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Abstract

We address the problem of best arm identification (BAI) with a fixed budget for two-
armed Gaussian bandits. In BAI, given multiple arms, we aim to find the best arm, an
arm with the highest expected reward, through an adaptive experiment. Kaufmann et al.
(2016) develops a lower bound for the probability of misidentifying the best arm. They
also propose a strategy, assuming that the variances of rewards are known, and show that
it is asymptotically optimal in the sense that its probability of misidentification matches
the lower bound as the budget approaches infinity. However, an asymptotically optimal
strategy is unknown when the variances are unknown. For this open issue, we propose a
strategy that estimates variances during an adaptive experiment and draws arms with a ratio
of the estimated standard deviations. We refer to this strategy as the Neyman Allocation
(NA)-Augmented Inverse Probability weighting (AIPW) strategy. We then demonstrate that
this strategy is asymptotically optimal by showing that its probability of misidentification
matches the lower bound when the budget approaches infinity, and the gap between the
expected rewards of two arms approaches zero (small-gap regime). Our results suggest
that under the worst-case scenario characterized by the small-gap regime, our strategy,
which employs estimated variance, is asymptotically optimal even when the variances are
unknown.

1 Introduction

This study investigates the problem of best arm identification (BAI) with a fixed budget in stochastic two-
armed Gaussian bandits. In this problem, we consider an adaptive experiment with a fixed number of rounds,
called a budget. At each round, we can draw an arm and observe the reward. The goal of the problem is to
identify the best arm with the highest expected reward at the end of the experiment (Bubeck et al., 2009;
Audibert et al., 2010).

Formally, we consider the following adaptive experiment with two arms and Gaussian rewards. There are
two arms 1 and 2, and an arm a ∈ {1, 2} has an R-valued Gaussian reward Ya ∼ N (µa, σ

2
a) with the mean

µa ∈ (−∞,∞) and the variance σ2
a ∈ (0,∞), where µa and σ2

a are constants independent of T . Given fixed
(σ2

1 , σ
2
2), let

PG := PG
(σ2

1 ,σ2
2) :=

{
P =

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)

: µ1 and µ2 are finite, µ1 ̸= µ2
}

be a set of distributions generating the data, which is referred to as the Gaussian bandit models, where P ∈ P
is a pair of distributions that generate (Y1, Y2), and N (µ, σ2) is a Gaussian distribution with a mean µ and a
variance σ2. For an instance P , the best arm a⋆(P ) ∈ {1, 2} is defined as a⋆(P ) = arg maxa∈{1,2} µa, which
is assumed to exist uniquely.

In the adaptive experiment, we consider a strategy to identify the best arm. A fixed budget T is given. For
each round t ∈ [T ] := {1, 2, . . . , T}, let (Y1,t, Y2,t) be an independent and identically distributed (i.i.d.) copy
of (Y1, Y2) generated from P ∗ =

(
N (µ∗

1, σ
2
1),N (µ∗

2, σ
2
2)
)

∈ PG. At each round t, we draw arm At ∈ {1, 2}
and observe a reward Yt =

∑
a∈{1,2} 1[At = a]Ya,t. At the end of the experiment (after round T ), we
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recommend an estimated best arm âT ∈ {1, 2}. During an experiment, we follow a strategy that determines
which arm to draw and which arm to recommend as the best arm. The performance of strategies is evaluated
by a minimal probability of misidentification PP (âT ̸= a⋆(P )), where PP is the probability law under P .

Background. In fixed-budget BAI, it has been an important question of interest to investigate the prob-
ability of misidentification PP (âT ̸= a⋆(P )) in the limit T → ∞. For the interest, a typical approach is to
derive an upper and lower bound of the probability separately and specify its value.

For a lower bound of the probability of misidentification, Kaufmann et al. (2016) develops a general theory
for deriving lower bounds of the probability. Their theory applies the change-of-measure argument, which
has been employed in various problems (van der Vaart, 1998), including studies for regret minimization (Lai
& Robbins, 1985). Their lower bound is general and can be applied to a wide range of settings, such as the
fixed confidence setting (Garivier & Kaufmann, 2016) as well as the fixed budget setting.

In contrast, an upper bound of the misidentification probability has not been fully clarified. A typical
way to derive upper bounds is to construct a specific strategy and evaluate its misidentification probability.
Kaufmann et al. (2016) develops a strategy under a setting in which the variance (σ2

1 , σ
2
2) of the reward is

known and shows its misidentification probability corresponds to the lower bound. However, this strategy is
not available under the usual setting with unknown variance. Based on these situations, the current results
are insufficient to establish an upper bound for the misidentification probability when the variances are
unknown.

Based on the situation above, our interest is in strategies for identifying misidentification probabilities in the
adaptive experimental setting described above. Specifically, we need a strategy such that an upper bound on
its misidentification probability aligns with the lower bound proposed in Kaufmann et al. (2016). Further,
this strategy must be valid when the variance is unknown.

Our approach and contribution. In this study, we develop a strategy whose probability of misidentifi-
cation aligns with the lower bound under an additional setting. To accomplish this, we develop the Neyman
allocation-augmented inverse probability weight (NA-AIPW) strategy. Then, we show that the probability
of misidentification aligns with the lower bound under a small-gap regime. The details of each are described
below.

The NA-AIPW strategy consists of a sampling rule using the Neyman allocation (NA) and a recommendation
rule using the augmented inverse probability weighting (AIPW) estimator. NA is a method of sampling arms
using a ratio of the root of the variance of rewards, as utilized in Neyman (1934); Kaufmann et al. (2016).
The NA-AIPW strategy samples the arms by estimating this variance during the adaptive experiment. At
the end of the experiment, the NA-AIPW strategy recommends an arm with the highest expected reward
estimated by using the AIPW estimator, which is an unbiased estimator with a small asymptotic variance.

The small-gap regime considers a situation µ1 − µ2 → 0 as T → ∞. Although this additional setting
slightly simplifies the problem with BAI, the problem is still sufficiently complicated since the small gap
makes it difficult to identify the best arm. This setting has been utilized in BAI with fixed confidence, such
as the analysis of lil’UCB (Jamieson et al., 2014). In the realm of statistical testing, such an evaluation
framework is known as the local Bahadur efficiency (Bahadur, 1960; Wieand, 1976; Akritas & Kourouklis,
1988; He & Shao, 1996). From a technical perspective, the small-gap regime is a situation where we can
ignore the estimation error of the variances compared to the difficulty of identifying the best arm. Since the
error of the estimation of the variance is relatively negligible in the small-gap setting, we can show that the
misidentification probability of the NA-AIPW strategy matches the lower bound.

We summarize the backgrounds and our contributions. In BAI with two-armed Gaussian rewards and a
fixed budget, a strategy has been needed in which its misidentification probability achieves the lower bound
derived by Kaufmann et al. (2016). Although Kaufmann et al. (2016) demonstrates an asymptotically
optimal strategy that satisfies the requirement with known variances, it remains an unresolved issue to find
a strategy whose upper bound matches their derived lower bound when variances are unknown. For this
issue, this study proposes the NA-AIPW strategy whose probability of misidentification matches the lower
bound under the small-gap regime.
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Organization. This study is organized as follows. First, in Section 2, we review the lower bound of
Kaufmann et al. (2016). Then, in Section 3, we propose our NA-AIPW strategy. In Section 4, we show that
the misidentification probability of the strategy asymptotically corresponds to the lower bound by Kaufmann
et al. (2016) under the small-gap setting. We show the proof in Section 5, where we also provide a novel
concentration inequality based on the Chernoff bound. In Appendix A, we discuss the difficulty in this
problem. In Appendix B, we introduce related work and remaining problems, which includes an extension
of our small-gap setting to a setting with multi-armed bandits and non-Gaussian rewards.

Notation. Let Ft be the sigma-algebra generated by all observations up to round t. We define a truncation
operator: for a variable v ∈ R and constants c1 < c2, thre(v; c1, c2) := min{max{v, c1}, c2}.

2 Lower Bound of Probability of Misidentification

As a preparation, we introduce a lower bound for the probability of misidentification in BAI with a fixed
budget. We call a strategy is consistent, if for any P ∈ PG, PP (âT ̸= a⋆(P )) → 0 as T → ∞. To evaluate
the performance of strategies For any P ∈ PG, we focus on the following metric for PP (âT ̸= a⋆(P )) used in
many studies, such as Kaufmann et al. (2016):

− 1
T

logPP (âT ̸= a⋆(P )).

