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ABSTRACT

A fundamental challenge in the theory of deep learning is to understand whether
gradient-based training can promote parameters belonging to certain lower-
dimensional structures (e.g., sparse or low-rank sets), leading to so-called implicit
bias. As a stepping stone, motivated by the proof structure of existing intrinsic
bias analyses, we study when a gradient flow on a parameter ¢ implies an intrinsic
gradient flow on a “lifted” variable z = ¢(6), for an architecture-related function
¢. We express a so-called intrinsic dynamic property and show how it is related to
the study of conservation laws associated with the factorization ¢. This leads to a
simple criterion based on the inclusion of kernels of linear maps, which yields a
necessary condition for this property to hold. We then apply our theory to general
ReLU networks of arbitrary depth and show that, for any initialization, it is possible
to rewrite the flow as an intrinsic dynamic in a lower dimension that depends only
on z and the initialization, when ¢ is the so-called path-lifting. In the case of linear
networks with ¢, the product of weight matrices, the intrinsic dynamic is known to
hold under so-called balanced initializations; we generalize this to a broader class
of relaxed balanced initializations, showing that, in certain configurations, these
are the only initializations that ensure the intrinsic metric property. Finally, for the
linear neural ODE associated with the limit of infinitely deep linear networks, with
relaxed balanced initialization, we explicit the corresponding intrinsic dynamics.

1 INTRODUCTION

A central question in deep learning theory is how the complexity of gradient-based training can give
rise to simpler, lower-dimensional dynamics. In this work, we explore when the gradient flow on
parameters 6 naturally induces a gradient flow on a “lifted” variable z = ¢(f), where ¢ captures
structural aspects of the model.

Intrinsic lifted flow. The study of optimization flows arising in the training of neural networks
often benefits from the identification of lower-dimensional intrinsic dynamics. Specifically, due
to the natural symmetries of linear and ReLU networks, it is of considerable interest to rewrite a
parameter flow 6(t) in terms of an representation z(t) = ¢(6(t)), using a suitable architecture-related
reparametrization ¢ (often called a lifting) that factors out certain symmetries.

When dissected, the most advanced recent results characterizing the implicit bias induced by gradient-
based optimization algorithms notably rely on two key analysis ingredients: (i) establishing that
the dynamics of z(t) is intrinsic, i.e., that it can be expressed as a Riemannian gradient flow with a
metric depending only on z and the initial parameters 6(0); (ii) further proving that this flow on z(¢)
admits a mirror flow representation. With the combination of these two ingredients one gains access
to powerful analytical tools rooted in convex optimization theory, allowing explicit characterization
of the induced implicit bias. In particular, prior research has successfully leveraged mirror flow
formulations to rigorously demonstrate implicit regularization effects, such as sparsity in scalar linear
neural networks and two-layer networks with a single neuron (Gunasekar et al.[(2018))), as well as
maximum-margin classification for logistic regression problems in separable data scenarios (Soudry
et al. (2018)); |Chizat & Bach|(2020)).

Recent work by |Li et al.| (2022) identifies sufficient conditions under which (i)+(ii) can both be
established, requiring that the parametrization ¢ be commuting. However, this commuting condition
is rarely satisfied in practical scenarios. This work focuses on characterizing weaker conditions
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ensuring that the flow on z(t) is still driven by an intrinsic Riemannian gradient flow (but not
necessarily a mirror flow anymore), which we believe is an important step forward and a starting
point for future investigations encompassing variants of (ii) with warped mirror flows (Azulay et al.,
2021) for practical (deep) network architectures. A first sufficient condition for (i), introduced by
Marcotte et al.| (2023), demands merely that the parametrization be involutive. [Marcotte et al.|(2023)
have shown that this weaker condition applies specifically to the parametrization used in two-layer
ReLU networks (Stock & Gribonval (2022)). As we will see, a consequence of the analysis conducted
in our paper is the extension of this result to arbitrary DAG ReLU networks (Gonon et al., 2023)).

Conservation laws. The functions conserved during the training dynamics play a crucial role in
establishing that the dynamics of z(t) is governed by an (intrinsic) Riemannian metric that depends
only on z and the initialization 6(0). Indeed, when a trajectory 6(¢) is known to remain within
level sets {6 : h(0) = h(6y)} where h is a (vector-valued) conserved function, the dynamics are
effectively restricted to a manifold of lower dimension that is entirely determined by the initialization.
A particularly important class of conserved functions along these trajectories is given by the conser-
vation laws associated with a certain architecture-dependent parametrization ¢, a concept introduced
in|Marcotte et al.[(2023)). These laws depend exclusively on ¢, and notably, in the context of neural
network training dynamics, they represent quantities preserved across trajectories irrespective of the
initial conditions or the training data-set. In the specific case of linear and ReLLU neural networks,
these conservation laws correspond exactly to previously known “canonical” conserved functions
identified in |Du et al.| (2018)), as demonstrated by [Marcotte et al.| (2023). Furthermore, Marcotte
et al.|(2023)) establish that if the parametrization ¢ is involutive, there exist sufficiently many scalar
conservation laws to fully rewrite the original trajectory 0(t) in terms of ¢(0(t)) and the initial
conditions alone. In the linear network case, when so-called balanced conditions (a notion introduced
in|Arora et al.|(2019)) are satisfied (i.e., when the initialization sets all canonical conservation laws
(Chitour et al.| (2018)) to zero, h(y) = 0), it becomes possible to rewrite the flow in terms of
z = ¢(0), where ¢ corresponds to the product of weight matrices, as an intrinsic Riemannian metric
(Arora et al.| (2018));/Bah et al.[(2022)). Moreover, |Achour et al .| (2025)) extended this result to linear
convolutional networks in the case of a mean squared loss, but this time for arbitrary initializations,
with the Riemannian metric depending on the initialization. For linear networks and in the particular
case when the loss function is the square loss, Bah et al.[(2022) show that the trajectory evolves on
the manifold of matrices having some fixed rank under balanced condition. Still in the square-loss
setting, and in the case of two-layer linear networks, [Tarmoun et al.| (2021); Braun et al.[ (2022);
Dominé et al.[(2025) exploit the conservation laws to obtain an exact closed-form expression for z(t)
under specific configurations, whereas [Varre et al.|(2023) uses the same laws to analyse an implicit
bias of this dynamic.

Our main contributions. We first define the notion of intrinsic dynamic property (Definition [2.6]),
then the notion of intrinsic metric property (Definition[2.10) and finally the one of intrinsic recover-
ability property (Definition [3.1), and we show the implications (Lemma [2.1T|and Lemma[3.2)):

Intrinsic Recoverability = Intrinsic Metric = Intrinsic Dynamic.

We then provide a simple criterion that characterizes the intrinsic recoverability property (Theo-
rem [3.3), and show (Proposition that this criterion is quasi equivalent to the Frobenius property
(Definition [3.6). We prove that the so-called path-lifting (Gonon et al.| 2023)) reparametrization for
general ReLU networks of arbitrary depth satisfies this property (Theorem [3.8]), establishing that
any initialization of a general ReLU network satisfies the intrinsic recoverability property (Corol-
lary [3.9), as illustrated by a characterization of the intrinsic dynamic of a 3-layer neural network
(Proposition[3.10). Next, by establishing a necessary condition for the intrinsic metric property to
hold based on the study of kernels of linear mappings Theorem[2.14] we show that the intrinsic metric
property fails to hold for the natural reparametrizations corresponding of 2-layer linear networks
(resp. of attention layers), unless the initialization satisfies the relaxed balanced condition introduced
in Definition . 1] (Theorem [4.4). We then show that relaxed balanced initializations do satisfy the
intrinsic metric property, not only in 2-layer networks (Theorem [4.3)) but also in linear networks
of arbitrary depth (Theorem[4.6)), and we characterize the resulting intrinsic dynamic. Finally, we
extend our analysis to the infinite-depth limit of linear networks. We show that a set of functions is
conserved along the trajectory (Proposition[d.7), and, in contrast to the case L > 2-layer, we derive a
closed-form expression for the metric in the case of relaxed balanced initializations (Theorem [4.8).
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2 DYNAMICS OF OVER-PARAMETERIZED MODELS

In most machine learning models, overparameterization occurs due to inherent symmetries (such
as rescaling) within the parameter space § € R”. In practice, this redundancy can be factored out
through a function ¢ (often called a lifting (Candes et al., 2013;|Gonon et al.,[2023))) that captures
these symmetries. Although the resulting lifted variable z = ¢() € R? often lives in higher
dimension d > D, it also belongs to a lower dimensional manifold Z of dimension d’ < D, and
provides a representation of the essential structure of the model. We consider parameters 6(t) € R”
that evolve according to the gradient flow dynamic with some initialization 6:

0(t) = —VL(0(t), 6(0) =6 (1)

to minimize the function £. In machine learning, £(9) is typically defined as the empirical average
over training samples (x;, y;) of a quantity that depends on the output g(6, z;) of a neural network
with weights and biases collected in the parameter vector 6. The function ¢(6, ) can often be locally
reparameterized via an architecture-dependent lifting ¢(6), leading to the same factorization for the
global loss £. This is the starting point of our analysis, captured via the following assumption:

Assumption 2.1 (Local reparameterization). There exists d and ¢ € C?(RP, ]Rd) such that: for each
parameter 0y € R, there is an open neighborhood €2 > 6 and a function f € C%(£2, R) such that

VO e Q, £0) = f(¢(0)). @

The following examples illustrate common choices of ¢ for various neural network architectures.

Example 2.2 (Linear neural networks). For a two-layer network with r hidden neurons and 6 =
(U,V) € R™" x R™*" (where D = (n + m)r), the model g(6,z) := UV Tz is factorized via
the map ¢rin(0) = U VT € R™*™ thus the empirical risk ¢ can also be factorized by ¢r;,. This
extends to L layers where = (U, --- ,Uy), with g(0,2) .= Uy, -- - Uy and ¢p3,(0) == Up, - - - Uy.
The resulting factorization of ¢ holds globally on {2 = R*.

Example 2.3 (ReLU neural networks). Consider g(#,z) = Uo(V "), with o(y) := (max(y;, 0));
the ReLU activation function. Denoting § = (U,V) with U = (uq,--- ,u,) € R"™", V =
(v1,--+,v.) € R™*" (so that D = (n + m)r). Consider #(0) = (U(0),V(0)) € RP and let
r € Xygy = R™ — Uj{vj(O)T:v = 0}. Then on any domain Q@ C RP such that (0) € Q
and 6 — 1(v]—~rx > 0) = ¢, , is constant over § € (, the model go(z) can be factorized by the
reparametrization ¢gery(0) = (ujv]—-r)gzl (here d = rmn) using g(0, x) = >, € »$;x, so £ can be
factorized by ¢gery With some forward function f: the reparametrization ¢gery(#) contains r matrices
of size n X m (each of rank at most one, so in particular one has d’ < D — r) associated to a “local”
f valid in a neighborhood of 6. A similar factorization is possible for deeper ReLU networks (cf
Neyshabur et al.|(2015); [Stock & Gribonval| (2022)); \Gonon et al.|(2023)) and we still write it ¢gery,
as further discussed in the proof of Theorem 3.8]

Example 2.4 (Attention layer). For an attention layer, the input X € RN *dim j5 the horizontal
concatenation of N tokens z(¥) € RY™ The layer output is
g(0, X) = softmax(XQ KX ") XV'0O € RV*4m where softmax(A); = %,
k=1 6% ik
with Q, K, V, O € R4 *4m We yse the reparameterization ¢yt (0) = (¢1, ¢o) where ¢; = Q'K
and ¢o = V' T O, such that g(6, X) = softmax(X ¢, X ') X ¢2, as done in Marcotte et al.[(2025).

Thus, similarly to the linear case Example L can be globally factorized by ¢, as f exhibits no
dependency on the specific parameter configuration 6. This naturally extends to multiple attention
layers by concatenating the corresponding factorizations.

2.1 DYNAMICS OF LIFTED PARAMETERS: TO BE OR NOT TO BE INTRINSIC?

This paper addresses a fundamental question underlying much of the efforts to characterize the
implicit bias of gradient-based methods: under what conditions does the gradient flow dynamics
equation [1]in parameter space  lead to a dynamics on the lifted parameters z(t) := ¢(6(t)) that can
be expressed as an intrinsic gradient flow on z? This is notably key when attempting to establish that
z(t) follows a mirror flow (Gunasekar et al.,|2017), which is a key step to characterize the implicit
bias of gradient-based optimization. We specifically examine when z(t) follows a flow with respect to
a Riemannian metric which, by definition depends only on z (and the initial parameter configuration
6o), thereby eliminating explicit dependence on the parameter trajectory 0(t).
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A starting point of the analysis is that, under Assumption [2.T]and by the chain rule

2(t) = 0(8(1)6(t) = —96(6(t)0(8(1)) TV f(=(1)). 3)
Thus our goal is to understand when the symmetric, positive semi-definite matrix
M(0) = 06(0)96(0) " “)

(corresponding to the so-called path kernel in when @ is the path-lifting associated to ReLU networks
Gebhart et al.[(2021))) can be solely expressed in terms of z and 6y during the trajectory, i.e. do we
have a function K = Kp, such that M (6(t)) = K (z(t))? When this is the case equation 3] becomes

i) = —K(2)Vf(2), @)

an ordinary differential equation (ODE) which is a Riemannian flow for the metric K ~!(z) (or a
sub-Riemannian flow for the pseudo-inverse K (z) when K (z) is not invertible) Boumal| (2023)),
hence associated to an intrinsic dynamic on the lifted parameters z(¢).

