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ABSTRACT

A fundamental challenge in the theory of deep learning is to understand whether
gradient-based training can promote parameters belonging to certain lower-
dimensional structures (e.g., sparse or low-rank sets), leading to so-called implicit
bias. As a stepping stone, motivated by the proof structure of existing intrinsic
bias analyses, we study when a gradient flow on a parameter θ implies an intrinsic
gradient flow on a “lifted” variable z = ϕ(θ), for an architecture-related function
ϕ. We express a so-called intrinsic dynamic property and show how it is related to
the study of conservation laws associated with the factorization ϕ. This leads to a
simple criterion based on the inclusion of kernels of linear maps, which yields a
necessary condition for this property to hold. We then apply our theory to general
ReLU networks of arbitrary depth and show that, for any initialization, it is possible
to rewrite the flow as an intrinsic dynamic in a lower dimension that depends only
on z and the initialization, when ϕ is the so-called path-lifting. In the case of linear
networks with ϕ, the product of weight matrices, the intrinsic dynamic is known to
hold under so-called balanced initializations; we generalize this to a broader class
of relaxed balanced initializations, showing that, in certain configurations, these
are the only initializations that ensure the intrinsic metric property. Finally, for the
linear neural ODE associated with the limit of infinitely deep linear networks, with
relaxed balanced initialization, we explicit the corresponding intrinsic dynamics.

1 INTRODUCTION

A central question in deep learning theory is how the complexity of gradient-based training can give
rise to simpler, lower-dimensional dynamics. In this work, we explore when the gradient flow on
parameters θ naturally induces a gradient flow on a “lifted” variable z = ϕ(θ), where ϕ captures
structural aspects of the model.

Intrinsic lifted flow. The study of optimization flows arising in the training of neural networks
often benefits from the identification of lower-dimensional intrinsic dynamics. Specifically, due
to the natural symmetries of linear and ReLU networks, it is of considerable interest to rewrite a
parameter flow θ(t) in terms of an representation z(t) = ϕ(θ(t)), using a suitable architecture-related
reparametrization ϕ (often called a lifting) that factors out certain symmetries.

When dissected, the most advanced recent results characterizing the implicit bias induced by gradient-
based optimization algorithms notably rely on two key analysis ingredients: (i) establishing that
the dynamics of z(t) is intrinsic, i.e., that it can be expressed as a Riemannian gradient flow with a
metric depending only on z and the initial parameters θ(0); (ii) further proving that this flow on z(t)
admits a mirror flow representation. With the combination of these two ingredients one gains access
to powerful analytical tools rooted in convex optimization theory, allowing explicit characterization
of the induced implicit bias. In particular, prior research has successfully leveraged mirror flow
formulations to rigorously demonstrate implicit regularization effects, such as sparsity in scalar linear
neural networks and two-layer networks with a single neuron (Gunasekar et al. (2018)), as well as
maximum-margin classification for logistic regression problems in separable data scenarios (Soudry
et al. (2018); Chizat & Bach (2020)).

Recent work by Li et al. (2022) identifies sufficient conditions under which (i)+(ii) can both be
established, requiring that the parametrization ϕ be commuting. However, this commuting condition
is rarely satisfied in practical scenarios. This work focuses on characterizing weaker conditions
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ensuring that the flow on z(t) is still driven by an intrinsic Riemannian gradient flow (but not
necessarily a mirror flow anymore), which we believe is an important step forward and a starting
point for future investigations encompassing variants of (ii) with warped mirror flows (Azulay et al.,
2021) for practical (deep) network architectures. A first sufficient condition for (i), introduced by
Marcotte et al. (2023), demands merely that the parametrization be involutive. Marcotte et al. (2023)
have shown that this weaker condition applies specifically to the parametrization used in two-layer
ReLU networks (Stock & Gribonval (2022)). As we will see, a consequence of the analysis conducted
in our paper is the extension of this result to arbitrary DAG ReLU networks (Gonon et al., 2023).

Conservation laws. The functions conserved during the training dynamics play a crucial role in
establishing that the dynamics of z(t) is governed by an (intrinsic) Riemannian metric that depends
only on z and the initialization θ(0). Indeed, when a trajectory θ(t) is known to remain within
level sets {θ : h(θ) = h(θ0)} where h is a (vector-valued) conserved function, the dynamics are
effectively restricted to a manifold of lower dimension that is entirely determined by the initialization.
A particularly important class of conserved functions along these trajectories is given by the conser-
vation laws associated with a certain architecture-dependent parametrization ϕ, a concept introduced
in Marcotte et al. (2023). These laws depend exclusively on ϕ, and notably, in the context of neural
network training dynamics, they represent quantities preserved across trajectories irrespective of the
initial conditions or the training data-set. In the specific case of linear and ReLU neural networks,
these conservation laws correspond exactly to previously known “canonical” conserved functions
identified in Du et al. (2018), as demonstrated by Marcotte et al. (2023). Furthermore, Marcotte
et al. (2023) establish that if the parametrization ϕ is involutive, there exist sufficiently many scalar
conservation laws to fully rewrite the original trajectory θ(t) in terms of ϕ(θ(t)) and the initial
conditions alone. In the linear network case, when so-called balanced conditions (a notion introduced
in Arora et al. (2019)) are satisfied (i.e., when the initialization sets all canonical conservation laws
(Chitour et al. (2018)) to zero, h(θ0) = 0), it becomes possible to rewrite the flow in terms of
z = ϕ(θ), where ϕ corresponds to the product of weight matrices, as an intrinsic Riemannian metric
(Arora et al. (2018); Bah et al. (2022)). Moreover, Achour et al. (2025) extended this result to linear
convolutional networks in the case of a mean squared loss, but this time for arbitrary initializations,
with the Riemannian metric depending on the initialization. For linear networks and in the particular
case when the loss function is the square loss, Bah et al. (2022) show that the trajectory evolves on
the manifold of matrices having some fixed rank under balanced condition. Still in the square-loss
setting, and in the case of two-layer linear networks, Tarmoun et al. (2021); Braun et al. (2022);
Dominé et al. (2025) exploit the conservation laws to obtain an exact closed-form expression for z(t)
under specific configurations, whereas Varre et al. (2023) uses the same laws to analyse an implicit
bias of this dynamic.

Our main contributions. We first define the notion of intrinsic dynamic property (Definition 2.6),
then the notion of intrinsic metric property (Definition 2.10) and finally the one of intrinsic recover-
ability property (Definition 3.1), and we show the implications (Lemma 2.11 and Lemma 3.2):

Intrinsic Recoverability =⇒ Intrinsic Metric =⇒ Intrinsic Dynamic.

We then provide a simple criterion that characterizes the intrinsic recoverability property (Theo-
rem 3.3), and show (Proposition 3.7) that this criterion is quasi equivalent to the Frobenius property
(Definition 3.6). We prove that the so-called path-lifting (Gonon et al., 2023) reparametrization for
general ReLU networks of arbitrary depth satisfies this property (Theorem 3.8), establishing that
any initialization of a general ReLU network satisfies the intrinsic recoverability property (Corol-
lary 3.9), as illustrated by a characterization of the intrinsic dynamic of a 3-layer neural network
(Proposition 3.10). Next, by establishing a necessary condition for the intrinsic metric property to
hold based on the study of kernels of linear mappings Theorem 2.14, we show that the intrinsic metric
property fails to hold for the natural reparametrizations corresponding of 2-layer linear networks
(resp. of attention layers), unless the initialization satisfies the relaxed balanced condition introduced
in Definition 4.1 (Theorem 4.4). We then show that relaxed balanced initializations do satisfy the
intrinsic metric property, not only in 2-layer networks (Theorem 4.3) but also in linear networks
of arbitrary depth (Theorem 4.6), and we characterize the resulting intrinsic dynamic. Finally, we
extend our analysis to the infinite-depth limit of linear networks. We show that a set of functions is
conserved along the trajectory (Proposition 4.7), and, in contrast to the case L > 2-layer, we derive a
closed-form expression for the metric in the case of relaxed balanced initializations (Theorem 4.8).
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2 DYNAMICS OF OVER-PARAMETERIZED MODELS

In most machine learning models, overparameterization occurs due to inherent symmetries (such
as rescaling) within the parameter space θ ∈ RD. In practice, this redundancy can be factored out
through a function ϕ (often called a lifting (Candès et al., 2013; Gonon et al., 2023)) that captures
these symmetries. Although the resulting lifted variable z = ϕ(θ) ∈ Rd often lives in higher
dimension d ≫ D, it also belongs to a lower dimensional manifold Z of dimension d′ < D, and
provides a representation of the essential structure of the model. We consider parameters θ(t) ∈ RD

that evolve according to the gradient flow dynamic with some initialization θ0:

θ̇(t) = −∇ℓ(θ(t)), θ(0) = θ0 (1)

to minimize the function ℓ. In machine learning, ℓ(θ) is typically defined as the empirical average
over training samples (xi, yi) of a quantity that depends on the output g(θ, xi) of a neural network
with weights and biases collected in the parameter vector θ. The function g(θ, x) can often be locally
reparameterized via an architecture-dependent lifting ϕ(θ), leading to the same factorization for the
global loss ℓ. This is the starting point of our analysis, captured via the following assumption:
Assumption 2.1 (Local reparameterization). There exists d and ϕ ∈ C2(RD,Rd) such that: for each
parameter θ0 ∈ RD, there is an open neighborhood Ω ∋ θ0 and a function f ∈ C2(Ω,R) such that

∀θ ∈ Ω, ℓ(θ) = f(ϕ(θ)). (2)

