive VQA benchmark
Encyclopedic VQA (Mensink et al., 2023) and infoseek Chen et al. (2023). We achieve significant
improvements on both datasets compared with baseline models without any training, such as 47.5%
on EVQA and 16.2% on the InfoSeek.

Our main contributions are summarized as follows:
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• We are the first to propose a plug-and-play training-free retrieval-augmented generation
framework to solve knowledge-intensive visual question-answering tasks. We consider our
methods as a good starting point for further exploration.

• Our design achieves precise entity recognition by integrating general text-image similar-
ity with knowledge context details, which guarantees the retrieval performance in a fine-
grained knowledge base.

• The experimental results on two popular knowledge-intensive benchmarks demonstrate the
superiority of the proposed methods. We achieve impressive improvements without any
training.

2 RELATED WORKS

2.1 INFORMATION RETRIEVAL MODELS

The landscape of information retrieval models encompasses a wide range of approaches. In the
domain of text retrieval, works (Rubin et al., 2021; Xiong et al., 2020; Karpukhin et al., 2020) have
been developed to facilitate retrieval for open-domain question answering. ColBERT (Khattab &
Zaharia, 2020; Santhanam et al., 2021) employs a late interaction approach, where BERT (Devlin
et al., 2018) embeddings are computed for both queries and documents, with interaction performed
at a later stage. Contrary to traditional retrievers that use early interaction, Contriever (Izacard
et al., 2021) incorporates interaction between query and document representations at a later stage,
achieving competitive performance in large-scale retrieval scenarios.

Other efforts (Frome et al., 2013; Faghri et al., 2017) have been made in the cross-modal retrieval
domain, particularly in image-text retrieval, which has seen significant advancements over the years.
DeViSE (Frome et al., 2013) was a pioneering approach that projected images and words into a
shared embedding space using deep neural networks, leveraging pre-trained word vectors to capture
semantic relationships. The introduction of CLIP (Radford et al., 2021) marked a significant leap
forward in the field by training on a large-scale dataset of images and their corresponding textual
descriptions from the internet. More recently, works (Lin et al., 2023a) propose to train a multi-
modal Retrieval through fine-grained late-interaction alignment. In this paper, we propose a training-
free multi-modal retrieval framework for visual question answering by incorporating both types of
retrieval models mentioned above. This integrated approach aims to enhance the performance and
versatility of retrieval systems in complex, multi-modal tasks.

2.2 MULTI-MODAL RETRIEVAL-AUGMENTED GENERATION

Recently, retrieval-augmented generation (RAG) (Lewis et al., 2020; Nakano et al., 2021; Borgeaud
et al., 2021; Yu et al., 2021) has been proposed to enhance large language models (LLMs) by in-
corporating knowledge from external databases, thereby improving performance on knowledge-
intensive tasks and reducing hallucination. REALM (Lewis et al., 2020) expands the input space
with relevant text passages retrieved from external sources, while WebGPT (Nakano et al., 2021)
enables models to search and navigate the web for additional information. In the context of vision-
language tasks, previous works such as REVEAL (Hu et al., 2022) and KAT (Gui et al., 2021) have
explored retrieval-augmented approaches using vision-language models (VLMs) for knowledge-
intensive visual question answering (VQA) by training a generative vision-language model and a
multi-modal retriever. More recently, Wiki-LLaVA (Caffagni et al., 2024) has explored RAG in
popular multi-modal LLMs with the Wikipedia knowledge base, targeting challenging knowledge-
intensive benchmarks through fine-tuning. However, the results reveal that the main challenge
is the accuracy of knowledge retrieval instead of the MLLM’s ability to read retrieved articles.
EchoSight (Yan & Xie, 2024) trains a reranking module to improve the visual-only retrieval and
achieve promising improvements in KVQA. Compared with EchoSight, we adopt a more challeng-
ing setting that does not include any fine-tuning and considers a text-only knowledge base. In this
paper, we focus on exploring a training-free RAG approach to tackle knowledge-intensive VQA
tasks, significantly boosting the performance of multi-modal large language models (MLLMs).
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2.3 KNOWLEDGE VISUAL QUESTION ANSWERING