Note that the upper bound (resp. lower bound) of this term works as a lower bound (resp. upper bound) of
the probability of misidentification PP (âT ̸= a⋆(P )) since x 7→ − log x is a strictly decreasing function.

For two-armed Gaussian bandits, Kaufmann et al. (2016) presents the following lower bounds.

Proposition 2.1 (Theorem 12 in Kaufmann et al. (2016)). For any P ∗ ∈ PG, if {(Y1,t, Y2,t)}t∈[T ] is
generated from P ∗, any consistent strategy satisfies

lim sup
T →∞

− 1
T

logPP ∗(âT ̸= a⋆(P ∗)) ≤ ∆2

2
(
σ1 + σ2

)2 := LowerBound(∆).

From the statement, there are some important aspects of this lower bound: (i) The term ∆ = µ∗
1 −µ∗

2, which
referred to a gap, appears in the numerator and the magnitude of the error is described by the gap. (ii) The
variances (σ2

1 , σ
2
2) appear in the denominator, which plays an important role.

It has been discussed to find a strategy in which the upper bound of its probability of misidentification
coincides with this lower bound in Proposition 2.1. Although Kaufmann et al. (2016) develops a strategy
that satisfies the requirement, it needs to sample arms with some probability depending on the known
variances (σ2

1 , σ
2
2). To the best of our knowledge, if the variances are unknown and need to be estimated

during adaptive experiments, no one has found the desired strategy.

3 The NA-AIPW Strategy

In this section, we define our strategy. Formally, a strategy gives a pair ((At)t∈[T ], âT ), where (i) (At)t∈[T ] ∈
{1, 2}T is a sequence of arms generated by a sampling rule that determines which arm At is chosen in each
t based on Ft−1, and (ii) âT ∈ {1, 2} is a recommended arm by a recommendation rule based on FT . Our
proposed NA-AIPW strategy consists of (i) a sampling rule with the Neyman Allocation (NA) (Neyman,
1923), and (ii) a recommendation rule using the Augmented Inverse Probability Weighting (AIPW) estimator
(Robins et al., 1994; Bang & Robins, 2005). Based on these rules, we refer to this strategy as the NA-AIPW
strategy1.

1Similar strategies are often used in the context of the average treatment effect estimation by an adaptive experiment (van der
Laan, 2008; Kato et al., 2020).
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3.1 Target Allocation Ratio

As preparation, we introduce the notion of a target allocation ratio, which will be used for the sampling rule.
We define target allocation ratios w∗

1 , w
∗
2 ∈ (0, 1) as

w∗
1 := σ1

σ1 + σ2
, and w∗

2 := 1 − w∗
1 .

A sampling rule following this target allocation ratio is known as the Neyman allocation rule (Neyman, 1934).
Glynn & Juneja (2004) and Kaufmann et al. (2016) also propose this allocation. This target allocation ratio
is characterized by the variances (standard deviations); therefore, the target allocation ratio is unknown
when the variances are unknown. Therefore, to use this ratio, we need to estimate it from observations.
Let Cµ > 0 and Cσ2 > 0 be some large positive constants predetermined us. They are technical terms for
the proof, and we just set them as sufficiently large values such that Cµ = Cσ2 = 1010000000000. For the
condition, see Theorem 4.1.

3.2 Sampling Rule with Neyman Allocation (NA)

We present the sampling rule with the NA. At each round t ∈ [T ], our sampling rule randomly draws an arm
a ∈ {1, 2} with a probability identical to an estimated version of the target allocation ratio w∗

a. To estimate
the target allocation ratio w∗

a, we estimate the variances during the adaptive experiment. For a ∈ {1, 2}, let
{σ̂a}t∈[T ] and {ŵa,t} be sequences of estimators of σa, µa and w∗

a, that will be defined bellow.

We use the rounds t = 1 and t = 2 for initialization. Specifically, we draw the arm 1 at round t = 1 and the
arm 2 at round t = 2, and also set ŵa,1 = ŵa,2 = 1/2 for a ∈ {1, 2}.

At the round t ≥ 3, we estimate the target allocation ratio (variances) w∗
a for a ∈ {1, 2} using past observa-

tions Ft−1. For each t ≥ 3, we first define an estimator of the expected reward µa as

µ̃a,t := 1∑t−1
s=1 1[As = a]

t−1∑
s=1

1[As = a]Ya,s.

Also, we define a second moment estimator ζ̃a,t := (
∑t−1

s=1 1[As = a])−1∑t−1
s=1 1[As = a]Y 2

a,s, and a root of
variance estimator σ̃a,t = {ζ̃a,t − (µ̃a,t)2}1/2. Then, we define the estimator σ̂a,t = thre(σ̃a,t; 1/Cσ2 , Cσ2).
Note that this truncation is introduced for a technical purpose to draw each arm infinitely many times as
T → ∞ and avoid the estimators of µ∗

1 and µ∗
2, defined below, diverging to infinity. We just use a sufficiently

small value for Cσ2 > 0. Also, we define the estimator ŵ1,t and ŵ2,t as

ŵ1,t := σ̂1,t

σ̂1,t + σ̂2,t
, and ŵ2,t := 1 − ŵ1,t. (1)

In each round t ≥ 3, we draw arm At = 1 with probability ŵ1,t and At = 2 with probability ŵ2,t.

We note the possibility of increasing the number of initialization rounds, although our strategy utilizes only
the first two rounds for this purpose. The additional rounds of initialization serve to stabilize the sampling
rule in practical applications, akin to the concept of the forced-sampling (Garivier & Kaufmann, 2016).
We can change the number of initialization rounds if the condition ŵa,t

a.s.−−→ w∗
a is satisfied as t → ∞ for

every a ∈ {1, 2}, which is crucial for our theoretical analysis. For instance, instead of using ŵ1,t directly,
an alternative arm-drawing probability could be defined as w̃1,t = αt/2 + (1 − αt)ŵ1,t, assuming αt ∈ [0, 1]
and converges to zero as t approaches infinity (here, we define w̃2,t = 1 − w̃1,t). Moreover, the number of
initialization rounds can be made dependent upon the number of arms without impacting the theoretical
outcomes.

3.3 Recommendation Rule with the Augmented Inverse Probability Weighting (AIPW) Estimator

We present our recommendation rule. In the recommendation phase after round T , we estimate µ∗
a for each

a ∈ {1, 2} and recommend an arm with the bigger estimated expected reward. With a truncated version
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Algorithm 1 NA-AIPW Strategy
Parameter: Positive constants Cµ and Cσ2 .
Initialization:
At t = 1, sample At = 1; at t = 2, sample At = 2. For a ∈ {1, 2}, set ŵa,1 = ŵa,2 = 0.5.
for t = 3 to T do

Construct ŵa,t following equation 1.
Draw At = 1 with probability ŵ1,t and At = 2 with probability ŵ2,t = 1 − ŵ1,t.
Observe Yt.

end for
Construct µ̂AIPW

a,T for a ∈ {1, 2}. following equation 2.
Recommend âT following equation 3.

of the estimated expected reward µ̂a,t := thre(µ̃a,t,−Cµ, Cµ), we define the augmented inverse probability
weighting (AIPW) estimator of µ∗

a for each a ∈ {1, 2} as

µ̂AIPW
a,T := 1

T

T∑
t=1

ψa,t, where ψa,t :=
1[At = a]

(
Ya,t − µ̂a,t

)
ŵa,t

+ µ̂a,t. (2)

At the end of the experiment (after the round t = T ), we recommend âT as

âT :=
{

1 if µ̂AIPW
1,T ≥ µ̂AIPW

2,T ,

2 otherwise.
(3)

We adopt the AIPW estimator for our strategy because it has several advantages. First, the AIPW estimator
has the property of semiparametric efficiency, which indicates that it has the smallest asymptotic variance
among a certain class (Hahn, 1998). The property is necessary to prove that the strategy using the AIPW
estimator is optimal, which means the misidentification probability is small enough to achieve its lower
bound. The second reason is more technical; the AIPW estimator simplifies the theoretical analysis (see
Section A.3). Specifically, we can decompose an estimation error into a sum of random variables with
martingale properties, making it suitable for analysis using the central limit theorem. We cannot use this
property for an empirical average. Details will be given in Section 5 and Appendix A.

