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ABSTRACT

Recently, Transformer-based image restoration networks have achieved promising
improvements over convolutional neural networks due to parameter-independent
global interactions. To lower computational cost, existing works generally limit
self-attention computation within non-overlapping windows. However, each group
of tokens are always from a dense area of the image. This is considered as a dense
attention strategy since the interactions of tokens are restrained in dense regions.
Obviously, this strategy could result in restricted receptive fields. To address this
issue, we propose Attention Retractable Transformer (ART) for image restoration,
which presents both dense and sparse attention modules in the network. The sparse
attention module allows tokens from sparse areas to interact and thus provides a
wider receptive field. Furthermore, the alternating application of dense and sparse
attention modules greatly enhances representation ability of Transformer while pro-
viding retractable attention on the input image.We conduct extensive experiments
on image super-resolution, denoising, and JPEG compression artifact reduction
tasks. Experimental results validate that our proposed ART outperforms state-of-
the-art methods on various benchmark datasets both quantitatively and visually. We
also provide code and models at https://github.com/gladzhang/ART.

1 INTRODUCTION

Image restoration aims to recover the high-quality image from its low-quality counterpart and includes
a series of computer vision applications, such as image super-resolution (SR) and denoising. It is an
ill-posed inverse problem since there are a huge amount of candidates for any original input. Recently,
deep convolutional neural networks (CNNs) have been investigated to design various models

( ); ( ; ) for image restoration. SRCNN ( ) firstly
introduced deep CNN into image SR. Then several representative works utilized residual learning
(e.g., EDSR ( )) and attention mechanism (e.g., RCAN ( )) to
train very deep network in image SR. Meanwhile, a number of methods were also proposed for
image denoising such as DnCNN ( ), RPCNN ( ), and
BRDNet ( ). These CNN-based networks have achieved remarkable performance.

However, due to parameter-dependent receptive field scaling and content-independent local interac-
tions of convolutions, CNN has limited ability to model long-range dependencies. To overcome this
limitation, recent works have begun to introduce self-attention into computer vision systems
( ); ( ); ( ); ( ). Since Transformer has
been shown to achieve state-of-the-art performance in natural language processing
( ) and high-level vision tasks ( ); ( ); ( );
( ); ( ), researchers have been investigating Transformer-based image
restoration networks ( ); ( ). Chen et al. proposed a pre-trained
image processing Transformer named IPT ( ). Liang et al. proposed a strong baseline
model named SwinIR ( ) based on Swin Transformer ( ) for image
restoration. Zamir et al. also proposed an efficient Transformer model using U-net structure named
Restormer ( ) and achieved state-of-the-art results on several image restoration tasks.
In contrast, higher performance can be achieved when using Transformer.
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Despite showing outstanding performance, ex- = ————— ;- ————————Z T
isting Transformer backbones for image restora-
tion still suffer from serious defects. As we
know, SwinIR ( ) takes advan-
tage of shifted window scheme to limit self-
attention computation within non-overlapping
windows. On the other hand, IPT

( ) directly splits features into Px P
patches to shrink original feature map P? times,
treating each patch as a token. In short, these
methods compute self-attention with shorter to-
ken sequences and the tokens in each group are
always from a dense area of the image. It is
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(a) Ours: Dense Attention and Sparse Attention
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address this issue, the sparse attention strategy is
employed. We extract each group of tokens from
a sparse area of the image to provide interactions | _ (b} SwiniR: Dense Attention with Shifted Window |

like previous studies (e.g., GG-Transformer Figure 1: (a) Dense attention and sparse attention
( ), MaxViT ( ), Cross-  grategies of our ART. (b) Dense attention strategy

Former ( ), but different from  yith shifted window of SwinIR.
them. Our proposed sparse attention module

focuses on equal-scale features. Besides, We pay more attention to pixel-level information than
semantic-level information. Since the sparse attention has not been well proposed to solve the
problems in low-level vision fields, our proposed method can bridge this gap.