Knowledge Visual Question Answering (KVQA) has emerged as a crucial task for evaluating the
ability of vision-language models to integrate external knowledge sources. The OKVQA bench-
mark (Marino et al., 2019) stands as one of the pioneering initiatives to explicitly necessitate the
use of external knowledge. It comprises questions that cannot be answered solely based on image
content, demanding information from external sources like Wikipedia or general world knowledge.
Building on the foundation laid by OKVQA, AOKVQA (Schwenk et al., 2022) was introduced to
further augment the scope and complexity of VQA tasks involving external knowledge. Another
notable benchmark, Knowledge-enriched VQA (KVQA) (Shah et al., 2019), delves into questions
requiring knowledge about named entities such as people, places, organizations, and events. Recent
endeavors such as Encyclopedic VQA (Mensink et al., 2023) and InfoSeek (Chen et al., 2023) have
pushed the boundaries of standard knowledge-based VQA by posing queries that demand in-depth
knowledge about specific entities. Even large language model based models struggle to perform ad-
equately on these tasks without retrieving information from external sources. In this paper, we focus
primarily on the most challenging benchmark, Encyclopedic VQA, to evaluate the effectiveness of
our proposed framework.

3 METHODS

In this section, we introduce the proposed KIRA framework. The proposed method is designed to
perform training-free retrieval from a fine-grained specialized knowledge base, and then accomplish
a knowledge-intensive VQA task. In Section 3.1, we systematically formulate the problem we
aim to solve. Section 3.2 outlines an Entity Recognition module to identify the entity within the
image. Section 3.3 details the Relevant Context Extraction module, where the useful knowledge
context is retrieved based on the entity recognition results. Finally, Section 3.4 describes the Answer
Generation module.

3.1 TASK FORMULATION

Formally, the visual question answering dataset is defined as D = {(vi, qi, ai) | i = 1, 2, . . . , N}
where vi to denote the ith image, qi and ai to denote the ith question and its corresponding answer
respectively. An external knowledge base is denoted as K = {Ej | j = 1, 2, . . . ,M}, where N is
the number of entity articles contained in the knowledge base. For the jth entity article, we dived the
article into Mj text snippets, therefore Ej = {tj1, ..., t

j
Mj

}, where tjm denotes the mth text snippet.

3.2 ENTITY RECOGNITION

We first present our Entity Recognition module. In this stage, we perform entity recognition con-
sidering both the general image-text similarity and the details in knowledge contexts. We employ
a two-stage procedure. In the first stage, we construct a candidate set of entities by coarse-grained
searching. After that, we apply fine-grained recognition to yield the final recognition results.

3.2.1 COARSE-GRAINED SEARCHING

We first collect a small set of possible candidates according to the similarity between the image
vi and a brief description of the predefined categories in the knowledge base, since it is too costly
and inefficient to perform fine-grained matching on each entity in the knowledge base. Specifically,
for a visual question answering task {(vi, qi) | i = 1, 2, . . . , N}, we construct an entity candidate
set leveraging CLIP. Specifically, we transfer images and brief descriptions for each entity in the
knowledge base into vectors, then utilize the cosine similarity metric. We use the first text snippet
in the article as a brief introduction to an entity.

Ii = CLIPVisual(vi), T c
j = CLIPText(tj1) (1)

CoarseSim(i, j) =
Ii · T c

j

∥Ii∥∥T c
j ∥

(2)

For each image vi, we collect the top Kc best-matched entities from the knowledge base, i.e., Si =
{E1, ...EKc}, where |Si| = Kc, Kc ≪ M .
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Figure 2: The overall pipeline of the proposed framework. Given a visual question that requires
outside knowledge, we perform Coarse-grained Searching to extract an article subset from the WiKi
knowledge base. To choose the informative article, Fine-grained matching evaluates the candidates
from two aspects, image relevance, and question relevance. Finally, two text chunks are retrieved
and fed to the MLLMs answer generation.

3.2.2 FINE-GRAINED MATCHING

General Image-text Matching In this procedure, we aim to measure the similarity between the
image vi and knowledge articles in a fine-grained manner for collected candidates in Si. For an
article Ej ∈ Si, we measure the similarity between the image vi and each text snippet tjm ∈ Ej ,
and use the closest similarity to denote the general image-text similarity between the image and the
entity.

T f
(j,m) = CLIPText(tjm) (3)

GeneralSim(i, j) =
Mj

max
m=1

Ii · T f
(j,m)

∥Ii∥∥T f
(j,m)∥

(4)

Detail Verification For the KI-VQA task, it is necessary to consider the detailed information in the
knowledge text to achieve accurate entity recognition. However, it is extremely difficult to directly
compare the image with the detailed description in an article since knowledge texts are often concise
and categorical, and differ significantly from the instance-specific descriptions typically found in
image captions.