As illustrated next, rewriting M (6(t)) as a function of z() along the trajectory 6(z) is indeed possible
for simple linear networks, with a function K (-) that depends on the initialization 6.

Example 2.5 (A simple linear network). Consider g(6, z) = uvz, w1th 0 = (u,v) € R, x R™, and
z = ¢(0) = uv € R™ (cf Example 2.2). Then M (# ) qb( )0 =vv ' + u2Im. During the
trajectory u? — ||v|2 = ud — |lvg||* =: A (as h(0) := ||fu||2 1s conserved (Arora et al.[(2019)),
andas vv! = u"222" we have (u?)? — \u? — ||z||2 = 0 so that ¢2 = 2TV HIEE AQH” I As a result

along the whole trajectory we have M (0) = Ky, (z) so that z(t) satlsﬁes the ODE equat10nlw1th

AP
R [ TR

2
Koy, (2) = zz
00(2) )\+«/)\2+4||z|2
In particular when m = 1 one has Ky, (z) = /(u2 — v3)? + 422 hence 2 = —V/A2 + 422V f(2).

See Section [B| for more comments on that example. In the above example the function Ky, , as its
notation suggest, only depends on the initialization but not on the function f such that { = f o ¢. In
machine learning scenarios, f typically captures dependence on the training dataset. The intrinsic
metric Ky, (z) thus captures parts of the dynamics of z(t) due to the network architecture (via ¢) and
of the training algorithm (the gradient flow equation|l)) irrespective of the dataset and the learning
task (of course the latter still play a role via the V f(z) term in the ODE 2 = — Ky, (2)V f(z)). This
motivates the introduction of the following definition.

Definition 2.6 (Intrinsic dynamic property). 6, verifies the intrinsic dynamic property on 2 with
respect to ¢, if there is Kp, : R? — R¥* such that, for any f € C2, the maximal solution (-) of
equation [l with £ = f o ¢ satisfies M (0(t)) = Ko, (¢(0(t))) for each ¢ such that 6(¢) € Q.

2.2 CONSERVATION LAWS

Example [2.3] illustrates a phenomemon that we will systematically exploit in our analysis: with
the typical reparameterizations ¢ mentioned above, there exists a vector-valued function h : 6 —
h(#) € RY that is conserved along the trajectory and allows to exhibit a function Ky, such that
M(0(t)) = Ky, (z(t)) along the trajectory. As these will play a key role in our analysis we now
introduce the essential concepts related to conservation laws.

We denote ¢y, - - - , ¢4 the d coordinate functions of the reparameterization ¢ : R” + ¢(#) € RY €
C>=(RP R%). Since ¢ yields a factorization of the loss, functions h such that Vh(#) L V¢, () for
each ¢ and each 6 remain constant along the trajectory. This has been thoroughly analyzed, see e.g.
Marcotte et al.| (2023;2024)), using the following definition.

Definition 2.7 (Conservation law for ¢). A function h € C'(2,R) is a conservation law for ¢ on {2
if for any 6 € 2 one has 9¢(0)Vh(0) = 0, i.e. for each § € Q and i, (V;(0), Vh()) = 0.

Proposition 2.8. Under Assumptwnnon @, if h € CL(Q,R) satisfies 0¢(0)Vh(0) = 0 for every
0 € Q, then h remains constant during the trajectory 6(t) of equation I for any initialization 6y € €.

The conservation laws associated with a given parameterization ¢ have been almost exhaustively
studied for parameterizations corresponding to linear networks, ReLLU networks, and attention
layers. In particular, prior work has shown that all conservation laws for ¢ in the cases of ReLU
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(cf Example 2.3)) and linear (cf Example [2.2)) networks (see Marcotte et al.| (2023)) as well as for
an attention layer (see Marcotte et al.| (2025)) are captured by the following proposition (Marcotte
et al.|(2023)). This has been proven theoretically for two-layer networks and empirically validated
for deeper architectures using symbolic computation (see Marcotte et al.|(2023)). It is worth noticing
that all conservation laws in such cases are polynomials.

Proposition 2.9 (Conservation laws for classical ¢ on R?). Consider 0 = (Ug,---,U;) and
¢rin(0) == Uy - - - Uy from Example( resp. ¢rery from Example . The functions
h; : 0 UL U1 — UU;' (resp. by : 0 — Diag(U,LUipr — U;U;'))

K3
are conservation laws for ¢piy, (resp. ¢rery). Similary, considering 6 .= (Q, K,V, O) and ¢y from

Example h:0— (QQT — KKT,VVT —0O0") is a set of conservation laws for ¢,xs.

2.2.1 INTRINSIC DYNAMICS VIA CONSERVATION LAWS

Given conservation laws h(6) for ¢, the trajectory 0(t) for equationE]remains at all times on the set
My, ={6:h(0) =h(b)}, 6)

determined by 6. This holds true for any function f such that ¢ = f o ¢ (hence, in machine learning:

for any task/loss and any dataset, provided that the network model is (locally) factorized via ¢).

To establish the existence of a function Ky(+) such that M (0(t)) = Ky, (z(t)) on the whole trajectory,
a natural relaxation is thus to establish a related equality on the whole set M, rather than only on a
specific trajectory. This leads to the following definition and its immediate consequence.

Definition 2.10 (Intrinsic metric property). We say that 8 verifies the intrinsic metric property on an
open set U > 6 with respect to ¢, if there exists conservation laws h(¢) € R for ¢ and a function
K, € C*(R4,R¥*4) such that M () = K, (¢(0)) for each § € My, NU.

Lemma 2.11. If 0y verifies the intrinsic metric property on U with respect to ¢, then it also
verifies the intrinsic dynamic property[2.6lon U with respect to ¢.

Remark 2.12. 1t is not difficult to check on all examples considered in this paper that if 6y satisfies
the intrinsic metric property with respect to ¢ on some open set U, then any 6, € M, also satisfies
the property on a properly modified open set U’, with the same function K. This function thus only
depends on h(f)), and we denote it Ky,(5,) when needed to highlight this fact.

Remark 2.13. Lemma [2.1T|remains valid with a slightly weakened version of Definition[2.10} where
Ky, is not required to be smooth. Yet, since the existence of a smooth solution to the resulting
intrinsic ODE equation is simplified when Kjy, is C' we chose to include this in the definition.

The following theorem (proved in Section|C)) establishes a necessary condition for the intrinsic metric
property to hold. We use it to show that the property does not always hold for linear networks.

Theorem 2.14. Consider h € C*(RP RY), ¢ € C2(RP,RY), and 6y € RP such that the matrix
oh(0) € RN*D has constant rank on Mg, N U with U > 6y an open subset of RP and My, =
h=1({h(0y)}). Then (i) = (ii), where

(i) There exists an open set O D ¢(Myg,) N U and a map Ky, € C*(O,R**9) such that for
each 0 € My, NU: M(0) = Ky, (¢(9));

(ii) kerd¢p(0) Nkeroh(0) C kerdM (0), VO € Mg, NU. @)

A trivial case where equation [7] holds is when the intersection of kernels on the left hand side is zero:

kerd¢(0) Nkeroh(0) = {0}. ®)
This stronger assumption can in fact be shown to imply the intrinsic metric property (see Theorem [3.3]
in the upcoming section), and we will show (cf Corollary [3.9) that, with ¢rery associated to general
ReLU networks of any depth, there exists a set of conservation laws such that equation 8]indeed holds
for any initialization. This implies the intrinsic metric property and therefore the intrinsic dynamic
property irrespective of the initialization for ReLU networks with with ¢gery. For linear networks
with more than one hidden neuron, we will show that it is not possible to reduce the problem to
equation @ Nevertheless, certain initializations (known as balanced conditions (Arora et al.|(2019))
are known to satisfy the intrinsic metric property with respect to the reparametrisation ¢, (cf (Arora
et al., 2018, Theorem 1), (Bah et al.} 2022, Lemma 2)). In this paper, we generalize this result to
so-called relaxed balanced initializations (see Definition [4.T)). Moreover, we show that in certain
configurations, relaxed balanced initializations are exactly the only ones that satisfy the intrinsic
metric property (cf Theorem[d.3]and Theorem [4.4).
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3 INTRINSIC RECOVERABILITY AND APPLICATION TO RELU NETWORKS

In this section we consider a stronger condition called intrinsic recoverability property which requires
not only that M (6(t)) can be rewritten as a function of z(¢) and the initialization, but that at each
point of the trajectory 6(¢) itself can be fully expressed in terms of z(¢) and the initialization 6. In
other words, in this scenario, (¢) can be completely recovered from the parameterization ¢ and the
initialization alone, hence the name. As we will establish, this apparently strong property indeed
holds when equation [§]is satisfied, which is always the case for ReLU networks.

3.1 INTRINSIC RECOVERABILITY IMPLIES INTRINSIC METRIC

Definition 3.1 (Intrinsic recoverability property). We say that 6, verifies the intrinsic recoverability
property on an open set U > 6 with respect to ¢, if there exists conservation laws h(f) € R" for ¢
and a function I'(-) € C(R? x RN RP) such that § = T'(¢(0), h(6)) for each 6 € U.

When this property holds, each 6§ € My, satisfies M(0) = M[[(¢(0),h(8))] =
MIT(4(0),h(00))] = Knsy)(0(0)) (With Ky g,)(+) := MT'(-,h(6))]), hence the following result.

Lemma 3.2. If 0, satisfies the intrinsic recoverability property on an open set U 3 6y with respect to
@, then 0 satisfies the intrinsic metric property on U with respect to ¢.

The intrinsic recoverability property is equivalent to equation 8] (see Section D] for a proof):

Theorem 3.3. Given ¢ € C*(RP R?) and 0y € RP, the following are equivalent: (i) there are
conservation laws h € C*(Q, RN) for ¢ on a neighborhood Q of 0y such that equation|8|holds for
each 0 € My, NCY; (ii) there is an open set U C §2 on which 0y satisfies the intrinsic recoverability
property Definition (and thus the intrinsic metric property Definition with respect to ¢.

3.2 THE FROBENIUS PROPERTY IS ALMOST EQUIVALENT TO INTRINSIC RECOVERABILITY

We are interested in condition equation 8] as it implies the intrinsic recoverability property, and thus
an intrinsic dynamics. It may not seem obvious a priori how to verify whether such a condition can
hold, nor how to construct suitable conservation laws h in practice. Intuitively, one should select
as many conservation laws as possible while ensuring they remain independent, in a specific sense
defined by (Marcotte et al.,[2023), Definition 2.18). As shown by Marcotte et al.| (2023)), knowing
the maximal number of such conservation laws can be checked using Lie brackets of the associated
vector fields. We recall the relevant definitions and explain how this criterion applies in our setting.

Definition 3.4 (Lie brackets). Given two vector fields x1, x2 € C>® (0, R?), the Lie brackets [x1, x2]
is the vector field defined by [x1, x2](0) = Ox2(8)x1(0) — Ix1(0)x2(0).
Definition 3.5 (Generated Lie algebra). Given some function space W C C>°(0,R?), the generated

Lie algebra of W is the smallest subspace of C>(©, R?) that contains W and that is stable by Lie
brackets, and is denoted Lie(W).

The trace at § € © of any set W C C> (O, RP) of vector fields is defined as the linear space
W(0) == span{x(0) : x € W} C RP, )
and for any infinitly smooth ¢ we denote W, := span{V¢;(-), 1 <i < d} C C>(©, R%).

Definition 3.6 (Frobenius property). A C* function ¢ satisfies the Frobenius property on €1 if for all
0 € Q, Lie(W,)(0) = W ,(6). This property is slightly weaker than involutivity (Isidori| (1995)).

The following proposition (proved in Section [E)) relates this property to the intrinsic dynamic property
of . In particular, as Frobenius property does not hold for ¢ ;, (Marcotte et al.,|2023, Proposition
I.1), it is not possible to have the intrinsic recoverability for linear networks with classical ¢rip.
Proposition 3.7. We have the following implications (i) —> (ii) = (iii): (i) ¢ satisfies the
Frobenius property on () and the trace of W , has its dimension that is constant on €; (i) For any
0o € S, there exists conservation laws h for ¢ on a neighborhood U C ) of 6y such that for each
0 € Mo, equation[8|holds; (iii) ¢ satisfies the Frobenius property on .