The following examples illustrate common choices of ϕ for various neural network architectures.
Example 2.2 (Linear neural networks). For a two-layer network with r hidden neurons and θ =
(U, V ) ∈ Rn×r × Rm×r (where D = (n + m)r), the model g(θ, x) := UV ⊤x is factorized via
the map ϕLin(θ) := UV ⊤ ∈ Rn×m, thus the empirical risk ℓ can also be factorized by ϕLin. This
extends to L layers where θ = (UL, · · · , U1), with g(θ, x) := UL · · ·U1x and ϕLin(θ) := UL · · ·U1.
The resulting factorization of ℓ holds globally on Ω = RD.
Example 2.3 (ReLU neural networks). Consider g(θ, x) = Uσ(V ⊤x), with σ(y) := (max(yi, 0))i
the ReLU activation function. Denoting θ = (U, V ) with U = (u1, · · · , ur) ∈ Rn×r, V =
(v1, · · · , vr) ∈ Rm×r (so that D = (n + m)r). Consider θ(0) = (U(0), V (0)) ∈ RD and let
x ∈ Xθ(0) := Rm − ∪j{vj(0)⊤x = 0}. Then on any domain Ω ⊂ RD such that θ(0) ∈ Ω

and θ 7→ 1(v⊤j x > 0) = ϵj,x is constant over θ ∈ Ω, the model gθ(x) can be factorized by the
reparametrization ϕReLU(θ) = (ujv

⊤
j )

r
j=1 (here d = rmn) using g(θ, x) =

∑
j ϵj,xϕjx, so ℓ can be

factorized by ϕReLU with some forward function f : the reparametrization ϕReLU(θ) contains r matrices
of size n×m (each of rank at most one, so in particular one has d′ ≤ D − r) associated to a “local”
f valid in a neighborhood of θ. A similar factorization is possible for deeper ReLU networks (cf
Neyshabur et al. (2015); Stock & Gribonval (2022); Gonon et al. (2023)) and we still write it ϕReLU,
as further discussed in the proof of Theorem 3.8.
Example 2.4 (Attention layer). For an attention layer, the input X ∈ RN×dim is the horizontal
concatenation of N tokens x(i) ∈ Rdim. The layer output is

g(θ,X) = softmax(XQ⊤KX⊤)XV ⊤O ∈ RN×dim where softmax(A)i =
exp(Ai)∑N

k=1 exp(Aik)
,

with Q,K, V,O ∈ Rd1×dim. We use the reparameterization ϕAtt(θ) := (ϕ1, ϕ2) where ϕ1 := Q⊤K
and ϕ2 := V ⊤O, such that g(θ,X) = softmax(Xϕ1X

⊤)Xϕ2, as done in Marcotte et al. (2025).

Thus, similarly to the linear case Example 2.2, L can be globally factorized by ϕAtt as f exhibits no
dependency on the specific parameter configuration θ0. This naturally extends to multiple attention
layers by concatenating the corresponding factorizations.

2.1 DYNAMICS OF LIFTED PARAMETERS: TO BE OR NOT TO BE INTRINSIC?
This paper addresses a fundamental question underlying much of the efforts to characterize the
implicit bias of gradient-based methods: under what conditions does the gradient flow dynamics
equation 1 in parameter space θ lead to a dynamics on the lifted parameters z(t) := ϕ(θ(t)) that can
be expressed as an intrinsic gradient flow on z? This is notably key when attempting to establish that
z(t) follows a mirror flow (Gunasekar et al., 2017), which is a key step to characterize the implicit
bias of gradient-based optimization. We specifically examine when z(t) follows a flow with respect to
a Riemannian metric which, by definition depends only on z (and the initial parameter configuration
θ0), thereby eliminating explicit dependence on the parameter trajectory θ(t).
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A starting point of the analysis is that, under Assumption 2.1 and by the chain rule

ż(t) = ∂ϕ(θ(t))θ̇(t) = −∂ϕ(θ(t))∂ϕ(θ(t))⊤∇f(z(t)). (3)

Thus our goal is to understand when the symmetric, positive semi-definite matrix

M(θ) := ∂ϕ(θ)∂ϕ(θ)⊤ (4)

(corresponding to the so-called path kernel in when Φ is the path-lifting associated to ReLU networks
Gebhart et al. (2021)) can be solely expressed in terms of z and θ0 during the trajectory, i.e. do we
have a function K = Kθ0 such that M(θ(t)) = K(z(t))? When this is the case equation 3 becomes

ż(t) = −K(z)∇f(z), (5)

an ordinary differential equation (ODE) which is a Riemannian flow for the metric K−1(z) (or a
sub-Riemannian flow for the pseudo-inverse K+(z) when K(z) is not invertible) Boumal (2023),
hence associated to an intrinsic dynamic on the lifted parameters z(t).

As illustrated next, rewritingM(θ(t)) as a function of z(t) along the trajectory θ(x) is indeed possible
for simple linear networks, with a function K(·) that depends on the initialization θ0.
Example 2.5 (A simple linear network). Consider g(θ, x) = uvx, with θ := (u, v) ∈ R⋆ ×Rm, and
z = ϕ(θ) = uv ∈ Rm (cf Example 2.2). Then M(θ) = ∂ϕ(θ)∂ϕ(θ)⊤ = vv⊤ + u2Im. During the
trajectory u2 − ∥v∥2 = u20 − ∥v0∥2 =: λ (as h(θ) :=u2 − ∥v∥2 is conserved (Arora et al. (2019)),

and as vv⊤ = u−2zz⊤ we have (u2)2 − λu2 − ∥z∥2 = 0 so that u2 =
λ+

√
λ2+4∥z∥2

2 . As a result
along the whole trajectory we have M(θ) = Kθ0(z) so that z(t) satisfies the ODE equation 5 with

Kθ0(z) =
2

λ+
√
λ2 + 4∥z∥2

zz⊤ +
λ+

√
λ2 + 4∥z∥2
2

Idm, ∀z.

In particular when m = 1 one has Kθ0(z) =
√

(u20 − v20)
2 + 4z2 hence ż = −

√
λ2 + 4z2∇f(z).

See Section B for more comments on that example. In the above example the function Kθ0 , as its
notation suggest, only depends on the initialization but not on the function f such that ℓ = f ◦ ϕ. In
machine learning scenarios, f typically captures dependence on the training dataset. The intrinsic
metric Kθ0(z) thus captures parts of the dynamics of z(t) due to the network architecture (via ϕ) and
of the training algorithm (the gradient flow equation 1) irrespective of the dataset and the learning
task (of course the latter still play a role via the ∇f(z) term in the ODE ż = −Kθ0(z)∇f(z)). This
motivates the introduction of the following definition.
Definition 2.6 (Intrinsic dynamic property). θ0 verifies the intrinsic dynamic property on Ω with
respect to ϕ, if there is Kθ0 : Rd → Rd×d such that, for any f ∈ C2, the maximal solution θ(·) of
equation 1 with ℓ = f ◦ ϕ satisfies M(θ(t)) = Kθ0(ϕ(θ(t))) for each t such that θ(t) ∈ Ω.

2.2 CONSERVATION LAWS

Example 2.5 illustrates a phenomemon that we will systematically exploit in our analysis: with
the typical reparameterizations ϕ mentioned above, there exists a vector-valued function h : θ 7→
h(θ) ∈ RN that is conserved along the trajectory and allows to exhibit a function Kθ0 such that
M(θ(t)) = Kθ0(z(t)) along the trajectory. As these will play a key role in our analysis we now
introduce the essential concepts related to conservation laws.

We denote ϕ1, · · · , ϕd the d coordinate functions of the reparameterization ϕ : RD 7→ ϕ(θ) ∈ Rd ∈
C∞(RD,Rd). Since ϕ yields a factorization of the loss, functions h such that ∇h(θ) ⊥ ∇ϕi(θ) for
each i and each θ remain constant along the trajectory. This has been thoroughly analyzed, see e.g.
Marcotte et al. (2023; 2024), using the following definition.
Definition 2.7 (Conservation law for ϕ). A function h ∈ C1(Ω,R) is a conservation law for ϕ on Ω
if for any θ ∈ Ω one has ∂ϕ(θ)∇h(θ) = 0, i.e. for each θ ∈ Ω and i, ⟨∇ϕi(θ),∇h(θ)⟩ = 0.
Proposition 2.8. Under Assumption 2.1 on ϕ, if h ∈ C1(Ω,R) satisfies ∂ϕ(θ)∇h(θ) = 0 for every
θ ∈ Ω, then h remains constant during the trajectory θ(t) of equation 1 for any initialization θ0 ∈ Ω.

The conservation laws associated with a given parameterization ϕ have been almost exhaustively
studied for parameterizations corresponding to linear networks, ReLU networks, and attention
layers. In particular, prior work has shown that all conservation laws for ϕ in the cases of ReLU
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(cf Example 2.3) and linear (cf Example 2.2) networks (see Marcotte et al. (2023)) as well as for
an attention layer (see Marcotte et al. (2025)) are captured by the following proposition (Marcotte
et al. (2023)). This has been proven theoretically for two-layer networks and empirically validated
for deeper architectures using symbolic computation (see Marcotte et al. (2023)). It is worth noticing
that all conservation laws in such cases are polynomials.
Proposition 2.9 (Conservation laws for classical ϕ on RD). Consider θ = (UL, · · · , U1) and
ϕLin(θ) := UL · · ·U1 from Example 2.2 (resp. ϕReLU from Example 2.3). The functions

hi : θ 7→ U⊤
i+1Ui+1 − UiU

⊤
i (resp. hi : θ 7→ Diag(U⊤

i+1Ui+1 − UiU
⊤
i ))

are conservation laws for ϕLin (resp. ϕReLU). Similary, considering θ := (Q,K, V,O) and ϕAtt from
Example 2.4, h : θ 7→ (QQ⊤ −KK⊤, V V ⊤ −OO⊤) is a set of conservation laws for ϕAtt.

