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ABSTRACT

Uncertainty estimation plays a vital role in enhancing the reliability of deep learning
model predictions, especially in scenarios with high-dimensional output spaces.
This paper addresses the dual nature of uncertainty — aleatoric and epistemic
— focusing on their joint integration in high-dimensional regression tasks. We
introduce an approach to approximate joint uncertainty using a low-rank plus
diagonal covariance matrix, which preserves essential output correlations while
mitigating the computational complexity associated with full covariance matrices.
Specifically, our method reduces memory usage and enhances sampling efficiency
and log-likelihood calculations. Simultaneously, our representation matches the
true posterior better than factorized joint distributions, offering a clear advancement
in reliability and explainability for deep learning model predictions. Furthermore,
we empirically show that our method can efficiently enhance out of distribution
detection in specific applications.

1 INTRODUCTION

In the realm of deep learning, uncertainty estimation plays a pivotal role in enhancing the reliability of
model predictions. This paper delves into the domain of uncertainty estimation, specifically focusing
on regression tasks in high-dimensional output spaces.

In these scenarios, model predictions exhibit two types of uncertainty: aleatoric and epistemic
Kendall & Gal (2017). Heteroscedastic aleatoric or data uncertainty can be modeled as an inherent
component of the model output. There, the model output consists of the parametrization of an assumed
distribution, such as a Gaussian distribution in the case of regression or a categorical distribution in
the case of classification. This distribution is learned through minimizing its negative log-likelihood.
In contrast, due to its complexity in deep neural networks, epistemic or model uncertainty is typically
approximated by sampling from an proxy distribution of models Hüllermeier & Waegeman (2021).

Combining both in a single model usually results in a so-called second-order distribution Bengs et al.
(2023). On the one hand, it consists of a distribution over model weights capturing epistemic un-
certainty. On the other hand, it models a distribution over plausible predictions representing aleatoric
uncertainty. Sampling from the model weights and performing a transformation (forward pass) of
the input data results in another distribution representing the aleatoric uncertainty. The shape of this
second-order distribution limits further analysis, as it is difficult to visualize, and it does not allow
for calculation of the marginal likelihood of a sample. Therefore, the second-order distribution is
typically marginalized and approximated by a single distribution, representing the joint uncertainty.

Traditionally, these uncertainties have been jointly modeled without considering correlations between
outputs (e.g. pixels), assuming independent factorized univariate Gaussian distributions Kendall
& Gal (2017). However, neglecting correlations can limit the comprehensive understanding of
uncertainties, especially in scenarios where dependencies between model outputs exist, such as in
pixel-wise semantic segmentation Monteiro et al. (2020), pixel-wise regression tasks, such as optical
flow estimation or image in-painting, or graph node regression. Figure 1 illustrates the increased
representational power of full covariance matrices (right) compared to merely diagonal ones (left).
In both cases, samples from the weight space lead to multiple predictions consisting of mean and
covariance each. The expected covariance is used for calculating the aleatoric component Σa, whereas
the covariance of the means is used to calculate the epistemic component Σe. The sum of both results
in the joint covariance matrix Σa +Σe = Σ.
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Figure 1: Visualization of covariance matrices for the 2D case. Three samples with corresponding
means and covariances are depicted (light blue). The columns show the inferred aleatoric (green),
epistemic (blue) and joint uncertainty (red), respectively. On the left, the covariance matrices are
purely diagonal, limiting their representational power. To the right, the same matrices are depicted
with non-diagonal values kept, allowing them to capture the overall uncertainty in greater detail.

Yet, incorporating correlations in high-dimensional output spaces poses a significant challenge,
given that the number of correlations between output dimensions scales quadratically in terms of
memory complexity O(S2) with the total number of outputs S. This leads to large covariance
matrices, requiring considerable storage space and making calculations computationally infeasible.
This renders many downstream operations like sampling from a normal distribution parameterized
by these covariance matrices, which involves Cholesky decomposition O(S3), computing the log-
likelihood of samples with matrix inversion O(S3) and determinant computation (e.g. O(S3) with
lower-upper (LU) Decomposition) practically impossible.

In summary, an efficient representation of the joint uncertainty containing aleatoric and epistemic
uncertainty without neglecting covariances for high-dimensional output spaces has not yet been
explored.

Related Work To estimate epistemic uncertainty, various Bayesian frameworks have been devel-
oped, including methods like stochastic variational inference Blundell et al. (2015), Monte Carlo
dropout Gal & Ghahramani (2016), deep ensembles Lakshminarayanan et al. (2017), stochastic
weight averaging Maddox et al. (2019), or Laplace approximation Daxberger et al. (2021). The mod-
eling of heteroscedastic aleatoric uncertainty has been well-established for some time Nix & Weigend
(1994); Skafte et al. (2019); Stirn & Knowles (2020); Seitzer et al. (2022). Building upon these works,
others have unified epistemic and aleatoric uncertainty in a single model Kendall & Gal (2017);
Depeweg et al. (2018); Stirn et al. (2023); Immer et al. (2024). However, all aforementioned methods
either evaluate their method only for prediction tasks with a single output value or approximate the
marginalized likelihood as a factorized Gaussian, disregarding inter-pixel correlations.

Covariances for uncertainty estimation have been modeled in various applications, including localiza-
tion Russell & Reale (2021), human pose estimation Gundavarapu et al. (2019), pixel regression Dorta
et al. (2018a;b); Duff et al. (2023), multi class predictions Willette et al. (2021), and segmentation
Monteiro et al. (2020). Some approaches that predict full covariance matrices are limited to low
dimensional model output spaces Russell & Reale (2021); Gundavarapu et al. (2019). Approaches
for handling high-dimensional output spaces typically sparsify the covariance matrix. However, some
of these approaches can only model uncertainty in the local neighborhood using a band Cholesky
parametrization Dorta et al. (2018a;b); Duff et al. (2023). Some works Salinas et al. (2019); Monteiro
et al. (2020); Willette et al. (2021); Nussbaum et al. (2022) use a low-rank plus diagonal (LR+D)
parametrization, which is capable of capturing global correlations. Nehme et al. (2024); Yair et al.
(2024) learn the low-rank factors of aleatoric uncertainty directly without adding a diagonal and
create a rank-deficient semi-definite covariance matrix. This may be sufficient for both sampling and
analysis, but it does not provide the positive definiteness required for calculating the log-likelihood.
Importantly, all these sparse solutions merely focus on aleatoric uncertainty. Zepf et al. (2023)
combine aleatoric and epistemic uncertainty with a LR+D representation. However, by partially using
the Maximum a posteriori (MAP) solution as a further approximation, they do not account for the
influence of the model uncertainty on the estimation of the aleatoric uncertainty, leading overall to a
worse uncertainty estimate. Furthermore, they do not resolve the second-order distribution to provide
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Figure 2: Construction of our LR+D matrix. A network predicts values µw, Pw, and Dw for two
exemplarily sampled weights wi, respectively (green and blue). By averaging and stacking these
values in a specific manner, we build the diagonal D and the low-rank matrix P as parts of our LR+D
representation of Σ. See Section 2 for an in-depth explanation.

a joint representation suitable for further analysis, such as log likelihood calculation, and its usage is
limited to consecutive sampling.

In conclusion, while significant advancements have been made in modeling covariances for uncertainty
estimation, the existing approaches suffer from limitations such as local sparsification, inadequate
joint representations, and neglect of weight space uncertainty, indicating a need for further research
to develop more comprehensive and globally accurate uncertainty estimation methods.

Contribution This work is the first to efficiently combine both aleatoric and epistemic uncertainties
within any high-dimensional sparse joint representation, leveraging the LR+D framework. Unlike
existing approaches that approximate the second-order distribution with a factorized normal distri-
bution, neglecting correlations between outputs, our method maintains crucial correlations between
outputs while avoiding the heavy space and time requirements of a full covariance matrix even for
high-dimensional output spaces. We showcase the superior representational power of our approach
on multiple high-dimensional regression tasks, e.g. inpainting on the MNIST dataset, colorization of
grey-scale versions of the CelebA celebrity faces dataset Liu et al. (2015), and optical flow estimation
on the Flying Chairs dataset Dosovitskiy et al. (2015).

2 METHOD

In this paper, we consider supervised learning tasks with high dimensional output spaces y ∈ RS ,
with S denoting the number of output units, e.g. pixels times the number of output channels. We aim
to approximate the posterior distribution p(W |X,Y ) over model weights W given input-output data
pairs (X,Y ). As computing p(W |X,Y ) directly is generally infeasible for neural networks, we
approximate it using Bayesian methods like Monte Carlo Dropout (MCD), Stochastic Variational
Inference (SVI), Deep Ensemble (DE) to provide a proxy distribution q∗θ(W ), parametrized by θ.