We further propose Attention Retractable Transformer named ART for image restoration. Following
RCAN ( ) and SwinIR ( ), we reserve the residual in residual
structure ( ) for model architecture. Based on joint dense and sparse attention
strategies, we design two types of self-attention blocks. We utilize fixed non-overlapping local
windows to obtain tokens for the first block named dense attention block (DAB) and sparse grids
to obtain tokens for the second block named sparse attention block (SAB). To better understand the
difference between our work and SwinIR, we show a visual comparison in Fig. 1. As we can see,
the image is divided into four groups and tokens in each group interact with each other. Visibly, the
token in our sparse attention block can learn relationships from farther tokens while the one in dense
attention block of SwinlIR cannot. At the same computational cost, the sparse attention block has
stronger ability to compensate for the lack of global information. We consider our dense and sparse
attention blocks as successive ones and apply them to extract deep feature. In practice, the alternating
application of DAB and SAB can provide retractable attention for the model to capture both local
and global receptive field. Our main contributions can be summarized as follows:

e We propose the sparse attention to compensate the defect of mainly using dense attention
in existing Transformer-based image restoration networks. The interactions among tokens
extracted from a sparse area of an image can bring a wider receptive field to the module.

e We further propose Attention Retractable Transformer (ART) for image restoration. Our
ART offers two types of self-attention blocks to obtain retractable attention on the input fea-
ture. With the alternating application of dense and sparse attention blocks, the Transformer
model can capture local and global receptive field simultaneously.

e We employ ART to train an effective Transformer-based network. We conduct extensive
experiments on three image restoration tasks: image super-resolution, denoising, and JPEG
compression artifact reduction. Our method achieves state-of-the-art performance.

2 RELATED WORK

Image Restoration. With the rapid development of CNN, numerous works based on CNN have been

proposed to solve image restoration problems ( ); ( );

( ; ); ( ); ( ) and achieved superior performance over
conventional restoration approaches ( ); ( ); ( ).
The pioneering work SRCNN ( ) was firstly proposed for image SR. DnCNN

( ) was a representative image denoising method. Following these works, various model
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(a) The architecture of ART for image restoration (b) Two successive attention blocks

Figure 2: (a) The architecture of our proposed ART for image restoration. (b) The inner structure of
two successive attention blocks DAB and SAB with two attention modules D-MSA and S-MSA.

designs and improving techniques have been introduced into the basic CNN frameworks. These
techniques include but not limit to the residual structure ( ); ( ),
skip connection ( ; ), dropout ( ), and attention mechanism

( ); ( ). Recently, due to the limited ability of CNN to model long-range
dependencies, researchers have started to replace convolution operator with pure self-attention module
for image restoration ( ); ( ); ( ); ( ).

Vision Transformer. Transformer has been achieving impressive performance in machine translation
tasks ( ). Due to the content-dependent global receptive field, it has been introduced
to improve computer vision systems in recent years. Dosovitskiy et al. ( )
proposed ViT and introduced Transformer into image recognition by projecting large image patches
into token sequences. Tu et al. proposed MaxViT ( ) as an efficient Vision Transformer
while introducing multi-axis attention. Wang et al. proposed CrossFormer ( ) to
build the interactions among long and short distance tokens. Yu et al. proposed GG-Transformer
( ), which performed self-attention on the adaptively-dilated partitions of the input. Inspired
by the strong ability to learn long-range dependencies, researches have also investigated the usage of
Transformer for low-level vision tasks ( ); ( ); ( );
( ); ( ). However, existing works still suffer from restricted receptive
fields due to mainly using dense attention strategy. Very recently, Tu et al. proposed a MLP-based
network named MAXIM ( ) to introduce dilated spatial communications into image
processing. It further demonstrates that the sparse interactions of visual elements are important for
solving low-level problems. In our proposed method, we use dense and sparse attention strategies to
build network, which can capture wider global interactions. As the sparse attention has not been well
proposed to solve the low-level vision problems, our proposed method can bridge this gap.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of our ART is shown in Fig. 2. Following RCAN ( ), ART
employs residual in residual structure to construct a deep feature extraction module. Given a degraded
image I g € RHXDxCin (D, and C;,, are the height, width, and input channels of the input),
ART firstly applies a 3x3 convolutional layer (Conv) to obtain shallow feature F, € RHXDP*C
where C' is the dimension size of the new feature embedding. Next, the shallow feature is normalized
and fed into the residual groups, which consist of core Transformer attention blocks. The deep feature
is extracted and then passes through another 3x3 Conv to get further feature embeddings F;. Then
we use element-wise sum to obtain the final feature map Fr = Fy + F}. Finally, we employ the
restoration module to generate the high-quality image I from the feature map Fr.