2.2.1 INTRINSIC DYNAMICS VIA CONSERVATION LAWS

Given conservation laws h(θ) for ϕ, the trajectory θ(t) for equation 1 remains at all times on the set
Mθ0 := {θ : h(θ) = h(θ0)}, (6)

determined by θ0. This holds true for any function f such that ℓ = f ◦ ϕ (hence, in machine learning:
for any task/loss and any dataset, provided that the network model is (locally) factorized via ϕ).

To establish the existence of a functionKθ(·) such thatM(θ(t)) = Kθ0(z(t)) on the whole trajectory,
a natural relaxation is thus to establish a related equality on the whole set Mθ0 rather than only on a
specific trajectory. This leads to the following definition and its immediate consequence.
Definition 2.10 (Intrinsic metric property). We say that θ0 verifies the intrinsic metric property on an
open set U ∋ θ0 with respect to ϕ, if there exists conservation laws h(θ) ∈ RN for ϕ and a function
Kθ0 ∈ C1(Rd,Rd×d) such that M(θ) = Kθ0(ϕ(θ)) for each θ ∈ Mθ0 ∩ U .
Lemma 2.11. If θ0 verifies the intrinsic metric property 2.10 on U with respect to ϕ, then it also
verifies the intrinsic dynamic property 2.6 on U with respect to ϕ.
Remark 2.12. It is not difficult to check on all examples considered in this paper that if θ0 satisfies
the intrinsic metric property with respect to ϕ on some open set U , then any θ′0 ∈ Mθ0 also satisfies
the property on a properly modified open set U ′, with the same function K. This function thus only
depends on h(θ0), and we denote it Kh(θ0) when needed to highlight this fact.
Remark 2.13. Lemma 2.11 remains valid with a slightly weakened version of Definition 2.10, where
Kθ0 is not required to be smooth. Yet, since the existence of a smooth solution to the resulting
intrinsic ODE equation 5 is simplified when Kθ0 is C1 we chose to include this in the definition.

The following theorem (proved in Section C) establishes a necessary condition for the intrinsic metric
property to hold. We use it to show that the property does not always hold for linear networks.
Theorem 2.14. Consider h ∈ C1(RD,RN ), ϕ ∈ C2(RD,Rd), and θ0 ∈ RD such that the matrix
∂h(θ) ∈ RN×D has constant rank on Mθ0 ∩ U with U ∋ θ0 an open subset of RD and Mθ0 :=
h−1({h(θ0)}). Then (i) =⇒ (ii), where

(i) There exists an open set O ⊃ ϕ(Mθ0) ∩ U and a map Kθ0 ∈ C1(O,Rd×d) such that for
each θ ∈ Mθ0 ∩ U : M(θ) = Kθ0(ϕ(θ));

(ii) ker∂ϕ(θ) ∩ ker∂h(θ) ⊆ ker∂M(θ), ∀θ ∈ Mθ0 ∩ U . (7)

A trivial case where equation 7 holds is when the intersection of kernels on the left hand side is zero:
ker∂ϕ(θ) ∩ ker∂h(θ) = {0}. (8)

This stronger assumption can in fact be shown to imply the intrinsic metric property (see Theorem 3.3
in the upcoming section), and we will show (cf Corollary 3.9) that, with ϕReLU associated to general
ReLU networks of any depth, there exists a set of conservation laws such that equation 8 indeed holds
for any initialization. This implies the intrinsic metric property and therefore the intrinsic dynamic
property irrespective of the initialization for ReLU networks with with ϕReLU. For linear networks
with more than one hidden neuron, we will show that it is not possible to reduce the problem to
equation 8. Nevertheless, certain initializations (known as balanced conditions (Arora et al. (2019))
are known to satisfy the intrinsic metric property with respect to the reparametrisation ϕLin (cf (Arora
et al., 2018, Theorem 1), (Bah et al., 2022, Lemma 2)). In this paper, we generalize this result to
so-called relaxed balanced initializations (see Definition 4.1). Moreover, we show that in certain
configurations, relaxed balanced initializations are exactly the only ones that satisfy the intrinsic
metric property (cf Theorem 4.3 and Theorem 4.4).
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3 INTRINSIC RECOVERABILITY AND APPLICATION TO RELU NETWORKS

In this section we consider a stronger condition called intrinsic recoverability property which requires
not only that M(θ(t)) can be rewritten as a function of z(t) and the initialization, but that at each
point of the trajectory θ(t) itself can be fully expressed in terms of z(t) and the initialization θ0. In
other words, in this scenario, θ(t) can be completely recovered from the parameterization ϕ and the
initialization alone, hence the name. As we will establish, this apparently strong property indeed
holds when equation 8 is satisfied, which is always the case for ReLU networks.

3.1 INTRINSIC RECOVERABILITY IMPLIES INTRINSIC METRIC

Definition 3.1 (Intrinsic recoverability property). We say that θ0 verifies the intrinsic recoverability
property on an open set U ∋ θ0 with respect to ϕ, if there exists conservation laws h(θ) ∈ RN for ϕ
and a function Γ(·) ∈ C1(Rd × RN ,RD) such that θ = Γ(ϕ(θ),h(θ)) for each θ ∈ U .

When this property holds, each θ ∈ Mθ0 satisfies M(θ) = M [Γ(ϕ(θ),h(θ))] =
M [Γ(ϕ(θ),h(θ0))] = Kh(θ0)(ϕ(θ)) (with Kh(θ0)(·) :=M [Γ(·,h(θ0))]), hence the following result.

Lemma 3.2. If θ0 satisfies the intrinsic recoverability property on an open set U ∋ θ0 with respect to
ϕ, then θ0 satisfies the intrinsic metric property on U with respect to ϕ.

The intrinsic recoverability property is equivalent to equation 8 (see Section D for a proof):
Theorem 3.3. Given ϕ ∈ C2(RD,Rd) and θ0 ∈ RD, the following are equivalent: (i) there are
conservation laws h ∈ C1(Ω,RN ) for ϕ on a neighborhood Ω of θ0 such that equation 8 holds for
each θ ∈ Mθ0 ∩ Ω; (ii) there is an open set U ⊆ Ω on which θ0 satisfies the intrinsic recoverability
property Definition 3.1 (and thus the intrinsic metric property Definition 2.10) with respect to ϕ.

3.2 THE FROBENIUS PROPERTY IS ALMOST EQUIVALENT TO INTRINSIC RECOVERABILITY

We are interested in condition equation 8, as it implies the intrinsic recoverability property, and thus
an intrinsic dynamics. It may not seem obvious a priori how to verify whether such a condition can
hold, nor how to construct suitable conservation laws h in practice. Intuitively, one should select
as many conservation laws as possible while ensuring they remain independent, in a specific sense
defined by (Marcotte et al., 2023, Definition 2.18). As shown by Marcotte et al. (2023), knowing
the maximal number of such conservation laws can be checked using Lie brackets of the associated
vector fields. We recall the relevant definitions and explain how this criterion applies in our setting.
Definition 3.4 (Lie brackets). Given two vector fields χ1, χ2 ∈ C∞(Θ,Rd), the Lie brackets [χ1, χ2]
is the vector field defined by [χ1, χ2](θ) := ∂χ2(θ)χ1(θ)− ∂χ1(θ)χ2(θ).
Definition 3.5 (Generated Lie algebra). Given some function space W ⊆ C∞(Θ,Rd), the generated
Lie algebra of W is the smallest subspace of C∞(Θ,Rd) that contains W and that is stable by Lie
brackets, and is denoted Lie(W).

The trace at θ ∈ Θ of any set W ⊂ C∞(Θ,RD) of vector fields is defined as the linear space

W(θ) := span{χ(θ) : χ ∈ W} ⊆ RD, (9)

and for any infinitly smooth ϕ we denote Wϕ := span{∇ϕi(·), 1 ≤ i ≤ d} ⊆ C∞(Θ,Rd).

Definition 3.6 (Frobenius property). A C∞ function ϕ satisfies the Frobenius property on Ω if for all
θ ∈ Ω, Lie(Wϕ)(θ) = Wϕ(θ). This property is slightly weaker than involutivity (Isidori (1995)).

The following proposition (proved in Section E) relates this property to the intrinsic dynamic property
of θ0. In particular, as Frobenius property does not hold for ϕLin (Marcotte et al., 2023, Proposition
I.1), it is not possible to have the intrinsic recoverability for linear networks with classical ϕLin.
Proposition 3.7. We have the following implications (i) =⇒ (ii) =⇒ (iii): (i) ϕ satisfies the
Frobenius property on Ω and the trace of Wϕ has its dimension that is constant on Ω; (ii) For any
θ0 ∈ Ω, there exists conservation laws h for ϕ on a neighborhood U ⊂ Ω of θ0 such that for each
θ ∈ Mθ0 equation 8 holds; (iii) ϕ satisfies the Frobenius property on Ω.

The result presented in Li et al. (2022) can be recovered as a special case of Proposition 3.7: the
authors require the reparametrization ϕ to be commuting, meaning that for all pairs ϕi, ϕj , the Lie
bracket [∇ϕi,∇ϕj ] is equal to zero. In this setting, ϕ naturally satisfies the Frobenius property, and
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the result of Li et al. (2022) establishes an even stronger property: the dynamics on ϕ(θ) form a
mirror flow. In particular, it is worth noting that diagonal networks satisfy that their parametrization
(product of the diagonals) is commuting (as all coordinates functions are separable), which thus (Li
et al. (2022)) implies a mirror flow dynamic, and thus an implicit bias (see e.g. Azulay et al. (2021)).
In contrast, we consider a weaker condition; we seek only to determine whether the dynamics on
z = ϕ(θ) can be expressed intrinsically as a Riemannian gradient flow.