To represent the joint uncertainty, we decompose the posterior predictive distribution p(y|x,X,Y )
of an unseen input-output pair (x, y) into two terms: p(y|x,W ), representing the likelihood of the
output given the input x and the network weights W , and the posterior distribution of weights given
the data p(W |X,Y ). We model p(y|x,W ) as a multivariate Gaussian distribution p(y|x,W ) =
N (µW (x),ΣW (x)), where we keep the spatial complexity of the covariance matrix ΣW (x) low
by constructing it in LR+D form. That is, we formulate it as a sum of small matrices, ΣW (x) =
DW (x)+PW (x)PW

⊺(x), with DW denoting a diagonal matrix of shape S×S and PW a tall matrix
of shape S×RW . We choose a rank RW much lower than the number of outputs RW ≪ S, such that
only the most important directions of the aleatoric covariance are covered. We further enforce DW

to contain strictly positive diagonal entries and since PWP ⊺
W is always symmetric, ΣW is always

symmetric positive definite by construction and thus a valid covariance matrix. The ultimate goal
of this work is to calculate an efficient yet representative representation of the posterior predictive
distribution p(y|x,X,Y ).

2.1 MODELING THE JOINT UNCERTAINTY

We start modeling the parameters of the posterior predictive distribution consisting of mean
and covariance by using Monte Carlo integration to approximate the expected model output
E[y|x,X,Y ] ≈ µ(x). The empirical mean is given as µ(x) = 1

T

∑T
i µwi(x), where T repre-
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sents the number of weight samples drawn from wi ∼ q⋆θ(W ). The joint covariance matrix can be
split into epistemic and aleatoric uncertainty using the law of total variance as

Cov [y|x,X,Y ]︸ ︷︷ ︸
≈

Σ(x)
joint uncertainty

≈ Covq∗θ (W ) [µW (x)]︸ ︷︷ ︸
≈

Σe(x)
epistemic uncertainty

+Eq∗θ (W ) [ΣW (x)]︸ ︷︷ ︸
≈

Σa(x)
aleatoric uncertainty

. (1)

This suggests that the mean of covariance matrices across forward pass samples captures aleatoric
uncertainty, whereas the covariance of the means represents epistemic uncertainty. We provide a
complete derivation of equation 1 in the supplement D.4.

Our objective is to represent the joint uncertainty Σ(x) in LR+D form as the sum of aleatoric and
epistemic uncertainties,

D + PP ⊺ = (De + P eP e⊺) + (Da + P aP a⊺), (2)

where Da, De, and D are diagonal matrices and P a, P e, and P low-rank matrices representing
aleatoric, epistemic, and joint uncertainties, respectively. Then, D = De +Da and P = [P a P e],
where [ ] denotes columnwise block concatenation. This expression allows us to conveniently
represent both aleatoric and epistemic uncertainties in LR+D form, simplifying further analysis
and computation. Figure 2 provides an intuitive illustration about the construction of our LR+D
matrix components. Starting with Σe, we describe in detail the individual components of our LR+D
representations in the following sections.

2.2 EPISTEMIC UNCERTAINTY

The epistemic uncertainty is estimated through the distribution over weights. To derive its covariance,
we employ empirical sampling from the proxy distribution over model weights as follows:

Σe(x) =
1

T − 1

T∑
i

(µwi
(x)− µ (x)) (µwi

(x)− µ (x))
⊺

wi ∼ q∗θ(W ) (3)

Our objective is to avoid the full covariance matrix and instead seek a representation in LR+D form.

Naive Representation To bring the approximated epistemic covariance matrix into LR+D form, we
set the diagonal De(x) to zero and rewrite the covariance matrix as Σe(x) = P e(x)P e(x)

⊺, where
P e(x) ∈ RS×Re

has Re = T columns and is defined as

P e(x) =
1√

T − 1
[µw1 (x)− µ (x) ... µwT

(x)− µ (x)] . (4)

In high dimensional scenarios, the number of samples will often be much lower than the number of
outputs T ≪ S rendering Σe singular and therefore non-invertible. Computing enough samples for a
full rank estimate is usually prohibitive with regard to time and space complexity. In general, one
can expect more accurate results from increased sample sizes. However, in this naive representation,
larger sample sizes also result in quadratic scaling of computational complexity. Hence, we suggest
further approximations to cope with moderately high sample sizes.

Truncated Singular Value Decomposition Approximation Assuming that samples are often
correlated and exhibit dominant directions of variance, we propose to reduce the dimensionality of
P e(x) with truncated Singular Value Decomposition (SVD). Keeping only the most informative
columns of P e(x) will improve the efficiency of further computations without losing much informa-
tion. However, the calculation of SVD comes with its own computational complexity that has to be
taken into account. As we use the same nomenclature for further parts of the model, we omit the
superscript ()e and the dependency on (x) for this section. Specifically, we decompose the matrix
P as P ⊺ = UΨV ⊺, where U and V are orthogonal matrices, and Ψ is a diagonal matrix containing
the singular values in non-decreasing order Ψ1,1 ≤ ... ≤ ΨS,S . Subsequently, we define the matrix
P̃ = VΨ and rewrite the matrix product as Σ = PP ⊺ = P̃ P̃ ⊺. To reduce dimensionality, we discard
the smallest singular values and their associated columns in V . However, we keep the univariate
variance parts of these dropped columns by transferring them to a new diagonal matrix D̂. Hence,
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the approximated matrix Σ̂ = D̂ + P̂ P̂ ⊺ keeps all independent variance and the most important
covariances of Σ. If we keep the R̂ largest singular values, the components of Σ̂ are

P̂ =
[
VR−R̂ ·ΨR−R̂,R−R̂ ... VR ·ΨR,R

]
(5)

and

D̂ii =

R−R̂−1∑
j=1

V 2
ij ·Ψ2

j,j . (6)

The number of columns to keep has to be chosen empirically. The aforementioned approach enables
us to effectively represent epistemic uncertainty in the LR+D form.

2.3 ALEATORIC UNCERTAINTY

Similar to epistemic uncertainty, the covariance matrix capturing aleatoric uncertainty Σa(x) can be
approximated through empirical sampling. We calculate the empirical mean of covariance matrix
estimations over all sampled model weights via

Σa(x) =
1

T

T∑
i

Σwi(x) wi ∼ q∗θ(W ). (7)

We here again intend to represent Σa(x) in LR+D form.

Naive Representation To rewrite the covariance matrix containing the aleatoric uncertainty in
LR+D representation, we reformulate Σa(x) = Da(x) + P a(x)P a(x)

⊺ using

Da(x) =
1

T

T∑
i

Dwi
(x) (8)

P a(x) =
1√
T

[Pw1
(x) ... PwT

(x)] . (9)

This yields a P a ∈ RS×(T ·RW ) with T ·RW columns. Although T ·RW generally remains far below
S, P a can still become fairly large as the number of drawn samples increases. Thus, we further
reduce the number of columns of Σa as for the epistemic case.

Truncated SVD Approximation Like in the previous Subsection 2.2, we reduce the dimensionality
of P a via SVD. This leads for P̂ a to the same equation as 5. For the diagonal matrix, we need to
incorporate both, the average calculated in 8 and the removed variance by the SVD given by 6, so the
resulting diagonal is given by:

D̂a
ii = Da

ii +

R−R̂−1∑
j=1

V 2
ij ·Ψ2

j,j . (10)

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Proposed Method We empirically evaluate our method of joint aleatoric and epistemic uncertainty
modeling using our LR+D representation in several experiments. In all experiments, we use variants
of the U-Net Ronneberger et al. (2015) architecture. We adapt the U-Net for Bayesian inference
by adding dropout, which we use for MCD Gal & Ghahramani (2016) and DE Lakshminarayanan
et al. (2017) or by using variational convolutional layer for SVI Blundell et al. (2015) to estimate a
distribution over model weights which estimates epistemic uncertainty. However, we note that our
approach is compatible with any Bayesian method suitable for large model outputs. We use a single
model with multiple outputs for the mean and the covariance prediction parts. To train this model, we
gradually we train the mean separately and gradually change increase the weight on the log likelihood
loss for the covariance parameters. For architectural details, please refer to our code in the repository.
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Datasets and Tasks We evaluate our method in different settings on the MNIST, CelebA, and
Flying Chairs datasets for the tasks of inpainting, colorization, and optical flow.