The result presented in |Li et al.| (2022) can be recovered as a special case of Proposition the
authors require the reparametrization ¢ to be commuting, meaning that for all pairs ¢;, ¢;, the Lie
bracket [V¢;, Vo;] is equal to zero. In this setting, ¢ naturally satisfies the Frobenius property, and
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the result of [Li et al.|[(2022) establishes an even stronger property: the dynamics on ¢(#) form a
mirror flow. In particular, it is worth noting that diagonal networks satisfy that their parametrization
(product of the diagonals) is commuting (as all coordinates functions are separable), which thus (L1
et al.|(2022)) implies a mirror flow dynamic, and thus an implicit bias (see e.g. |Azulay et al.| (2021)).
In contrast, we consider a weaker condition; we seek only to determine whether the dynamics on
z = ¢(0) can be expressed intrinsically as a Riemannian gradient flow.

3.3 APPLICATION TO GENERAL DEEP RELU NETWORKS

We now show that the intrinsic recoverability property is satisfied for any initialisation for the
parametrisation ¢ associated to a large class of (deep) ReLU neural networks. While this result is
already known in the two-layer case (Marcotte et al., 2023, Examples 3.5 and 3.8), here we establish it
for the general model of ReLU networks of|Gonon et al.[(2023)), associated to a directed acyclic graph
(DAG) of any depth, including skip connexions and arbitrary mixes of ReLU/linear/max-pooling
activations. We first establish that @rery satisfies the Frobenius property (see Section [ for a proof):

Theorem 3.8. The parameterization ¢rery used for ReLU neural networks with any DAG architecture
(see|Gonon et al. (2023) and our Example|2.3))) satisfies the Frobenius property on (R\{0})".

This leads to the following corollary (proved in Section [G)) which guarantees the existence of a
maximal set of conservation laws big enough to ensure the intrinsic recoverability property.
Corollary 3.9. There exists a dense open set © of RP such that any 6y € © admits an open
neighborhood U C © on which 0 satisfies the intrinsic recoverability property, and thus the intrinsic
dynamic property with respect to ¢gery-

In practice, the known conservation laws given in Proposition[2.9]yield, on a dense open subset, m
independent conservation laws, where m corresponds to the number of hidden neurons. To verify
that these are indeed the only ones, one must check that the trace of W, has dimension D — m;
while we do not prove this here, it is empirically supported by Marcotte et al.|(2023)), which confirms
that Lie(W, )(0) = W, (6) has dimension D — m when sampling random values of 6, as well
as random dimensions and depths. As a concrete example the following proposition (proved in
Section H)) provides the first closed form formula of the intrinsic dynamic for a three-layer ReLU
network with scalar input and output.
Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ¢rery reads{ﬂ
Z = ¢peo(u, V,w) := diag(u) V diag(w) € R"*™,
withu € R", V € R™™, and w € R™. Define © := {(u,V,w) : u;, Vij,w; # 0Vi,5}, and let
0(t) be the maximal solution to equation |l|with 0(0) = 0y € ©. The flow preserves the n + m
conservation laws h(0) := ((u? — > Vi, (w? — 32, Vi2),), and the intrinsic dynamics
2 =—Kp,(2)Vf(z) on z=vec(Z) corresponds to
7 = —ddiag(Vf(2)Z") diag(a) ™t Z—diag(a) Vf(Z) diag(B8)—Z diag(8) ! ddiag(Z "V f(Z)),
where: a) for any matrix M, ddiag(M) := diag (Diag(M)), where Diag(M) extracts its diagonal as
a vector and diag(v) is the diagonal matrix with entries of v; and b) the vectors o = a(Z, h(6p)) €
RZy and 3 := B(Z,h(6p)) € RY, (uniquely determined by Z and h(6y)) satisfy

o? —|Z* diag(B) "1, — Ao a=0, B*>—(Z]) diag(a) "1, —p®B=0, (10)

with | Z|? € R" ™ the element-wise square on the matrix Z € R"*™) and with A € R", p € R™
such that h(6y) = (X, ). When X, p = 0, equation[10|entirely characterizes (cx, 3).

4 DEEP LINEAR NEURAL NETWORKS AND LINEAR NEURAL ODES

For L-layer linear networks, § = (U, ..., U}) and the path-lifting formalism (Gonon et al., 2023)
yields a factorization via ¢gery, leading to an intrinsic dynamics by the results of the previous section.
It is more common however to consider the dynamics of Zy, := ¢rin(0) = UL - - - U, since ¢rip is
more efficient that ¢pery in terms of dimension reduction. We now analyze the dynamics of Zp,(¢).

The gradient flow 0 1, = —V{(01) gives the evolution of Z}, (see e.g. (Bah et al., 2022, Lemma 2)):

{Sj =Up--- U Uy UL, Sp =14,

L
A S;VF(Z)T;, with
L Z j f( L) J T’jI:UlT"’UjT—lUj—l‘”Ul’ Ty =1d.

j=1

Y

'When written as a n x m matrix, we denote Z instead of z and also view V f(Z) as an n x m matrix.
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The metric M (6z,) on z1, = vec(Zy) is thus entirely characterized by (5;(0r,), TjH(HL))]L;f.
Definition 4.1 (Relaxed balanced conditions). We say that 87, := (U, --- ,U;) satisfies the relaxed
balanced condition if there exists A := ();); € R¥~! such that

Ul Uis1 —UU =\1d, V1<i<L-—1. (12)

(0-)balanced conditions (Bah et al.,[2022, Def 1) (Arora et al., 2019, Def 1) correspond to A = 0.

Remark 4.2. 1t is worth noting thatDominé et al.|(2025) used this exact same condition and called it
the A-balanced condition. However, the definition of A-balanced condition is already used (see (Arora
et al.,[2019, Def 1)) by the literature to refer to the weaker condition || UiTH Uis1—UU;T|| < \;. Other
works (see e.g. [Tarmoun et al.| (2021); Braun et al.|(2022)); [Varre et al.|(2023))) use stronger conditions
on the initializations, that satisfy in particular the relaxed balanced conditions of Definition

4.1 DEEP LINEAR NEURAL NETWORKS

We first detail the study of the two-layer case, and then generalize it to the deep case.

Matrix factorization. We consider the two-layer case where 6 = (U, V) € R"*" x R™*" and
with Z = ¢p3,(0) :== UV € R"*™. We assume 0(t) satisfies the gradient flow equationwith
0(0) = (Us—o, Vimo). We denote S := U,L Ui—g — V,_,Vizo € R"™*".

If 0 satisfies the balanced condition equation|[12|.S = 0, then (Arora et al.,| 2018, Theorem 1) (Bah
et al., 2022 Lemma 2) ) satisfies the intrinsic metric property with respect to ¢;, and

Z=-NZZTVNFZ)-Vf(ZWVZTZ. (13)

We generalize this result (see Section [[|for a proof) to a broader class of initializations: all initializa-
tions satisfying the relaxed balanced condition equation[T2] possess the intrinsic metric property.

Theorem 4.3. Consider 0y := (Ui—o, Vi=o) where both Ui—g € R"*" and Vi—g € R™*" have full
rank r < min(n, m), and assume S = \d,. for some \ € R. Then, on a neighborhood ) of 0;—y:

. A 1 A 1
Z=TMggr |Fldy+ 5V NIy +42Z7 | VI(X)=VF(X)gr7 | =5+ 5V N1 +427Z|

(14)
where 11 4 is the orthogonal projector on rangeA.

Note that equation [I3|corresponds indeed to equation[T4 with A\ = 0. Note also that Theorem 4.3]
generalizes to the case < min(n,m) the expression obtained in (Dominé et al., 2025, Theorem
5.2) for the special case r = min(n, m) (if Dominé et al.[(2025)) focus in general on the squared
loss, the proof of their Theorem 5.2 does not rely on the use of this specific loss: this result can be
applied for any loss, as ours). The following theorem shows that the relaxed balanced condition is
actually a necessary condition when r < max(n,m) to have the intrinsic metric property. Its proof
(see Section[J) relies on showing the non-inclusion of the kernels of equation

Theorem 4.4. Let 6y := (Ui—o, Vi=o). Assume that both Ui—y € R™*" and V;—y € R™*" have a
full rank and that r < max(n,m). If S == U,_ Us=o — V,L Vizo # Nd,., then 0y does not satisfy
the intrinsic metric property (Definition [2.10) with respect to ¢yin.

The case r > max(n,m) is still open. For n = m = 1 and any r, the following proposition (proved
in Section [K]) shows that all initializations do satisfy the intrinsic metric property with respect to ¢rin.
Proposition 4.5. Let 0 := (u,v) withu € R" and v € R". Then z := ¢rin(0) = (u,v) € R. We
denote S == u;_ou;_o — vi—ov,_o € R"*". Then one has 2 = —/2tr(S?) — tr(S)2 + 422V f(2).

In particular, it is important to note that the two-layer linear analysis allows these results to be applied
directly to networks composed of attention layers (Example [2.4]).

Deep linear neural networks. Consider linear neural networks of arbitrary depth, with square
weight matrices 0y, :== (Uyp,...,U;), U; € R™*™. The following theorem (proved in Section i
generalizes Theorem [4.3]to this setting. In the case of balanced conditions (A = 0), our theorem
recovers the dynamics described in (Arora et al.||2018| Theorem 1), (Bah et al., 2022, Lemma 2).

Theorem 4.6. If 01,(0) satisfies the relaxed balanced condition (Definition with X = (\;);
then during the trajectory 01,(t) of equation|l| the matrices in equation (I 1| satisfy S;(0r(t)) =
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Q;UL(OUL(®)T) and Ty(0r(t)) = R;(Ur(t)TUL(t)), where Q;(x) := [1;2 " (x — ax) with
ao = 0 and aj, := Zle Ap—ifork =1,---L —1and Rj(x) := ch;%(x —by) with by := 0
and by, :== — Zle N\i. Moreover ULU, (resp. U] Uy) is the unique root of Z1,Z] = Qo(ULU; )
(resp. of ZL'—ZL = RL,l(UlTUl)) with spectrum lower bounded by maxo<p<r—1 ay (resp. by
maxo<k<r—2 bx). This implies that all matrices in equationare entirely characterized by Z1, and
the initialization, hence 01, (0) satisfies the intrinsic dynamic property on RP with respect to ¢p;n.

4.2 INFINITELY DEEP LINEAR NETWORKS

We next consider the limit when L — +oo of deep linear residual networks with parameters
U, =1d,, + .A%, and thus focus on the analysis of the parameter § = (As)se[m], where A, € R"*"
corresponding to linear neural ODEs (introduced by [Chen et al.| (2018))). Remarkably, our theoretical
approach still applies in this regime, and yields a closed-form formula for the metric. We thus study the
dynamics of parameters §(t) € X where X corresponds to the Banach space (C1([0, 1], R™*™), ||-||c1)
where || fllcr := max{]| f||so, || /'|loc }» and such that the trajectory ¢ — 0(t) = (As(t))sefo,1] is the
solution of the gradient flow on £(#), given by the (family of coupled) ODE

vse 0.1, () = —g.0), with .(t) = 2 (0(1)) € RV, (15)

s

where we assume that the loss function ¢ : X — R is such that § — (%(0))86[071] is locally

Lipschitz on X (to ensure by the Cauchy-Lipschitz theorem that indeed there exists a unique maximal
solution 6(+) € C1([0,T), X) of equation [15|with a given 6(0)).

As an infinite-depth analog of Z;, = Uy, ... Uy, given any 6 € X we consider s € [0,1] — Z, =
Z,[0] € R™*" the unique global solution (as 6 = (As)sc(0,1] € X) of the state equation

%Zs = ASZSa Zy = 1d,. (16)

The analog to Assumption [2.1|is to assume that £(6) = f(ZSZl) with f € C', and we now want to

know if it is possible to rewrite the dynamic % (t) as an intrinsic dynamic that only depends on
Zs—1(t) and the initialization 6(0). The following proposition (see Sectionfor a proof) gives a set
of conserved functions during all trajectories of equation

Proposition 4.7. Forany s € [0,1], consider hy : 6 := (Ay)sc0.1) € X — AL+ AT +[A], A €

R™*™ where we denote A, = %As. Then for any s € [0,1], one has for any t: hs(6(t)) =
h,(0(0)), where 0(t) is the maximal solution of equation[I3|with initialization 6(0).

Moreover, the following theorem (see Section |N| for a proof) shows that for relaxed balanced
initializations, the evolution of Z7(t) = Zs—1(t) is entirely described by Z and the initialization.