Residual Group. We use N¢ successive residual groups to extract the deep feature. Each residual
group consists of Np pairs of attention blocks. We design two successive attention blocks shown
in Fig. 2(b). The input feature x;_; passes through layer normalization (LN) and multi-head self-
attention (MSA). After adding the shortcut, the output z’; is fed into the multi-layer perception
(MLP). z; is the final output at the /-th block. The process is formulated as

CL‘/l = MSA(LN(Q’,‘[,Q) +x-1, 0

= MLP(LN(LE/l)) + .Z’/l.
Lastly, we also apply a 3x3 convolutional layer to refine the feature embeddings. As shown in
Fig 2(a), a residual connection is employed to obtain the final output in each residual group module.
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(a) Dense Attention (b) Sparse Attention

Figure 3: (a) Dense attention strategy. Tokens of each group are from a dense area of the image. (b)
Sparse attention strategy. Tokens of each group are from a sparse area of the image.

Restoration Module. The restoration module is applied as the last stage of the framework to obtain
the reconstructed image. As we know, image restoration tasks can be divided into two categories
according to the usage of upsampling. For image super-resolution, we take advantage of the sub-pixel

convolutional layer ( ) to upsample final feature map Fz. Next, we use a convolutional
layer to get the final reconstructed image Iz . The whole process is formulated as
I'yg = Conv(Upsample(FR)). 2)

For tasks without upsampling, such as image denoising, we directly use a convolutional layer to
reconstruct the high-quality image. Besides, we add the original image to the last output of restoration
module for better performance. We formulate the whole process as

IHQ = COHV(FR) + ILQ. 3)

Loss Function. We optimize our ART with two types of loss functions. There are various well-
studied loss functions, such as Lo loss ( ); ( ); ( ), Ly
loss ( ); ( ), and Charbonnier loss ( ). Same with
previous works ( ); ( ), we utilize L; loss for image super-resolution
(SR) and Charbonnier loss for image denoising and compression artifact reduction. For image SR,
the goal of training ART is to minimize the L loss function, which is formulated as

L= Ing—Ic|h, 4)
where I is the output of ART and I is the ground-truth image. For image denoising and JPEG
compression artifact reduction, we utilize Charbonnier loss with super-parameter € as 10~2, which is

L= \/HIHQ—Ig||2+52. (5)

3.2 ATTENTION RETRACTABLE TRANSFORMER

We elaborate the details about our proposed two types of self-attention blocks in this section. As
plotted in Fig. 2(b), the interactions of tokens are concentrated on the multi-head self-attention
module (MSA). We formulate the calculation process in MSA as

KT
OF v, ©)
e
where Q, K,V € RN are respectively the query, key, and value from the linear projecting of input

X € RVXC N is the length of token sequence, and C' is the dimension size of each token. Here we
assume that the number of heads is 1 to transfer MSA to singe-head self-attention for simplification.

MSA(X) = Softmax(

Multi-head Self Attention. Given an image with size H x D, vision Transformer firstly splits the
raw image into numerous patches. These patches are projected by convolutions with stride size P.
The new projected feature map X € R"***C is prepared with h = & and w = . Common MSA
uses all the tokens extracted from the whole feature map and sends them to self-attention module to

learn relationships between each other. It will suffer from high computational cost, which is
Q(MSA) = 4hwC? + 2(hw)>C. (7)
To lower the computational cost, existing works generally utilize non-overlapping windows to obtain
shorter token sequences. However, they mainly consider the tokens from a dense area of an image.
Different from them, we propose the retractable attention strategies, which provide interactions of
tokens from not only dense areas but also sparse areas of an image to obtain a wider receptive field.

Dense Attention. As shown in Fig. 3(a), dense attention allows each token to interact with a smaller
number of tokens from the neighborhood position of a non-overlapping W xW window. All tokens
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. Interval of Representation  Using long-distance
Methods Solving problems Structure extracted tokens of tokens residual connection
GG-Transformer ( ) High-level Pyramid Changed Semantic-level No
MaxViT ( ) High-level Pyramid Changed Semantic-level No
CrossFormer ( ) High-level Pyramid Changed Semantic-level ~ No
ART (Ours) Low-level Isotropic Unchanged Pixel-level Yes

Table 1: Comparison to related works. The differences between our ART with other works.