To inject detailed information in knowledge articles into the recognition procedure, we introduce a
detailed characteristics check mechanism based on question-text relevance. Specifically, we hypoth-
esize that if there is no sufficient knowledge context in the associated knowledge context to answer
the question, it is either that the retrieved entity is incorrect, or the current knowledge base is insuf-
ficient to answer the question. Thus, we measure the relevance between knowledge article Ej and
the visual question (vi, qi), ensuring that fine-grained details play a role during the retrieval process.
Specifically, we measure the relevance of knowledge article Ej and question qi using Colbert. Col-
bert takes a query and a set of test snippets as input and then measures the relevance of the query
and each snippet. The process is as follows:

Rel(i, j) = max
tjm∈Ej

ColBERT(qi, t
j
m) (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Given GeneralSim(i, j) and Rel(i, j), we are able to find the best entity in Scoarse
i with closest

proximity with (vi, qi). We obtain the final entity recognition results as follows:

ScoreF(i, j) =
λ

GeneralSim(i, j)
+

1

Rel(i, j)
(6)

E∗
i = argmin

Ej∈Si

ScoreF(i, j) (7)

where λ is a hyperparameter that controls the trade-off between the GeneralSim and Rel.

3.3 RELEVANT CONTEXT EXTRACTION

In this stage, we perform relevant context extraction provided the entity recognition results. Our
relevant context extraction procedure consists of two parts: the visual-related context and the text-
related context. For the visual-related context, we retrieve useful texts from the associated knowl-
edge context of the previously retrieved entity. The specifical process is as follows using Colbert:

T visual∗i = argmax
tv∈E∗

i

ColBERT(qi, tv) (8)

After that, we retrieve the text-related context is considered as compensation for visual-related con-
text. The text-related context is retrieved from the whole knowledge base only according to the
question. Such text-related context plays a role in the circumstance where the question requires
not only knowledge about the entity appearing within the image but also information about entities
outside the image.

T text∗i = argmax
tl∈E1∪...∪EM

ColBERT(qi, tl) (9)

3.4 ANSWER GENERATION

Given visual question (vi, qi) and previously obtained knowledge texts T visual∗i and T text∗i , we
utilize an off-the-shelf Multimodal Large Language Model(MLLM) to generate the final answer.

âi = MLLM(vi, qi, [T visual∗i ,T text∗i ]) (10)

The MLLM is equipped with essential knowledge context for knowledge-intensive question answer-
ing, enabling the system to handle complex questions that demand precise and specialized knowl-
edge. The detailed prompt template is shown in the Appendix visualization.

4 EXPERIMENTS

In this section, we introduce the experimental results on challenging benchmarks and provide im-
plementation details. Moreover, we provide comprehensive ablation studies to demonstrate the ef-
fectiveness of our method.

4.1 EVALUATION BENCHMARKS

Encyclopedic VQA. To evaluate the performance of multi-modal large language models
(MLLMs) on visual questions requiring extensive external knowledge, we utilize the recently pro-
posed Encyclopedic VQA Mensink et al. (2023) dataset. This dataset contains visual questions
about detailed properties of fine-grained categories and is primarily constructed using annotations
from iNaturalist 2021 Horn et al. (2021) and the Google Landmarks Dataset V2 Weyand et al.
(2020). The Encyclopedic VQA dataset comprises approximately 221k question-answer pairs asso-
ciated with 16.7k different fine-grained entities, each represented by up to five images. The dataset
is divided into training, validation, and test splits, containing 1M, 13.6k, and 5.4k samples, respec-
tively. For the knowledge base, Encyclopedic VQA filters out non-English Wikipedia pages from
the WIT dataset Srinivasan et al. (2021) and compiles a total of 2M Wikipedia pages. Since our
framework focuses on a training-free setting, we utilize a knowledge base consisting of relevant
Wikipedia pages associated with iNaturalist and Google Landmarks. Specifically, our knowledge
base includes the Wikipedia pages from the train, test, and validation sets of the Encyclopedic VQA
dataset, comprising a total of 18,000 unique articles. We report the BEM (Balanced Evaluation
Metric) Bulian et al. (2022) score of the test set using official scripts.
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Table 1: The performance comparison on Encyclopedic VQA and the InfoSeek benchmark.
The ”KB” indicates the knowledge base type. ”-” means no knowledge base. ”T” is a text-only
knowledge base. ”T&V” means a knowledge base with both image and text. For InfoSeek, the
Unseen-Q and Unseen-E means the unseen questions and entities category.