3.3 APPLICATION TO GENERAL DEEP RELU NETWORKS

We now show that the intrinsic recoverability property is satisfied for any initialisation for the
parametrisation ϕ associated to a large class of (deep) ReLU neural networks. While this result is
already known in the two-layer case (Marcotte et al., 2023, Examples 3.5 and 3.8), here we establish it
for the general model of ReLU networks of Gonon et al. (2023), associated to a directed acyclic graph
(DAG) of any depth, including skip connexions and arbitrary mixes of ReLU/linear/max-pooling
activations. We first establish that ϕReLU satisfies the Frobenius property (see Section F for a proof):
Theorem 3.8. The parameterization ϕReLU used for ReLU neural networks with any DAG architecture
(see Gonon et al. (2023) and our Example 2.3)) satisfies the Frobenius property on (R\{0})D.

This leads to the following corollary (proved in Section G) which guarantees the existence of a
maximal set of conservation laws big enough to ensure the intrinsic recoverability property.
Corollary 3.9. There exists a dense open set Θ of RD such that any θ0 ∈ Θ admits an open
neighborhood U ⊆ Θ on which θ0 satisfies the intrinsic recoverability property, and thus the intrinsic
dynamic property with respect to ϕReLU.

In practice, the known conservation laws given in Proposition 2.9 yield, on a dense open subset, m
independent conservation laws, where m corresponds to the number of hidden neurons. To verify
that these are indeed the only ones, one must check that the trace of WϕReLU

has dimension D −m;
while we do not prove this here, it is empirically supported by Marcotte et al. (2023), which confirms
that Lie

(
WϕReLU

)
(θ) = WϕReLU

(θ) has dimension D −m when sampling random values of θ, as well
as random dimensions and depths. As a concrete example the following proposition (proved in
Section H) provides the first closed form formula of the intrinsic dynamic for a three-layer ReLU
network with scalar input and output.
Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ϕReLU reads1

Z = ϕReLU(u, V, w) := diag(u)V diag(w) ∈ Rn×m,

with u ∈ Rn, V ∈ Rn×m, and w ∈ Rm. Define Θ := {(u, V,w) : ui, Vij , wj ̸= 0 ∀i, j}, and let
θ(t) be the maximal solution to equation 1 with θ(0) = θ0 ∈ Θ. The flow preserves the n + m
conservation laws h(θ) :=

(
(u2i −

∑
j V

2
ij)

n
i=1, (w

2
j −

∑
i V

2
ij)

m
j=1

)
, and the intrinsic dynamics

ż = −Kθ0(z)∇f(z) on z = vec(Z) corresponds to

Ż = −ddiag(∇f(Z)Z⊤) diag(α)−1 Z−diag(α)∇f(Z) diag(β)−Z diag(β)−1 ddiag(Z⊤∇f(Z)),
where: a) for any matrixM , ddiag(M) := diag

(
Diag(M)

)
, where Diag(M) extracts its diagonal as

a vector and diag(v) is the diagonal matrix with entries of v; and b) the vectors α = α(Z,h(θ0)) ∈
Rn

>0 and β := β(Z,h(θ0)) ∈ Rm
>0 (uniquely determined by Z and h(θ0)) satisfy

α2 − |Z|2 diag(β)−11n − λ⊙α = 0, β2 − (|Z|2)⊤ diag(α)−11m − µ⊙ β = 0, (10)
with |Z|2 ∈ Rn×m the element-wise square on the matrix Z ∈ Rn×m) and with λ ∈ Rn, µ ∈ Rm

such that h(θ0) = (λ,µ). When λ,µ = 0, equation 10 entirely characterizes (α,β).

4 DEEP LINEAR NEURAL NETWORKS AND LINEAR NEURAL ODES

For L-layer linear networks, θ = (U1, . . . , UL) and the path-lifting formalism (Gonon et al., 2023)
yields a factorization via ϕReLU, leading to an intrinsic dynamics by the results of the previous section.
It is more common however to consider the dynamics of ZL := ϕLin(θL) = UL · · ·U1, since ϕLin is
more efficient that ϕReLU in terms of dimension reduction. We now analyze the dynamics of ZL(t).
The gradient flow θ̇L = −∇ℓ(θL) gives the evolution of ZL (see e.g. (Bah et al., 2022, Lemma 2)):

ŻL = −
L∑

j=1

Sj ∇f(ZL)Tj , with

{
Sj := UL · · ·Uj+1 U

⊤
j+1 · · ·U⊤

L , SL = Id,

Tj := U⊤
1 · · ·U⊤

j−1 Uj−1 · · ·U1, T1 = Id.
(11)

1When written as a n×m matrix, we denote Z instead of z and also view ∇f(Z) as an n×m matrix.
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The metric M(θL) on zL = vec(ZL) is thus entirely characterized by (Sj(θL), Tj+1(θL))
L−1
j=1 .

Definition 4.1 (Relaxed balanced conditions). We say that θL := (UL, · · · , U1) satisfies the relaxed
balanced condition if there exists λ := (λi)i ∈ RL−1 such that

U⊤
i+1Ui+1 − UiU

⊤
i = λiId, ∀1 ≤ i ≤ L− 1. (12)

(0-)balanced conditions (Bah et al., 2022, Def 1) (Arora et al., 2019, Def 1) correspond to λ = 0.
Remark 4.2. It is worth noting that Dominé et al. (2025) used this exact same condition and called it
the λ-balanced condition. However, the definition of λ-balanced condition is already used (see (Arora
et al., 2019, Def 1)) by the literature to refer to the weaker condition ∥U⊤

i+1Ui+1−UiU
⊤
i ∥ ≤ λi.Other

works (see e.g. Tarmoun et al. (2021); Braun et al. (2022); Varre et al. (2023)) use stronger conditions
on the initializations, that satisfy in particular the relaxed balanced conditions of Definition 4.1.

4.1 DEEP LINEAR NEURAL NETWORKS

We first detail the study of the two-layer case, and then generalize it to the deep case.

Matrix factorization. We consider the two-layer case where θ := (U, V ) ∈ Rn×r × Rm×r and
with Z = ϕLin(θ) := UV ⊤ ∈ Rn×m. We assume θ(t) satisfies the gradient flow equation 1 with
θ(0) = (Ut=0, Vt=0). We denote S := U⊤

t=0Ut=0 − V ⊤
t=0Vt=0 ∈ Rr×r.

If θ0 satisfies the balanced condition equation 12 S = 0, then (Arora et al., 2018, Theorem 1) (Bah
et al., 2022, Lemma 2) θ0 satisfies the intrinsic metric property with respect to ϕLin and

Ż = −
√
ZZ⊤∇f(Z)−∇f(Z)

√
Z⊤Z. (13)

We generalize this result (see Section I for a proof) to a broader class of initializations: all initializa-
tions satisfying the relaxed balanced condition equation 12 possess the intrinsic metric property.
Theorem 4.3. Consider θ0 := (Ut=0, Vt=0) where both Ut=0 ∈ Rn×r and Vt=0 ∈ Rm×r have full
rank r ≤ min(n,m), and assume S = λIdr for some λ ∈ R. Then, on a neighborhood Ω of θt=0:

Ż = −ΠZZ⊤

[
λ

2
Idn +

1

2

√
λ2Idn + 4ZZ⊤

]
∇f(X)−∇f(X)ΠZ⊤Z

[
−λ
2
Idm +

1

2

√
λ2Idm + 4Z⊤Z

]
,

(14)
where ΠA is the orthogonal projector on rangeA.

Note that equation 13 corresponds indeed to equation 14 with λ = 0. Note also that Theorem 4.3
generalizes to the case r ≤ min(n,m) the expression obtained in (Dominé et al., 2025, Theorem
5.2) for the special case r = min(n,m) (if Dominé et al. (2025) focus in general on the squared
loss, the proof of their Theorem 5.2 does not rely on the use of this specific loss: this result can be
applied for any loss, as ours). The following theorem shows that the relaxed balanced condition is
actually a necessary condition when r ≤ max(n,m) to have the intrinsic metric property. Its proof
(see Section J) relies on showing the non-inclusion of the kernels of equation 7.
Theorem 4.4. Let θ0 := (Ut=0, Vt=0). Assume that both Ut=0 ∈ Rn×r and Vt=0 ∈ Rm×r have a
full rank and that r ≤ max(n,m). If S := U⊤

t=0Ut=0 − V ⊤
t=0Vt=0 ̸= λIdr, then θ0 does not satisfy

the intrinsic metric property (Definition 2.10) with respect to ϕLin.

The case r > max(n,m) is still open. For n = m = 1 and any r, the following proposition (proved
in Section K) shows that all initializations do satisfy the intrinsic metric property with respect to ϕLin.
Proposition 4.5. Let θ := (u, v) with u ∈ Rr and v ∈ Rr. Then z := ϕLin(θ) = ⟨u, v⟩ ∈ R. We
denote S := ut=0u

⊤
t=0 − vt=0v

⊤
t=0 ∈ Rr×r. Then one has ż = −

√
2tr(S2)− tr(S)2 + 4z2∇f(z).

In particular, it is important to note that the two-layer linear analysis allows these results to be applied
directly to networks composed of attention layers (Example 2.4).

Deep linear neural networks. Consider linear neural networks of arbitrary depth, with square
weight matrices θL := (UL, . . . , U1), Ui ∈ Rn×n. The following theorem (proved in Section L)
generalizes Theorem 4.3 to this setting. In the case of balanced conditions (λ = 0), our theorem
recovers the dynamics described in (Arora et al., 2018, Theorem 1), (Bah et al., 2022, Lemma 2).
Theorem 4.6. If θL(0) satisfies the relaxed balanced condition (Definition 4.1) with λ = (λi)i
then during the trajectory θL(t) of equation 1, the matrices in equation 11 satisfy Sj(θL(t)) =
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Qj(UL(t)UL(t)
⊤) and Tj(θL(t)) = Rj(U1(t)

⊤U1(t)), where Qj(x) :=
∏L−j−1

k=0 (x − ak) with
a0 := 0 and ak :=

∑k
i=1 λL−i for k = 1, · · ·L − 1 and Rj(x) :=

∏j−2
k=0(x − bk) with b0 := 0

and bk := −
∑k

i=1 λi. Moreover ULU
⊤
L (resp. U⊤

1 U1) is the unique root of ZLZ
⊤
L = Q0(ULU

⊤
L )

(resp. of Z⊤
LZL = RL−1(U

⊤
1 U1)) with spectrum lower bounded by max0≤k≤L−1 ak (resp. by

max0≤k≤L−2 bk). This implies that all matrices in equation 11 are entirely characterized by ZL and
the initialization, hence θL(0) satisfies the intrinsic dynamic property on RD with respect to ϕLin.