are split into several groups and each group has W x W tokens. We apply these groups to compute
self-attention for % X 777 times and the computational cost of new module named D-MSA is

h

Q(D-MSA) = (4W°C% +2W*C) x - x % = 4hwC? + 2W2hwC. (®)
Sparse Attention. Meanwhile, as shown in Fig. 3(b), we propose sparse attention to allow each
token to interact with a smaller number of tokens, which are from sparse positions with interval size
1. After that, the updates of all tokens are also split into several groups and each group has %x 7
tokens. We further utilize these groups to compute self-attention for 7 x I times. We name the new

multi-head self-attention module as S-MSA and the corresponding computational cost is

h h h

Q(SMSA) = (47 x TC?+2(7 x 2)°C) x I x I = 4hwC? +22=huC. O
By contrast, our proposed D-MSA and S-MSA modules have lower computational cost since W?2 <
hw and %% < hw. After computing all groups, the outputs are further merged to form original-size
feature map. In practice, we apply these two attention strategies to design two types of self-attention

blocks named as dense attention block (DAB) and sparse attention block (SAB) as plotted in Fig. 2.

Successive Attention Blocks. We propose the alternating application of these two blocks. As the
local interactions have higher priority, we fix the order of DAB in front of SAB. Besides, we provide
the long-distance residual connection between each three pairs of blocks. We show the effectiveness
of this joint application with residual connection in the supplementary material.

Attention Retractable Transformer. We demonstrate that the application of these two blocks
enables our model to capture local and global receptive field simultaneously. We treat the succes-
sive attention blocks as a whole and get a new type of Transformer named Attention Retractable
Transformer, which can provide interactions for both local dense tokens and global sparse tokens.

3.3 DIFFERENCES TO RELATED WORKS

We summarize the differences between our proposed approach, ART with the closely related works
in Tab. 1. We conclude them as three points. (1) Different tasks. GG-Transformer ( ),
MaxViT ( ) and CrossFormer ( ) are proposed to solve high-level
vision problems. Our ART is the only one to employ the sparse attention in low-level vision fields.
(2) Different designs of sparse attention. In the part of attention, GG-Transformer utilizes the
adaptively-dilated partitions, MaxViT utilizes the fixed-size grid attention and CrossFormer utilizes
the cross-scale long-distance attention. As the layers get deeper, the interval of tokens from sparse
attention becomes smaller and the channels of tokens become larger. Therefore, each token learns
more semantic-level information. In contrast, the interval and the channel dimension of tokens in our
ART keep unchanged and each token represents the accurate pixel-level information. (3) Different
model structures. Different from these works using Pyramid model structure, our proposed ART
enjoys an Isotropic structure. Besides, we provide the long-distance residual connection between
several Transformer encoders, which enables the feature of deep layers to reserve more low-frequency
information from shallow layers. More discussion can be found in the supplementary material.

3.4 IMPLEMENTATION DETAILS

Some details about how to apply our ART to construct image restoration model are introduced here.
Firstly, the residual group number, DAB number, and SAB number in each group are set as 6, 3, and
3. Secondly, all the convolutional layers are equipped with 3 x3 kernel, 1-length stride, and 1-length
padding, so the height and width of feature map remain unchanged. In practice, we treat 1 x 1 patch as
a token. Besides, we set the channel dimension as 180 for most layers except for the shallow feature
extraction and the image reconstruction process. Thirdly, the window size in DAB is set as 8 and the
interval size in SAB is adjustable according to different tasks, which is discussed in Sec. 4.2. Lastly,
to adjust the division of windows and sparse grids, we use padding and mask strategies to the input
feature map of self-attention, so that the number of division is always an integer.
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Figure 4: Left: PSNR (dB) comparison of our ART using all dense attention block (DAB), using all
sparse attention block (SAB), and using alternating DAB and SAB. Middle: PSNR (dB) comparison
of our ART using large interval size in sparse attention block which is (8, 8,8, 8, 8, 8) for six residual
groups, using medium interval size which is (8, 8, 6, 6,4, 4), and using small interval size which is
(4,4,4,4,4,4). Right: PSNR (dB) comparison of SwinIR, ART-S, and ART.
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Data and Evaluation. We conduct experiments on three image restoration tasks, including image
SR, denoising, and JPEG Compression Artifact Reduction (CAR). For image SR, following previous
works ( ); ( ), we use DIV2K ( ) and Flickr2K

( ) as training data, Set5 ( ), Set14 ( ), B100

( ), Urban100 ( ), and Mangal09 ( ) as test data. For
image denoising and JPEG CAR, same as SwinlR ( ), we use training data: DIV2K,
Flickr2K, BSD500 ( ), and WED ( ). We use BSD68
( ), Kodak24 ( ), McMaster ( ), and Urban100 as test data of image
denoising. Classic5 ( ) and LIVE1 ( ) are test data of JPEG CAR. Note
that we crop large-size input image into 200 x 200 partitions with overlapping pixels during inference.
Following ( ), we adopt the self-ensemble strategy to further improve the performance
of our ART and name it as ART+. We evaluate experimental results with PSNR and SSIM

( ) values on Y channel of images transformed to YCbCr space.