Method LLM KB Retrieval EVQA InfoSeek
Single-hop All Unseen-Q Unseen-E All

Fine-tuned

LLaVA-1.5 Vicuna-7B - - 23.3 28.5 19.4 16.7 17.9
Wiki-LLaVA Vicuna-7B T KB Sentences 21.8 26.4 26.6 24.6 25.5
DPR Multi-passage BERT T&V KB Sentences 29.1 - - - 12.4
EchoSight LLaMA3-8B T&V KB Section 38.9 - - - 31.3

Training-free

Vanilla PaLM - - 19.7 - 5.1 3.7 4.3
LLaMA3-8B - - 13.4 10.6 1.7 0.9 1.2

BLIP-2 Flan-T5XL - - 12.6 12.4 12.7 12.3 12.5
InstructBLIP Flan-T5XL - - 11.9 12.0 8.9 7.4 8.1
LLaVA-1.5 Vicuna-7B - - 16.3 16.9 9.6 9.4 9.5
BunnyV1.1 LLaMA3-8B - - 36.3 25.4 12.8 12.3 12.5

Google Lens PaLM T&V KB Section - 48.8 - - -
GPT-3 T&V KB Section - 44.6 - - -

FRA
Vanilla LLaMA3-8B T KB Sentences 51.0 47.5 16.7 14.0 15.2
Bunny-1.1 LLaMA3-8B T KB Sentences 48.4 47.0 18.2 14.7 16.2

InfoSeek. The InfoSeek (Chen et al., 2023) benchmark is tailored for information-seeking ques-
tions that require expert knowledge. It consists of 1.3 million visual information-seeking questions,
encompassing more than 11,000 visual entities from OVEN (Hu et al., 2023). The questions in this
dataset are diverse, and the answers can be referenced from Wikipedia. For the knowledge base,
Infoseek offers a knowledge base with 100,000 Wikipedia articles accompanied by images. Under
our training-free setting, our knowledge base includes the Wikipedia pages from the train, and val-
idation sets of the InfoSeek dataset, comprising a total of 6,576 unique articles. Since ground truth
for the test split is not available, we report the VQA score on the validation split with official scripts.

4.2 IMPLEMENTATION DETAILS

For pre-trained retrieval models, we employ the CLIP Radford et al. (2021) ViTL/14@336 vari-
ant following previous works Caffagni et al. (2024). The dense text retrieval model is set to Col-
BERTv2 Santhanam et al. (2021). For hyper-parameters, we use the validation set of Encyclopedic
VQA to select hyper-parameter selection. For the Infoseek, we randomly sample 1,000 data from
the validation set since only the validation set is available. The λ is set to 64 for Encyclopedic VQA
and 256 for InfoSeek benchmark. The number of entities selected during coarse-grained matching
Kc is 20.

4.3 MODEL EVALUATION

Baselines. To demonstrate the effectiveness of our proposed methods, we compare KIRA with
two kinds of baselines. The first category is Training-free methods, which means the model is
not fine-tuned on the training set of E-VQA or InfoSeek. We report the performance of BLIP-
2 Li et al. (2023), InstructBLIP Dai et al. (2023), Bunny-1.1 He et al. (2024), LLaVA1.5 Liu et al.
(2023a) to show the knowledge encoded in the models’ parameters. The vanilla means the language
model generates the answer based on the question only. As suggested in Mensink et al. (2023),
we include pre-trained PaLM (Chowdhery et al., 2022) and GPT-3 (Brown et al., 2020) with Google
Lens Google (2023) as baselines, where Google Lens is a powerful retrieval tool that identifies image
content by comparing query images with those in its database and the best matching knowledge base
article for predicted entity is used as the retrieval result. The second category is Fine-tuned methods,
which utilize the training set of E-VQA or InfoSeek to improve the retrieval or answer generation
ability. DPR (Lerner et al., 2024) is an Entity Retrieval system trained for visual question answering.

7
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Table 2: Framework design ablation studies on the Encyclopedic VQA and the InfoSeek. We
report the top K article-level recall and the detailed VQA category performance to showcase the
effectiveness of each design.