We train a reconstruction model to inpaint distorted handwritten digits from the MNIST dataset. For
the inpainting task, we mask out 5/7 of the image area. We use the official test set and split the
training set into 50,000 train and 10,000 validation images. Figure 3.2 (bottom) shows reconstruction
results for a single digit.

To evaluate performance on optical flow estimation, we use the Flying Chairs Dosovitskiy et al. (2015)
dataset. This dataset is resized to 192 x 256 and split into 18,297/2,287/2,288 training/validation/test
images. We provide visualizations of the predictions as part of the supplement.

To evaluate our method on facial images, we use the CelebA CelebA-HQ dataset, keeping the original
splits from CelebA Liu et al. (2015). The original split contains 24,183 images for training, 2,993
for validation, and 2,824 for testing (image size 256 × 256). We study two tasks on this dataset:
colorization and inpainting.

Baselines We compare the performance of non-Bayesian models with different Bayesian ap-
proaches. Additionally, we incorporate a diagonal (D) covariance matrix following the method of
Kendall & Gal (2017). We extend this by using a low-rank plus diagonal (LR+D) parameterized
distribution.

As a further baseline, we also provide results by following the approach by Zepf et al. (2023). Here,
we further approximate the aleatoric uncertainty term of Equation 1 to prevent sampling aleatoric P
matrices. This reduces the number of resulting columns from T × (R+ 1) to T +R. It is achieved
by approximating the expectation of the aleatoric uncertainty Σa term with the aleatoric covariance
prediction of the model with the expected weights:

Σa = Eq∗θ (W ) [ΣW (x)] ≈ ΣEq∗ [W ](x)

To compute this term, we require the expected weights of the Bayesian models to be well-defined. For
MCD, this is done by turning dropout off and rescaling the activations accordingly. For SVI, where
the weights follow Gaussian distributions, the expected weights are simply the means of the Gaussian
distributions. For DE, we are unable to define expected weights, hence this approximation is not
evaluated in this case. Note that Zepf et al. (2023) refer to this approach as MAP solution, which
coincides with the expected weights solution if the weight uncertainty is modeled with symmetrical
unimodal distributions like Gaussians as commonly used by SVI and Laplace Approximation (LA).
Furthermore, Zepf et al. (2023) do not provide a joint representation, and log likelihood calculation is
only possible using a combination of our methods.

Hyperparameter Finally, we evaluate our joint the LR+D parametrization in combination with
all three Bayesian methods. For this case, we let the model predict a matrix PW ∈ RS×RW

of rank
RW = 8 and for epistemic models, we draw T = 64 samples. The predictions are multivariate
Normal distributions, represented by their LR+D parametrization. Those predictions are joined to a
single, LR+D parametrized distribution. For the full joint uncertainty LR+D model, this yields a joint
P matrix with R = T × (RW +1) = 576 columns, which we jointly compress down to R = 64 with
truncated SVD while keeping the diagonal variance of the dropped columns as described in Section 2.
For the expected weights baseline, we perform an additional forward pass using the expected weights
and concatenate the aleatoric and epistemic columns, which leads to R = 72 in total. All models are
trained for the same amount of steps.

3.2 MAIN RESULTS - COMPARISON OF THE FIT OF PREDICTIVE DISTRIBUTIONS

Quantitative Results To evaluate performance, we use the negative log-likelihood, which measures
how well a model predicts the observed data. Lower values imply that the model’s predictions are
closer to the actual outcomes. Quantitatively, we find that modeling epistemic uncertainty improves
the likelihood of unseen test sample predictions, as shown in Table 1. This finding holds for both
modeling the diagonal and modeling the LR+D across all experiments. Additionally, including co-
variances through our LR+D further improves the likelihood of unseen test sample predictions across
all experiments. The usefulness of expected weights E[W ] approximation for the aleatoric uncertainty
Σa is inconsistent. Our approach, to combine both into a joint multivariate uncertainty representation
and using SVD, is superior in all performed experiments with all tested Bayesian methods.
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MNIST CelebA Flying Chairs
Epistemic Parameters Inpainting Colorization Inpainting Optical Flow

×1 ×1000 ×100 ×100
✗ D - 2665± 7794 -146± 111 153± 175 1059± 496
✗ LR+D - 2610±24982 -216± 78 134± 70 882± 554
MCD D - -292± 345 -152± 77 125± 146 1012± 390
SVI D - -268± 297 -157± 35 125± 79 1043± 381
DE D - -308± 236 -158± 58 93± 101 965± 291
MCD LR+D E[W ] -155± 4257 -235± 41 73± 62 853± 342
SVI LR+D E[W ] -327± 3232 -225± 38 116± 35 760± 524
MCD LR+D SVD -409± 302 -241± 28 66± 52 844± 308
SVI LR+D SVD -383± 2591 -229± 31 109± 31 748± 467
DE LR+D SVD -394± 118 -240± 25 61± 44 837± 272

Table 1: Quantitative Results. We evaluate the negative log-likelihoods (base 10) of predictions
across various dataset-task combinations and its test set variability using standard deviations. Lower
values indicate higher likelihood and, therefore, better predictions. Our method is assessed in four
experiments: inpainting of removed image parts, colorization, and optical flow estimation. The log-
likelihoods scale linearly with the dimensionality of the prediction and, in the case of masking, are
evaluated only in the masked area. Results are generated using both Bayesian (MCD,SVD,DE) and
non-Bayesian (✗) networks, each with diagonal (D) and low-rank plus diagonal (LR+D) covariance
parametrization. For the combination of LR+D and Bayesian approaches, we depict both the results
by expected weights E[W ] approximation and by our approach using truncated SVD. Our findings
demonstrate that employing the LR+D representation and incorporating epistemic uncertainty enhance
the posterior predictive distribution and increase the likelihood of the predictions.

Figure 3: Qualitative Results. Random samples from the test sets depict the input, prediction, ground
truth, and parameters of the predictive distribution. The top rows show colorization on CelebA
images, while the bottom rows display inpainting of MNIST digits. Our model predicts a mean (Pred),
the parameter D (Diag), and a low-rank matrix P . In both cases, the predicted joint low-rank matrix
P is reduced to the 64 most significant directions (columns) based on their respective eigenvalues.
The 10 images in columns 3-8 visualize the 10 most important directions with a random orientation in
descending order of the associated eigenvalues. We observe that these columns focus on uncertainty
in specific image areas or colors. Additionally, the singular values Ψ measure the importance of the
associated direction. For more qualitative results of all datasets and Bayesian methods, please see the
Supplement Figures 6, 7, 8, 9,and 10.
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Qualitative Results Figure 3 and Supplementary Figures 6, 7, 8, 9,and 10 provide qualitative
results, where we exemplarily visualize how the 10 most important columns in our joint low-rank
matrix P describe the areas of correlated uncertainty. E.g. within the CelebA inpanting’s (top)
visualized P Matrix, the first two eigenvectors focus on full image color shifts, whereas the first
one focuses on an axis between orange and blue (inverse color), the second one on the axis between
purple to green (inverse color). The third eigenvector focus on the color contrast between foreground
and background. The fourth one focuses on hair and eye color. Further, the singular values Ψ provide
an interpretation of the importance of these correlations. Visualization of the eigenvectors is only
possible with our method, which includes the covariance terms; hence, allowing the identification of
image regions with correlated uncertainty. The Parameter D (Diag) captures additional uncertainty,
which could not be captured by the Low Rank Covariance Matrix created by PP ⊺.

In summary, these qualitative results can help to intuitively describe the underlying relations of
uncertainty on an image level.

3.3 ADDITIONAL RESULT - OUT OF DISTRIBUTION DETECTION

We evaluate our method on the task of out-of-distribution detection on the MNIST dataset, where
we omit the digit "2" from the training data. Similar to Subsection 3.2, we train four types of
models, with and without epistemic uncertainty, using both diagonal and LR+D representations. Our
aim is to study whether predictive distributions are more spread out for unseen out-of-distribution
(OOD) test samples compared to in-distribution (ID) test samples. A common metric to evaluate the
spread of continuous distributions is differential entropy Thomas & Joy (2006). Figure 4 presents
histograms of differential entropies of the predictive distributions of two Bayesian models. The
left one’s output is parametrized using a diagonal normal distribution, whereas the right one uses
the LR+D parametrization. We observe that the LR+D parametrized network better separates the
ID entropies from the OOD entropies than the diagonally parameterized covariance model. For
quantitative analysis, we compute the average entropy for ID and OOD samples in the respective
columns. Furthermore, we calculate the Area Under the Curve (AUC) as a metric for the separation
of OOD and ID samples using differential entropy. Finally, we employ a Kolmogorov–Smirnov
(KS) test to measure a distance between the distribution of differential entropies of ID and OOD
samples. Higher values are preferred for both metrics. Our results demonstrate that both 1) modeling
epistemic uncertainty and 2) covariances help to improve the differentiation between ID and OOD
test samples for the tested dataset. Finally, we present a combination of both, using the expected
weights approximation E[W ] and the SVD approximation. Our method, which combine both and
compresses using SVD, is superior to all baselines.