Training Settings. Data augmentation is performed on the training data through horizontal flip and
random rotation of 90°, 180°, and 270°. Besides, we crop the original images into 64 x 64 patches
as the basic training inputs for image SR, 128 x 128 patches for image denoising, and 126x126
patches for JPEG CAR. We resize the training batch to 32 for image SR, and 8 for image denoising
and JPEG CAR in order to make a fair comparison. We choose ADAM ( ) to
optimize our ART model with 3; = 0.9, 52 = 0.999, and zero weight decay. The initial learning rate
is set as 2x10™* and is reduced by half as the training iteration reaches a certain number. Taking
image SR as an example, we train ART for total 500k iterations and adjust learning rate to half when
training iterations reach 250k, 400k, 450k, and 475k, where 1k means one thousand. Our ART is
implemented on PyTorch ( ) with 4 NVIDIA RTX8000 GPUs.

4.2 ABLATION STUDY

For ablation experiments, we train our models for image super-resolution (x2) based on DIV2K and
Flicke2K datasets. The results are evaluated on Urban100 benchmark dataset.

Design Choices for DAB and SAB. We demonstrate the necessity for simultaneous usage of dense
attention block (DAB) and sparse attention block (SAB) by conducting ablation study. We set three
different experiment conditions, which are using 6 DABs, 6 SABs, and 3 pairs of alternating DAB
and SAB. We keep the rest of experiment environment the same and train all models within 100k
iterations. The experimental results are shown in Fig. 4(Left). As we can see, only using DAB or
SAB suffers from poor performance, because they lack either global receptive field or local receptive
field. On the other hand, the structure of SAB following DAB brings higher performance. It validates
that both local contextual interactions and global sparse interactions are important for improving
strong representation ability of Transformer by obtaining retractable attention on the input feature.

Impact of Interval Size. The interval size in sparse attention block has a vital impact on the
performance of our ART. In fact, if the interval size is set as 1, it will be transferred to full attention.
Generally, a smaller interval means wider receptive fields but higher computational cost. We compare
the experimental results under different interval settings in Fig. 4(Middle). As we can see, smaller
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Method Scale [ Set5 | Setl4 | B100 | Urban100 | Mangal09 |
[PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |

EDSR ( ) X2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN ( ) X2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN ( ) X2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
SRFBN ( ) X2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
HAN ( ) X2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IGNN ( ) X2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
CSNLN ( ) X2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
RFANet ( ) X2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
NLSA ( ) X2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
IPT ( ) X2 38.37 N/A 3443 N/A 32.48 N/A 33.76 N/A N/A N/A
SwinIR ( ) X2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
ART-S (ours) X2 38.48 0.9625 34.50 0.9258 32.53 0.9043 34.02 0.9437 40.11 0.9804
ART (ours) X2 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
ART+ (ours) X2 38.59 0.9630 34.68 0.9269 32.60 0.9050 3441 0.9457 40.33 0.9810
EDSR ( ) X3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN ( ) X3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN ( ) %3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
SRFBN ( ) X3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
HAN ( ) X3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IGNN ( ) X3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
CSNLN ( ) X3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
RFANet ( ) X3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
NLSA ( ) X3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
IPT ( ) X3 34.81 N/A 30.85 N/A 29.38 N/A 29.49 N/A N/A N/A
SwinIR ( ) X3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
ART-S (ours) %3 34.98 0.9318 30.94 0.8530 29.45 0.8146 29.86 0.8830 3522 0.9539
ART (ours) X3 35.07 0.9325 31.02 0.8541 29.51 0.8159 30.10 0.8871 35.39 0.9548
ART+ (ours) X3 35.11 0.9327 31.05 0.8545 29.53 0.8162 30.22 0.8883 35.51 0.9552
EDSR ( ) x4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN ( ) x4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN ( ) x4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
SRFBN ( ) x4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
HAN ( ) x4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IGNN ( ) x4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
CSNLN ( ) x4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
RFANet ( ) x4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187
NLSA ( ) x4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
IPT ( ) x4 32.64 N/A 29.01 N/A 27.82 N/A 27.26 N/A N/A N/A
SwinIR ( ) x4 32.92 0.9044 29.09 0.7950 27.92 0.7489 2745 0.8254 32.03 0.9260
ART-S (ours) x4 32.86 0.9029 29.09 0.7942 2791 0.7489 27.54 0.8261 32.13 0.9263
ART (ours) x4 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 3231 0.9283
ART+ (ours) x4 33.07 0.9055 29.20 0.7964 27.99 0.7513 27.89 0.8339 32.45 0.9291

Table 2: PSNR (dB)/SSIM comparisons for image super-resolution on five benchmark datasets. We
color best and second best results in red and blue.