Method Recall@K VQA Performance
K=1 K=5 K=10 K=20 Single-hop Multi-hop Unseen-Q Unseen-E

Encyclopedic VQA
CLIP I-T 21.0 44.2 57.9 70.1 - - - -
+ FGM 43.4 60.2 65.1 70.1 49.9 33.2 - -
+ TRC - - - - 51.0 41.1 - -

InfoSeek
CLIP I-T 30.2 47.8 51.5 56.3 - - - -
+ FGM 32.1 46.4 46.8 56.3 - - 17.3 13.9
+ TRC - - - - - - 18.2 14.7

Wiki-LLaVA Caffagni et al. (2024) train the model to generate answers with CLIP retrieval results.
Different from Wiki-LLaVA, EchoSight (Yan & Xie, 2024) adopts a different training strategy and
leverages the section-level retrieval annotation provided in E-VQA to train a reranking module.

Performance Analysis. To provide a comprehensive understanding of our proposed frame-
work, we report its performance on the Encyclopedic VQA test set and the InfoSeek valida-
tion set. Our framework retrieves the essential knowledge from the text-only knowledge base
WiKipedia (Vrandečić & Krötzsch, 2014) and utilizes the bunny-1.1 (He et al., 2024) and LLaMA3-
8B (Dubey et al., 2024) to generate the answer. As shown in Table 1, the column labeled LLM
indicates the employed large language model, while KB specifies what kind of knowledge base is
used. The Retrieval describes the type of retrieved context categorized into two types: KB Section
(the most relevant section of a Wikipedia page), and KB Sentences (specific paragraphs of knowl-
edge content, representing the most challenging retrieval type). Finally, we report the BEM score
on single-hop questions and all questions in the Encyclopedic VQA test dataset and the VQA score
for unseen-question, unseen-entity, and all categories in the InfoSeek validation set.

From Table 1, we observe that the proposed framework significantly improves the performance of
both large language models and multi-modal large language models without any additional training.
For instance, the accuracy increase from 25.4 to 47.0 for Bunny-1.1 and from 10.6 to 47.5 for
LlaMA3-8B in E-VQA. We also improve the VQA score in the InfoSeek such as 12.5 to 16.2 for
Bunny-1.1 and from 1.2 to 15.2 for LlaMA3-8B.

Despite the strong performance, we have the following findings. First, our training-free methods
outperform the fine-tuned baseline such as Wiki-LLaVA with plain CLIP retrieval results, indicat-
ing that the major challenge in knowledge-intensive VQA is the accuracy of knowledge retrieval.
Another finding is that current state-of-the-art multimodal large language models or large language
models are capable of understanding the retrieval results without the need for further fine-tuning on
answer generation. Finally, the improvements of both our methods and EchoSight indicate the most
urgent need is to improve knowledge retrieval in retrieval-augmented generation-based methods.

4.4 ABLATION STUDY

In this section, we conduct an ablation study to provide a comprehensive understanding of each
design in our proposed KIRA framework. Moreover, we provide the hyperparameters experiments.

Impact of framework Design. In the proposed framework, the multi-modal retrieval system for
visual question answering is decomposed into multiple stages. To provide a deeper understanding of
the effectiveness of each stage, we conducted ablation studies on the validation set of Encyclopedic
VQA and randomly sampled 1,000 data from the InfoSeek validation set. As shown in Table 2,
CLIP I-T indicates that naively utilizing CLIP to retrieve the knowledge base text with image, which
serves as the baseline for our method. The +FGM means the fine-grained matching is applied on
top of CLIP I-T, which improves the retrieval quality by involving the question relevance in the
ranking of multiple knowledge articles. Finally, the +DV indicates that we add the text-retrieved
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Figure 3: The ablation study on hyperparameters. We report the relationship between different
values of and Recall@1 for E-VQA and the InfoSeek. The optimal value of is marked with a star.
context in parallel with the visual-retrieved context from +FGM. Since two articles are retrieved,
we only report the VQA performance under this setting.

From the results Table 2, we observe that the introduction of the FGM achieves significant improve-
ments in E-VQA such as 106% increase in recall@1, which demonstrates that including the question
relevance besides the image relevance is important for correctly evaluating the relevance between
visual question and the knowledge base. However, the improvements in the Infoseek are limited
compared with the E-VQA. We consider the cause to be the relatively limited improvement space
since the delta of recall@20 and recall@1 is 24.2 compared with 49.1 in E-VQA. For +TRC, we
observe that the text-related context brings huge improvements to multi-hop questions in E-VQA,
such as 33.2 to 41.1, which indicates the question-only retrieval is important.