3.4 SPATIAL AND COMPUTATIONAL COMPLEXITY

Figure 5 presents the memory (left) and time (right) requirements for computing the log-likelihood of
different covariance parameterizations: sparse options like diagonal (D) and low-rank plus diagonal

Epistemic Parameters ID OOD AUC ↑ KS↑
✗ D -1134 -988 0.782 0.441
✓ D -751 -561 0.851 0.564
✗ LR+D -1407 -1026 0.842 0.558
✓ LR+D E[W ] -1291 -989 0.859 0.583
✓ LR+D SVD -844 -593 0.882 0.625

Table 2: Results for out-of-distribution (OOD) detection of MNIST digits using the LR+D repre-
sentation. The digit "2" is excluded from the training set and, therefore, OOD in the test set. The
table presents the results for a Bayesian and non-Bayesian network, both combined with D and with
LR+D covariance parametrization. The columns in-distribution (ID) and OOD indicate the average
differential entropy for the respective sample types. The column AUC measures the Area Under the
Curve (AUC) for using differential entropy as a separation criterion. Finally, Kolmogorov–Smirnov
(KS) depicts a distance between the distributions of ID and OOD differential entropies. Larger values
are preferable for both metrics. The AUC as well as KS demonstrate that both epistemic uncertainty
and the LR+D representation are beneficial for the detection of OOD samples.
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Figure 4: Distribution of differential entropies predicted by non-Bayesian and Bayesian models
parametrized with either a D or an LR+D covariance matrix. The plots depict cumulative kernel-
density plots of the differential entropies of all ID (solid line) and OOD (dashed line) test set samples.
Using the LR+D representation, the ID and OOD samples show a better separation based on their
entropy compared to using only the variances. The vertical line visualizes the result of the KS test.
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Figure 5: Empirical measurement of memory requirement of log likelihood calculation (left) and
Average empirical time measurement of 100 log likelihood calculations (right). Memory requirements
increase linear with the number of variables for LR+D representation and quadratic for full covariance
representations. Full covariance matrix measurements are done until exceeding memory of the GPU.
The LR+D representation enables handling larger covariance matrices than full rank parametrizations.

(LR+D), as well as full covariance Σ using both naive and lower-triangular parameterizations. The
complexity is shown as a function of the number of variables in the covariance matrix, with specific
points marking the number of variables for each dataset-task combination.

For LR+D, we evaluate various numbers of columns R in the low-rank matrix P . We limit our
analysis to sizes that fit within a single 48GB GPU. As a result, the full covariance plot stops early
when memory capacity is exceeded. As seen in the figure, the LR+D parameterization (with 64
columns) is significantly more efficient than the naive full covariance, both with respect to memory
and time, for all datasets. In larger datasets like CelebA and Flying Chairs, the full covariance matrix
approaches the GPU memory limit, even without batching or storing the model and its gradients.
Theoretical details on the computational complexity can be found in the Supplementary Material B.

3.5 ABLATION STUDIES

For a comprehensive evaluation of our uncertainty framework, we carry out multiple ablations to
study which factors are important for optimal model performance. One aspect is the number of
samples drawn from the weight distribution and the number of columns R retained in the final
representation after performing SVD. We vary the number of samples T , the application of SVD to
the low-rank matrix P , and the number of columns retained post-SVD, resulting in R total columns.
Table 3 presents the mean negative log-likelihood (NLL) and its test set variability using standard
deviations. The results indicate that, generally, a higher number of samples and retained columns
improve predictions. However, retaining a high number of columns resulting from sampling without
dimensionality reduction can lead to numerical instabilities (⋆, ⋆⋆), preventing NLL calculation. In
contrast, a low number of samples causes high variability within the test set. We find that optimal
results are achieved through dimensionality reduction using SVD, balancing efficient representation
with fewer columns against better predictive performance in terms of NLL.

We further ablate various design choices. In a first ablation we show that including the update of the
diagonal given by the Equations 6 and 10 in Table 6 makes the predictions more robust. Further, we
show better performance for the choice to perform SVD on the joint P matrix instead of separated
in P a and P e in Table 7; next we ablate on the number of columns of Pw directly predicted by the

9
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MNIST CelebA Flying Chairs
Inpainting Colorization Inpainting Optical Flow

T R P ×1 ×1000 ×100 ×100
64 576 - -455± 994 ⋆⋆ ⋆⋆ ⋆793±274
32 288 - -440±1401 ⋆-252±27 53±45 ⋆813±289
16 144 - -411±2035 -245±34 65±51 838±311
8 72 - -352±3096 -237±45 81±59 868±341

64 64 SVD(64) -409± 302 -242±35 68±51 844±308
64 32 SVD(32) -372± 204 -235±41 82±57 866±322
64 16 SVD(16) -345± 170 -228±45 96±63 888±336
64 8 SVD( 8) -319± 165 -217±48 113±71 915±349

Table 3: Comparison of different approximations of the LR+D-parametrized covariance matrix using
varying numbers of samples and degrees of dimensionality reduction via SVD. T denotes the number
of samples drawn from q⋆(w), and R indicates the number of columns in the resulting representation.
The column p specifies to what extent the dimensionality is reduced after sampling using SVD.
Numbers in brackets represent the retained singular vectors, resulting in columns R. The columns to
the right contain the mean negative log-likelihoods (NLL) and their test set variability using standard
deviations. We indicate scaling to ease visualization. Some NLLs could not be evaluated due to
numerical issues. Cells with more than 10% missing test results are replaced by ⋆⋆, those with at
least one missing test result (<10%) are marked with ⋆. The results clearly show that an increasing
number of samples improves performance (lower negative log-likelihood (NLL)) and consistency
(lower standard deviation). However, it also increases the risk of numerical issues. To harness most of
the performance benefits while avoiding numerical instabilities, we can apply SVD for dimensionality
reduction. Additionally, retaining more columns after performing SVD results in better outcomes.

model weights in Table 8 and find a moderate improvement at higher computational cost motivating
our choice of choosing 8 columns in further experiments. Finally, we provide an extensive list of
various design choice combinations in the Ablation Table 9.

4 DISCUSSION

Conclusion In this work, we have explored the dual nature of uncertainties — aleatoric and
epistemic — and their integration in high-dimensional regression tasks. We proposed a novel
method that employs a low-rank plus diagonal covariance matrix to approximate joint uncertainty,
effectively preserving vital output correlations and significantly reducing the computational demands
that are inherent to full covariance matrix representation. Our approach lowers memory usage
and improves the efficiency of both sampling and log-likelihood calculations. Empirically, our
approach outperforms the commonly used factorized Gaussian representation. It exhibits a lower
negative log-likelihood, indicating superior performance in uncertainty estimation, particularly in
high-dimensional regression tasks. Furthermore, it excelled in out-of-distribution (OOD) detection
on the tested dataset, leveraging the criterion of differential entropy. This success underscores the
method’s effectiveness in capturing and quantifying uncertainty.

Limitations Our method conceptually extends to any Bayesian framework; however, for simplicity
and computational reasons, we restrict our evaluation to using Monte Carlo Dropout, Stochastic
Variational Inference and Deep Ensemble. Further investigations into other Bayesian inference
techniques should determine their empirical applicability. We expect that more advanced concepts
will lead to better overall uncertainty estimation. The method is flexible with regard to the choice in
number of columns utilized in the low-rank plus diagonal parameterization of the covariance matrix.
A higher number of columns provides better overall uncertainty estimation but can lead to numerical
instabilities and increased computational complexity. Essentially, our method exhibits a trade-off
between the quality of uncertainty estimation and these factors, see Table 3. We hypothesize that
the numerical instabilities are related to the linear dependencies of the columns in the low-rank and,
hence, propose additional investigations to understand and mitigate their impact. Finally, our method
builds upon the assumption that uncertainties in output can be modeled by a single multivariate
Gaussian, even though this approximation is often used in the literature Kendall & Gal (2017);
Monteiro et al. (2020); Duff et al. (2023). However, multivariate Gaussians may not be a suitable
approximation for every task, for example, for uncertainties in translation or rotation in images.
Exploring epistemic uncertainty under different distributions is a highly promising research question.