4.2 INFINITELY DEEP LINEAR NETWORKS

We next consider the limit when L → +∞ of deep linear residual networks with parameters
Uk = Idn+A k

L
, and thus focus on the analysis of the parameter θ = (As)s∈[0,1], where As ∈ Rn×n

corresponding to linear neural ODEs (introduced by Chen et al. (2018)). Remarkably, our theoretical
approach still applies in this regime, and yields a closed-form formula for the metric. We thus study the
dynamics of parameters θ(t) ∈ X where X corresponds to the Banach space (C1([0, 1],Rn×n), ∥·∥C1)
where ∥f∥C1 := max

{
∥f∥∞, ∥f ′∥∞

}
, and such that the trajectory t 7→ θ(t) = (As(t))s∈[0,1] is the

solution of the gradient flow on ℓ(θ), given by the (family of coupled) ODE

∀s ∈ [0, 1], ∂As

∂t (t) = − gs(t), with gs(t) :=
∂ℓ
∂As

(
θ(t)

)
∈ Rn×n, (15)

where we assume that the loss function ℓ : X 7→ R is such that θ 7→ ( ∂ℓ
∂As

(θ))s∈[0,1] is locally
Lipschitz on X (to ensure by the Cauchy-Lipschitz theorem that indeed there exists a unique maximal
solution θ(·) ∈ C1([0, T ),X ) of equation 15 with a given θ(0)).

As an infinite-depth analog of ZL = UL . . . U1, given any θ ∈ X we consider s ∈ [0, 1] 7→ Zs =
Zs[θ] ∈ Rn×n the unique global solution (as θ = (As)s∈[0,1] ∈ X ) of the state equation

d
dsZs = AsZs, Z0 = Idn. (16)

The analog to Assumption 2.1 is to assume that ℓ(θ) = f
(
Zs=1

)
with f ∈ C1, and we now want to

know if it is possible to rewrite the dynamic ∂Zs=1

∂t (t) as an intrinsic dynamic that only depends on
Zs=1(t) and the initialization θ(0). The following proposition (see Section M for a proof) gives a set
of conserved functions during all trajectories of equation 15.
Proposition 4.7. For any s ∈ [0, 1], consider hs : θ := (As)s∈[0,1] ∈ X 7→ A′

s+A′⊤
s +[A⊤

s ,As] ∈
Rn×n, where we denote A′

s := d
dsAs. Then for any s ∈ [0, 1], one has for any t: hs(θ(t)) =

hs(θ(0)), where θ(t) is the maximal solution of equation 15 with initialization θ(0).

Moreover, the following theorem (see Section N for a proof) shows that for relaxed balanced
initializations, the evolution of Z1(t) = Zs=1(t) is entirely described by Z and the initialization.
Theorem 4.8. If the initialization θ(0) satisfies that for each s ∈ [0, 1] hs(θ(0)) = λ(s)Idn for some
λ(·) ∈ C0([0, 1],R), then one has

Ż1 = −
∫ 1

0

(Z1Z
⊤
1 )1−s exp(γ(s))∇f(Z1)(Z

⊤
1 Z1)

sds,

with γ(s) := (1−s)ψ1(1)−ψ1(1−s)−sψ2(1)+ψ2(s), whereψ1 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(1−v)dvdu

and ψ2 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(v)dvdu. If λ(·) ≡ 0 (balanced-condition), then γ(·) ≡ 0.

In a sense, this theorem captures the infinite-depth limit (L→ +∞) of Theorem 4.6, while offering
the key advantage of an explicit closed-form expression for the associated metric.

CONCLUSION

In this paper, we investigated when high-dimensional gradient flows can be recast as intrinsic
Riemannian flows in lower-dimensional spaces. Our results show that such reductions are always
possible for ReLU networks under path-lifting parametrization, and for linear networks under relaxed
balanced initializations. A central contribution is our analysis of the “path-lifting metric”, a recently
introduced and still largely unexplored object, for which we provide an intrinsic characterization in
the 3-layer case. Extending this analysis to deeper or more general architectures could shed new light
on the geometry of gradient dynamics for general ReLU networks.
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A A TABLE THAT SUMMARIZES WHICH PARAMETRIZATIONS CAN BE USED TO
ANALYZE WHICH TYPE OF NEURAL NETWORK, ALONG WITH THE
CORRESPONDING RESULTS.

Network type

Parametrization
ϕLin ϕReLU

Linear network IMP: only for relaxed balanced θ0
Dimension: d′ ≪ D

IMP: for all θ0
d′ = D − k ≈ D

DAG ReLU N/A IMP: for all θ0
d′ = D − k ≈ D

IMP = intrinsic metric property ; d′ = dimension of the manifold of ϕ(θ); k= # hidden neurons

Table 1: The table summarizes which parametrizations can be used to analyze which type of neural
network, along with the corresponding results.

B MORE COMMENTS ON EXAMPLE 2.5

In example equation 2.5, when λ → +∞ Kθ0/λ → Im (the Euclidean metric). When λ = 0, one
has Kθ0(z) = ∥z∥Im + zz⊤

∥z∥ for every z ̸= 0, and in particular, by the uniqueness result in the

Cauchy-Lipschitz theorem, 0 is reachable only if z0 = 0. When λ → −∞, Kθ0/|λ| → zz⊤

∥z∥2 . See
the supplementary material for numerical illustrations of these different behaviors.

C PROOF OF THEOREM 2.14

Theorem 2.14. Consider h ∈ C1(RD,RN ), ϕ ∈ C2(RD,Rd), and θ0 ∈ RD such that the matrix
∂h(θ) ∈ RN×D has constant rank on Mθ0 ∩ U with U ∋ θ0 an open subset of RD and Mθ0 :=
h−1({h(θ0)}). Then (i) =⇒ (ii), where

(i) There exists an open set O ⊃ ϕ(Mθ0) ∩ U and a map Kθ0 ∈ C1(O,Rd×d) such that for
each θ ∈ Mθ0 ∩ U : M(θ) = Kθ0(ϕ(θ));

(ii) ker∂ϕ(θ) ∩ ker∂h(θ) ⊆ ker∂M(θ), ∀θ ∈ Mθ0 ∩ U . (7)

Proof. (i) ⇒ (ii).

Assume (i) and fix θ ∈ Mθ0 ∩U and a vector v ∈ ker ∂ϕ(θ)∩ ker ∂h(θ). Applying the chain rule in
the ambient space RD (possible as v ∈ ker ∂h(θ) = TθMθ0 because ∂h(θ) has its rank that remains
constant on Mθ0 ∩ U by hypothesis) gives

∂M(θ) · v = ∂Kθ0(ϕ(θ)) ·
(
∂ϕ(θ) · v

)
= ∂Kθ0(θ) · 0 = 0,

hence v ∈ ker ∂M(θ) and (ii) holds.

D PROOF OF THEOREM 3.3

Theorem 3.3. Given ϕ ∈ C2(RD,Rd) and θ0 ∈ RD, the following are equivalent: (i) there are
conservation laws h ∈ C1(Ω,RN ) for ϕ on a neighborhood Ω of θ0 such that equation 8 holds for
each θ ∈ Mθ0 ∩ Ω; (ii) there is an open set U ⊆ Ω on which θ0 satisfies the intrinsic recoverability
property Definition 3.1 (and thus the intrinsic metric property Definition 2.10) with respect to ϕ.

12
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Proof. We first show (i) =⇒ (ii). We assume (i). Observe that given any θ ∈ RDequation 8 is
equivalent (by rank theorem) to

rank

(
∂ϕ(θ)
∂h(θ)

)
= D. (17)

By smoothness of ϕ and h, if equation 17 holds at θ0 is also holds in a whole neighborhood U of θ0.
By the implicit function theorem, denoting F (θ) := (ϕ(θ),h(θ)), it implies that θ can be expressed
on UU as θ = F−1(ϕ(θ),h(θ)) = Γ(ϕ(θ),h(θ)).

We now show (ii) =⇒ (i). We assume (ii). Then on U one has θ = Γ(ϕ(θ),h(θ)). Thus on
Mθ0 ∩ U , one has θ = Γ(ϕ(θ),h(θ0)). We now fix some θ ∈ Mθ0 ∩ U and we consider a vector
v ∈ ker ∂ϕ(θ) ∩ ker ∂h(θ).

Applying the chain rule in the ambient space RD on Γ gives

v = IdDv = ∂ϕ(θ)Γ(ϕ(θ),h(θ0)) ·
(
∂ϕ(θ) · v

)
= ∂Γ(θ) · 0 = 0,

and thus v = 0.

E PROOF OF PROPOSITION 3.7.

Proposition 3.7. We have the following implications (i) =⇒ (ii) =⇒ (iii): (i) ϕ satisfies the
Frobenius property on Ω and the trace of Wϕ has its dimension that is constant on Ω; (ii) For any
θ0 ∈ Ω, there exists conservation laws h for ϕ on a neighborhood U ⊂ Ω of θ0 such that for each
θ ∈ Mθ0 equation 8 holds; (iii) ϕ satisfies the Frobenius property on Ω.

Proof. (i) =⇒ (ii) is direct consequence of the proof of (Marcotte et al., 2023, Proposition 3.7).