Hyper Parameter Ablation. The KIRA is a training-free multi-modal retrieval-augmented gen-
eration (RAG) system, requiring only lightweight hyperparameter tuning. We present the results of
our ablation study concerning the weight λ. If the value of λ increases, the importance of image
relevance decreases. As shown in Table 3, we observe that the optimal choice for E-VQA is 64 and
256 for the InfoSeek, which indicates the sensitivity of the trade-off between the question relevance
and image relevance changes across different datasets.

5 LIMITATION

Despite the promising results on knowledge-intensive VQA benchmarks without any training, our
approach has several limitations. First, our method is a refinement for retrieval models, which
means the upper bound of improvements is limited by the ability of the initial retrieval performance.
Although we explore the possibilities of increasing the retrieval recall from recall@1 to recall@20 in
this work, the proposed methods cannot be applied to improve recall@20. We consider this a more
challenging task and will try to address it in the future. Another limitation is that the effectiveness
of the proposed methods is potentially limited to certain scenarios since the improvement in E-VQA
is significantly larger than that in the InfoSeek. We conclude that the mechanism of introducing
detailed question-text relevance improves knowledge retrieval, whereas the top-ranking negative
articles in the knowledge base do not contain essential information for the question.

6 CONCLUSION

In this paper, we introduced a novel retrieval-augmented generation (RAG) framework designed
specifically to address the challenges of knowledge-intensive visual question answering (KI-VQA).
Unlike traditional MLLMs that struggle with the fine-grained knowledge demands of KI-VQA tasks,
our framework integrates general image-text similarity with detailed knowledge context to achieve
precise entity recognition and effective knowledge retrieval. By employing a verification mecha-
nism, we ensure that retrieved knowledge is relevant and sufficient to answer the posed questions,
mitigating the limitations of global image-text matching approaches. Our experiments on the En-
cyclopedic VQA and the InfoSeek benchmarks demonstrate the efficacy of our approach, achieving
significant improvements without the need for any fine-tuning or additional training. These results
highlight the potential of our training-free, plug-and-play solution for KI-VQA tasks, offering a new
pathway for integrating external knowledge bases into multimodal models. Moving forward, we be-
lieve that our framework opens up new possibilities for advancing the field of knowledge-intensive
vision-language tasks, and we encourage future exploration in this direction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, T. W. Hennigan, Saffron Huang, Lorenzo
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre. Improving
language models by retrieving from trillions of tokens. In International Conference on Machine
Learning, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv,
abs/2005.14165, 2020.

Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Boerschinger, and Tal Schuster.
Tomayto, tomahto. beyond token-level answer equivalence for question answering evaluation.
In Conference on Empirical Methods in Natural Language Processing, 2022.

Davide Caffagni, Federico Cocchi, Nicholas Moratelli, Sara Sarto, Marcella Cornia, Lorenzo
Baraldi, and Rita Cucchiara. Wiki-llava: Hierarchical retrieval-augmented generation for mul-
timodal llms. 2024.

Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
Chang. Can pre-trained vision and language models answer visual information-seeking questions?
ArXiv, abs/2302.11713, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcı́a, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Dı́az, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with
pathways. ArXiv, abs/2204.02311, 2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Albert Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. ArXiv, abs/2305.06500, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
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Figure 4: The Visualization of the retrieval and answer generation. We show the retrieval results
of two samples in the Encyclopedic VQA dataset and provide the answer generated by the Bunny-
1.1 with and without the retrieval results.

A APPENDIX

A.1 QUANTITIVE VISUALIZATION

We provide qualitative results of our predictions. As shown in the Figure 4, the Context1 is the
T visual∗i and the Context2 is the T text∗i . The two retrieval results are extracted from distinct
parts of the article in the WiKi knowledge base, which focus on the image and question. For the left
image, the essential information is the time of the first tilt took place on the Gateshead Millennium
Bridge. The retrieval system successfully found the WiKi article and we extracted two text chunks
containing the ”The first tilt took place on 28 Ju ne 2001 to 36,000 on lookers.”. Without the retrieval
results, the model fails to answer the question.
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