By more accurately approximating the true posterior than traditional joint distributions, our method
enhances both the reliability and explainability of predictions from deep learning models.
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5 REPRODUCIBILITY

The source code, released under an open-source license, is available via an anonymous pub-
lic GitHub repository https://anonymous.4open.science/r/structured_joint_
uncertainty/. Checkpoints for all models trained with the proposed method, as well as all
baselines, are available upon request. The datasets used in the experiments are publicly accessible
and links as well as preprocessing scripts are included in the repository. An extensive schematic and
intuitive description of the method, along with proofs, is also included in the Supplementary Material.
Additionally, qualitative examples are provided to enhance understanding of the method.

REFERENCES

Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. On second-order scoring rules for epistemic
uncertainty quantification. In International Conference on Machine Learning, pp. 2078–2091.
PMLR, 2023.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
position of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In
International conference on machine learning, pp. 1184–1193. PMLR, 2018.

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill DF Campbell, and Ivor Simpson. Structured
uncertainty prediction networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5477–5485, 2018a.

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill DF Campbell, and Ivor Simpson. Training vaes
under structured residuals. arXiv preprint arXiv:1804.01050, 2018b.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
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A SYMBOLS AND ACRONYMS

A.1 LIST OF SYMBOLS

Symbol Remark
D Diagonal matrix used for LR+D
P Tall matrix P used for LR+D
R Number of columns of tall matrix P
S Number of outputs P
T Number of epistemic samples
U Singular vectors
Ψ Diagonal matrix containing singular values of P
V Eigenvectors of PP ⊺

W Model parameters
θ Parameters of the proxy distribution
X Training Data
Y Training Labels
x Test data sample
y Test label sample
p Probability distribution
q proxy distribution
L Loss
N Normal distribution
E Expectation

Cov Covariance Matrix
[. .] Column wise Block Concatenation
⌊.⌋ Stop Gradient Function
(.)

⊺ Transposed Matrix
(.)

a Symbol representing aleatoric uncertainty only
(.)

e Symbol representing epistemic uncertainty only
(.)W Symbol is a function of the weights
(.)wi

Symbol uses the set of weights wi

(.)i_ ith row of a matrix
(.)_i ith column of a matrix

A.2 LIST OF ACRONYMS

ACRONYMS

AUC Area Under the Curve
CelebA CelebFaces Attributes
D diagonal
DE Deep Ensemble
Flying Chairs
GT ground truth
ID in-distribution
KS Kolmogorov–Smirnov
LA Laplace Approximation
LR+D low-rank plus diagonal
LU lower-upper
MAP Maximum a posteriori
MC Monte Carlo
MCD Monte Carlo Dropout
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MNIST Modified National Institute of Standards and Technology database
NLL negative log-likelihood
OOD out-of-distribution
SVD Singular Value Decomposition
SVI Stochastic Variational Inference

B COMPUTATION, TIME AND SPACE COMPLEXITY

Captured Parametr. Memory Time
Type Parametrization Corr. Represent. xΣ−1x⊺ |Σ| Sampling

full Russell & Reale (2021) correlation all Σ S2 S3 S3 S3

full Gundavarapu et al. (2019) Cholesky all Σ S2 S2 S S2

sparse Dorta et al. (2018a;b) inv. band Cholesky local Σ−1 SR SR S SR2

sparse Monteiro et al. (2020) LR+D global Σ SR SR2 SR2 SR
factorized Kendall & Gal (2017) diagonal none Σ S S S S

Table 4: This table depicts the computational complexity for calculations using different parametriza-
tions for covariance matrices. We use the sparse LR+D parametrization as the basis for our method.
This reduces time and spacial complexity in comparison to the naive or Cholesky decomposition and
allows for global correlation in comparison to the sparse inverse band Cholesky parametrization. The
type and amount of correlations of different parametrization is different (Captured Corr). Furthermore,
the used representation enables for efficient calculation of Σ or Σ−1 (Parametr. Representation) and
needs different amount of memory. The time complexity is given for calculation of the mahalanobis
distance xΣ−1x⊺, determinant |Σ| as well as sampling.

Table 4 give the theoretical time and memory complexities of various covariance parametrizations
and calculations. The sparse representations are more efficient in terms of memory and computational
complexity. However, they do not provide all degrees of freedom of a covariance matrix and are
limited to either local or the most important global correlations.

C ADDITIONAL RESULTS

C.1 QUALITATIVE RESULTS

We provide additional qualitative results for every performed tasks. Figures 6 presents optical flow on
Flying Chairs, 7 depicts CelebA inpainting, 8 shows CelebA colorization, and 9 illustrates MNIST
inpainting. Figure 10 compares both, eigenvectors in both random orientations as well as the different
used Bayesian methods.
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Figure 6: Additional Qualitative Results, Visualizing Flying Chairs’ Optical Flow. Random samples
from the test sets showing input, prediction, ground truth and parameters of the predictive distribution.
The task here is optical flow estimation in the Flying Chairs dataset. The model predicts a mean
(Pred), and the parameter D (Diag), as well as a low-rank matrix P . In all cases, the predicted
joint low-rank matrix P is reduced to the 64 most significant directions (columns) and displayed
using the 10 most significant ones in descending order of associated eigenvalues. We can clearly see
that the columns focus on uncertainty in certain images areas or colors. Furthermore, the singular
values Ψ give a measure of importance of the associated direction. Note that the orientation of the
singular vectors is arbitrarily chosen and can be inverted, which results in opposite colors (left) and
brightness (right). These eigenvectors are only possible to visualize when modeling covariances and
show the direction of maximum variability of the data and helps to understand the underlying factors.
Furthermore, we show the upper bound of the angles between the directions of the eigenvectors of
PP ⊺ and the eigenvectors of Σ.
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Figure 7: Additional Qualitative Results, Visualizing Inpainting of Eyes of CelebA Faces. Random
samples from the test sets showing input, prediction, ground truth and parameters of the predictive
distribution. The task here is inpainting of the eyes region of the CelebA faces dataset. The model
predicts a mean (Pred), and the parameter D (Diag), as well as a low-rank matrix P . In all cases,
the predicted joint low-rank matrix P is reduced to the 64 most significant directions (columns) and
displayed using the 10 most significant ones in descending order of associated eigenvalues.
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Figure 8: Additional Qualitative Results, Visualizing the Colorization of CelebA Faces. Random
samples from the test sets showing input, prediction, ground truth and parameters of the predictive
distribution. The task here is colorization of the CelebA faces dataset. The model predicts a mean
(Pred), and the parameter D (Diag), as well as a low-rank matrix P . In all cases, the predicted joint
low-rank matrix P is reduced to the 64 most significant directions (columns) and displayed using the
10 most significant ones in descending order of associated eigenvalues.
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Figure 9: Additional Qualitative Results, Visualizing Inpainting of MNIST Digits. Random samples
from the test sets showing input, prediction, ground truth and parameters of the predictive distribution.
The task is inpainting MNIST digits. The model predicts a mean (Pred), and the parameter D (Diag),
as well as a low-rank matrix P . In all cases, the predicted joint low-rank matrix P is reduced to the 64
most significant directions (columns) and displayed using the 10 most significant ones in descending
order of associated eigenvalues.
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MCD

Inverse eigenvectors orientation

SVI

DEs

Figure 10: Additional Qualitative Results, comparing Bayesian Methods. A Random sample from
the test sets showing input, prediction, ground truth and parameters of the predictive distribution with
various Bayesian Methods. For the first method, we also show the eigenvectors with inverse sign.
Both signs are mathematically equivalent and one of them is randomly chosen for the visualizations.
The task here is colorization of the CelebA faces dataset. The model predicts a mean (Pred), and
the parameter D (Diag), as well as a low-rank matrix P . In all cases, the predicted joint low-rank
matrix P is reduced to the 64 most significant directions (columns) and displayed using the 10 most
significant ones in descending order of associated eigenvalues.
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C.2 QUANTITATIVE PREDICTION ERRORS

Table 5 lists the predicted errors for all bayesian mehtods. We aim for similar predictive errors for all
models to get mainly evaluate the quality of the uncertainty using negative log-likelihood (NLL).