We provide the pseudo-code for our proposed strategy in Algorithm 1. Note again that we introduce Cµ

and Cσ2 for technical purposes to bound the estimators and any large positive value can be used.

4 Misidentification Probability and Asymptotic Optimality

In this section, we show the following upper bound of the misspecification probability of the NA-AIPW
strategy, which also implies that the strategy is asymptotically optimal.
Theorem 4.1 (Upper bound of the NA-AIPW strategy). Let Cµ and Cσ2 be sufficiently large positive values
such that µa ∈ [−Cµ, Cµ] and 1/Cσ2 < σa < Cσ2 hold. For any ϵ > 0, there exist t(ϵ) > 0 and δ(ϵ) > 0 such
that for all T > t(ϵ) and for any P ∗ ∈

{
P ∈ PG | 0 < ∆ = µ1 −µ2 < δ(ϵ)

}
, if {(Y1,t, Y2,t)}t∈[T ] is generated

from P ∗, then it holds that

− 1
T

logPP ∗

(
µ̂

AIPW,a⋆(P )
T ≤ µ̂AIPW,a

T

)
≥ ∆2

2(σ1 + σ2)2 − ϵ∆2.

Here, Cµ and Cσ2 are introduced for technical purpose. For example, we can set them as Cµ = Cσ2 =
1010000000000 if µa ∈ [−Cµ, Cµ] and 1/Cσ2 < σa < Cσ2 are satisfied.2

2The constant Cµ is introduced to guarantee the boundedness of the estimators, and it is sufficient to use a sufficiently large
value for it. The constant Cσ2 is used to draw each arm infinitely many times as T → ∞ and avoid the estimators of the means
µ∗

1 and µ∗
2 diverging to infinity, and it is sufficient to use a sufficiently large value for Cµ and Cσ2 .
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The lower bound of − 1
T logPP ∗

(
âAIPW

T ̸= a⋆(P ∗)
)

implies the upper bound of PP ∗
(
âAIPW

T ̸= a⋆(P ∗)
)
. This

theorem implies us to evaluate the probability of misidentification up to the constant term, even when it is
exponentially small, as ∆ → 0.

Theorem 4.1 directly implies the asymptotic optimality of the NA-AIPW strategy. As ∆ → 0, the upper
bound matches the lower bound in Proposition 2.1. This asymptotic optimality result suggests that the
estimation error of the target allocation ratio (variances) w∗ is negligible when ∆ → 0. This is because the
estimation error is insignificant compared to the challenges of identifying the best arm due to the small gap.

The statement in Theorem 4.1 has different mathematical representations that have the same meanings.
For example, we can use the little-o notation. For some functions f(x) and g(x), we can use the little-o
notation as f(x) = o(g(x)) as x → ∞, which means that for any ϵ > 0, there exists a constant x0 > 0
such that for all x ≥ x0, |f(x)| ≤ ϵg(x) holds. If using the little-o notation, we can denote the result as
lim infT →∞ − 1

T logPP ∗
(
âAIPW

T ̸= a⋆(P ∗)
)

≥ ∆2

2(σ1+σ2)2 − o
(
∆2) as ∆ → 0.

Without the little-o notation, we can also denote the result as
lim∆→0 lim infT →∞ − 1

∆2T logPP ∗
(
âAIPW

T ̸= a⋆(P ∗)
)

≥ 1
2(σ1+σ2)2 .3 This expression is compatible with

the results in Shin et al. (2018). Similarly, by using LowerBound(∆) = ∆2

2(σ1+σ2)2 , we have

− lim
∆→0

lim inf
T →∞

1
T

logPP ∗

(
µ̂

AIPW,a⋆(P )
T ≤ µ̂AIPW,a

T

)
/LowerBound(∆) ≥ 1, (4)

which implies that for any ϵ > 0, there exist t(ϵ) > 0 and δ(ϵ) > 0 such that for all
T > t(ϵ) and any P ∗ ∈

{
P ∈ PG | 0 < ∆ = µ1 − µ2 < δ(ϵ)

}
, then it holds that

− 1
T logPP ∗

(
µ̂

AIPW,a⋆(P )
T ≤ µ̂AIPW,a

T

)
/LowerBound(∆) ≥ 1 − ϵ.

We conjecture that even if we replace the AIPW estimator with the sample average estimator, defined as
µ̃a,t = (

∑t−1
s=1 1[As = a])−1∑t−1

s=1 1[As = a]Ya,s in Section 3.2, the upper bound of the strategy still matches
the lower bound under the small-gap regime. However, the proof is an open issue. Hirano et al. (2003) and
Hahn et al. (2011) show that the sample average estimator µ̃a,t and the AIPW estimator have the same
asymptotic variance (or asymptotic distribution). To show the result, we need to employ empirical process
arguments. One of the problems in extending the result to analysis for BAI is that their result focuses on
the asymptotic distribution, not the tail probability. Therefore, to show the asymptotic optimality of the
strategy with the sample average in the sense of the probability of misidentification, we need to modify the
result in Hirano et al. (2003) and Hahn et al. (2011) to analyze the tail probability. See also Appendix A.

5 Proof of Theorem 4.1

To show Theorem 4.1, we derive the upper bound of PP ∗

(
µ̂AIPW

a⋆(P ∗),T ≤ µ̂AIPW
b,T

)
for b ∈ {1, 2}\{a⋆(P ∗)},

which is equivalent to PP ∗
(
âAIPW

T ̸= a⋆(P ∗)
)
. Without loss of generality, we assume that a⋆(P ∗) = 1 and

b = 2. Let us define V := σ2
1

w∗
1

+ σ2
2

w∗
2

= (σ1 + σ2)2 and

Ψt := ψ1,t − ψ2,t − ∆√
V

.

Therefore, in the following parts, we aim to derive the upper bound of PP ∗

(
µ̂AIPW

a⋆(P ∗),T ≤ µ̂AIPW
b,T

)
=

PP ∗
(
µ̂AIPW

1,T ≤ µ̂AIPW
2,T

)
= PP ∗

(∑T
t=1 Ψt ≤ − T ∆√

V

)
. Let EP be the expectation under P ∈ PG. We de-

rive the upper bound using the Chernoff bound. This proof is partially inspired by techniques in Hadad
et al. (2021), and Kato et al. (2020).

3In the previous submission, we are required to make the dependence in o
(

∆2
)

explicit; that is, denote explicitly related
values hidden in o

(
∆2
)

. However,the term o
(

∆2
)

does not have such dependence since the little-o notation implies that for

any ϵ, there exits δ(ϵ) > 0 such that for all 0 < ∆ < δ(ϵ), lim infT →∞ − 1
T

log PP ∗
(

âAIPW
T ̸= a⋆(P ∗)

)
≥ ∆2

2(σ1+σ2)2 − ϵ∆2 holds.
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First, because there exists a constant C > 0 independent of T such that ŵa,t > C by construction, the
following lemma holds.
Lemma 5.1. For any P ∗ ∈ PG and all a ∈ {1, 2}, µ̂a,t

a.s−−→ µ∗
a and σ̂2

a
a.s−−→ σ2

a.

Furthermore, from σ̂2
a

a.s−−→ σ2
a and continuous mapping theorem, for any P ∗ ∈ PG and all a ∈ {1, 2},

ŵa,t
a.s−−→ w∗

a,t.

Step 1: Sequence {Ψt}T
t=1 is a martingale difference sequence (MDS)

We prove that {Ψt}T
t=1 is an MDS; that is, EP ∗ [Ψt|Ft−1] = 0. Although this fact is well-known in the

literature of causal inference (van der Laan, 2008; Hadad et al., 2021; Kato et al., 2020), we show the proof
for the sake of completeness.
Lemma 5.2. For any P ∗ ∈ PG, {Ψt}T

t=1 is an MDS.