[ Method [ EDSR | RCAN | SRFBN | HAN [ CSNLN [ SwilR | ART-S (ours) [ ART (ours) |
Params (M) 43.09 | 1559 3.63 16.07 7.16 11.90 11.87 16.55
Mult-Adds (G) 1,286 407 498 420 | 103,640 | 336 392 782
PSNR on Urban100 (dB) | 26.64 | 26.82 2660 | 2685 | 27.22 27.45 27.54 27.77
PSNR on Mangal09 (dB) | 31.02 | 3122 3115 | 3142 | 3143 32.03 32.13 3231

Table 3: Model size comparisons (x4 SR). Output size is 3x640x 640 for Mult-Adds calculation.

intervals bring more performance gains. To keep the balance between accuracy and complexity, we
set the interval size of 6 residual groups as (4,4,4,4,4,4) for image SR, (16, 16,12, 12,8, 8) for
image denoising, and (18,18, 13,13,7,7) for JPEG CAR in the following comparative experiments.

Comparison of Variant Models. We provide a new version of our model for fair comparisons and
name it ART-S. Different from ART, the MLP ratio in ART-S is set to 2 (4 in ART) and the interval
size is set to 8. We demonstrate that ART-S has comparable model size with SwinIR. We provide the
PSNR comparison results in Fig. 4(Right). As we can see, our ART-S achieves better performance
than SwinIR. More comparative results can be found in following experiment parts.

4.3 IMAGE SUPER-RESOLUTION

We provide comparisons of our proposed ART with representative image SR methods, including

CNN-based networks: EDSR ( ), RCAN ( ), SAN ( ),
SRFBN ( ), HAN ( ), IGNN ( ), CSNLN ( ),
RFANet ( ), NLSA ( ), and Transformer-based networks: IPT

( ) and SwinIR ( ). Note that IPT is a pre-trained model, which is trained

on ImageNet benchmark dataset. All the results are provided by publicly available code and data.
Quantitative and visual comparisons are provided in Tab. 2 and Fig. 5.

Quantitative Comparisons. We present PSNR/SSIM comparison results for x2, x3, and x4 image
SR in Tab. 2. As we can see, our ART achieves the best PSNR/SSIM performance on all five
benchmark datasets. Using self-ensemble, ART+ gains even better results. Compared with existing
state-of-the-art method SwinIR, our ART obtains better gains across all scale factors, indicating that
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Figure 5: Visual comparison with challenging examples on image super-resolution (x4).

our proposed joint dense and sparse attention blocks enable Transformer stronger representation
ability. Despite showing better performance than CNN-based networks, another Transformer-based
network IPT is not as good as ours. It is validated that our proposed ART becomes a new promising
Transformer-based network for image SR.

. «

Ours

Retractable vs. Dense Attention. We fur-
ther show a typical visual comparison with
SwinlR in Fig. 6. As SwinIR mainly uti-
lizes dense attention strategy, it restores
wrong texture structures under the influ-
ence of close patches with mainly vertical
lines. However, our ART can reconstruct
the right texture, thanks to the wider recep-
tive field provided by sparse attention strategy. Visibly, the patch is able to interact with farther patches
with similar horizontal lines so that it can be reconstructed clearly. This comparison demonstrates the
advantage of retractable attention and its strong ability to restore high-quality outputs.

SwinlR

Dense Attention Bicubic Sparse Attention

Figure 6: Visual comparison (><4) of SwinlIR and Ours.

Model Size Comparisons. Table 3 provides comparisons of parameters number and Mult-Adds of
different networks, which include existing state-of-the-art methods. We calculate the Mult-Adds
assuming that the output size is 3x640x 640 under x4 image SR. Compared with previous CNN-
based networks, our ART has comparable parameter number and Mult-Adds but achieves high
performance. Besides, we can see that our ART-S has less parameters and Mult-Adds than most
of the compared methods. The model size of ART-S is similar with SwinIR. However, ART-S still
achieves better performance gains than all compared methods except our ART. It indicates that our
method is able to achieve promising performance at an acceptable computational and memory cost.