We now show (ii) =⇒ (iii). Let us assume (ii). We fix θ0. Then by assumption on U ∋ θ0,
θ = Γ(h(θ), ϕ(θ)), and by using Proposition 3.7 one has ker ∂ϕ(θ)∩ ker ∂h(θ) = {0} on Mθ0 ∩U .
Thus equation 17 holds on a open neighborhood O of θ0. As h are conservation laws for ϕ on U , one
has on O ∩ U that Wϕ(θ) = D − rank∂h(θ).

But as ⟨∇h(θ),∇ϕi(θ)⟩ = ⟨∇h(θ),∇ϕj(θ)⟩ = 0 =⇒ ⟨∇h(θ), [∇ϕi,∇ϕj ](θ)⟩ = 0, one has
necessarly dimLieWϕ(θ0) ≤ D−rank∂h(θ0) and as one also hasD−rank∂h(θ0) = dimWϕ(θ0) ≤
dimLieWϕ(θ0) then one has Wϕ(θ0) = LieWϕ(θ0). This holds for any θ0, which concludes the
proof.

F PROOF OF THEOREM 3.8.

Theorem 3.8. The parameterization ϕReLU used for ReLU neural networks with any DAG architecture
(see Gonon et al. (2023) and our Example 2.3)) satisfies the Frobenius property on (R\{0})D.

Proof. We consider a parametrization ϕ : θ 7→ (ϕi(θ))
d
i=1, where all ϕi are monomial in θ =

(θ1, · · · , θD) ∈ (R\{0})D, i.e. ϕi(θ) =
∏D

ℓ=1 θ
α

(i)
ℓ

ℓ . Moreover a variable θℓ appears in some
coordinate with exponent α(i)

ℓ > 0, then every other coordinate that contains θℓ uses the same
exponent α(k)

ℓ = α
(i)
ℓ . These assumptions are indeed satisfied for the path-lifting parametrization

ϕReLU associated to general ReLU networks (Gonon et al. (2023); Stock & Gribonval (2022)),
associated to a directed acyclic graph (DAG) of any depth, including skip connexions and arbitrary
mixes of ReLU/linear/max-pooling activations (and even slight generalizations of max-pooling).

Now let us consider two indices i, j ∈ {1, . . . , d}. Denote I (resp. J) the subset of all indices ℓ such
that α(i)

ℓ ̸= 0 (resp. α(j)
ℓ ̸= 0). By abuse of notation we write i ∩ j (resp. i\j etc.) the set I ∩ J

(resp. I\J) and denote θi∩j etc. the restriction of θ to the corresponding entries. In particular, one
can decompose

θ =
(
θi∩j , θi\j , θj\i, θ(i∩j)c

)
.

We write
ϕi(θ) = ϕi∩j

(
θi∩j

)
ϕi\j

(
θi\j

)
, ϕj(θ) = ϕi∩j

(
θi∩j

)
ϕj\i

(
θj\i

)
,

13
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where ϕi∩j(·) is the maximal monomial factoring both ϕi(·) and ϕj(·), and ϕi\j (resp. ϕj\i) is the
unique monomial such that

ϕi(·) = ϕi∩j(·)ϕi\j(·), ϕj(·) = ϕi∩j(·)ϕj\i(·).

Then one has:

∇ϕi(θ) =

∇ϕi∩jϕi\j
ϕi∩j∇ϕi\j

0
0

 and ∇ϕj(θ) =

∇ϕi∩jϕj\i
0

ϕi∩j∇ϕj\i
0


and

∂2ϕi(θ) =


∂2ϕi∩jϕi\j ∇ϕi∩j∇ϕ⊤i\j 0 0

∇ϕi\j∇ϕ⊤i∩j ∂2ϕi\jϕi∩j 0 0
0 0 0 0
0 0 0 0


Thus

∂2ϕi(θ)∇ϕj(θ) =


∂2ϕi∩jϕi\j ∇ϕi∩j∇ϕ⊤i\j 0 0

∇ϕi\j∇ϕ⊤i∩j ∂2ϕi\jϕi∩j 0 0
0 0 0 0
0 0 0 0


∇ϕi∩jϕj\i

0
ϕi∩j∇ϕj\i

0



=

∂
2ϕi∩j∇ϕi∩jϕj\iϕi\j
∇ϕi\j∥∇ϕi∩j∥2ϕj\i

0
0



= ϕj\i

∂
2ϕi∩j∇ϕi∩jϕi\j
∇ϕi\j∥∇ϕi∩j∥2

0
0

 ,

and similarly one has:

∂2ϕj(θ)∇ϕi(θ) = ϕi\j

∂
2ϕi∩j∇ϕi∩jϕj\i

0
∇ϕj\i∥∇ϕi∩j∥2

0


Finally one has:

[∇ϕi,∇ϕj ](θ) =

 0
−∇ϕi\j∥∇ϕi∩j∥2ϕj\i
∇ϕj\i∥∇ϕi∩j∥2ϕi\j

0



= ∥∇ϕi∩j∥2

 0
−∇ϕi\jϕj\i
∇ϕj\iϕi\j

0


But as:

ϕj\i∇ϕi − ϕi\j∇ϕj = ϕi∩j

 0
ϕj\i∇ϕi∩j

−ϕi\j∇ϕj∩i

0


As ϕi∩j ̸= 0 (indeed θ ∈ (R \ {0})D, one then has

 0
ϕj\i∇ϕi∩j

−ϕi\j∇ϕj∩i

 ∈ Wϕ(θ) and thus

[∇ϕi,∇ϕj ](θ) ∈ Wϕ(θ).

14
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G PROOF OF COROLLARY 3.9

We first prove the following proposition (recall that Wϕ is defined in equation 9 and below).

Proposition G.1. If ϕ : RD → Rd is polynomial, then there exists a dense open set Θ of RD such
that for any θ ∈ Θ, dimWϕ(θ) = maxθ′∈RD dimWϕ(θ

′).

Proof. Denote M := maxθ′∈RD dimWϕ(θ
′) ∈ N. Considering θ0 ∈ RD such that dimWϕ(θ0) =

M , there exists distinct indices i1, · · · , iM such that the vectors ∇ϕij (θ0) ∈ RD, 1 ≤ j ≤ M are
linearly independent. There also exists a set I of M coordinates such that the restriction of these vec-
tors to I remains linearly independent. The function θ 7→ η(θ) := det[(∇ϕi1(θ))I , · · · , (∇ϕiM (θ)I ]
is a polynomial on RD with η(θ0) ̸= 0, hence the set Z of its zeros is a closed negligeable set
of RD. Thus the open dense subset of RD defined by Θ := RD \ Z satisfies: for all θ ∈ Θ:
dimWϕ(θ) =M .

Corollary 3.9. There exists a dense open set Θ of RD such that any θ0 ∈ Θ admits an open
neighborhood U ⊆ Θ on which θ0 satisfies the intrinsic recoverability property, and thus the intrinsic
dynamic property with respect to ϕReLU.

Proof. Since ϕReLU is polynomial, we can apply Proposition G.1 to obtain an open dense set Θ on
which the dimension of the trace of Wϕ remains constant. By Theorem 3.8, ϕReLU satisfies the
Frobenius property. By Proposition 3.7 every θ0 ∈ Θ admits a neighborhood U on which it satisfies
the intrinsic recoverability property with respect ot ϕReLU. By Lemma 3.2 such a parameter θ0 also
satisfies the intrinsic metric property on U with respect to ϕReLU.

H PROOF OF PROPOSITION 3.10

Lemma H.1. Let Y ∈ Rn×m
>0 . Then there exists a unique pair (α,β) =: Γ(Y ) of vectors α ∈ Rn

>0,
β ∈ Rm

>0 such that

α2 = Y diag(β)−11m, and β2 = Y ⊤diag(α)−11n.

Proof. Define the mappings

S(β) :=
√
Y diag(β)−11m, T (α) :=

√
Y ⊤diag(α)−11n.

Let D(a, a′) := ∥ log(a/a′)∥∞ denote the Thompson metric on (R∗
+)

d, where R∗
+ is the set of

positive real numbers. It is known that
(
(R∗

+)
d, D

)
is a complete metric space. The linear operator

Y is 1-Lipschitz with respect to D, according to the Birkhoff contraction theorem. Moreover, the
square root function is 1

2 -Lipschitz in this metric. Hence, the composition S ◦ T is 1
4 -contracting.

By the Banach fixed-point theorem, there exists a unique fixed point of S ◦ T , which implies the
existence and uniqueness of the pair (α,β) solving the original equations.

Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ϕReLU reads2

Z = ϕReLU(u, V, w) := diag(u)V diag(w) ∈ Rn×m,

with u ∈ Rn, V ∈ Rn×m, and w ∈ Rm. Define Θ := {(u, V,w) : ui, Vij , wj ̸= 0 ∀i, j}, and let
θ(t) be the maximal solution to equation 1 with θ(0) = θ0 ∈ Θ. The flow preserves the n + m
conservation laws h(θ) :=

(
(u2i −

∑
j V

2
ij)

n
i=1, (w

2
j −

∑
i V

2
ij)

m
j=1

)
, and the intrinsic dynamics

ż = −Kθ0(z)∇f(z) on z = vec(Z) corresponds to

Ż = −ddiag(∇f(Z)Z⊤) diag(α)−1 Z−diag(α)∇f(Z) diag(β)−Z diag(β)−1 ddiag(Z⊤∇f(Z)),
where: a) for any matrixM , ddiag(M) := diag

(
Diag(M)

)
, where Diag(M) extracts its diagonal as

a vector and diag(v) is the diagonal matrix with entries of v; and b) the vectors α = α(Z,h(θ0)) ∈
Rn

>0 and β := β(Z,h(θ0)) ∈ Rm
>0 (uniquely determined by Z and h(θ0)) satisfy

α2 − |Z|2 diag(β)−11n − λ⊙α = 0, β2 − (|Z|2)⊤ diag(α)−11m − µ⊙ β = 0, (10)
2When written as a n×m matrix, we denote Z instead of z and also view ∇f(Z) as an n×m matrix.
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with |Z|2 ∈ Rn×m the element-wise square on the matrix Z ∈ Rn×m) and with λ ∈ Rn, µ ∈ Rm

such that h(θ0) = (λ,µ). When λ,µ = 0, equation 10 entirely characterizes (α,β).