Theorem 4.8. If the initialization 0(0) satisfies that for each s € [0,1] hs(6(0)) = A(s)Id,, for some
A(+) € C°([0,1],R), then one has

1
Z = */O (21217 ) exp(y(s))V F(Z21)(Z) Z1)°ds,

withy(s) = (1=s)11 (1) —th1 (1—s)— st (1) +1b2(s), wherepy = s € [0,1] — [ [5' A(1—v)dvdu
andy : s € [0,1] = [ [i" AMv)dvdu. If A(-) = 0 (balanced-condition), then ~(-) = 0.

In a sense, this theorem captures the infinite-depth limit (L — +oc0) of Theorem 4.6] while offering
the key advantage of an explicit closed-form expression for the associated metric.

CONCLUSION

In this paper, we investigated when high-dimensional gradient flows can be recast as intrinsic
Riemannian flows in lower-dimensional spaces. Our results show that such reductions are always
possible for ReLU networks under path-lifting parametrization, and for linear networks under relaxed
balanced initializations. A central contribution is our analysis of the “path-lifting metric”, a recently
introduced and still largely unexplored object, for which we provide an intrinsic characterization in
the 3-layer case. Extending this analysis to deeper or more general architectures could shed new light
on the geometry of gradient dynamics for general ReLU networks.
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A A TABLE THAT SUMMARIZES WHICH PARAMETRIZATIONS CAN BE USED TO
ANALYZE WHICH TYPE OF NEURAL NETWORK, ALONG WITH THE
CORRESPONDING RESULTS.

Parametrization
Network type PLin PreLU
Linear network IMP: only for relaxed balanced 6, | IMP: for all 6,
Dimension: d' < D d=D—-k=D
DAG ReLLU N/A IMP: for all 6,
d=D—-k=D

IMP = intrinsic metric property ; d’ = dimension of the manifold of ¢(6); k= # hidden neurons

Table 1: The table summarizes which parametrizations can be used to analyze which type of neural
network, along with the corresponding results.

B MORE COMMENTS ON EXAMPLE[2.3]

In example equation when A — 400 Ky, /\ — I, (the Euclidean metric). When A = 0, one
has Ky, (2) = ||z||Im + ZHZTH for every z # 0, and in particular, by the uniqueness result in the

ZZ-r

Cauchy-Lipschitz theorem, 0 is reachable only if zy = 0. When A — —o0, Ky, /|A\| — oz - See
the supplementary material for numerical illustrations of these different behaviors.

C PROOF OF THEOREM [2.14]

Theorem 2.14. Consider h € C*(RP,RY), ¢ € C}*(RP,R?), and 0y € RP such that the matrix
oh(0) € RN*P has constant rank on My, NU with U > 0y an open subset of R and My, =
h=1({h(0y)}). Then (i) = (ii), where

(i) There exists an open set O D ¢(Myg,) N U and a map Ky, € C*(O,R**9) such that for
each € My, NU: M(0) = Ky, (¢(9));

(ii) kerd¢p(0) Nkeroh(0) C kerdM (0), VO € My, NU. @)

Proof. (i) = (ii).

Assume (i) and fix § € My, NU and a vector v € ker O¢p(6) Nker Oh(6). Applying the chain rule in
the ambient space RY (possible as v € ker Oh(6) = Tp.My, because Oh(#) has its rank that remains
constant on My, N U by hypothesis) gives

OM(0) - v = 0K, (¢(0)) - (09(8) - v) = 0Ky, (#) - 0 =0,
hence v € ker 9M (6) and (ii) holds.

D PROOF OF THEOREM [3.3|

Theorem 3.3. Given ¢ € C2(RP R?) and 6y € RP, the following are equivalent: (i) there are
conservation laws h € C*(Q, RY) for ¢ on a neighborhood §) of 6y such that equationé]holds for
each 0 € Mgy, N SY; (ii) there is an open set U C §) on which 0y satisfies the intrinsic recoverability
property Definition (and thus the intrinsic metric property Definition [2.10) with respect to ¢.

12
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Proof. We first show (i) = (ii). We assume (7). Observe that given any § € RP equationis

equivalent (by rank theorem) to
99(0)\ _
rank (6h(9)> =D. a7n

By smoothness of ¢ and h, if equation [I7]holds at 6, is also holds in a whole neighborhood U of 6.
By the implicit function theorem, denoting F'(6) := (¢(8), h(#)), it implies that 6 can be expressed
on UU as 0 — F~1(6(6), h(6)) = T'(6(6), h(6)).

We now show (i4) = (i). We assume (i7). Then on U one has § = T'(¢(6), h(#)). Thus on
Mg, NU, one has § = T'(¢(0),h(y)). We now fix some § € My, N U and we consider a vector
v € ker d¢(0) N ker Oh(h).

Applying the chain rule in the ambient space R” on I' gives
v =Idpv = Oy I'(#(0), h(p)) - (a¢(9) -v) =0r'#)-0=0,
and thus v = 0. O

E PROOF OF PROPOSITION 3.7l

Proposition 3.7. We have the following implications (i) = (ii) = (4ii): (i) ¢ satisfies the
Frobenius property on §) and the trace of W , has its dimension that is constant on €; (i) For any
0o € §, there exists conservation laws h for ¢ on a neighborhood U C 2 of 0 such that for each
0 € My, equation holds; (#i1) ¢ satisfies the Frobenius property on §).

Proof. (i) = (4) is direct consequence of the proof of (Marcotte et al.,[2023| Proposition 3.7).

We now show (ii) = (4i7). Let us assume (i7). We fix 6. Then by assumption on U > 6,
6 =T'(h(6), ¢(9)), and by using Proposition[3.7 one has ker d¢(6) Nker dh(f) = {0} on Mg, NU.
Thus equation|[I7]holds on a open neighborhood O of 6. As h are conservation laws for ¢ on U, one
has on O N U that W, (0) = D — rankdh(6).

But as (VA(0), Vo:(0)) = (VA(9),Ve,(0)) = 0 — (VA(0),[Véi, Ve,)(6)) = 0, one has
necessarly dimLieW ,(6p) < D —rankOh(6) and as one also has D —rankOh(fp) = dimW ,(6p) <
dimLieW ,(6) then one has W () = LieW (o). This holds for any 6, which concludes the
proof. O

F PROOF OF THEOREM [3.8l.

Theorem 3.8. The parameterization ¢rery used for ReLU neural networks with any DAG architecture
(see|Gonon et al|(2023) and our Example [2.3)) satisfies the Frobenius property on (R\{0})".

d

Proof. We consider a parametrization ¢ : 0 — (¢;(0))%_;, where all ¢; are monomial in =

(i)
(01, ,0p) € (R\{0})P, ie. ¢:(0) = HzD:1 0, . Moreover a variable 6, appears in some

coordinate with exponent ag)

exponent aék) = agi). These assumptions are indeed satisfied for the path-lifting parametrization

orery associated to general ReLU networks (Gonon et al.| (2023); |Stock & Gribonval| (2022))),
associated to a directed acyclic graph (DAG) of any depth, including skip connexions and arbitrary
mixes of ReLU/linear/max-pooling activations (and even slight generalizations of max-pooling).

> 0, then every other coordinate that contains 6, uses the same

Now let us consider two indices ,j € {1,...,d}. Denote I (resp. J) the subset of all indices ¢ such

that oz?) 2 0 (resp. aéj ) # 0). By abuse of notation we write ¢ N j (resp. i\j etc.) the set I N .J
(resp. I\J) and denote 6;; etc. the restriction of 6 to the corresponding entries. In particular, one

can decompose
0 = (0ing Oirjs Ojin Oiing)e)-
We write

$i(0) = ¢in; (0inj) daj (01r;),  05(0) = din; (Bins) djni(0514)

13
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where ¢;n;(-) is the maximal monomial factoring both ¢;(-) and ¢;(-), and ¢;\ ; (resp. ¢;\;) is the
unique monomial such that

Bi(-) = Dinj(+) i (), ?5(-) = Dinj (-) P ().

Then one has:

Voini s Voinjdini
Vi (6) = ¢mjg¢i\j and Vo¢;(0) = ¢mj%¢j\i
0 0
and
D bin b\ ; V¢mjv¢;r\j 0 0
82¢,(0) = Vo Vo,  0¢nbin; 0 0
0 0 0 0
0 0 0 0
Thus
O hindi ; VéﬁmijﬁiT\j 0 0\ /Vinjdii
82¢i(9)v¢j (0) = v¢i\jov¢;wj 32¢i\()j¢mj 8 8 ¢mj%¢j\i
0 0 0 0 0

8 ¢zﬂj v¢lﬂ] ¢j\z¢l\j
V¢Z\J ||V¢zﬁj H ¢]\z

0

D?¢in Vinjdinj
Voo, [V in;
:¢j\i ¢\JHO¢HJ”

0

and similarly one has:

9?2 qu]VQSmJ?bJ\Z
96;(0)Vei(0) = da; wj\zllwma“

Finally one has:

. . — —qul\ ||V¢m H o8 \i
[V¢Z7V¢]](9) - v¢]\z]“v¢zﬁjj|| ¢z<g

Vgﬁz\] ¢J\z
Vo

= ||Vinill?
V15 i)

¢j\lv¢’bﬂ]

PiNiVoi — G ; VP = din;

]ﬂz

But as: )
2

As ¢in; # 0 (indeed 6 € (R \ {0})P, one then has (bj\lV@m € W, (0) and thus
—9i\; Voini

[Véi, V;](0) € W, (6).

14
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G PROOF OF COROLLARY

We first prove the following proposition (recall that W, is defined in equation E] and below).

Proposition G.1. If ¢ : RP — R< is polynomial, then there exists a dense open set © of RP such
that for any 6 € ©, dimW , (0) = maxg, cgp dimW (")

Proof. Denote M := maxg cgp dimW,(¢') € N. Considering §, € R” such that dimW ,(6,) =

M, there exists distinct indices 4y, - - - , ips such that the vectors V¢, (6p) € RP,1 < j < M are
linearly independent. There also exists a set I of M coordinates such that the restriction of these vec-
tors to I remains linearly independent. The function 6 — 1(0) := det[(V;, (0))1,- -+, (Vi,, (0)1]
is a polynomial on R with n(fy) # 0, hence the set Z of its zeros is a closed negligeable set
of RP. Thus the open dense subset of RY defined by © = RP \ Z satisfies: for all § € ©:
dimW ,(0) = M. O

Corollary 3.9. There exists a dense open set © of RP such that any 6y € © admits an open
neighborhood U C © on which 0 satisfies the intrinsic recoverability property, and thus the intrinsic
dynamic property with respect t0 ¢gery-

Proof. Since ¢rery is polynomial, we can apply Proposition[G.I]to obtain an open dense set © on
which the dimension of the trace of W¢ remains constant. By Theorem Orery Satisfies the
Frobenius property. By Proposition[3.7]every 6 € © admits a neighborhood U on which it satisfies
the intrinsic recoverability property with respect ot ¢gery. By Lemma such a parameter 6 also
satisfies the intrinsic metric property on U with respect to ¢pery. [

H PROOF OF PROPOSITION [3.10)

Lemma H.1. Let Y € RY;™. Then there exists a unique pair (o, 8) =: T'(Y) of vectors o € RZ,,
B € RY, such that

o® =Ydiag(8) '1,,, and 3% =Y "diag(a)'1,.

Proof. Define the mappings

S(ﬁ) = Ydiag(/@)_llma T(Oé) =/ YTdiag(a)_lln-

Let D(a,a’) := |/log(a/a’)||o denote the Thompson metric on (R% )%, where R is the set of

positive real numbers. It is known that ((R*Jr)d, D) is a complete metric space. The linear operator
Y is 1-Lipschitz with respect to D, according to the Birkhoff contraction theorem. Moreover, the
square root function is %—Lipschitz in this metric. Hence, the composition S o T' is i—contracting.
By the Banach fixed-point theorem, there exists a unique fixed point of S o T, which implies the
existence and uniqueness of the pair (c, 3) solving the original equations. O

Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ¢rery readf]
Z = ¢peru(u, V,w) := diag(u) V diag(w) € R"*™,

withu € R", V € R"™, and w € R™. Define © := {(u,V,w) : u;, V;j,w; # 0V, j}, and let
0(t) be the maximal solution to equation |l|with 0(0) = 6y € ©. The flow preserves the n + m
conservation laws h() = ((u? — > Vi )iz (w3 =32, Vzi);”:l) and the intrinsic dynamics
2= —Kp,(2)V[(2) on z = vec(Z) corresponds to

Z = —ddiag(Vf(2)Z") diag(a) ! Z—diag(a) Vf(Z) diag(8)—Z diag(B8) ' ddiag(Z 'V f(2)),

where: a) for any matrix M, ddiag(M) := diag (Diag(M)), where Diag(M) extracts its diagonal as
a vector and diag(v) is the diagonal matrix with entries of v; and b) the vectors o = a(Z, h(6y)) €
RZy and 3 := B(Z,h(6p)) € RY, (uniquely determined by Z and h(6y)) satisfy

o —|Z|* diag(B) "1, A0 a =0, B°-(|Z]*)" diag(a) 'L, —p©B=0, (10)

*When written as a n X m matrix, we denote Z instead of z and also view V f(Z) as an n x m matrix.