Visual Comparisons. We also provide some challenging examples for visual comparison (x4)
in Fig. 5. We can see that our ART is able to alleviate heavy blurring artifacts while restoring
detailed edges and textures. Compared with other methods, ART obtains visually pleasing results by
recovering more high-frequency details. It indicates that ART preforms better for image SR.

4.4 IMAGE DENOISING

We show color image denoising results to compare our ART with representative methods in Tab. 4.
These methods are CBM3D Dabov et al. (2007), IRCNN Zhang et al. (2017b), FFDNet Zhang
et al. (2018a), DnCNN Zhang et al. (2017a), RNAN Zhang et al. (2019), RDN Zhang et al. (2020),
IPT Chen et al. (2021a), DRUNet Zhang et al. (2021a), P3AN Hu et al. (2021), SwinIR Liang et al.
(2021), and Restormer Zamir et al. (2022). Following most recent works, we set the noise level to 15,
25, and 50. We also shows visual comparisons of challenging examples in Fig. 7.

Quantitative Comparisons. Table 4 shows PSNR results of color image denoising. As we can see,
our ART achieves the highest performance across all compared methods on three datasets except
Kodak24. Even better results are obtained by ART+ using self-ensemble. Particularly, it obtains better
gains than the state-of-the-art model Restormer Zamir et al. (2022) by up to 0.25dB on Urban100.
Restormer also has restricted receptive fields and thus has difficulty in some challenging cases. In
conclusion, these comparisons indicate that our ART also has strong ability in image denoising.
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BSD68 Kodak24 McMaster Urban100
0=15]0=25]0=50] 0=15]0=25[0=50] 0=15] 0=25] 0=50 | 0=15[ 0=25] 0=50

CBM3D Dabov et al. (2007) | N/A | N/A | 2738 | N/A | N/A [28.63 | N/A | N/A | N/A | N/A | N/A | 27.94
IRCNN Zhang et al. (2017b) | 33.86 | 31.16 | 27.86 | 34.69 | 32.18 | 28.93 | 34.58 | 32.18 | 28.91 | 33.78 | 31.20 | 27.70
FFDNet Zhang et al. (2018a) | 33.87 | 31.21 | 27.96 | 34.63 | 32.13 | 28.98 | 34.66 | 32.35 | 29.18 | 33.83 | 31.40 | 28.05
DnCNN Zhang et al. (2017a) | 33.90 | 31.24 | 27.95 | 34.60 | 32.14 | 28.95 | 33.45 | 31.52 | 28.62 | 32.98 | 30.81 | 27.59
RNAN Zhang et al. (2019) N/A | N/A | 2827 | N/A | N/A [29.58 | N/A | N/A | 29.72 | N/A | N/A |29.08

Method

RDN Zhang et al. (2020) N/A | N/A | 2831 | N/A | N/A [29.66 | N/A | N/A | N/A | N/A | N/A |29.38
IPT Chen et al. (2021a) N/A | N/A | 2839 N/A | N/A [29.64 | N/A | N/A | 2998 | N/A | N/A |29.71
DRUNet Zhang et al. (2021a) | 34.30 | 31.69 | 28.51 | 35.31 | 32.89 | 29.86 | 35.40 | 33.14 | 30.08 | 34.81 | 32.60 | 29.61
P3AN Hu et al. (2021) N/A | N/A | 2837 N/A | N/A [29.69 | N/A | N/A | N/A | N/A | N/A |29.51

SwinlIR Liang et al. (2021) 34.42 | 31.78 | 28.56 | 35.34 | 32.89 | 29.79 | 35.61 | 33.20 | 30.22 | 35.13 | 32.90 | 29.82
Restormer Zamir et al. (2022) | 34.40 | 31.79 | 28.60 | 35.47 | 33.04 | 30.01 | 35.61 | 33.34 | 30.30 | 35.13 | 32.96 | 30.02
ART (ours) 34.46 | 31.84 | 28.63 | 35.39 | 32.95 | 29.87 | 35.68 | 33.41 | 30.31 | 35.29 | 33.14 | 30.19
ART+ (ours) 34.47 | 31.85 | 28.65 | 35.41 | 32.98 | 29.89 | 35.71 | 33.44 | 30.35 | 35.34 | 33.20 | 30.27

Table 4: PSNR (dB) comparisons. The best and second best results are in red and blue.