Proof. Given the general definition of ϕReLU (see e.g. Neyshabur et al. (2015); Stock & Gribonval
(2022); Gonon et al. (2023)), we study the factorization map

ϕ(u, V, w) := diag(u) V diag(w),

where u ∈ Rn, V ∈ Rn×m, w ∈ Rm with ui, wj ̸= 0.

Step 1: Gradient flow in parameters.

Let f : Rn×m → R and define the loss ℓ(u, V, w) = f
(
ϕ(u, V, w)

)
. Writing Z = ϕ(u, V, w) and its

gradient G = ∇f(Z), the gradient-flow ODE equation 1 u̇ = −∂uℓ, V̇ = −∂V ℓ, ẇ = −∂wℓ is:

u̇ = −Diag
(
G diag(w)V ⊤),

V̇ = −diag(u) G diag(w),

ẇ = −Diag
(
V ⊤ diag(u)G

)
,

Step 2: Induced flow on z.

Since Z = diag(u)V diag(w), we have

Ż = diag(u̇)V diag(w) + diag(u)V̇ diag(w) + diag(u)V diag(ẇ).

Substituting the above yields

Ż = −ddiag
(
G diag(w)V ⊤)V diag(w)−diag(u2)Gdiag(w2)−diag(u)V ddiag

(
V ⊤diag(u)G

)
,

where we set ddiag(M) = diag
(
Diag(M)

)
.

Eliminating V via V = diag(u)−1Zdiag(w)−1 (possible as ui, wj ̸= 0 on Θ) and using
ddiag(M diag(a)) = ddiag(M) diag(a) one obtains

Ż = −ddiag(Gz⊤) diag(u−2)Z − diag(u2)Gdiag(w2)− Z diag(w−2) ddiag(Z⊤G).

Moreover by Corollary 3.9 there exists conservation laws h and a function Γ such that θ = (u, V,w) =
Γ(ϕ(θ),h(θ)) = Γ(Z,h(θ)) so that α := u2 and β := w2 (entrywise multiplication) can both be
expressed as functions α(Z,h(θ)) and β(Z,h(θ)). Below we explicit such conservation laws and
characterize properties of α and β.

Step 3: Conserved quantities and elimination of α,β.

The flow equation 1 preserves the following n+m conservation laws:

∀i = 1, . . . , n : u2i −
m∑
j=1

V 2
ij = λi,

∀j = 1, . . . ,m : w2
j −

n∑
i=1

V 2
ij = µj ,

for given constants λ ∈ Rn and µ ∈ Rm determined by θ0. Since Vij = Zij/(uiwj), then
(u2, w2) > 0 is a solution of the coupled system

u2 : u4i −
m∑
j=1

Z2
ij

w2
j

− λi u
2
i = 0,

w2 : w4
j −

n∑
i=1

Z2
ij

u2i
− µj w

2
j = 0.

In vector-matrix form (with entrywise squaring):

α = u2, β = w2,
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α2 − |Z|2 diag(β)−11m − λ⊙α = 0, β2 − (|Z|2)⊤ diag(α)−11n − µ⊙ β = 0,

where |Z|2 is the elementwise square of Z and ⊙ is the element-wise product.

Special case λ = 0,µ = 0.

Then the system reduces to

α2 = (|Z|2) diag(β)−11m, β2 = (|Z|2)⊤ diag(α)−11n. (18)

By Lemma H.1 with Y = |Z|2 (possible as Zij = uiVijwj ̸= 0 since θ ∈ Θ), the exists a unique
solution (α,β) > 0 of the system equation 18.

In the scalar case (n = m = 1) with |Z|2 = z2 a scalar, the solution is α = β = (|Z|2)1/3 =
|z|2/3.

I PROOF OF THEOREM 4.3.

Theorem 4.3. Consider θ0 := (Ut=0, Vt=0) where both Ut=0 ∈ Rn×r and Vt=0 ∈ Rm×r have full
rank r ≤ min(n,m), and assume S = λIdr for some λ ∈ R. Then, on a neighborhood Ω of θt=0:

Ż = −ΠZZ⊤

[
λ

2
Idn +

1

2

√
λ2Idn + 4ZZ⊤

]
∇f(X)−∇f(X)ΠZ⊤Z

[
−λ
2
Idm +

1

2

√
λ2Idm + 4Z⊤Z

]
,

(14)
where ΠA is the orthogonal projector on rangeA.

Proof. Step 1: rank of Z.

As r ≤ min(n,m) and as both Ut=0 ∈ Rn×r and Vt=0 ∈ Rm×r have full rank equal to r, it
remains the case in a neighborhood Ω of θ0 := (Ut=0, Vt=0), and it is also the case for Z = UV ⊤.

Step 2: A quadratic equation for P := UU⊤.

Compute
ZZ⊤ = UV ⊤V U⊤ = U

(
V ⊤V

)
U⊤.

With the hypothesis U⊤U − V ⊤V = λIdr we get V ⊤V = U⊤U − λIdr, hence

ZZ⊤ = U
(
U⊤U − λIdr

)
U⊤ = UU⊤UU⊤ − λUU⊤ = P 2 − λP.

Thus P satisfies the quadratic matrix equation

P 2 − λP − ZZ⊤ = 0. (19)

Step 3: Simultaneous diagonalisation and scalar reduction.

Write Z ′ := ZZ⊤. Because

P = UU⊤, Z ′ = U(V ⊤V )U⊤,

and U⊤U differs from V ⊤V only by a scalar multiple of the identity, we have (U⊤U)(V ⊤V ) =
(V ⊤V )(U⊤U). Encapsulating by U and U⊤ yields PZ ′ = Z ′P . Hence P and Z ′ are simultaneously
diagonalisable: there exists an orthogonal matrix W ∈ Rn×n such that

P =W diag(σ1, . . . , σn)W
⊤, Z ′ =W diag(µ1, . . . , µn)W

⊤,

with σi, µi ≥ 0 and where we assume σ1 ≥ · · · ≥ σn and µ1 ≥ · · · ≥ µn.

In the common eigenbasis, equation 19 becomes for every i

σ2
i − λσi − µi = 0.

Its two roots are

σ±
i =

λ±
√
λ2 + 4µi

2
.

17
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By the first step, one already has that on Ω, for any i > r: σi = µi = 0 so that σi = σ−
i ,

and that for any i ≤ r, σi > 0 and µi > 0. Thus
√
λ2 + 4µi > |λ|, the “−” root is negative,

while P = UU⊤ is positive-semidefinite. Therefore σi = σ+
i for i ≤ r. Let us define ΠZZ⊤ :=

W diag(1, · · · , 1︸ ︷︷ ︸
×r

, 0, · · · , 0)W⊤ the orthogonal projector on range(ZZ⊤). It follows that:

P = ΠZZ⊤ ×
[
λ

2
Idn +

1

2

√
λ2Idn + 4ZZ⊤

]
. (20)

Step 4: The expression for Q := V V ⊤. A fully analogous computation gives

Z⊤Z = V U⊤UV ⊤ = V
(
V ⊤V + λIdr

)
V ⊤ = Q2 + λQ,

so that Q satisfies
Q2 + λQ− Z⊤Z = 0. (21)

Because Q and T := Z⊤Z commute, they share an orthonormal eigenbasis in which equation 21
reduces to

τ2i + λτi − µi = 0 (τi≥0, µi≥0).

By the first step, one already has that on Ω, for any i > r: τi = µi = 0 and that for any i ≤ r, τi ̸= 0

and µi ̸= 0. For i ≤ r the positive root (as
√
λ2 + 4µi > |λ|) is

τi =
−λ+

√
λ2 + 4µi

2
,

so that

Q = ΠZ⊤Z ×
[
−λ
2
Im +

1

2

√
λ2Idm + 4T

]
, (22)

with T = Z⊤Z and where ΠZ⊤Z is the orthogonal projector on range(Z⊤Z).

Step 5: Uniqueness and conclusion In both cases equation 20–equation 22 are the only solutions
consistent with UU⊤ ⪰ 0 and V V ⊤ ⪰ 0 and with rank(Z) = r on Ω. Finally one has on Ω:
.

Z = −UU⊤∇f(Z)−∇f(Z)V V ⊤

= −ΠZZ⊤ ×
[
λ

2
Idn +

1

2

√
λ2Idn + 4ZZ⊤

]
∇f(X)−∇f(X)ΠZ⊤Z ×

[
−λ
2
Im +

1

2

√
λ2Idm + 4Z⊤Z

]
,

which concludes the proof.

J PROOF OF THEOREM 4.4

We first show the following lemma:

Lemma J.1. If S ̸= λIdr with S a real symmetric matrix, then there exists a skew-symmetric matrix
A such that [A,S] ̸= 0.

Proof. Let us assume S ̸= λIdr (in particular r > 1 necessarily). Thus there are at least two distinct
eigenvalues of S δ and µ associated to the eigenvectors x and y. Then A := xy⊤ − yx⊤ ̸= 0 is a
skew-symmetric matrix that satisfies:

[A,S] = (xy⊤ − yx⊤)S − S(xy⊤ − yx⊤)

= x(Sy)⊤ − y(Sx)⊤ − (Sx)y⊤ + (Sy)x⊤ as S is symmetric

= µxy⊤ − δyx⊤ − δxy⊤ + µyx⊤

= (µ− δ︸ ︷︷ ︸
̸=0

)(xy⊤ + yx⊤) ̸= 0,

as µ ̸= δ, and which concludes the proof.