15
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with | Z|* € R"*™ the element-wise square on the matrix Z € R" ™) and with X\ € R", p € R™
such that h(0y) = (X, ). When X, p = 0, equation[10|entirely characterizes (e, 3).

Proof. Given the general definition of ¢gery (see e.g. [Neyshabur et al.| (2015); [Stock & Gribonval
(2022)); |Gonon et al.| (2023)), we study the factorization map
d(u, V,w) := diag(u) V diag(w),

where u € R, V € R™™™  w € R™ with u;, w; # 0.
Step 1: Gradient flow in parameters.
Let f : R"*™ — R and define the loss £(u, V,w) = f(¢(u, V,w)). Writing Z = ¢(u, V, w) and its
gradient G = V f(Z), the gradient-flow ODE equationu = 0,0, V=0l = —0y,lis:

4 = —Diag(G diag(w) VT)7

V = —diag(u) G diag(w),

w = —Diag (VT diag(u) G),
Step 2: Induced flow on z.
Since Z = diag(u)Vdiag(w), we have

Z = diag(n)Vdiag(w) + diag(u)Vdiag(w) + diag(u)V diag(w).

Substituting the above yields
Z = —ddiag(G diag(w)V ") Vdiag(w) — diag(u?) G diag(w?) — diag(u)Vddiag (V " diag(u)G),
where we set ddiag(M) = diag(Diag(M)).

Eliminating V via V = diag(u)~!'Zdiag(w)~! (possible as u;,w; # 0 on ©) and using
ddiag(M diag(a)) = ddiag(M) diag(a) one obtains

7 = —ddiag(G=") diag(u~?) Z — diag(u?) G diag(w?) — Z diag(w™?2) ddiag(Z ' G).
Moreover by Corollary[3.9there exists conservation laws h and a function I such that § = (u, V,w) =
I'(¢(8),h()) = T'(Z,h(H)) so that o := u? and B := w? (entrywise multiplication) can both be

expressed as functions a(Z, h(#)) and 3(Z, h(#)). Below we explicit such conservation laws and
characterize properties of « and 3.

Step 3: Conserved quantities and elimination of o, 3.

The flow equation [T] preserves the following n + m conservation laws:

m
- . 2 2 _
Vi=1,...,n: uj— E Vii =N,
j=1

Vi=1,...,m: w?—ZVi?:M
i=1

for given constants A € R™ and p € R™ determined by 6. Since V;; = Z;;/(u;w;), then
(u?,w?) > 0 is a solution of the coupled system
moz2
u? uf—zwg —\u? =0,
j=1 J
" Z2

2. 4 _ g2
w? o w; g 2 pjwi = 0.

i=1 ¢
In vector-matrix form (with entrywise squaring):

a=u? pB=u

16
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o —|ZP diag(8)"'1m —A©a =0, B —(|Z]*)" diag(e) "1, —p© B =0,
where | Z|? is the elementwise square of Z and ® is the element-wise product.
Special case A = 0, u = 0.

Then the system reduces to

o = (|ZP) diag(B) "1, B*=(1Z]*)" diag(a)~'1,. (18)

By Lemma |[H.1|with Y = |Z|? (possible as Z;; = u;V;jw; # 0 since § € ©), the exists a unique
solution (e, 3) > 0 of the system equation

In the scalar case (n = m = 1) with | Z|> = 22 a scalar, the solution is = 3 = (|Z|?)}/? =

|2|2/3. O

I PROOF OF THEOREM 4.3

Theorem 4.3. Consider 0y = (Ui—o, Vi—o) where both U;—g € R"*" and Vi—y € R™*" have full
rank v < min(n, m), and assume S = \d,. for some A € R. Then, on a neighborhood 2 of 0;—¢:

. A 1l roe7——— A 1l o
(14)
where 11 4 is the orthogonal projector on rangeA.
Proof. Step 1: rank of Z.

As r < min(n,m) and as both U;—g € R™*" and V;—g € R™*" have full rank equal to r, it
remains the case in a neighborhood 2 of 6 := (U;=0, Vi=0), and it is also the case for Z = UvrT.

Step 2: A quadratic equation for P := UU .

Compute
zz"=uv'vu' =Uu(V'V)U".

With the hypothesis UTU — VTV = \d, we get V'V = UTU — AId,, hence
2Z"=UU'U - N4, )UT =0U"0U" — \UUT = P? - \P.
Thus P satisfies the quadratic matrix equation

P2 \P-2ZZT = 0. (19)

Step 3: Simultaneous diagonalisation and scalar reduction.
Write Z' :== ZZ . Because
P=UU", Z'=UWV'viuT,

and U T U differs from V "V only by a scalar multiple of the identity, we have (UTU)(V V) =
(VTV)(UTU). Encapsulating by U and U " yields PZ’ = Z' P. Hence P and Z' are simultaneously
diagonalisable: there exists an orthogonal matrix W € R™*"™ such that

P =W diag(oy,...,00)W ', Z' =W diag(pi1, ..., )W,
with o;, u; > 0 and where we assume o1 > --- > g, and g > -+ > [y,
In the common eigenbasis, equation [T9becomes for every ¢
af—Aai—uiz().

+ /\i\/)\2—|—4,u1

o = 5

Its two roots are

17
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By the first step, one already has that on 2, for any ¢ > 7 0; = p; = 0 so that o; = o,
and that for any ¢ < r, o; > 0 and pu; > 0. Thus \/A2 +4pu; > ||, the “—” root is negative,
while P = UU" is positive-semidefinite. Therefore o; = Jj for i < r. Let us define I+ =
W diag(1,---,1,0,---,0)W T the orthogonal projector on range(ZZ ). It follows that:

——

)

Xr

A 1
P =Tlzz7 x |1dy + 5 VN1, +4227 . (20)

Step 4: The expression for Q := V'V . A fully analogous computation gives
Z'Z=vU'ovT =V(VTV +Ald,)V' = Q>+ )Q,
so that () satisfies
Q*+)XQ-2"Z = 0. 1)

Because Q and T := Z " Z commute, they share an orthonormal eigenbasis in which equation
reduces to
Tf—‘r}\’ﬂ—ﬂl:o (7_1207 /14120)

By the first step, one already has that on €2, for any ¢ > r: 7; = p; = 0 and that for any ¢ < r, 7; # 0
and p; # 0. For i < r the positive root (as \/A% + 4p; > |A]) is

_ —)\‘1‘ \/A2+4/Li
= 5 ,

Ti

so that

A 1l 7
Q - HZTZ X |:—2.[m + 5 >\2Idm + 4T:| 5 (22)

with T = Z T Z and where II ;7 is the orthogonal projector on range(Z ' 7).

Step 5: Uniqueness and conclusion In both cases equation [20}-equation 22]are the only solutions
consistent with UU T = 0 and VV T = 0 and with rank(Z) = r on €2. Finally one has on

Z=-UU'Vf(Z)-Vf2)VVT

l 77— l 77—
= —szT X %Idn + 5 )\QIdn + 4ZZT:| Vf(X) - vf(X)HzTZ X [—;Im + 5 )\QIdm + 4ZTZ 5

which concludes the proof. O

J  PROOF OF THEOREM [4.4]

We first show the following lemma:

Lemma J.1. If S # Ald, with S a real symmetric matrix, then there exists a skew-symmetric matrix
A such that [A, S] # 0.

Proof. Let us assume S # Ald,. (in particular » > 1 necessarily). Thus there are at least two distinct
eigenvalues of S § and y associated to the eigenvectors  and y. Then A := xy' —ya" # Oisa
skew-symmetric matrix that satisfies:

[A,8] = (zy" —yaz")S = S(ay" —ya")
= z(Sy)" —y(Sz)" — (Sz)y" + (Sy)x " as S is symmetric
= pxy' —oyz' —oxy' + pyx’
=(p=08)(xy +yz) #0,
——
#0
as i # 0, and which concludes the proof. [

18
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Theorem 4.4. Let 6y := (Ui—o, Vi=o). Assume that both Uiy € R™*" and V;—o € R™*" have a
full rank and that r < max(n,m). If S == U,_yUs=o — V,L Vizo # Nd,., then 0y does not satisfy
the intrinsic metric property (Definition [2.10) with respect to ¢y in.

Proof. In light of the necessary condition of Theorem we will first characterize kerd M (6) for
any § = (U, V). Then, with h(0) = UTU — V'V and ¢(0) = ¢ria(0) = UV T, we will exhibit
a subspace V of keroh(0) N kerd¢(#) such that V C kerdM (0). We will then conclude using the
needed calculus and Theorem 2,14}

Step 1: Characterization of kerdM (6) for any 6 = (U, V).

By equatlonu(wuh L =2,Uy,=UU =VT), one can write M(0)vec(X) = vec(UUT X +
XVVT) forany matrix X € R™"*™. Using the Kronecker product and the fact that (A® B)vec(X) =
vec(BX A"), this expression can be rewritten as:

M(9) =1d,, ® (UUT) + (VV ") ®Id,. (23)
Thus dlfferentlatlng equation y1elds that for any (H, K) of the same dimensions as (U, V') we have
OM0).(H,K) =1d,, @ UH" + HUT)+ (VK" + KV T)®Id,, and thus: (H, K) € kerdM ()

if and only if Id,n @ (UHT + HUT) = —(VKT + KVT) ® Id,,. We now show that
kerOM (0) = {(H,K): 3u e R,UH" + HU" = pld,and VK" + KV = —pld,,,}. (24)

The converse inclusion is clear. We now prove the direct inclusion. Let us consider (H, K) €
kerdM (), then one has Id,, ® (UHT + HUT) = —(VKT + KVT) ® Id,,. Still using that
(A ® B)vec(X) = vec(BXAT) and denoting U' := UHT + HUT and V' .= (VKT + KV'T),
this exactly means that for any matrix X € R™*™ one has U'X = —XV'T. To conclude, we only
need to show that this implies the existence of p, i’ € R such that U’ = uld, and V' = —p/Id,,,,
since the equality U’X = —XV'T then also implies ;« = y’. This is immediate if ¥/ = 0 since in
this case U’ must also be equal to zero as U’ X = 0 for every X. Assume now that V"’ is non-zero so
there exists a vector v such that V'Tv # 0. Considering any such v and any vector u, and setting
X =uv', we have
(Uupw' =U'X =-XV' = —u(V'0)"

hence U’u is colinear with u. Since this holds for any choice of u, we deduce indeed that U’
is proportional to Id,,. A similar reasoning yields that V' oc Id,,. This concludes the proof of

equation [24]

Step 2: Characterization of a subspace V C kerdh(6) Nkerd¢(6). Since h(§) =U U — VTV
and () = UV T we have

OhO).(H K)=U"H+H'U-V'K-K'V
0¢(0).(H,K)=UK" + HV T
and one can easily check that for any 6 such that h(6) = S we have
V= { (_gﬁa CAERT (AT A UTU+UTUA+AT)=AS+ SAT}
C keroh(6) Nkerdo(0).

Step 3: Proof that V ¢ kerOM (). The fact that a matrix A € R™*" satisfies
AT+ A UTU+U'UA+AT)=AS+SAT,

is equivalent to
As2UTU — 8) 4+ (QUTU — 8)Ag = [A4, S].

with Ag (resp. A 4) the symmetric (resp. skew symmetric) part of A (so that A = Ag + A,).
Denote S, (resp. .A,.) the set of 7 X r symmetric (resp. skew symmetric) matrices and L the Lyapunov
operator defined by:

L:As€S, — L(Ag) =As2QUTU - 8)+ 2UTU — S)Ag
=As(U'U+VV)+U'U+VV)As €S,
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‘We obtain

Y= {(—UV((AAS:—AAAXQ (Mg, Ap) €S, x Ay, L(Ag) = [AA,S]} .

As S # \d,., by Lemmathere exists a skew-symmetric matrix A4 € A, such that [A 4, S] # 0.
AsU"U + VTV is positive definite (as either U or V has full column-rank) its eigenvalues \; > 0
satisty A\; + A; # 0, so (see e.g. [Bartels & Stewart| (1972)) in particular the Lyapunov operator:
L : S, — S, is invertible. Since [A4,S| = AaS — SA4 € S,, we obtain that there exists
Ag # 0 such that L(Ag) = [A4,S]. This particular choice of Ag and A 4 exhibits a parameter
¢’ = (UA,—VAT) that satifies ' € V C kerd¢() Nkeroh(6). We now show that 6’ ¢ kerdM ().
We proceed by contradiction: if 8’ € kerdM () then, by equation there exists i € R such that
UAT+AWUT =pld, and V(AT +A)VT = —uld,, that is to say

QUAgU " = pld, and 2VAGV T = —puld,,. (25)

When r < max(m,n) and since U, V are full rank, at least one of the two matrices U or V is full
column rank 7. Without loss of generality let us assume that U is full column rank. Then U " U is
invertible and we deduce that,

20g = p(UTU)L. (26)
Moreover if (as we indeed show below) rangeU T M rangeV' ' # {0}, then by considering
z=U"z = V'y # 0 for some 7,y € R", one deduces from equation 25| that p||x||3 =
20 TUAsU T = 2TAgz = 2y"VAgV Ty = —ully||3 and thus u = 0. Hence Ag = 0 by
equation 26] contradicting L(Ag) = [A 4, S] # 0, which shows that 6 ¢ kerdM (6).