Proof. For each t ∈ [T ], it holds that

√
V EP ∗ [Ψt|Ft−1] = EP ∗

[
1[At = 1]

(
Y1,t − µ̂1,t

)
ŵ1,t

+ µ̂1,t|Ft−1

]
− EP ∗

[
1[At = 2]

(
Y2,t − µ̂2,t

)
ŵ2,t

+ µ̂2,t|Ft−1

]
− ∆

=
ŵ1,t

(
µ∗

1 − µ̂1,t

)
ŵ1,t

+ µ̂1,t −
ŵ2,t

(
µ∗

2 − µ̂2,t

)
ŵ2,t

+ µ̂2,t − ∆ = {(µ∗
1 − µ∗

2) − (µ∗
1 − µ∗

2)} = 0.

Step 2: Evaluation by using the Chernoff Bound with Martingales

By applying the Chernoff bound, for any v < 0 and any λ < 0, it holds that

PP ∗

(
1
T

T∑
t=1

Ψt ≤ v

)
≤ EP ∗

[
exp

(
λ

T∑
t=1

Ψt

)]
exp (−Tλv) .

From the Chernoff bound and a property of an MDS, we have

EP ∗

[
exp

(
λ

T∑
t=1

Ψt

)]
= EP ∗

[
T∏

t=1
EP ∗ [exp (λΨt) |Ft−1]

]
= EP ∗

[
exp

(
T∑

t=1
logEP ∗ [exp (λΨt) |Ft−1]

)]
.

Then, from the Taylor expansion around λ = 0, for all ϵ > 0, there exists ℓ(ϵ) > 0 such that for all
0 < λ < ℓ(ϵ), we have

logEP ∗ [exp (λΨt) |Ft−1] ≤ λ2

2 EP ∗
[
Ψ2

t |Ft−1
]

+ ϵλ2. (5)

This is given as follows. Since EP ∗
[
Ψk

t exp(λΨt)|Ft−1
]

are finite everywhere in an open interval (0,∞) for
k = 1, 2, 3, the Taylor expansion yields the following (for the details, see the textbook such as page 75 in
Bulmer (1967) and Theorem 5.19 in Apostol (1974)): for any ϵ, there exists ℓ(ϵ) such that for all 0 < λ < ℓ(ϵ),
it holds that EP ∗ [exp (λΨt) |Ft−1] ≤ 1 +

∑2
k=1 λ

kEP ∗
[
Ψk

t /k!|Ft−1
]

+ ϵλ2. Note that the finiteness of
EP ∗

[
Ψk

t exp(λΨt)|Ft−1
]

comes from the following in Ψt: (i) Ya,t is a Gaussian random variable, (ii) µ̂a,t and
ŵa,t are bounded random variables by our truncation, and (iii) the lower bound of ŵ is given by Cσ2 .

By using the Taylor expansion again, we approximate log(1 + z) around z = 0 as log(1 + z) = z − z2/2 +
z3/3 − · · · . Therefore, for any ϵ, there exists ℓ(ϵ) > 0 such that for all 0 < λ < ℓ(ϵ), it holds that

logEP ∗ [exp (λΨt) |Ft−1] ≤
{
λEP ∗ [Ψt|Ft−1] + λ2

T
EP ∗

[
Ψ2

t/2!|Ft−1
]

+ ϵλ2
}

− 1
2 {λEP ∗ [Ψt|Ft−1] + ϵλ}2
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Therefore, for any ϵ, there exists ℓ(ϵ) > 0 such that for all 0 < λ < ℓ(ϵ), it holds that

logEP ∗ [exp (λΨt) |Ft−1] ≤ λ2

T
EP ∗

[
Ψ2

t/2!|Ft−1
]

+ ϵλ2 − ϵ2λ2.

Here, we used EP ∗ [Ψt|Ft−1] = 0. Thus, the equation 5 holds.

Step 3: Convergence of the Second Moment

We next show EP ∗
[
Ψ2

t |Ft−1
]

− 1 a.s−−→ 0. This result is a direct consequence of Lemma 5.1.

Lemma 5.3. For any P ∗ ∈ PG, we have EP ∗
[
Ψ2

t |Ft−1
]

− 1 a.s−−→ 0 as t → ∞.

Proof. We have

V EP ∗
[
Ψ2

t |Ft−1
]

= EP ∗

[
(ψ1,t − ψ2,t − ∆)2

∣∣∣Ft−1

]
= EP ∗

[(
1[At = 1]

(
Y1,t − µ̂1,t

)
ŵ1,t

−
1[At = 2]

(
Y2,t − µ̂2,t

)
ŵ2,t

)2

+ 2
(
1[At = a⋆(P ∗)]

(
Y1,t − µ̂1,t

)
ŵ1,t

−
1[At = a]

(
Y2,t − µ̂2,t

)
ŵ2,t

)
× (µ̂1,t − µ̂2,t − (µ∗

1 − µ∗
2))

+ (µ̂1,t − µ̂2,t − (µ∗
1 − µ∗

2))2 |Ft−1

]

= EP ∗

[
1[At = 1]

(
Y1,t − µ̂1,t

)2(
ŵ1,t

)2 +
1[At = 2]

(
Y2,t − µ̂2,t

)2(
ŵ2,t

)2

+ 2
(
1[At = 1]

(
Y1,t − µ̂1,t

)
ŵ1,t

−
1[At = a]

(
Y2,t − µ̂2,t

)
ŵ2,t

)
(µ̂1,t − µ̂2,t − (µ∗

1 − µ∗
2))

+
((
µ̂1,t − µ̂2,t

)
− (µ∗

1 − µ∗
2)
)2 |Ft−1

]

=
∑

a∈{1,2}

EP ∗

[(
Ya,t − µ̂a,t

)2(
ŵa,t

)2 |Ft−1

]
− EP ∗

[((
µ̂1,t − µ̂2,t

)
−
(
µ∗

1 − µ∗
2
))2 |Ft−1

]
.

Here, for a ∈ {1, 2}, the followings hold:

EP ∗

[
1[At = a]

(
Ya,t − µ̂a,t

)2(
ŵa,t

)2 |Ft−1

]
= EP ∗

[(
Ya,t − µ̂a,t

)2

ŵa,t
|Ft−1

]
= EP ∗ [(Ya,t)2] − 2µ∗

aµ̂a,t + (µ̂a,t)2

ŵa,t

= EP ∗ [(Ya,t)2] − (µ∗
a)2 + (µ∗

a − µ̂a,t)2

ŵa,t
= σ2

a + (µ∗
a − µ̂a,t)2

ŵa,t
,

and

EP ∗

[
1[At = a]

(
Ya,t − µ̂2,t

)2(
ŵ1,t

)2
1[At = a]

(
Ya,t − µ̂2,t

)2(
ŵ2,t

)2 |Ft−1

]
= 0,

where we used EP ∗ [(Ya,t)2|x] − (µ∗
a)2 = σ2

a. Therefore, the following holds:

EP ∗

[(
Y1,t − µ̂1,t

)2

ŵ1,t
|Ft−1

]
+ EP ∗

[(
Y2,t − µ̂2,t

)2

ŵ2,t
|Ft−1

]
− EP ∗

[((
µ̂1,t − µ̂2,t

)
− (µ∗

1 − µ∗
2)
)2 |Ft−1

]

8
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= EP ∗

[
σ2

1 + (µ∗
1 − µ̂1,t)2

ŵ1,t

]
+ EP ∗

[
σ2

2 + (µ∗
2 − µ̂2,t)2

ŵ2,t

]
− EP ∗

[((
µ̂1,t − µ̂2,t

)
− (µ∗

1 − µ∗
2)
)2
]
.