MNIST CelebA Flying Chairs
Inpainting Colorization Inpainting Opt. Flow

Epistemic Param. RW L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓
✗ D 0 0.0331 0.0475 1.9002 2.4168 2.64 5.55 0.150 0.346
MCD D 0 0.0335 0.0477 1.8976 2.4159 2.58 5.62 0.148 0.325
SVI D 0 0.0366 0.0501 1.9074 2.4176 2.71 5.71 0.161 0.330
DE D 0 0.0339 0.0483 1.8977 2.4159 2.57 5.63 0.147 0.325
✗ LR+D 8 0.0352 0.0494 1.9330 2.4244 2.59 5.52 0.176 0.345
MCD LR+D 4 0.0379 0.0530 1.9116 2.4183 2.51 5.52 0.178 0.338
MCD LR+D 8 0.0340 0.0481 1.9191 2.4206 2.56 5.52 0.157 0.328
MCD LR+D 16 0.0338 0.0480 1.9182 2.4202 2.61 5.57 0.155 0.328
SVI LR+D 8 0.0384 0.0529 1.9494 2.4297 2.67 5.65 0.162 0.333
DE LR+D 8 0.0348 0.0489 1.9219 2.4213 2.60 5.60 0.158 0.329

Table 5: Comparison of reconstruction or prediction errors of all methods. We use the same loss
for the prediction between those methods. The last convolutional layer of models with LR+D
parametrization has more channels in comparison to models with diagonal parametrization. Further-
more, the uncertainty channels receive gradients from different negative log likelihood functions.
Bayesian models (Epistemic) include additional Dropout layer or variational convolutional layer and
are evaluated using 64 weight samples. Essentially, the presented study shows our robust, better
uncertainty quantification towards the quality of the prediction. This is important to evaluate because
the negative-log likelihood is affected by both prediction and uncertainty estimation.

C.3 ADDITIONAL ABLATION STUDY

One component of our proposed method is to retain the variance of the removed columns after
dimensionality reduction using SVD, see 6. In Table 6 we ablate this design choice. The column
D̂ indicates whether the diagonal D is updated (✓) after performing SVD according to Equations 6
and 10, or if the original D is retained (✗) as per Equation 8. Our ablation shows that updating the
diagonal D appears to slightly improve the average, NLL while also enhancing prediction consistency
and reducing test set variability. We show that this is consistent for three different configurations of
dimensionality reductions, see Table 6.

Table 7 compares the performance of performing SVD independently on the epistemic and aleatoric
low-rank matrices P e and P a versus on the combined low-rank matrix P . The findings show that

MNIST CelebA Flying Chairs
R P a P e D̂ Inpainting Colorization Inpainting Optical Flow

×1 ×1000 ×100 ×100
64 SVD(32) SVD(32) ✓ -379± 202 -239±35 71±52 849±308
32 SVD(16) SVD(16) ✓ -350± 164 -232±39 84±57 870±322
64 joint SVD(64) ✓ -409± 302 -242±35 68±51 844±308
64 SVD(32) SVD(32) ✗ -408±2087 -241±41 70±55 845±324
32 SVD(16) SVD(16) ✗ -368±2985 -233±52 85±62 869±348
64 joint SVD(64) ✗ -410±1980 -242±39 68±53 841±321

Table 6: Comparison between adapting the diagonal D after performing the SVD according to
Equations 6 and 10 or not. Here R denotes the number of columns in the resulting representation.
The columns P a and P e denote if and to what degree the dimensionality is reduced after sampling
using SVD. The numbers in brackets denote the kept singular vectors, which result in columns R.
The column D̂ indicates whether the diagonal D is updated (✓) after performing SVD according
to Equations 6 and 10, or if the original D is retained as per Equation 8, despite the dimensionality
reduction of P . We show in the first three rows that updating the diagonal D appears to slightly
improve the average NLL while also enhancing prediction consistency and reducing test set variability.
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MNIST CelebA Flying Chairs
R P a P e Inpainting Colorization Inpainting Optical Flow

×1 ×1000 ×100 ×100
64 SVD(32) SVD(32) -379± 202 -239± 35 71± 52 849±308
32 SVD(16) SVD(16) -350± 164 -232± 39 84± 57 870±322
16 SVD( 8) SVD( 8) -322± 158 -222± 41 99± 64 892±333
64 joint SVD(64) -409± 302 -242± 35 68± 51 844±308
32 joint SVD(32) -372± 204 -235± 41 82± 57 866±322
16 joint SVD(16) -345± 170 -228± 45 96± 63 888±336

8 joint SVD( 8) -319± 165 -217± 48 113± 71 915±349

Table 7: Comparison of different approximations of the LR+D-parametrized covariance matrix
using varying degrees of dimensionality reduction via SVD. T denotes the number of samples drawn
from q⋆(w), and R indicates the number of columns in the resulting representation. The columns
P e and P a denote on which matrix SVD is performed and the degree of dimensionality reduction.
The numbers in brackets represent the retained singular vectors, resulting in columns R. If the SVD
is performed on the joint matrix P instead of the epistemic and aleatoric submatrices P e/P a, it is
marked as joint. We observe that with the same number of columns R, performing SVD on the joint
matrix P yields better performance. Conversely, when retaining the same number of columns per
SVD, the separate version performs slightly better. In both cases, a higher number of columns is
preferable.

MNIST CelebA Flying Chairs
RW R P Inpainting Colorization Inpainting Optical Flow

×1 ×1000 ×100 ×100
4 16 joint SVD(16) -193± 63 -198± 39 147± 62 892±412
8 16 joint SVD(16) -345± 170 -228± 45 96± 63 888±336

16 16 joint SVD(16) -363± 156 -206± 37 224± 136 895±322
4 32 joint SVD(32) -241± 73 -207± 32 113± 52 870±387
8 32 joint SVD(32) -372± 204 -235± 41 82± 57 866±322

16 32 joint SVD(32) -393± 196 -217± 35 162± 122 863±310
8 64 joint SVD(64) -409± 302 -242± 35 68± 51 844±308

16 64 joint SVD(64) -423± 254 -228± 31 114± 111 833±302

Table 8: Comparison between different number of columns used during training the model. While
RW denotes the number of columns produced by the model without sampling., R denotes the number
of columns in the resulting representation. The column P show how SVD is used dimensionality is
reduced. The number in the brackets denote the kept singular vectors, which result as columns R.
The results tend to be better with a higher number of learned columns RW . In genreal, increasing
RW can cause increasing training time. However, we also experienced instabilities during training
for 3 of those tasks when using RW = 32.

combined SVD yields better results for the same number of columns. However, for a fixed number
of singular vectors retained per SVD, the independent approach performs slightly better. Note that
combined SVD complicates the post-hoc separation of aleatoric and epistemic contributions.

Furthermore, Table 8 evaluates the impact of the number of columns predicted by the model’s
output layer. Increasing the number of columns generally benefits the NLL. However, this increases
computational complexity and may lead to numerical instabilities during training, as observed in
3 out of 4 tasks failing with RW = 32 columns. Balancing these trade-offs, we chose a rank of 8,
which aligns with the choice of Monteiro et al. (2020).

Finally, Table 9 presents an extended ablation of various parameters, non-Bayesian with various
Bayesan Models (epis) and both kinds of distribution parametrizations (Param). Therefore, it
compares a purely diagonal (D) uncertainty with our LR+D parametrization. The representation took
T Bayesian samples, and results in R columns of the low-rank matrix. The number of samples can be
reduced for the aleatoric matrix (P a) the epistemic matrix (P e) or both together (in the center of both
columns). The columns are either not reduced (-) reduced using Singular Value Decomposition (SVD)
with the remaining number of columns in the brackets, or for the aleatoric covariance matrix using
the expected weights E[W ]. The column D̂ indicates whether the diagonal D is updated (✓) after
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MNIST CelebA Flying Chairs
Epis Param RW T R Pa Pe D̂ Inpainting Colorization Inpainting Optical Flow

×1 ×1000 ×100 ×100
✗ D 0 + 1 0 - 0 - 2665± 7794 -146± 111 153± 175 1059± 496
✗ LR+D 8 0 + 1 8 - 0 - 2610±24982 -216± 78 134± 70 882± 554