Thus we only need to prove that one has rangeU T NrangeV " # {0}, and indeed:
dim(range(U ") N dim(range(V ")) = rank(U ") 4+ rank(V ") —dim(range(U ") 4 range(V "))
—_— Y
=rank(U) =rank (V) range((UT|VT))

— rank(U) + rank(V) — rank ((g)) >0,

>min(r,n)+min(r,m)>r+4+1 S=———

=r

where we used in the last line that < max(n, m).
Step 4: Conclusion.

As both U;—g and V;—q have full rank it remains the case in a neighborhood €2 of 6. Moreover as
r < max(n,m) then one of the two matrices has a full column rank on €. In particular the vertical

concatenation (g) has full rank (equal to ) on ? as r < max(n,m) < n + m.

Since (g) has full rank on €2, by (Marcotte et al., 2023} Proposition 4.2 and Corollary 4.4) the
vector-valued function h contains a complete set of conservation laws.

We now show by contradiction that for any €2’ C €2, 6, does not satisfy the intrinsic metric on €'.
Let us assume there exists a neighborhood Q' C Q of 6y and a set of conservation laws hy for ¢ and

a function Ky, such that M (0) = Ky, (¢(0)) for each 6 € M}(,‘g’ N €Y, where M;‘;’ ={0:ho(f) =
ho(6p)}. As the family of conservation laws h is complete on  (and in particular on ') and as
Lie(W,)(0) has a constant dimension on 2 (and thus on Q') by (Marcotte et al., 2023, Proposition
4.3), using (Marcotte et al., {2025, Proposition 2.12) yields that M(},‘(;’ =40 :ho(d) =ho(bp)} D
Mg, = {0 : h(f) = h(f)}. Thus the function Ky, also satisfies M (0) = Kg,(¢(0)) on Mg,
hence h satisfies assumption i) of Theorem[2.14] As the rank of Oh(6) is constant on €, we deduce
by Theorem the inclusion equation [/} which contradicts the previous step. [

K PROOF OF PROPOSITION [4.3]

Proposition 4.5. Let 0 := (u,v) withu € R" and v € R". Then z = ¢rin(0) = (u,v) € R. We
denote S = ui—ou;_y — vi—ov,_o € R"¥". Then one has ¢ = —/2tr(S?) — t1(5)2 + 422V f(2).
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Proof. Since 9¢(6) = [v,u'] we have

99(0)09(6) " = [[ul® + [|v]*.
Since h(f) := uu' — vv' is a conservation law of ¢y;, for every § = (u, v) on the trajectory one
has: S =uu' —vv', and therefore S? = ||ul|?uu’ — zuv” — zvu’ + ||v]|?vv . Thus

tr(S%) = [Jull* + [lv]* — 222

As one also has: ([lul? — [[v]|?)? = tr(S)?, one has:

(06(0)96(0)")* = (lull* + 10]1*)* = 2([[ull* + [[0]|*) = (lful® = [Jv]*)?
= 2(tr(5?%) 4 22%) — tr(S)?
= 2tr(S?) + 42 — tr(S)?,

which concludes the proof. O

L. PROOF OF THEOREM [4.6].

Theorem 4.6. If 01,(0) satisfies the relaxed balanced condition (Definition with A = (\);
then during the trajectory 01,(t) of equation|l| the matrices in equation (11| satisfy S;(0r(t)) =
Q;(UL®)UL(®) ") and T;(0L(t)) = R;(U1(t)TUL(t)), where Q;(z) = é;g_l(x — ay) with
ap = 0 and aj, = Zle Ap—ifork =1,---L —1and Rj(x) := Hi;ﬁ(x — by) with bg :== 0
and by, == — Zle Ai. Moreover ULUE (resp. U Uy) is the unique root onLZir = QO(ULUE)
(resp. of ZEZL = RL,l(UlTUl)) with spectrum lower bounded by maxo<p<r—1 ay (resp. by
maxXo<k<r—2 bi). This implies that all matrices in equationare entirely characterized by Z1, and
the initialization, hence 01,(0) satisfies the intrinsic dynamic property on RP with respect to ¢p;n.

Proof. Let us first outline the main steps of the proof. We first show that the equalities Z1,Z; =
Qo(ULU]) and Z] Z;, = Ry _1 (U Uy) hold on the whole trajectory. Then we prove that this
implies the expression of S; (resp. of T}) in terms of U,U; (resp. of Uy’ U;) along the whole

trajectory too. Finally we show that along the whole trajectory Uz U, and U;" U; (and therefore all
S;’s and T}’s) are entirely characterized by Z, = ¢r1n(61) and the initial conditions (captured by ).
This will thus imply that §7,(0) satisfies the intrinsic dynamic property on R” with respect to ¢y sy.

Step 1: Expression of Z1,Z; as a polynomial in U U,

Since U;,—lUj+1 -U; U is a set of conservation laws for ¢rin, the fact that the relaxed balanced
conditions equation [I2]hold at initialization implies that they hold along the whole trajectory.

We prove by induction on 1 < ¢ < L that Z, := U, ... U; satisfies Z,Z,; = P,(U,U,") for some
polynomial P, of degree ¢ that satisfy Py (z) = x and Py(x) = xPp_1(x — Ap—1) for2 < £ < L.
For ¢ = 1 we trivially have Z, = U, hence the result is true. Now consider 2 < ¢ < L and assume
that the result holds true for £ — 1. Since Z, = U;Z,_1 we have

2027 = Ul(Zer 25U = UePoor (U U U 2By, b, (U] U = o1 id)U,)

where we used equation for i = ¢ — 1. Denoting ]—:’g,l(x) = Py_1(x — A\—1) we obtain
ZZ,} =UP1 (U} U)U,) = UU[ Po—1(UU[") = Py(UgU,"). This concludes the induction.

Given the recursion formula for P, another easy induction yields
k
Py(z) =T _4(x =Y Ai), 1<E<L. 27)
i=1

Specializing to ¢ = L we obtain P, = () as claimed.

Step 2: Expression of S; (resp. of Z; Z;, and T}) as a polynomial in U, U, (resp. in U, U;).
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It is a direct consequence of the first step, as we now explain. To show the result on S}, consider
the new variable ¢ = (Up,_;,...,Uy) :== (Ur,...,Ujs1)and Z' == Uy _; - U] = UL -+ - Ujs1.
With these notations we have S; = Z'Z’ T, and the relaxed balanced conditions imply that:

(Ui Uiy —Uj(U) T = Xildp, 1<i<L—j-1
where N =, _15--sA1) = (Az—1,-- -, Aj41). By the first step we obtain the desired expres-
sion.

Similar computations with 6/ = (U, ..., thl), Z'=U ... thl and X = (=Aq,...,—\j_2)
show the desired expression for 7; = Z'Z'" and Z] Z;, as well.

Step 3: Characterization of U,U; via Z; and the initial conditions. The proof that U, U; is
characterized by Z, (in fact ZL'— Z1,) and the initial conditions is similar and therefore omitted.

By the first step we have Z, Z] = Qo(ULU, ), hence ULU] is indeed a matrix root of this equation.
As both matrices Z7, Z; and U LULT are real symmetric, the above expression shows that we can
reduce to the scalar study of their eigenvalues.

As we show below, a consequence of the relaxed balancedness conditions equation [12] is
that all eigenvalues of the positive semi-definite matrix U LULT belong to the interval I :=
[max(0,aq,...,a5-1),00). Thus, considering any eigenvalue e > 0 of the positive semi-definite
matrix Z7,Z; , it is enough to show that the polynomial equation R(X) := Qo(X) — e = 0 admits a
unique root in this interval.

The existence of a root in I is a consequence of the mean value theorem, since
R(max(0,a1,--- ,ar—1)) = —e < 0 and lim,_, . R(x) = +o0o. To prove uniqueness, we
proceed by contradiction: assume that R(X) admits two distinct roots z; < w2 in I. By
Rolle’s theorem R'(X) = Q(X) has a root in |z1,x2[. This contradicts the fact that, by the
construction of Qg and Rolle’s theorem, all roots of Qj(X) are contained in the open interval
(min(0, a1, ...,ar—1), max(0,a1,...,ar—1)).

To conclude the proof, we show that indeed all eigenvalues of U,U; belong to I :=
[max(0, a1, ...,azr_1),00). Denote o; = infsp(U;U,"), 1 < i < L. Since each matrix Uy is
square and positive semi-definite, we have sp(U;U,") = sp(U," U;) C [0,00) forevery 1 <i < L,
and by equationwe also have sp(U; 11 UiTH) =\ +sp(U;U;"), hence 041 = o; + \; > 0 for
1 < i < L —1. An easy recursion shows that o; > max(0, 23;11 Aj) for 1 < i < L, hence the
result. O

We now anticipate a slight generalization part of the results of Theorem [4.6| that will be used later in
the proof of Theorem [4.8]

Lemma L.1 (Perturbed relaxed balanced condition). Consider matrices (Uy)yZ, C R"™ ™ and
scalars (\,)£Za. Denoting h == 1/L, define

Cy = max(l,mkaxHU;CH)7 Cy = mgx|/\k| (28)
72 T B TN 32
ne= L2 e (U Uk = UUT) = AL, | 29)

Fix j € {0,...,L — 2} and recall that S; := (Up—1---Uj41)(Up—1--- UjH)T. Define ag := 0
and, fork > 1, aj, := h? Zle A—1—i, Co :=2C), Cy == (C +nh* —1)/h. Then
L—-1-(j+1)
max ||S; — H (UL—1Ul_y —ald,,) || < (CoecleCO(HCl) + ecl) 7. (30)
! k=0
Before proving this lemma, we state the following lemma, as it will be essential in the proof of
Lemma|[L.T} it provides a uniform bound on the Lipschitz constant of a class of polynomials.

Lemma L.2 (Uniform Lipschitz bound). Consider Cy > 0, C; > 0. Forany 0 < h < 1, any integer
1 < d < 1/h, any degree—d polynomial

Qa(z) =

(x —cx),

zg

k=1
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with maxy, [cx| < Coh, and any matrices A, A+ A € Bggp,y = {X : | X| < R(h)} where
R(h) =1+ C1h and where || - || denotes the Frobenius norm, one has

K
1Qa(A+A) = Qa(A)l < - |All, with K = K(Co, C1) = Coe® U+ % 31

Proof. Step 1: Scalar Lipschitz constant on the ball Br. For any matrix polynomial Q(x) =
S¢  uma™ one has, denoting DQ(X)[H] = Z —10m i ' XIHX™ 1

m=0

QA+ A) — Q(A) = /1DQ(A 1 tA)[A] dt,
IDQX)[H]|| < Lo(| X |l2—2) [H|I< Lo(IX|) 1H]l, VX, VH

where Lo (R) := anzl || m R™~1 (we used here that the spectral norm is bounded by the
Frobenius norm).

Step 2: Bounding L, (R(h)). Exploiting the coefficient—root relation on Q4 that is unitary yields
|| < (m)ﬂm where 3 := Coh forany 0 < m < d — 1. Since ag = 1, for any R > 0 we obtain

Lg,(R) < 52( > (BR)™ ' +dR*¥! =dp(1 + BR)! + dRI1.

Insertd — 1 < d < 1/h, 8 = Cph. Since R(h) =1+ C1h < R(1) =1+ C’1 (as h < 1) we get:

CO eCo(14+C1) 4 eC1

Lau(R(R) < 3 Coh (1+CohR(R) V" +d(1+C1) V" < Cy cont) 4 & N D

where the exponential bound uses (1 + ¢)1/* < e for t > 0. We define K = K(Cy,C}) =
CoeCo+C1) 4 ¢Cr,

Step 3: Conclusion. Applying the integral formula of Step 1with the bound from Step 2 gives

[Qa(A+A) = Qa(A)|| < (K/h)[|A],
for every A, A with A, A+ A € By, which is equation 31} O

We now prove Lemma [L.1]

Proof. Step 0: Reindexing. Work with the truncated sequence (Uj,...,Uy) :=
(Ujt1,...,Up—2,Ur—1), where N := L — 1 — j. Define Z, := U;---Uj for1 < { < N
and My :=U,U,". Then S; = ZNZ};.