Because µ̂a,t
a.s.−−→ µ∗

a and ŵa,t
a.s.−−→ w∗

a, we have

lim
t→∞

∣∣∣∣∣
(
σ2

1 + (µ∗
1 − µ̂1,t)2

ŵ1,t

)
+
(
σ2

2 + (µ∗
2 − µ̂2,t)2

ŵ2,t

)
−
((
µ̂1,t − µ̂2,t

)
−
(
µ∗

1 − µ∗
2
))2

−
(
σ2

1
w∗

1
+ σ2

a

w∗
2

+
((
µ∗

1 − µ∗
2
)

− (µ∗
1 − µ∗

2)
)2
) ∣∣∣∣∣

≤ lim
t→∞

∣∣∣∣ σ2
1

ŵ1,t
− σ2

1
w∗

1

∣∣∣∣+ lim
t→∞

∣∣∣∣ σ2
2

ŵ2,t
− σ2

2
w∗

2

∣∣∣∣+ lim
t→∞

(µ∗
1 − µ̂1,t)2

ŵ1,t
+ lim

t→∞

(µ∗
2 − µ̂2,t)2

ŵ2,t

+ lim
t→∞

∣∣ ((µ̂1,t − µ̂2,t

)
−
(
µ∗

1 − µ∗
2
))2 −

((
µ∗

1 − µ∗
2
)

−
(
µ∗

1 − µ∗
2
))2 ∣∣ = 0,

with probability 1. Therefore, from Lebesgue’s dominated convergence theorem, we obtain

V EP ∗
[
Ψ2

t |Ft−1
]

− V

= EP ∗

[
σ2

1 + (µ∗
1 − µ̂1,t)2

ŵ1,t
|Ft−1

]
+ EP ∗

[
σ2

a + (µ∗
2 − µ̂2,t)2

ŵ2,t
|Ft−1

]
− EP ∗

[((
µ̂1,t − µ̂2,t

)
−
(
µ∗

1 − µ∗
2
))2 |Ft−1

]
− EP ∗

[
σ2

1
w∗

1
+ σ2

2
w∗

2
+
((
µ∗

1 − µ∗
2
)

−
(
µ∗

1 − µ∗
2
))2 |Ft−1

]
a.s.−−→ 0.

This lemma immediately yields the following lemma.
Lemma 5.4. For any P ∗ ∈ PG and any ϵ > 0, there exists t(ϵ) > 0 such that for all T > t(ϵ), we have
1
T

∑T
t=1

∣∣∣EP ∗
[
Ψ2

t |Ft−1
]

− 1
∣∣∣ < ϵ with probability one.

This result is a variant of the Cesàro lemma for a case with almost sure convergence. For completeness, we
show the proof, which is based on the proof of Lemma 10 in Hadad et al. (2021).

Proof. Let ut be ut = EP ∗
[
Ψ2

t |Ft−1
]

− 1. Note that 1
T

∑T
t=1 EP ∗

[
Ψ2

t |Ft−1
]

− 1 = 1
T

∑T
t=1 ut.

From the proof of Lemma 5.3, we can find that ut is a bounded random variable. Recall that

V EP ∗
[
Ψ2

t |Ft−1
]

= EP ∗

[
σ2

1 + (µ∗
1 − µ̂1,t)2

ŵ1,t
|Ft−1

]
+ EP ∗

[
σ2

2 + (µ∗
2 − µ̂2,t)2

ŵ2,t
|Ft−1

]
− EP ∗

[((
µ̂1,t − µ̂2,t

)
−
(
µ∗

1 − µ∗
2
))2 |Ft−1

]
.

We assumed that (µ∗
1, µ

∗
2, µ̂1,t, µ̂2.t, ŵ1,t, ŵ2,t) are all bounded random variables. Let C be a constant inde-

pendent of T such that |ut| < C for all t ∈ N.

Almost-sure convergence of ut to zero as t → ∞ implies that for any ϵ′ > 0, there exists t(ϵ) such that
|ut| < ϵ′ for all t ≥ t(ϵ′) with probability one. Let E(ϵ′) denote the event in which this happens; that is,
E(ϵ′) = {|ut| < ϵ′ ∀ t ≥ t(ϵ′)}. Under this event, for T > t(ϵ′), the following holds:

1
T

T∑
t=1

|ut| ≤ 1
T

t(ϵ′)∑
t=1

C + 1
T

T∑
t=t(ϵ′)+1

ϵ = 1
T
t(ϵ′)C + ϵ′,

where 1
T t(ϵ

′)C → 0 as T → ∞.

Therefore, for any ϵ > 0, there exists t(ϵ) > 0 such that for all T > t(ϵ), 1
T

∑T
t=1 |ut| < ϵ holds with

probability one.

9
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Step 4: Tail Bound with the Approximated Second Moment

Let v = λ. Then, we have

PP ∗

(
T∑

t=1
Ψt ≤ Tv

)
≤ EP ∗

[
exp

(
−Tλ2

2 + λ2

2

{
T∑

t=1
EP ∗

[
Ψ2

t |Ft−1
]

− 1
}

+ Tϵλ2

)]
.

From Lemma 5.4, for any ϵ > 0, there exists t(ϵ) > 0 and ℓ(ϵ) > 0 such that for all T > t(ϵ) and 0 < λ < ℓ(ϵ),
we have

EP ∗

[
exp

(
−Tλ2

2 + λ2

2

{
T∑

t=1
EP ∗

[
Ψ2

t |Ft−1
]

− 1
}

+ Tϵλ2

)]

= exp
(

−Tλ2

2 + Tϵλ2
)
EP ∗

[
exp

(
λ2

2

{
T∑

t=1
EP ∗

[
Ψ2

t |Ft−1
]

− 1
})]

≤ exp
(

−Tλ2

2 + Tϵλ2
)

exp
(
λ2

2 Tϵ

)
= exp

(
−Tλ2

2 + Tϵλ2 + λ2

2 Tϵ

)
.

Step 5: Final Step of the Proof of Theorem 4.1

For any ϵ > 0, there exist t(ϵ) > 0 and ℓ(ϵ) > 0 such that for all T > t(ϵ) and for all 0 < λ ≤ ℓ(ϵ), we have

− 1
T

logPP ∗
(
µ̂AIPW

1,T ≤ µ̂AIPW
2,T

)
≥ −

{
−λ2

2 + ϵλ2 + λ2

2 ϵ

}
= λ2

2 − ϵλ2 − λ2

2 ϵ.

Let λ = − ∆√
V

. Then, for any ϵ > 0, there exist t(ϵ) > 0 and δ(ϵ) > 0 such that for all T > t(ϵ) and for all

0 < ∆ < δ(ϵ), we obtain − 1
T logPP ∗

(
µ̂

AIPW,a⋆(P )
T ≤ µ̂AIPW,a

T

)
≥ ∆2

2V − ϵ∆2. Thus, the proof is complete.

6 Simulation Studies

This section provides simulation studies to investigate the empirical performance of the NA-AIPW strategy.
For comparison, we also investigate the performances of the NA-IPW and NA-SA strategies defined in
Section A.3. Furthermore, we also conduct simulation studies of the “oracle” strategy with the known
variances, denoted by Oracle, and the uniform strategy that draws an equal number of arms, denoted by
Uniform. We recommend an arm with the highest sample average in the Oracle and Uniform strategies.4

Throughout the experiment, we set arm 1 as the best arm. We conduct experiments with the three settings.

In the first experiment, we set µ∗
1 = 1.00 and choose µ∗

2 from the set {0.80, 0.85, 0.90, 0.95, 0.99}. The
variances (σ1, σ2) are selected with a probability of 1/2 from either (1, v2) or (v2, 1), where v2 is chosen
from 5, 10, 20, 50. We continue the strategies until T = 10, 000 and report the empirical probability of
misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.5 We conduct 1, 000 independent trials for each
choice of parameters and plot the results in Figures 1 and 2.

In the second experiment, the variances (σ1, σ2) are selected with a probability of 1/2 from either (5, v2) or
(v2, 5), where v2 is chosen from 5, 10, 20, 50. The other settings are the same as the first experiment. The
results are shown in Figures 3 and 4 in Appendix C.

In the third experiment, we set µ∗
1 = 10.00 and choose µ∗

2 from the set {9.80, 9.85, 9.90, 9.95, 9.99}. The
other settings are the same as the first experiment. The results are shown in Figures 5 and 6 in Appendix C.

4The oracle strategy is the one proposed by Glynn & Juneja (2004) and Kaufmann et al. (2016). The Uniform strategy with
the recommendation rule is referred to as the Uniform-Empirical Best Arm (EBA) strategy by Bubeck et al. (2011).

5This means we report the empirical probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.
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Figure 1: The results are under the first setting. We set µ∗
1 = 1.00 and choose µ∗

2 from the set
{0.80, 0.85, 0.90, 0.95, 0.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (1, v2)
or (v2, 1), where v2 is chosen from 5, 10. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.

Our theoretical results imply that the probability of misidentifications of the NA-AIPW and Oracle strategies
approach the same as ∆ → 0. We can confirm the phenomenon. In the results, the Oracle strategy is a bit
better than the NA-AIPW strategy when ∆ is large. However, the gap approaches zero as ∆ → 0. Note
that when ∆ is large, the convergence of the probability of misidentification is very fast, so the gap is still
not so large even if ∆ is large because both the probability of misidentifications of the NA-AIPW and Oracle
strategies converge to zero very fast.