MCD D 64 + 1 0 E[W ] - - -253± 589 -151± 80 128± 152 1014± 402
MCD D 64 + 0 0 - - - -292± 345 -152± 77 125± 146 1012± 390
MCD LR+D 8 64 + 1 72 E[W ] - - -155± 4257 -235± 41 73± 62 853± 342
MCD LR+D 8 64 + 0 576 - - - -455± 994 ** ** **
MCD LR+D 8 32 + 0 288 - - - -440± 1401 *-250± 24 52± 46 813± 289
MCD LR+D 8 16 + 0 144 - - - -411± 2035 -244± 29 64± 51 838± 311
MCD LR+D 8 8 + 0 72 - - - -352± 3095 -237± 37 80± 59 868± 341
MCD LR+D 8 64 + 0 64 SVD(32) SVD(32) ✓ -379± 202 -238± 29 69± 52 849± 308
MCD LR+D 8 64 + 0 32 SVD(16) SVD(16) ✓ -350± 164 -231± 34 83± 58 870± 322
MCD LR+D 8 64 + 0 16 SVD( 8) SVD( 8) ✓ -322± 158 -222± 36 97± 67 892± 333
MCD LR+D 8 64 + 0 64 joint SVD(64) ✓ -409± 302 -241± 28 66± 52 844± 308
MCD LR+D 8 64 + 0 64 joint SVD(64) ✗ -410± 1979 -242± 30 66± 53 841± 321
MCD LR+D 8 64 + 0 32 joint SVD(32) ✓ -372± 204 -234± 32 80± 57 866± 322
MCD LR+D 8 64 + 0 32 joint SVD(32) ✗ -372± 2773 -236± 36 80± 61 864± 345
MCD LR+D 8 64 + 0 16 joint SVD(16) ✓ -345± 170 -227± 37 95± 64 888± 336
MCD LR+D 8 64 + 0 16 joint SVD(16) ✗ -326± 3914 -229± 47 96± 71 890± 371
MCD LR+D 8 64 + 0 8 joint SVD( 8) ✓ -319± 165 -218± 40 111± 74 915± 349
MCD LR+D 8 64 + 0 8 joint SVD( 8) ✗ -273± 5523 -219± 59 116± 86 930± 417
MCD LR+D 4 64 + 1 68 E[W ] - - -376± 1677 -218± 31 77± 55 859± 422
MCD LR+D 4 64 + 0 320 - - - ** *-230± 21 51± 38 807± 299
MCD LR+D 4 32 + 0 160 - - - *-396± 420 -227± 24 62± 42 831± 325
MCD LR+D 4 16 + 0 80 - - - -396± 848 -222± 27 78± 50 862± 369
MCD LR+D 4 8 + 0 40 - - - -382± 1396 -216± 31 98± 60 894± 412
MCD LR+D 4 64 + 0 64 SVD(32) SVD(32) ✓ -245± 73 -222± 26 71± 47 849± 351
MCD LR+D 4 64 + 0 32 SVD(16) SVD(16) ✓ -198± 62 -217± 28 87± 53 872± 379
MCD LR+D 4 64 + 0 16 SVD( 8) SVD( 8) ✓ -161± 55 -211± 30 104± 59 895± 405
MCD LR+D 4 64 + 0 32 joint SVD(32) ✓ -241± 73 -218± 28 84± 52 870± 387
MCD LR+D 4 64 + 0 32 joint SVD(32) ✗ -400± 1092 -219± 29 84± 54 870± 406
MCD LR+D 4 64 + 0 16 joint SVD(16) ✓ -193± 63 -213± 30 101± 59 892± 412
MCD LR+D 4 64 + 0 16 joint SVD(16) ✗ -399± 1372 -214± 32 102± 62 896± 454
MCD LR+D 4 64 + 0 8 joint SVD( 8) ✓ -157± 56 -206± 33 117± 65 914± 432
MCD LR+D 4 64 + 0 8 joint SVD( 8) ✗ -395± 1635 -208± 37 120± 72 924± 492
MCD LR+D 16 64 + 1 80 E[W ] - - -208± 3830 -240± 80 56± 73 820± 365
MCD LR+D 16 64 + 0 1088 - - - -483± 725 ** ** **
MCD LR+D 16 32 + 0 544 - - - -473± 956 ** * 27± 47 * 760± 283
MCD LR+D 16 16 + 0 272 - - - -446± 1417 *-259± 33 36± 52 791± 303
MCD LR+D 16 8 + 0 136 - - - -403± 2126 -251± 45 50± 60 819± 330
MCD LR+D 16 64 + 0 64 SVD(32) SVD(32) ✓ -399± 190 -244± 37 57± 60 843± 299
MCD LR+D 16 64 + 0 32 SVD(16) SVD(16) ✓ -368± 155 -234± 42 71± 67 872± 306
MCD LR+D 16 64 + 0 64 joint SVD(64) ✓ -423± 254 -247± 35 54± 60 833± 302
MCD LR+D 16 64 + 0 64 joint SVD(64) ✗ -424± 1930 -248± 45 54± 66 817± 332
MCD LR+D 16 64 + 0 32 joint SVD(32) ✓ -393± 196 -239± 40 71± 68 863± 310
MCD LR+D 16 64 + 0 32 joint SVD(32) ✗ -375± 2892 -238± 61 72± 81 843± 360
MCD LR+D 16 64 + 0 16 joint SVD(16) ✓ -363± 156 -229± 46 91± 74 895± 322
MCD LR+D 16 64 + 0 16 joint SVD(16) ✗ -339± 3547 -225± 101 97± 96 877± 410
SVI D 64 + 1 0 E[W ] - - -263± 311 -157± 35 126± 81 1045± 386
SVI D 64 + 0 0 - - - -268± 297 -157± 35 125± 79 1043± 381
SVI LR+D 8 64 + 1 72 E[W ] - - -327± 3232 -225± 38 116± 35 760± 524
SVI LR+D 8 64 + 0 576 - - - -381± 2638 ** 100± 29 **
SVI LR+D 8 32 + 0 288 - - - -371± 2810 ** 104± 30 * 723± 399
SVI LR+D 8 16 + 0 144 - - - -358± 3056 *-233± 28 109± 32 733± 463
SVI LR+D 8 8 + 0 72 - - - -342± 3340 -226± 35 118± 34 770± 508
SVI LR+D 8 64 + 0 64 SVD(32) SVD(32) ✓ -396± 2374 -226± 32 111± 32 754± 479
SVI LR+D 8 64 + 0 32 SVD(16) SVD(16) ✓ -404± 2121 -217± 33 122± 36 787± 501
SVI LR+D 8 64 + 0 16 SVD( 8) SVD( 8) ✓ -399± 1603 -194± 23 135± 38 826± 509
SVI LR+D 8 64 + 0 64 joint SVD(64) ✓ -383± 2591 -229± 31 109± 31 748± 467
SVI LR+D 8 64 + 0 64 joint SVD(64) ✗ -348± 3251 -229± 33 108± 31 744± 505
SVI LR+D 8 64 + 0 32 joint SVD(32) ✓ -396± 2355 -222± 35 118± 34 780± 506
SVI LR+D 8 64 + 0 32 joint SVD(32) ✗ -333± 3514 -223± 39 118± 34 778± 567
SVI LR+D 8 64 + 0 16 joint SVD(16) ✓ -404± 2051 -212± 37 132± 39 816± 529
SVI LR+D 8 64 + 0 16 joint SVD(16) ✗ -319± 3777 -214± 48 132± 40 817± 609
SVI LR+D 8 64 + 0 8 joint SVD( 8) ✓ -396± 1607 -191± 25 147± 43 860± 537
SVI LR+D 8 64 + 0 8 joint SVD( 8) ✗ -303± 4061 -205± 57 146± 46 863± 650
DE D 64 + 0 0 - - - -308± 236 -158± 58 93± 101 965± 291
DE LR+D 8 64 + 0 576 - - - -483± 337 ** * 43± 37 **
DE LR+D 8 32 + 0 288 - - - -487± 604 *-252± 23 47± 41 805± 274
DE LR+D 8 16 + 0 144 - - - -465± 1155 -245± 27 60± 48 826± 297
DE LR+D 8 8 + 0 72 - - - -339± 3213 -237± 36 80± 60 868± 344
DE LR+D 8 64 + 0 64 SVD(32) SVD(32) ✓ -358± 93 -233± 25 64± 43 845± 270
DE LR+D 8 64 + 0 32 SVD(16) SVD(16) ✓ -321± 82 -212± 24 86± 39 873± 269
DE LR+D 8 64 + 0 16 SVD( 8) SVD( 8) ✓ -280± 72 -184± 22 112± 34 911± 264
DE LR+D 8 64 + 0 64 joint SVD(64) ✓ -394± 118 -240± 25 61± 44 837± 272
DE LR+D 8 64 + 0 64 joint SVD(64) ✗ -490± 703 -243± 28 60± 45 827± 281
DE LR+D 8 64 + 0 32 joint SVD(32) ✓ -351± 93 -229± 27 79± 48 862± 276
DE LR+D 8 64 + 0 32 joint SVD(32) ✗ -491± 908 -235± 34 76± 54 846± 295
DE LR+D 8 64 + 0 16 joint SVD(16) ✓ -313± 82 -210± 25 100± 42 892± 275
DE LR+D 8 64 + 0 16 joint SVD(16) ✗ -487± 1093 -230± 39 90± 61 862± 309
DE LR+D 8 64 + 0 8 joint SVD( 8) ✓ -273± 73 -183± 22 123± 35 927± 269
DE LR+D 8 64 + 0 8 joint SVD( 8) ✗ -477± 1229 -217± 45 103± 67 878± 326

Table 9: Extended Ablation. We compare non-Bayesian networks with aleatoric uncertainty only and
various Bayesian networks with both kind of uncertainties and various hyperparameters.
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performing SVD according to Equations 6 and 10, or if the original D is retained as per Equation 8,
despite the dimensionality reduction of P . Drawing many samples without any rank compression can
make the approach numerically instable. Here, ⋆ marks (⋆⋆ replaces) values, where less (more) than
2% of the test set results run into numerical errors. To alleviate this, we reduce the dimensionality
of the representation and remove the eigenvectors associated with smaller singular values from the
low-rank matrix.