We also observe that by the definition of 7 in equation since h = 1/L, we have for each
1<l{<N

T

U U= Moy = U UL = U Up_y - = W2h e jaldy + 7y, lF_yll < B2 (32)

Step 1: Polynomial representation with a perturbation. We prove by induction on £ that
Ey = 7,2) — Py(M,) satisfies | E¢|| < (KC? - hn (33)
where the polynomials P are defined by
Py(x) =z, Py(x) ::ng_l(xfbg_l) (2<?¢<N),

with by_; := h*X\,4;_1 (matching the re-indexed sequence), and the constant K is obtained by
Lemma|L.2]applied to the constants Cy := 2C) and C; := (CZ + nh? — 1) /h.

Base case { = 1. Trivial: Z, = U}, so Z,Z] = My = P,(M,) and E; = 0.
Induction step. Assume equationholds atrank ¢ — 1. Since Zy, = U;Zy_1,
ZeZ[ =U(ZerZ[ ) U;T = UjProy(M—1)U;T + UJE,1U; "
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By induction hypothesis and the fact that the spectral norm is bounded by the Frobenius norm, the
second term of the right hand side is bounded as

(Ui EaU; T < CllBeaa| < G (€ = DECE Vi < (£~ )T K,
hence we only need to show that
U Pe—r (Me—1)U; " = Po(My)|| < CHK - hay.

Write Q—1(z) := Py—1(z — bg—1). From equationand the definition of M,y = U, ,[U; ,]"
one gets
My = Up"Up = bealdy = vy, [l < 22,
Hence
Ui (Me-)U; " = UpQenr (U7 U = 12y )UL

= UQer (U UDULT +UJ Qer(UF UL = 11y) = Qe (U TUR U

=M, Q¢—1(Me)=Pe(Mp)

Thus to conclude the induction step we only need to show that
WU Qs (UFTU; = 171) = QAU UYL < CEK - .

By the definition of C1, the matrices A = U} TU’, A = —r}_,, satisfy max(||A||, ||A]]) < || A] +
|Al| < C% + h?*n < 1+ Cyh. Moreover, with the same induction that has led to equation the
polynomial P,_;(z) has all its roots bounded by Lh?C\, hence Qp_1(x) := Py_1(x — by_1) has all
its roots bounded by (L + 1)h2Cy < 2C\h = Cyh, therefore we can apply Lemmato obtain,
with K = K(Cy, Cy) = CoeCo1+C1) 4 oC1:

K
1Qe—1(U; U — 1) = Qe—1 (U T UY)| < 5 el < K-

Cu>1
A Qe (U UG = 7-) = QualU UV T < CRK by < CHK - I,
which concludes the induction.

Step 2: Factorisation of Py. With the same induction that has led to equation 27, we have

N-1 k
Py (z) = H (:r — ak), ag=0, ap= ZhQ)\L,l,i.
k=0 i=1
Applying equation 33|with £ = N and recalling S; = Zy Z}; yields
N-1
S; =Px(My)+ Ex = [[ (My - axI,,) + En,
k=0

where ||Ey|| < CENNKhn < (14 C1h) Kn < exp(Ch)Kn.
Since My = U]’\,UI’\,—r =U;,_1Up_1 ", we recover equationas claimed. O

M PROOF OF PROPOSITION [4.7]

Proposition 4.7. Forany s € [0,1], consider hy : 6 := (Ay)se0,1) € X — AL+ AT +[A] A €
R"™™ where we denote Al, := <L A,. Then for any s € [0,1], one has for any t: h(0(t)) =
h,(6(0)), where 6(t) is the maximal solution of equation[I3|with initialization 6(0).

Proof. For convenience we recall the state equation equationfor Zs, where s € [0, 1] indicates
depth:
dZ

=A,Z,, Zy=1d, fixed, (34)
ds
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and we recall that the objective function is factorized by ¢(6) = f (Zszl), where the parameters are
the family 0 = {A, : s € [0,1]}.

Letd: [t € [0,T] — 6(t) € X] € C*(]0,T], X) be the solution of the gradient flow given by the
family of coupled ODE equation [I3]

0A; ) o
vsel01l, ) = —au(0), with 0. = o (60), (35)

with a given initialization 6(0). Our goal is to show that %hs (0(t)) =0.
Step 1: Computations of%hs (6(t)).

For any s € [0, 1], one has by definition

.
o) = 2504 (250 4 a7 A).

Taking the t-derivative yields

:
g0 = o (Z52) + 5 (250) + 2 laoT )

ot ds ot \ " os a1
_ 9 (DAY | (DOAMNT Oy
Rz ( ot > " (83 ot ) g A0 A (36)

where the exchange of derivatives is justified in Section[M.1]

Moreover one has

0 T CTOA()T + 0AL(1)
AWM AW] = [Z5 7 A] + [A0 T, 725
Thus by using equation [33]
OA(t
=0~ g,
we obtain

2 100) = 2 (-0.0) + (2 (-0.0)) + [Fe07 4] + [407 ~out0

.
N _agasf) - <6953(t)> = [o:0) ", A()] = [A®) T, 85 ()] (37)

The remaining task is to show that the sum of these terms cancels, using an expression of the gradient.
Step 2: An expression of gs(t) using the adjoint equation.

To compute the gradient g, = 8‘97{5, we introduce the adjoint variable (Pontryagin et al.|(1962)) A (),
which satisfies the adjoint equation

OA(t) T _of
e e RO WORIFNOES 6—Z(Z1(t)>. (38)
Moreover it satisfies as shown in Section [M.2}
gs(t) = As(t) ZS(t)T- (39)

Step 3: Compute %gs(t).
By differentiating equation [39] with respect to s, we get:

0 _OAL()

0Z4(t) T
ggs(t) - 85 .

0s

Zs(t) " + As(t)
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Then by using the adjoint equation equation [38]and the state equation equation [34] one has

% as(t) = — A() T As() Zs() T + As() Zo(t) T Ag(t) T (40)
= - A (t)T gs(t) + gs(t) As (t)T 41)
= —[A(1) ", gs(2)]- (42)

Taking the transpose,
T
(50:00) =007 40+ A0 007 = 40007 = 007 AL @)

Step 4: Conclusion. By substituting the computed expressions into equation one obtains as
claimed that

0

—hs(6(t)) =0.

o hs(6(1))

O
M.l WE NOW DETAIL EQUATION[36]
Theorem M.1 (Commutation of mixed derivatives). Let
X = Cl([ov 1]7Rnxn)’ HfHX = maX{Hf”OOv ||f/HOO}7

and set B = C°([0, 1], R"*™) with the sup—norm || - ||g = || - ||oo- Denote D : X — B, f + f’

the spatial derivative. Suppose 0(-) € CY([0,T], X) and write A(t, s) := [0(t)](s). Then

* the mixed derivatives
0105 A(t,s) and 0;0.A(t, s)
exist for every (t,s) € [0,T] x [0,1] and coincide:

\ 8,0, A(t, ) = 050, A(t,s) Y (t,s) \

* the map s — 0,05A(t, s) is continuous.

Proof. Step 1: D is continuous. For every f € X,

DAl = I lle < max{[[flloe, /'llec} = I/,

80 || D|lop < 1; hence D is a bounded and thus a continuous linear map.

Step 2: Temporal differentiability is preserved by D. The fact that the function 0 (valued in the
Banach space ) is C! means precisely that its (Fréchet) derivative 0(t) := 9,0(t) € X exists for
each ¢ and the map ¢ — 6(t) is continuous from [0, 7] to X.

Applying the continuous and linear operator D yields by linearity
D(0(t+h)) — D(0(t)) D <9(t +h) — G(t))
h h
for every t € [0, 7] and h small enough such that ¢t + h € [0, T, and since by continuity of D the
right hand side tends to D(6(t)) when h — 0, the left hand side also has a limit, showing that
d
dt
Thus the mixed derivative 0,05.A(t, -) exists as an element of B.

(D(6(t))) = D(8(t))  forevery t € [0,T]. (44)

Step 3: symmetry of the mixed derivatives. Evaluating the identity equation #4]above pointwise in s
and writing A(t, s) = [0(t)](s) gives

905 A(t, s) = [D(0(t))] (s) = 85 [0(t)] (s) = BsOrA(L, 5).
Hence the two mixed derivatives exist everywhere and are equal.
Step 4: continuity of s — 8,05A(t, s). Since f(t) € X for each t, its derivative s — 8, [G(t)] (s)

is continuous. As 0 [H(t)] (s) = 050+ A(t, s), by the previous step, this exactly means that s —
0105 A(t, s) is continuous. O
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M.2 WE NOW SHOW EQUATION [39]

More precisely, to show equation 39} we will both prove that
0s(t) = (Zs()™ 1) T Z1:(t) "V F(Z1 () Zs() T (45)

and that
A(t) = (Zs(t) DT Z1(t) TV F(Z1(1)), (46)

which will indeed give equation [39]

We briefly explain why for a given ¢ the matrix Z,(t) never loses its invertibility when s € [0, 1]
varies, by showing that the determinant can never reach 0. As

0sZs(t) = Ag(t) Zs(t), Zy(t) = 1d,.
Jacobi’s rule gives

%det Zs(t) = tr(As(t)) det Zy(t), det Zo(t) = 1.

Solving this scalar ODE,
det Z,(t) = exp( / tr (A, () dr) £0,  selo,1].
0

Therefore Z4(t) € GL(n) for every s.

Since t is fixed, in the following we lighten notations by dropping it from the equations. The proof of
equation[46]is direct by showing that A5 and (Z; 1) Z] V f(Z,) satisfy the same ODE equation 38|
with the same value at s = 1. Thus we only need to show equation [45]

Proof. To show equation[d3] we will use Riesz theorem to identify the expression of the gradient. We
thus will consider the Hilbert space

1
L? := L*([0,1],R™*™), (U, V)2 ::/ to(U, V) ds,
0

in which the parameter § = {A; € R"*" : 5 € [0,1]} € C1([0,1],R™*") =: X C L? lives.
We recall that Z(6) is the unique solution of the state equation equation

0sZs = AsZs, Zog=1dy, Vs € [0,1], 47)
and that the cost £ is factorized by the flow map Z; () with a smooth scalar field f : R**™ — R, i.e,
00) = f(Z:(0)).
1st step: expression of the Gateaux variation of the flow

Letf = {As : s € [0,1]} € X be fixed and pick an arbitrary 660 € X. For ¢ € R define the perturbed
coefficient 6° := 6 + ¢ 66, denoting its components §° = {.A¢ : s € [0, 1]}. Denote by Z¢ := Z,(6°)
the flow that satisfies the associated ODE:

0,75 = ASZS, Z§ =1d,, Vs e [0,1]. (48)

s§7s8)

As (s,€,Z) — ASZ € C1, th function (s, €) — Z¢ is C* using the Cauchy-Lipschitz theorem with a
parameter. In particular for any s € [0, 1], € = Z¢ is C1. Introduce the first variation
d
0Zs = —Z% =: A,
de e=0

which corresponds to the Gateaux derivative of 8’ — Z¢(6') at 6 in the direction h = 6. We now
show that A, satisfies the following inhomogeneous ODE:

0sAg = AN, +0As Zs, Ag =0, Vs € [0,1]. (49)

27



Under review as a conference paper at ICLR 2026

where 04, = 4 A¢|

e=0"

Indeed let us consider g5 := % for any 0 < ¢ < 1. In particular one has ¢; *)0 Ag. Moreover
E—

one has: ; ; ;
¢ =t / (ASZE — Ay Z,)du = / BE Z,du + / A g6 du, (50)
0 0 0
where B¢ = Ai;A“ = Ai;AZ satisfies BE — diA‘f’ . =6A, (as e — AZ is C') and where
u U o, de”ule=0 U

e €]0,1] = B¢ is continuous (at 0, we define BY = §.4,) as € — A is C1), and thus is bounded on
[0, 1] by a constant that does not depend on . By dominated convergence, when ¢ — 0 in equation
one obtains the limit:

A= [ (A + 64, Z)du,
0
which coincides with the unique solution of equation 9]

Since Zj is a solution for the homogeneous part 0; 7, = A, Z, with Zy = Id,,, by the variation-of-
parameters method, one obtains (as Ay = 0):

Ay = Zs/ Z7Y5A, Z, dr.
0
Evaluating at s = 1 gives

1
871 = Ay :/ Z1Z7YV5A, Z, dr. (51)
0

2d step: Differential of ¢ and identification of the gradient.
Because f € C!(R"*™ R) its (Fréchet) differential at M € R"*" is
Df(M)[H)=(Vf(M),H)p, VHeR™™. (52)

Applying the chain rule to ¢ = f o Z; with the Gateaux differentials D¢ at 6 and in the direction
h = 40, one obtains,

Dgt(0)[660] = Dgf(Zl(H)) [5Z1 ]
But as by hypothesis both £ and f are Frechet differentiable, one has:

De(6)[56] = Df (2:(8))[ 671 ]

Using equation[52)with M = Z;(#) and H = 67,
DUO)[660] = (Vf(21(6)),0Z1) .. (53)

By inserting the expression of 6 Z; from equation[51]into equation[53] one has:

DU(6)[66] = / 1 (VA2 232,164 2.) dr.
0

Because tr(RS) = tr(SR), one get
to(V(20) 2127 6 A Z;) = 0(Z, Vf(Z1) 21271 6 A;),

and thus by defining for each 7
Gl =2 V{(Z)" 2,27, (54)
one finally has

DL(0)[56] = /O 1 tr(G) 6A;) dr = (G,80) 2.