We can also find that the performance improvement of the NA-AIPW strategy from the Uniform strategy
is large as the difference of variances is large. For example, in the second experiment, when (σ1, σ2) =
(5.5), there is no improvement by using the NA-AIPW strategy from the Uniform strategy because the NA
allocation also leads us to draw each arm with equal ratio.

The difference between the NA-AIPW and NA-IPW strategies becomes large as the mean outcome of each
arm becomes large. We can find that in the third setting, the NA-IPW strategy behaves badly since
µ∗

1 = 10.00 and µ∗
2 is chosen from {9.80, 9.85, 9.90, 9.95, 9.99}, while µ∗

1 = 1.00 and µ∗
2 is chosen from

{0.80, 0.85, 0.90, 0.95, 0.99} in the first and second settings.

11
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Figure 2: The results are under the first setting. We set µ∗
1 = 1.00 and choose µ∗

2 from the set
{0.80, 0.85, 0.90, 0.95, 0.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (1, v2)
or (v2, 1), where v2 is chosen from 20, 50. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.

7 Conclusion

This study investigated fixed-budget BAI for two-armed Gaussian bandits with unknown variances. We first
reviewed the lower bound shown by Kaufmann et al. (2016). Then, we proposed the NA-AIPW strategy and
found that its probability of misidentification matches the lower bound when the budget approaches infinity
and the gap between the expected rewards of the two arms approaches zero. We referred to this setting
as the small-gap regime and the optimality as the local asymptotic optimality. Although there are several
remaining open questions, our result provides insight into long-standing open problems in BAI.
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A Discussion

In this section, we discuss related topics.

A.1 Neyman Allocation with Unknown Variances

For two-armed Gaussian bandits with known variances, Chen et al. (2000), Glynn & Juneja (2004), and
Kaufmann et al. (2016) conclude that sampling each arm with a proportion of the standard deviation is
optimal, which corresponds to the Neyman allocation Neyman (1934).

The Neyman allocation with unknown variances has been long studied in various fields. van der Laan
(2008) and Hahn et al. (2011) develop algorithms for estimating the gap parameter ∆ itself in an adaptive
experiment with the Neyman allocation. They estimate the variances and show their algorithms’ optimalities
under the framework of semiparametric efficiency, which closely connects to the Gaussian approximation of
estimators using the central limit theorem. Although they show their optimality under the framework, they
do not investigate the asymptotic optimality in the large-deviation framework. Tabord-Meehan (2022), Kato
et al. (2020), and Zhao (2023) also attempt to adrress related problems.

Jourdan et al. (2023) examines BAI with unknown variances in a fixed-confidence setting. Beyond the
difference in settings (we focus on fixed-budget BAI), the methods of deriving lower bounds differ between our
approach and theirs. They determine the lower bound while incorporating the assumption that the variances
are unknown. Moreover, under a large-gap regime (∆ is fixed), they confirm a discrepancy between the
lower bounds when variances are known versus unknown. Specifically, they consider alternative hypotheses
related to both variances and means. In contrast, the lower bounds presented by Kaufmann et al. (2016) and
ourselves are based on alternative hypotheses with fixed variances. While Jourdan et al. (2023) suggests that
the upper bounds of strategies with unknown variances cannot align with the lower bound when variances
are known, our findings indicate a match under the small-gap regime.

A.2 Necessity of the Small-Gap Regime

First, we discuss the necessity of the small-gap regime.

Estimation error of the variances. The most critical reason we employ the small-gap regime is that
the estimation error of the variances cannot be ignored in evaluating the probability of misidentification. To
clarify this point, we review the probability of misidentification when we know the variances.

Probability of misidentification of the Kaufmann et al. (2016)’s strategy with known variances.
Kaufmann et al. (2016) proposes drawing arm a in σa

σ1+σ2T = w∗
aT rounds (for simplicity, we deal with w∗

aT
as an integer). Without loss of generality, we consider draw arm 1 in the first w∗

1T rounds and draw arm 2
in the following T −w∗

1T = w∗
2T rounds. Then, they estimate the best arm as âKCG

T := arg maxa∈{1,2} µ̂
SA
a,T ,

where µ̂SA
a,T is the sample average defined as

µ̂SA
a,T := 1∑T

t=1 1[AKCG
t = a]

T∑
t=1

1[AKCG
t = a]Yt, (6)

where AKCG
t denotes an arm drawn by the Kaufmann et al. (2016)’s strategy. For the strategy, they show

that its probability of misidentification is given as

lim inf
T →∞

− 1
T

logPP ∗
(
âKCG

T ̸= a⋆(P ∗)
)

≥ ∆2

2(σ1 + σ2)2 . (7)

Note that this upper bound comes from the upper bound of

lim inf
T →∞

− 1
T

logPP ∗
(
âKCG

T ̸= a⋆(P ∗)
)

= lim inf
T →∞

− 1
T

logPP ∗
(
µ̂SA

1,T − µ̂SA
2,T ≤ 0

)
, (8)
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in case where arm 1 is the best arm (a⋆(P ∗) = 1). In contrast, in Theorem 4.1, we show that our strategy’s
upper bound is lim infT →∞ − 1

T logPP ∗
(
âAIPW

T ̸= a⋆(P ∗)
)

≥ ∆2

2(σ1+σ2)2 − o(∆2). The difference between our
upper bounds and theirs is the existence of −o(∆2) term, which vanishes as ∆ → 0. This difference comes
from the estimation error of the variances.

Intuitive explanation about the influence of the influence of the variance estimation. To un-
derstand the variance estimation, we rewrite the sample average as

µ̂SA
a,T = 1

T

T∑
t=1

1
1
T

∑T
t=1 1[AKCG

t = a]
1[AKCG

t = a]Yt = 1
T

T∑
t=1

1
w∗

a

1[AKCG
t = a]Yt, (9)

where we used
∑T

t=1 1[AKCG
t = a] = w∗

aT . Here, we consider a strategy that estimates w∗
a by estimating the

variances. Let w̃a be some estimator of w∗
a. Then, we design a strategy that draws arm a in w̃aT rounds in

some way. In that case, the sample average roughly becomes

µ̃SA
a,T = 1

T

T∑
t=1

1
1
T

∑T
t=1 1[Ãt = a]

1[Ãt = a]Yt = 1
T

T∑
t=1

1
w̃a

1[Ãt = a]Yt, (10)

where Ãt denotes an arm drawn by some strategy that draws arm a in w̃aT rounds. Then, if we recommend
arm ãT := arg maxa∈{1,2} µ̃

SA
a,T as the best arm, we evaluate

lim inf
T →∞

− 1
T

logPP ∗ (ãT ̸= a⋆(P ∗)) = lim inf
T →∞

− 1
T

logPP ∗
(
µ̃SA

1,T − µ̃SA
2,T ≤ 0

)
, (11)

From Markov’s inequality, for any λ > 0, we have

logPP ∗
(
µ̃SA

1,T − µ̃SA
2,T ≤ 0

)
≤ E

[
exp

(
Tλ
(
µ̃SA

1,T − µ̃SA
2,T

))]
. (12)

To obtain the same upper bound as that in the Kaufmann et al. (2016)’s strategy, we consider the following
decomposition:

E
[
exp

(
Tλ
(
µ̃SA

1,T − µ̃SA
2,T

))]
= E

[
exp

(
Tλ
(
µ̂SA

1,T − µ̂SA
2,T

))
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
. (13)

Suppose that the following holds in some way:

E
[
exp

(
Tλ
(
µ̂SA

1,T − µ̂SA
2,T

))
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
= E

[
exp

(
Tλ
(
µ̂SA

1,T − µ̂SA
2,T

))]
E
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
.