[ RNAN [ RDN [ DRUNet [ SwinIR [ ART (ours) | ART+ (ours)
9 [PSNR [ SSIM | PSNR | SSIM | PSNR [ SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

10 | 29.96 | 0.8178 | 30.00 | 0.8188 | 30.16 | 0.8234 | 30.27 | 0.8249 | 30.27 | 0.8258 | 30.32 | 0.8263
Classic5 | 30 | 33.38 | 0.8924 | 33.43 | 0.8930 | 33.59 | 0.8949 | 33.73 | 0.8961 | 33.74 | 0.8964 | 33.78 | 0.8967
40 | 34.27 | 0.9061 | 34.27 | 0.9061 | 34.41 | 0.9075 | 34.52 | 0.9082 | 34.55 | 0.9086 | 34.58 | 0.9089
10 | 29.63 | 0.8239 | 29.67 | 0.8247 | 29.79 | 0.8278 | 29.86 | 0.8287 | 29.89 | 0.8300 | 29.92 | 0.8305
LIVEI 30 | 33.45 | 09149 | 33.51 | 0.9153 | 33.59 | 0.9166 | 33.69 | 09174 | 33.71 | 0.9178 | 33.74 | 0.9181
40 | 34.47 | 0.9299 | 34.51 | 0.9302 | 34.58 | 0.9312 | 34.67 | 0.9317 | 34.70 | 0.9322 | 34.73 | 0.9324

Table 5: PSNR (dB)/SSIM comparisons. The best and second best results are in red and blue.

Dataset ‘

Visual Comparisons. The visual comparison for color image denoising of different methods is
shown in Fig. 7. Our ART can preserve detailed textures and high-frequency components and remove
heavy noise corruption. Compared with other methods, it has better performance to restore clean and
crisp images. It demonstrates that our ART is also suitable for image denoising.

\ HQ /PSNR (dB) Noisy / 15.15 CBM3D/28.72 IRCNN / 28.57 DnCNN/29.13

WA
\

Urban100: img_033 RNAN/30.28 RDN /30.48 SwinIR / 31.16 Restormer / 31.81 ART/31.94
Figure 7: Visual comparison with challenging examples on color image denoising (c=50).

4.5 JPEG COMPRESSION ARTIFACT REDUCTION

We compare our ART with state-of-the-art JPEG CAR methods: RNAN Zhang et al. (2019),
RDN Zhang et al. (2020), DRUNet Zhang et al. (2021a), and SwinlR Liang et al. (2021). Fol-
lowing most recent works, we set the compression quality factors of original images to 40, 30, and
10. We provide the PSNR and SSIM comparison results in Table 5.

Quantitative Comparisons. Table 5 shows the PSNR/SSIM comparisons of our ART with existing
state-of-the-art methods. We can see that our proposed method has the best performance. Better
results are achieved by ART+ using self-ensemble. These results indicate that our ART also performs
outstandingly when solving image compression artifact reduction problems.

5 CONCLUSION

In this work, we propose Attention Retractable Transformer for image restoration named ART, which
offers two types of self-attention blocks to enhance the Transformer representation ability. Most
previous image restoration Transformer backbones mainly utilize dense attention modules to alleviate
self-attention computation within non-overlapping regions and thus suffer from restricted receptive
fields. Without introducing additional computational cost, we employ the sparse attention mechanism
to enable tokens from sparse areas of the image to interact with each other. In practice, the alternating
application of dense and sparse attention modules is able to provide retractable attention for the
model and bring promising improvement. Experiments on image SR, denoising, and JPEG CAR
tasks validate that our method achieves state-of-the-art results on various benchmark datasets both
quantitatively and visually. In future work, we will try to apply our proposed method to more image
restoration tasks, like image deraining, deblurring, dehazing, and so on. We will further explore the
potential of sparse attention in solving low-level vision problems.
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REPRODUCIBILITY STATEMENT

We provide the reproducibility statement of our proposed method in this section. We introduce the
model architecture and core dense and sparse attention modules in Sec. 3. Besides, we also give
the implementation details. In Sec. 4.1, we provide the detailed experiment settings. To ensure the
reproducibility, we provide the source code and pre-trained models at the website'. Everyone can
run our code to check the training and testing process according to the given instructions. At the
website, the pre-trained models are provided to verify the validity of corresponding results. More
details please refer to the website or the submitted supplementary materials.
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