By Riesz theorem, the gradient in L? (i.e. the Fréchet gradient) is the unique element G € L?
verifying D£(0)[06] = (G, 00) .2 for every 66:

Veh) =G.
The transpose in equation [54]finally yields the required formula. [
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M.3 LINK WITH CONSERVATION LAWS IN FINITE DEPTH (INFORMAL).

We assume that §, .= (Uy, - - -, Uy) satisfies the relaxed balanced conditions:
H;
U;-lUi-«-l - UiUz'T - 12
then as Uy = Id + 1 Ay, using that A1 = Ay, + + A} +0 (1) we get:
Hy, 1 T 1 1 1 T
— =(Id+ =4 Id+ -A —(Id+ =Ap)(Id+ =A
72 = Ud+ 7 Ak) (Id + 2 Ak) = (Id + 240 (Id + 7 A4y
_ A,;r_,'_l + Ak+1 _ A+ A;Cr B 14]“4;r A;+1Ak+1
L L L? L2
B A;;r—i-Aﬁ€ —AkA;——kA;Ak ‘o 1
B L? L2
hs, (0) 1
=" o ()

Thus hs is such that hs, (6) = Hy + o(1).
In particular if 87, satisfies the quasi balanced condition

g
Ul Uiy = UU;T = —z1d,

then one can choose h as:
hs(0) = A(s)Id,,

with A a function such that A(s;) = Ar. We say in that case that 0 satisfies the relaxed balanced
condition.

N PROOF OF THEOREM [4.8].

N.1 PROOF OF THE THEOREM

Theorem 4.8. If the initialization 6(0) satisfies that for each s € [0,1] h,(6(0)) = A(s)Id,, for some
A(-) € C°([0,1],R), then one has

2= /O (202])'~* exp(y(s)V (Z1)(Z] 1) ds,

withy(s) = (1=s)th1 (1) =1 (1—5) —stha (1) +1ba(s), where vy : s € [0,1] — [ [;* A(1—v)dvdu
andy : s € [0,1] = [J [i" AMv)dvdu. If A(-) = 0 (balanced-condition), then ~(-) = 0.

Proof. For any t and any integer L > 1 we define sy, := sf = % fork=0,---,L—1and:
1
Xk+1(t) = Xk(t) + h.ASk (t)Xk(t)7 with h := Z and Xo(t) =1,.
Since this corresponds exactly to the Euler explicit method with step h for the ODE
0sZ5(t) = As(t) Zs(t), Zo(t) =1d,, s€][0,1],
one has for any ¢ and L (computations postponed in Section|[N.2)):

sup [ Xy(t) = Zs, ()| = O(h) (55)
0<k<L-1
10:21(t) = 0: X1 (1)[| = O(h), (56)
with || - || any matrix norm on R™*™, the implicit constant in the notation O(-) is independent of k

and L while it can depend on ¢.
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We now fix some ¢ and observe that X, 1 (¢) = Uy (t) Xj(¢) with
Ur(t) == 1d,, + hAs, (1). (57)
so that (from now on we drop the ¢ variable for brevity)

L—-1

0 Xy, = hZ(UL—l' Ujs1)(0pAs hz (Up—1---Uj41)(01As, )Uj_1 - Up

j=0
By equation|15|and the relation equation (shown in Section[M.2)) we have for any s € [0, 1]
OAs = —0. = —(27) 2V [(2)) 2]

hence L
Xy =—hY (Upy- U )2 2] V(202 U1 T
j=0
AsUp 1+ Ujpr = XpX; Y = (Z1 4 O(h)(Zs,,, + O(R))™F = Z,Z, + O(h) since

the invertibility of Z, and continuity of s — Z, implies that ||Z;!|| is uniformly bounded) and
Zs; 1 Zs, 1 =1d, + O(h) (since Z, ., = Zs, + hAs, Zs, + O(h?)), we deduce that

Sj+1 i+1

(Z:

) Zl - (ZlZs_Jl) [(ZlZs_+1)ZSj+1Zs_jl]T

= [(Up—1-+-Ujs1 + O(h)) (I, + O(R))]"
= (Up—1-+-Uj1)" +O(h),

where in the last line we used that since with any relevant matrix norm since maxy, ||Ug| = 1 +
O(h) =1+ O(1/L) we have |Ur_1 ... U;|| < [1+ O(1/L)]¥ = O(1). Similarly we also have
|U;=1...Up|| = O(1) hence

Sj

L—-1 L—-1
0 X1 Z—hZ(UL_1~'~Uj+1)(UL_1' J+1) Vf(Zl)Z U] 1---Up + hZO(h)
=0 =0

—_——
=O(h) since h=1/L

Similarly as U;_y --- Uy = X; = Z,, + O(h) by equation weget Z = (Uj_1---Up)" +O(h)
hence
L-1

Xy ==h> (Up1-Up)Up-r-+Ups1) ' VHZ)(Ujr - Ug+ Oh) T (Uj1 -+ Up)

j—O

=—hZ Ur-1-+-Upr)(Upi1 -+ Upa) "V (Z0) (U1 -+ Uo) (U1 -+~ Up) + O(h)

(58)
We also have
Ul;r+lUk+1 - UkUkT = (Id, + hASk+1)T(Idn + hASk+1) — (Idn + h A, )(Id, + h-AT )
= h(A;rk+1 + Asir) — M(As, + .A;rk) — hz(AskA;r )+ h2(A:k+lAsk+1)
=hAAL + AL — A AL+ AL A + o (R?)
= h2hsk(9) +o0 (h2)
= R*A(sp)ld,, + o (h?), (59)

as 0(0) satisfies the quasi-balanced condition and A, ,, = A, + hA, 4 o (h), where the implicit
o(1) function in the notation o(h?) = h?0(1) is still independent of k and L as s € [0, 1] + A’ is
continuous on the compact set [0, 1] and is thus uniformly continuous.

By Lemma|L.1|with Ay = A(s),) and one has:
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L-1-(j+1)
(Up—1++ Ujs1)(Up—1---Uj1) " = H (Ur—1U/_1 — agldy) + Er_1_j, (60)
k=0
with
k
ag =0, ap=h? Z)\(SL—l —s;)fork>1, and|Er_i—;| < Kn (61)
i=1

where K := (Cp exp(C1) exp(Co(C1 + 1) + exp(Ch)) with Cy := 2C), Cy == (C% +nh* —1)/h,
Cy = Inax(l,ml?x Ukll), Chx = m]?x|)\k| (62)
n=1L?. o (U 41Us1 — UpUYL ) — B2 A 1d, . (63)

As A(+) is continuous, Cy < [[Al|ec < oo for any L. Similarly, we already used that as s €
[0,1] — A is continuous, Cy = 1 + O(h), and thus ng = 1+ O(h), again with implicit
constant independent of L. Moreover by equation nh? = n/L? = o(h?), and we obtain
C1 = (C3% +nh* —1)/h = (O(h) + o(h?))/h = O(1), hence C4 is bounded uniformly. Finally

we obtain
max Er_1_; = o(1) (64)
J

where the implicit function o(1) is still independent of L.
We denote A

Fy(Up1Uf_y) = [[W0-1Uf_ — arldy) (65)

k=0

and use the shorthand Ay, := AL (t) == A, (t) € R™ ", for 0 < k < L — 1. Since Uy, = Id,, + h Ay
withh =1/Land sp,_1 — s; = % — % =1- % for each integer ¢, we have (using Riemann

integration as A(+) is continuous): since all the matrices in the product equation [65|commute

J
Fi(Up U/ _;) = exp (Z log(Ur U}, — akIdn)>
k=0

J T k
equation [B7-equation [61] A1+ AL—l 1 1 1 i+l
— exp kE_O log Idn =+ T +o| = — Z Z ._E 1)\(1 — T) Idn

—_—
=[* M(1—v)dv+o(1)

k=0

J T Sk
Ap 1+ A, 1 [ 1
= exp ( g (L - Z/o M1 —wv)dv-1d, + o (L)

1 J Sk
~ exp sj(A1+AI)—L;)/O AL = v)dv -Idy, + 0 (1)

=fosj o AM(1—v)dvdu+to(1)
We denote )y : s € [0, 1] = fos fou A(1 = v)dvdu. By equationand the above derivations one has
7020 = lim XpX[] = lim Fy (U, 1Ul_) = exp((A + AT ) — ¢ (1) - 1d,,),
L—+o00 L—+oo

and thus
AL+ Al =log(Z:2]) + 1 (1) - 1d,,
Thus
Fj(UL U 1) = (Z127)% exp (s;41 (1) — 1 (s5)+0(1)). (66)
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Similarly as before and by adapting the proof of Lemma[L.T|one gets:
Jj—1
U1+ Uo) " (Uj—r---Uo) = [ [0y Uo = baldy) + o(1) =: G;(Uy Up) +0(1)  (67)
k=0
with b, = —h? Zf;ol A(s;) and by = 0, and where we denote
j—1
G;(Ug Uo) i= [ [(UJ Uy — byJdy) (68)
k=0

Similarly as above:

J

Gj+1(Ug Up) = exp ( log(Uy Uy — kadn)>
0

k=

B Ao+ Al 1 1| 1%
=exp [ > log | Id, + =t to( )+ Z;)\(sz) Id,
N————
=J* Aw)dvo(1)

— exp (zj: (AOZAJ +i/0 A(w)dv - 1d, + o (i)))

k=0

1 ] Sk
=exp | s;(Ao +Ag) + 7 Z/ A(v)dv -Id, + o(1)
k=070

:fosj Jo! Mw)dvdudo(1)
We denote 95 : s € [0,1] — [ [ A(v)dvdu. By equationand the above derivations we have

202 = lim XpXp= lim Gp(UyUp) = exp((Ao +Ag) + (1) - Idn),

and thus
"40 + 'A;)r = 10g(Z1TZl)—¢2(1) 1d,
It follows that
Gj+1(Ug Uo) = (Z{ Z1)™ exp(—s;42(1) + ¢2(s;)+o(1)). (69)

Finally, combining equation [60}equation [64}equation [65}equation [66] and equation [67}equation [68}
equation[69] we obtain

_ L-1
9,x;, retenBS > WUp-r+Ujs)Upoy -+ Upg1) "V (Z0) (U - U) T (Uj—r - - Ug) + O(h)
=0
L—1
=—h Y [(Z:2])'""V(Z1)(Z] Z1)* - exp(v(s)) + o(1)] + O(h)
=0

. / (22T F(Z0)( 2T 20)° explr(s))ds + o(1),

where
Y(s) = (L= s)thi (1) — ¥1(1 = 5) — stha(1) + Pa2(s).

Thus one has: )
OZa(t) = / (Z027)1° exp(y(s))V £(Z1)(Z] Z1)°ds,
0

which concludes the proof. O
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N.2 PROOF OF EQUATION [53} EQUATION [56|

We now show that equation [55}equation [56|hold for any ¢.

Proof. First we recall that
Xi1(t) = Xi(t) + hAs, (£) Xk (1),
with X(t) = Id,,. This corresponds exactly to the Euler explicit formulation of the ODE:
0sZs(t) = As(t) Zs(t), Zo(t) =1d,, s€][0,1] (70)
with step h = 1/L.

‘We now show both items at once. We fix some t. Set

so that %W(S): (aﬁiﬁté) Aso(t))W(s). 1)

The corresponding explicit-Euler discretization with step A = 1/L reads

A, (t) 0 )
Wka
8tASk (t) Ask (t)
which coincides component-wise with the recursions for Xy and T}, = 0; Xy.
A (t) 0
O As(t)  As(t)

s+ Ag(t) and s — 0y A,(t) are C* (cf Theorem [M.1)) for each t), the Euler explicit scheme
converges at order one (see e.g. (Berthelin 2017, Proposition 10.30)):

Jhax W (sk) — Wi| = O(h).

Weer = Wi+ h ( (72)

Because the right-hand side of equation [71| (s, W) ( )W is C! (indeed both

In particular one get that for any k: X}, (t) = Z, (t) + O(h) and (reading the second bloc row at the
final index k = L):
10¢Zs=1(t) = 0 XL (t)||= [[Ye=1 — TL| = O(h).

O LLM USAGE

The authors of this paper used Large Language Models to aid and polish the writing of this paper and
as a tool to make some of the proofs.
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