Note that this decomposition does not generally hold, but we assume it since it makes it easy to understand
the variance estimation problem. Under the assumption, it holds that

− 1
T

logPP ∗ (ãT ̸= a⋆(P ∗)) (14)

≥ − 1
T

logE
[
exp

(
Tλ
(
µ̂SA

1,T − µ̂SA
2,T

))]
− 1
T

logE
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
(15)

≥ ∆2

2(σ1 + σ2)2 − 1
T

logE
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
. (16)

This inequality implies that to obtain the same upper bound as that of Kaufmann et al. (2016)’s strategy,
we need to bound

lim inf
T →∞

− 1
T

logE
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
(17)

with an arbitrage rate of convergence; more exactly, we need to show that for any ε > 0,

lim inf
T →∞

− 1
T

logE
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
≥ −ε
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holds. However, it is impossible to achieve that convergence rate with commonly known theorems about
convergence. Therefore, we introduced the small-gap regime, which evaluates the term as

lim inf
T →∞

− 1
T

logE
[
exp

(
Tλ
({
µ̃SA

1,T − µ̃SA
2,T

}
−
{
µ̂SA

1,T − µ̂SA
2,T

}))]
= −o(∆2).

Note that this argument is not rigorous and is simplified for explanation.

A.3 The AIPW, IPW, and Sample Average Estimators

A key component of our analysis is the AIPW estimator, which comprises an MDS and boasts minimum
asymptotic variance. By using the properties of an MDS, we tackle the dependence among observations.
The upper bound can also be applied to the Inverse Probability Weighting (IPW) estimator, but in this
case, the upper bound may not coincide with the lower bound. This discrepancy occurs because the AIPW
estimator’s asymptotic variance is smaller than the IPW estimator’s. The minimum variance property of
the AIPW estimator stems from the efficient influence function (Hahn, 1998; Tsiatis, 2007).

We conjecture that the asymptotic optimality of strategies employing the naive sample average estimator in
the recommendation rule can be demonstrated, although we do not prove it in this study. This is because
Hahn et al. (2011) shows that, using the CLT, the AIPW and sample average estimators have the same
asymptotic distribution. However, due to the inability to utilize MDS properties and the presence of sample
dependency, the analysis becomes challenging when we derive a corresponding result for a large deviation
(exponential rate of the probability of misidentification).

For the reader’s reference, we detail the problems related to the IPW estimator and the sample average
estimator.

The NA-IPW strategy. We consider the following strategy. In the NA-AIPW strategy, instead of the
AIPW estimator, we use the following IPW estimator to estimate the means:

µ̂IPW
a,T := 1

T

T∑
t=1

ψIPW
a,t , where ψIPW

a,t := 1[At = a]Ya,t

ŵa,t
. (18)

At the end of the experiment (after the round t = T ), we recommend âIPW
T as

âIPW
T :=

{
1 if µ̂IPW

1,T ≥ µ̂IPW
2,T ,

2 otherwise.
(19)

We refer to this strategy as the NA-IPW strategy, whose probability of misidentification of this strategy is
given as follows.
Theorem A.1 (Upper bound of the NA-IPW strategy). For any P ∗ ∈ PG, the following holds as ∆ → 0:

lim inf
T →∞

− 1
T

logPP ∗
(
âIPW

T ̸= a⋆(P ∗)
)

≥ ∆2

2(σ1 + σ2)
(

ζ∗
1

σ1
+ ζ∗

2
σ2

) − o
(
∆2) ,

where ζ∗
a := EP ∗

[
Y 2

a,t

]
.

Proof. Let us define V IPW := ζ∗
1

w∗
1

+ ζ∗
2

w∗
2

− ∆2 and ΨIPW :=
{
ψIPW

1,t − ψIPW
2,t − ∆

}
/V IPW. Then, we have

EP ∗

[(
ΨIPW

t

)2 |Ft−1

]
= EP ∗

[(
ψIPW

1,t − ψIPW
2,t − ∆

)2
∣∣∣Ft−1

]
= EP ∗

[(
1[At = 1]Y1,t

ŵ1,t
− 1[At = 2]Y2,t

ŵ2,t
− ∆

)2

|Ft−1

]

18
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= EP ∗

[(
1[At = 1]Y1,t

ŵ1,t
− 1[At = 2]Y2,t

ŵ2,t

)2

|Ft−1

]
− ∆2

= EP ∗

[
Y 2

1,t

ŵ1,t
−
Y 2

2,t

ŵ2,t
|Ft−1

]
− ∆2 → V IPW

as T → ∞. By replacing V and Ψ in the proof of Theorem 4.1 with V IPW and ΨIPW, we obtain

lim inf
T →∞

− 1
T

logPP ∗
(
âIPW

T ̸= a⋆(P ∗)
)

≥ ∆2

2
(

ζ∗
1

w∗
1

+ ζ∗
2

w∗
2

− ∆2
) − o

(
∆2) ,

where the RHS is equal to ∆2

2
(

ζ∗
1

w∗
1

+
ζ∗

2
w∗

2

) − o
(
∆2). The proof is complete.

Note that 2(σ1 + σ2)
(

ζ∗
1

σ1
+ ζ∗

2
σ2

)
≥ 2(σ1 + σ2)2 since

(
ζ∗

1
σ1

+ ζ∗
2

σ2

)
≥
(

ζ∗
1 −(µ∗

1)2

σ1
+ ζ∗

2 −(µ∗
2)2

σ2

)
= (σ1 + σ2).

Therefore, the upper bound of probability of misidentification of the NA-IPW strategy is larger than that
of the NA-AIPW strategy (Note that the inequality is flipped due to − 1

T logPP ∗ ; that is, ∆2

2(σ1+σ2)2 ≥
∆2

2(σ1+σ2)
(

ζ∗
1

σ1
+

ζ∗
2

σ2

) implies that the upper bound of the probability of misidentification of the NA-AIPW

strategy is smaller than that of the NA-IPW strategy). In the case of the evaluation using the CLT, similar
results have been known in existing studies, such as Hirano et al. (2003) and Kato et al. (2020).

The NA-SA strategy. Next, we consider the following strategy. In the NA-AIPW strategy, instead of
the AIPW estimator, we use the following sample average estimator:

µ̂SA
a,T := 1∑T

t=1 1[At = a]

T∑
t=1

1[At = a]Yt = 1
T

T∑
t=1

ψSA
a,t , where ψSA

a,t := 1[At = a]Yt

1
T

∑T
t=1 1[At = a]

. (20)

At the end of the experiment (after the round t = T ), we recommend âIPW
T as

âSA
T :=

{
1 if µ̂SA

1,T ≥ µ̂SA
2,T ,

2 otherwise.
(21)

We refer to this strategy as the NA-SA strategy. Evaluation of the probability of misidentification of this
strategy is not easy since we cannot employ a martingale property, which has been used in the analysis of
the NA-AIPW strategy and the NA-IPW strategy. In order to derive its upper bound, we need to evaluate
µ̂SA

1,T − µ̂SA
2,T . Here, note that

µ̂SA
1,T − µ̂SA

2,T = µ̂SA
1,T − µ̂SA

2,T −

{
1[At = 1]

(
Y1,t − µ∗

1
)

ŵ1,t
−
1[At = 2]

(
Y2,t − µ∗

2
)

ŵ2,t
− ∆

}
(22)

+
{
1[At = 1]

(
Y1,t − µ∗

1
)

ŵ1,t
−
1[At = 2]

(
Y2,t − µ∗

2
)

ŵ2,t
− ∆

}
(23)

holds, and the variance of Ψ∗
t :=

{
1[At=1]

(
Y1,t−µ∗

1

)
ŵ1,t

− 1[At=2]
(

Y2,t−µ∗
2

)
ŵ2,t

− ∆
}

is V in the proof of Theorem 4.1,

and {Ψ∗
t }T

t=1 consists of an MDS. Therefore, if µ̂SA
1,T − µ̂SA

2,T −
{
1[At=1]

(
Y1,t−µ∗

1

)
ŵ1,t

− 1[At=2]
(

Y2,t−µ∗
2

)
ŵ2,t

− ∆
}

= 0,

we can directly apply the proof of Theorem 4.1 to obtain the same upper bound in Theorem 4.1. How-

ever, µ̂SA
1,T − µ̂SA

2,T −
{
1[At=1]

(
Y1,t−µ∗

1

)
ŵ1,t

− 1[At=2]
(

Y2,t−µ∗
2

)
ŵ2,t

− ∆
}

is not zero and remains as a bias term, and

it is known that its evaluation requires several techniques. For example, to show
√
T
(
µ̂SA