D DERIVATIONS IN DETAIL

D.1 EXPLOITING LR+D FOR EFFICIENT COMPUTATION OF MATRIX DETERMINANT AND
INVERSE

Both the likelihood function p(y|x,W ) = N (µa
W (x) ,Σa

W (x)) as well as the approximate poste-
rior predictive distribution p(y|x,X, Y ) ≈ N (µ (x) ,Σ (x)) are multivariate normal distributions
parametrized by covariance matrices Σa

W and Σ, respectively, where in the following, we only
consider Σ for clarity. Denoting by S the output dimension, the normal distribution is then defined as

N (µ (x) ,Σ (x)) =
1√

|Σ(x)|(2π)S
exp

(
−1

2
(µ(x)− y)⊺Σ−1(x)(µ(x)− y)

)
(11)

which requires computation of the covariance matrix’ determinant |Σ| and inverse Σ−1 for sampling
and evaluation of the log likelihood. For full covariance matrices Σ ∈ RS×S with large S, these are
very expensive, if not impossible, to compute directly. Instead, we exploit our LR+D representation
for efficient computation of the matrix determinant and inverse.

We compute the determinant as

|Σ| = |D + PP ⊺| (12)

= |IR + P ⊺D−1P ||D| (13)
= |C||D| (14)

where we first substituted Σ with its LR+D representation and subsequently applied the matrix
determinant lemma. With D ∈ RS×S , P ∈ RS×R and IR ∈ RR, the so-called capacitance
C = IR +P ⊺D−1P is an R×R matrix. Since R ≪ S, the determinant of the capacitance matrix is
very cheap to compute.

To compute the inverse, we use the Woodbury matrix identity, again by exploiting the LR+D
representation.

Σ−1 = (D + PP ⊺)−1 (15)

= D−1 −D−1P (IR + P ⊺D−1P )−1P ⊺D−1 (16)

= D−1 −D−1PC−1P ⊺D−1 (17)

As before, the capacitance matrix C ∈ RR×R is very small and thus its inverse easy to compute.

D.2 FULL DERIVATION OF SVD

We apply dimensionality reduction using SVD on our tall P matrices. This involves decomposing
into three separate matrices: U , Ψ, and V ⊺. The U matrix represents an arbitrary not further used
rotation, Ψ is a diagonal matrix containing the singular values, and V ⊺ contains the columns of the
transformed matrix.

By selecting the top R singular values and corresponding vectors, we can approximate the original
matrix. This approximation is achieved by truncating the matrices U and V ⊺ to retain only the top R
singular values and vectors. This reduces the dimensionality of the data while preserving its essential
structure.

The reduced dimensionality representation, denoted as P̂ , is computed by taking the product of the
truncated matrices V and Ψ. Additionally, a diagonal matrix D̂ captures the by the dimensionality
reduction removed variance of PP ⊺, with each element representing the contribution of the omitted
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singular values to the overall uncertainty. We use D̂ to update our diagonal for the final LR+D
representation.

P ⊺ = UΨV ⊺ (18)
PP ⊺ = (UΨV ⊺)⊺(UΨV ⊺) (19)

= VΨU⊺UΨV ⊺ (20)
= VΨΨV ⊺ (21)

PP ⊺ = D̂ + P̂ P̂ ⊺ (22)

P̂ =
[
VR−R̂ ·ΨR−R̂,R−R̂ ... VR ·ΨR,R

]
(23)

D̂ii =

R−R̂−1∑
j=1

V 2
ij ·Ψ2

j,j (24)

D.3 LOSS DEFINITION

For regression problems we intend to maximize the data likelihood p(Y |X, w) =
∏

i p(yi|xi, w),
where we assumed all dataset samples to be i.i.d. Equivalently, we can minimize the negative log
likelihood p(Y |X, w) =

∑
i − log p(yi|xi, w). We further assume the network predictions to be

distributed around the true value y following a Gaussian distribution with mean µw(x) and covariance
Σw(x).

The loss function for a single training sample can then be defined as

L = − 1

S
log p(y|x,w)

= − 1

S
log

(
1√

|Σw|(2π)S
exp

(
−1

2
(µw − y)⊺Σ−1

w (µw − y)

))

=
1

S

(
log
√
|Σw|(2π)S +

1

2
(µw − y)⊺Σ−1

w (µw − y)

)
=

1

S

(
1

2
log |Σw|+

S

2
log(2π) +

1

2
(µw − y)⊺Σ−1

w (µw − y)

)
where we normalized by the output dimensionality S.

Dropping constant terms, we are left with:

L =
1

2S
log |Σw|+

1

2S
(µw − y)⊺Σ−1

w (µw − y)

We can see that evaluating L involves computing the determinant and inverse of the covariance matrix.
To achieve this, we exploit our LR+D representation as described in the previous section D.1

D.4 FULL DERIVATION OF MEAN VECTOR AND COVARIANCE MATRIX

The expectation of the posterior predictive distribution is given by:

E[y|x,X,Y ] = Ep(W |Y,X) [E [y|x,W ]] (25)

≈ Eq∗θ (W ) [E [y|x,W ]] (26)

= Eq∗θ (W ) [µ
a
W (x)] (27)

≈ 1

T

T∑
i

µa
wi
(x) wi ∼ q∗θ(W ) (28)

= µ(x) (29)
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Figure 11: Loss Factors Variation during Training.

The covariance of the posterior predictive distribution is given by:

Cov [y|x,X,Y ] = Covp(W |Y,X)

[
Ep(W |Y,X) [y|x,W ]

]
+ Ep(W |Y,X) [Cov [y|x,W ]] (30)

≈ Covq∗θ (W )

[
Eq∗θ (W ) [y|x,W ]

]
+ Eq∗θ (W ) [Cov [y|x,W ]] (31)

= Covq∗θ (W ) [µ
a
W (x)]︸ ︷︷ ︸

epistemic

+ Eq∗θ (W ) [Σ
a
W (x)]︸ ︷︷ ︸

aleatoric

(32)

≈ Σe(x) + Σa(x) (33)
= Σ(x) (34)

In above transformations of expectation and variance, we applied the law of total expectation or
variance, respectively, and subsequently approximated them using the proxy distribution q⋆θ(W ). The
expectation over y, denoted by E [y|x,W ], is given by the mean of the predicted normal distribution
µa
W (x), whereas the covariance over y, denoted as Cov [y|x,W ], is given by the covariance matrix

of the predicted normal distribution. Finally, the expectation – and in some suggested solutions also
the covariance – over the proxy distribution q⋆θ(W ) is approximated using Monte Carlo integration.

E TRAINING SETUP

To stabilize, training, we train our model outputs separately with different loss terms and change the
weight of the loss terms over time. We reparametrize the diagonal D(x) = diag

(
exp(s) + 10−4

)
to

ensure that the diagonal has positive entries and at least a standard deviation of 0.01 in the normalized
image domains. Therefore, we combine four losses using the stop gradient operator ⌊.⌋ with factors
which change over time. Figure 11 shows the gradual increase and decrease losses factors over time
to finally train the joint distribution. The whole training lasts 60000 steps where the number of steps
per epoch is 1511 for CelebA, 1143 for Flying Chairs, and 195 for MNIST.

L = λM LM +λD LD +λLR LLR +λLRD LLRD (35)

LM = logN (µ (x) , I) (36)
LD = logN (⌊µ (x)⌋, D (x)) (37)
LL = logN (⌊µ (x)⌋, I + P (x)P ⊺ (x)) (38)

LLRD = logN (⌊µ (x)⌋, D (x) + P (x)P ⊺ (x)) (39)

We run all experiments on a single Quattro RTX8000 NVIDIA GPU with 48GB RAM.
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