1,T − µ̂SA
2,T − ∆

) d−→
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N (0, V ), Hahn et al. (2011) bounds µ̂SA
1,T − µ̂SA

2,T −
{
1[At=1]

(
Y1,t−µ∗

1

)
ŵ1,t

− 1[At=2]
(

Y2,t−µ∗
2

)
ŵ2,t

− ∆
}

using the prop-

erty of the stochastic equicontinuity, which is based on the arguments in Hirano et al. (2003). This problem
is related to the use of the Donsker condition in semiparametric analysis, as explained in Kennedy (2016).
We may show the upper bound of the NA-SA strategy by using a similar approach used in Hahn et al. (2011),
but there are two issues. First, it is unknown what condition corresponds to the stochastic equicontinuity in
the setting of BAI, where the samples are dependent. Second, it is unclear whether we can directly apply the
stochastic equicontinuity or similar properties to show the large deviation upper bound since such conditions
have been used for the central limit evaluation. Therefore, although the findings of Hirano et al. (2003) and
Hahn et al. (2011) may aid in resolving this issue, it is an open issue how we use it. Note that this issue
caused by the bias of µ̂SA

1,T − µ̂SA
2,T , which is non-zero. Also note that in contrast, the bias of µ̂AIPW

1,T − µ̂AIPW
2,T

is zero due to the properties of an MDS.

A.4 The Tracking Strategy

In fixed-confidence BAI, the tracking strategy is popular, as used in Garivier & Kaufmann (2016). In the
existing studies of the Neyman allocation, such a strategy has been used. For example, Hahn et al. (2011)
splits the whole samples into two groups. In the first stage, we uniformly randomly draw each arm and
estimate w∗

a. In the second stage, for the estimators ŵa of w∗
a we draw each arm so that 1

T

∑T
t=1 1[At =

a] = ŵa holds. Then, Hahn et al. (2011) estimates ∆ = µ∗
1 − µ∗

2 using the sample average estimator. This
strategy is quite similar to that in Garivier & Kaufmann (2016), since it draws arms to track the ratio of
w∗

a.

However, the strategy of Hahn et al. (2011) makes analyzing upper bounds difficult. As we explained in
Section A.3, in our analysis, the unbiasedness of the AIPW estimator plays an important role. In contrast,
if we use the tracking strategy, we cannot employ the property of EP ∗

[
1[At=a]

ŵt

|Ft−1

]
= 1. Note that

the NA-AIPW strategy draws arm At with probability ŵt, but the tracking strategy draws arm At more
complicatedly, under which we cannot use the martingale property.

As well as we explained in Section A.3, the bias term makes the analysis significantly difficult. According to
the existing studies, we need to use some techniques for the analysis, such as the Donsker condition (Hirano
et al., 2003; Hahn et al., 2011). Existing studies have proposed using the AIPW estimator to avoid this
issue, as shown in van der Laan (2008) and Kato et al. (2020).

Thus, although we acknowledge the possibility of using the tracking strategy, the analysis requires some
sophisticated techniques. We expect that existing studies such as (Hirano et al., 2003) and Hahn et al. (2011)
will help the analysis, but it is still an open issue. Note that even in the tracking strategy, existing strategy
such as (Hirano et al., 2003) and Hahn et al. (2011) bypass the evaluation of the AIPW-type estimators
in the analysis. This proof procedure is also related to the semiparmaetric efficiency bound (Hahn, 1998),

under which the semiparametric efficient score is given as Ψ∗
t =

{
1[At=1]

(
Y1,t−µ∗

1

)
ŵ1,t

− 1[At=2]
(

Y2,t−µ∗
2

)
ŵ2,t

− ∆
}

.

B Related Work

This section presents related works.

B.1 On the Asymptotic Optimality in Fixed-Budget BAI

There is a long debate on the optimal strategies for fixed-budget BAI. Glynn & Juneja (2004) develops their
strategies by using the large deviation principles. However, while they justify their strategies using the large
deviation principles, they do not provide lower bounds for strategies. Therefore, there remains a question
about whether their strategies are truly asymptotically optimal.

Kaufmann et al. (2016) establishes distribution-dependent lower bounds for BAI with fixed confidence and
budget, utilizing change-of-measure arguments. According to their results, we can confirm that for two-armed
Gaussian bandits, the strategy of Glynn & Juneja (2004) is optimal.
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However, Kaufmann et al. (2016) leaves lower bounds for multi-armed fixed-budget BAI as an open issue.
Based on the arguments of Glynn & Juneja (2004) and Russo (2020), Kasy & Sautmann (2021) attempts
to derive an asymptotically optimal strategy, but their attempt does not succeed. As pointed out by Ariu
et al. (2021), without additional assumptions, there exists an instance P ∗ whose lower bound is larger than
that of Kaufmann et al. (2016). This result is based on another lower bound discovered by Carpentier &
Locatelli (2016). These arguments are summarized by Qin (2022).

To address this issue, Kato et al. (2023b) and Degenne (2023) consider a restriction such that sampling
rules do not depend on P ∗. Under this restriction, we can show the asymptotic optimality of the strategy
provided by Glynn & Juneja (2004), which requires full knowledge about P ∗ and is practically infeasible.

Komiyama et al. (2022) and Atsidakou et al. (2023) discuss asymptotically optimal strategies from minimax
and Bayesian perspectives, respectively, where the leading factor ignoring some constant terms of lower and
upper bounds match, unlike our optimality up to constant terms. This open issue is further explored by
Komiyama et al. (2022), Wang et al. (2023a), Wang et al. (2023b), and Kato (2023).

Note that in the fixed confidence BAI setting, Garivier & Kaufmann (2016) proposes a strategy with an
upper bound matching the derived lower bound. However, in the fixed-budget BAI, it remains unclear
whether a strategy with an upper bound matching Kaufmann et al. (2016)’s lower bound exists.

Alternative lower bounds have been proposed by Audibert et al. (2010), Bubeck et al. (2011), Komiyama et al.
(2023) and Kato et al. (2023a) for the expected simple regret minimization, which is another performance
measure different from the probability of misidentification.

Some research employs local asymptotics to examine the asymptotic optimality of the Neyman allocation
rule in this context, such as Armstrong (2022) and Adusumilli (2022).

Ordinal optimization in the operations research community is another related field (Ahn et al., 2021; Chen
et al., 2000).

B.2 Extension to BAI in Multi-Armed Bandit (MAB) Problems

In contrast to two-armed bandit problems and BAI with fixed confidence, lower bounds for MAB problems
remain unknown. One primary reason is the reversal of KL divergence. Kato et al. (2023b), Degenne (2023),
Kato (2023) consider strategies that use sampling rules that are (asymptotically) invariant for any P ∗ ∈ PG.
Such a class of strategies is sometimes called static in the sense that it cannot estimate parameters during
an adaptive experiment to avoid the dependency on P ∗. However, if we consider Gaussian bandit models,
sampling strategies that are invariant for P ∗ do not imply non-adaptive (static) strategies because we can
still adaptively estimate the variances during an adaptive experiment (the variances are assumed to be the
same for any P ∗).

C Experimental Results

We present experimental results in Section 6.
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Figure 3: The results are under the first setting. We set µ∗
1 = 1.00 and choose µ∗

2 from the set
{0.80, 0.85, 0.90, 0.95, 0.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (5, v2)
or (v2, 5), where v2 is chosen from 5, 10. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.
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Figure 4: The results are under the first setting. We set µ∗
1 = 1.00 and choose µ∗

2 from the set
{0.80, 0.85, 0.90, 0.95, 0.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (5, v2)
or (v2, 5), where v2 is chosen from 20, 50. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.
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Figure 5: The results are under the first setting. We set µ∗
1 = 10.00 and choose µ∗

2 from the set
{9.80, 9.85, 9.90, 9.95, 9.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (1, v2)
or (v2, 1), where v2 is chosen from 5, 10. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.
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Figure 6: The results are under the first setting. We set µ∗
1 = 10.00 and choose µ∗

2 from the set
{9.80, 9.85, 9.90, 9.95, 9.99}. The variances (σ1, σ2) are selected with a probability of 1/2 from either (1, v2)
or (v2, 1), where v2 is chosen from 20, 50. We conduct 1, 000 independent trials and report the empirical
probability of misidentification at T ∈ {100, 200, 300, . . . , 9, 900, 10, 000}.
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