18
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Theorem 4.4. Let θ0 := (Ut=0, Vt=0). Assume that both Ut=0 ∈ Rn×r and Vt=0 ∈ Rm×r have a
full rank and that r ≤ max(n,m). If S := U⊤

t=0Ut=0 − V ⊤
t=0Vt=0 ̸= λIdr, then θ0 does not satisfy

the intrinsic metric property (Definition 2.10) with respect to ϕLin.

Proof. In light of the necessary condition of Theorem 2.14 we will first characterize ker∂M(θ) for
any θ = (U, V ). Then, with h(θ) = U⊤U − V ⊤V and ϕ(θ) = ϕLin(θ) = UV ⊤, we will exhibit
a subspace V of ker∂h(θ) ∩ ker∂ϕ(θ) such that V ⊊ ker∂M(θ). We will then conclude using the
needed calculus and Theorem 2.14.

Step 1: Characterization of ker∂M(θ) for any θ = (U, V ).

By equation 11 (with L = 2, U2 = U,U1 = V ⊤), one can write M(θ)vec(X) = vec(UUTX +
XV V ⊤) for any matrixX ∈ Rn×m. Using the Kronecker product and the fact that (A⊗B)vec(X) =
vec(BXA⊤), this expression can be rewritten as:

M(θ) = Idm ⊗ (UUT ) + (V V ⊤)⊗ Idn. (23)

Thus differentiating equation 23 yields that for any (H,K) of the same dimensions as (U, V ) we have
∂M(θ).(H,K) = Idm⊗ (UHT +HUT )+(V K⊤ +KV ⊤)⊗ Idn, and thus: (H,K) ∈ ker∂M(θ)
if and only if Idm ⊗ (UHT +HUT ) = −(V K⊤ +KV ⊤)⊗ Idn. We now show that

ker∂M(θ) =
{
(H,K) : ∃µ ∈ R, UH⊤ +HU⊤ = µIdn andV K⊤ +KV ⊤ = −µIdm

}
. (24)

The converse inclusion is clear. We now prove the direct inclusion. Let us consider (H,K) ∈
ker∂M(θ), then one has Idm ⊗ (UHT + HUT ) = −(V K⊤ +KV ⊤) ⊗ Idn. Still using that
(A ⊗ B)vec(X) = vec(BXA⊤) and denoting U ′ := UHT + HUT and V ′ := (V K⊤ +KV ⊤),
this exactly means that for any matrix X ∈ Rn×m one has U ′X = −XV ′⊤. To conclude, we only
need to show that this implies the existence of µ, µ′ ∈ R such that U ′ = µIdn andV ′ = −µ′Idm,
since the equality U ′X = −XV ′⊤ then also implies µ = µ′. This is immediate if V ′ = 0 since in
this case U ′ must also be equal to zero as U ′X = 0 for every X . Assume now that V ′ is non-zero so
there exists a vector v such that V ′⊤v ̸= 0. Considering any such v and any vector u, and setting
X = uv⊤, we have

(U ′u)v⊤ = U ′X = −XV ′ = −u(V ′⊤v)⊤

hence U ′u is colinear with u. Since this holds for any choice of u, we deduce indeed that U ′

is proportional to Idn. A similar reasoning yields that V ′ ∝ Idm. This concludes the proof of
equation 24.

Step 2: Characterization of a subspace V ⊆ ker∂h(θ) ∩ ker∂ϕ(θ). Since h(θ) = U⊤U − V ⊤V
and ϕ(θ) = UV ⊤ we have

∂h(θ).(H,K) = U⊤H +H⊤U − V ⊤K −K⊤V

∂ϕ(θ).(H,K) = UK⊤ +HV ⊤

and one can easily check that for any θ such that h(θ) = S we have

V :=

{(
U∆

−V∆⊤

)
: ∆ ∈ Rr×r, (∆⊤ +∆)U⊤U + U⊤U (∆ +∆⊤) = ∆S + S∆⊤

}
⊆ ker∂h(θ) ∩ ker∂ϕ(θ).

Step 3: Proof that V ̸⊂ ker∂M(θ). The fact that a matrix ∆ ∈ Rr×r satisfies

(∆⊤ +∆)U⊤U + U⊤U (∆ +∆⊤) = ∆S + S∆⊤,

is equivalent to
∆S(2U

⊤U − S) + (2U⊤U − S)∆S = [∆A, S].

with ∆S (resp. ∆A) the symmetric (resp. skew symmetric) part of ∆ (so that ∆ = ∆S + ∆A).
Denote Sr (resp. Ar) the set of r×r symmetric (resp. skew symmetric) matrices and L the Lyapunov
operator defined by:

L : ∆S ∈ Sr 7→ L(∆S) := ∆S(2U
⊤U − S) + (2U⊤U − S)∆S

= ∆S(U
⊤U + V ⊤V ) + (U⊤U + V ⊤V )∆S ∈ Sr

19
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We obtain

V =

{(
U(∆S +∆A)
−V (∆S −∆A)

)
: (∆S ,∆A) ∈ Sr ×Ar, L(∆S) = [∆A, S]

}
.

As S ̸= λIdr, by Lemma J.1 there exists a skew-symmetric matrix ∆A ∈ Ar such that [∆A, S] ̸= 0.
As U⊤U + V ⊤V is positive definite (as either U or V has full column-rank) its eigenvalues λi > 0
satisfy λi + λj ̸= 0, so (see e.g. Bartels & Stewart (1972)) in particular the Lyapunov operator:
L : Sr → Sr is invertible. Since [∆A, S] = ∆AS − S∆A ∈ Sr, we obtain that there exists
∆S ̸= 0 such that L(∆S) = [∆A, S]. This particular choice of ∆S and ∆A exhibits a parameter
θ′ = (U∆,−V∆⊤) that satifies θ′ ∈ V ⊆ ker∂ϕ(θ)∩ker∂h(θ). We now show that θ′ /∈ ker∂M(θ).
We proceed by contradiction: if θ′ ∈ ker∂M(θ) then, by equation 24, there exists µ ∈ R such that
U(∆⊤ +∆)U⊤ = µIdn and V (∆⊤ +∆)V ⊤ = −µIdm that is to say

2U∆SU
⊤ = µIdn and 2V∆SV

⊤ = −µIdm. (25)

When r ≤ max(m,n) and since U , V are full rank, at least one of the two matrices U or V is full
column rank r. Without loss of generality let us assume that U is full column rank. Then U⊤U is
invertible and we deduce that,

2∆S = µ(U⊤U)−1. (26)
Moreover if (as we indeed show below) rangeU⊤ ∩ rangeV ⊤ ̸= {0}, then by considering
z = U⊤x = V ⊤y ̸= 0 for some x, y ∈ Rr, one deduces from equation 25 that µ∥x∥22 =
2x⊤U∆SU

⊤x = z⊤∆Sz = 2y⊤V∆SV
⊤y = −µ∥y∥22 and thus µ = 0. Hence ∆S = 0 by

equation 26, contradicting L(∆S) = [∆A, S] ̸= 0, which shows that θ′ /∈ ker∂M(θ).

Thus we only need to prove that one has rangeU⊤ ∩ rangeV ⊤ ̸= {0}, and indeed:

dim(range(U⊤) ∩ dim(range(V ⊤)) = rank(U⊤)︸ ︷︷ ︸
=rank(U)

+rank(V ⊤)︸ ︷︷ ︸
=rank(V )

−dim(range(U⊤) + range(V ⊤)︸ ︷︷ ︸
range((U⊤|V ⊤))

)

= rank(U) + rank(V )︸ ︷︷ ︸
≥min(r,n)+min(r,m)≥r+1

− rank

((
U
V

))
︸ ︷︷ ︸

=r

> 0,

where we used in the last line that r ≤ max(n,m).

Step 4: Conclusion.

As both Ut=0 and Vt=0 have full rank it remains the case in a neighborhood Ω of θ0. Moreover as
r ≤ max(n,m) then one of the two matrices has a full column rank on Ω. In particular the vertical

concatenation
(
U
V

)
has full rank (equal to r) on Ω as r ≤ max(n,m) ≤ n+m.

Since ( U
V ) has full rank on Ω, by (Marcotte et al., 2023, Proposition 4.2 and Corollary 4.4) the

vector-valued function h contains a complete set of conservation laws.

We now show by contradiction that for any Ω′ ⊆ Ω, θ0 does not satisfy the intrinsic metric on Ω′.
Let us assume there exists a neighborhood Ω′ ⊆ Ω of θ0 and a set of conservation laws h0 for ϕ and
a function Kθ0 such that M(θ) = Kθ0(ϕ(θ)) for each θ ∈ Mh0

θ0
∩ Ω′, where Mh0

θ0
:= {θ : h0(θ) =

h0(θ0)}. As the family of conservation laws h is complete on Ω (and in particular on Ω′) and as
Lie(Wϕ)(θ) has a constant dimension on Ω (and thus on Ω′) by (Marcotte et al., 2023, Proposition
4.3), using (Marcotte et al., 2025, Proposition 2.12) yields that Mh0

θ0
:= {θ : h0(θ) = h0(θ0)} ⊃

Mh
θ0

:= {θ : h(θ) = h(θ0)}. Thus the function Kθ0 also satisfies M(θ) = Kθ0(ϕ(θ)) on Mh
θ0

,
hence h satisfies assumption i) of Theorem 2.14. As the rank of ∂h(θ) is constant on Ω′, we deduce
by Theorem 2.14 the inclusion equation 7, which contradicts the previous step.

K PROOF OF PROPOSITION 4.5.

Proposition 4.5. Let θ := (u, v) with u ∈ Rr and v ∈ Rr. Then z := ϕLin(θ) = ⟨u, v⟩ ∈ R. We
denote S := ut=0u

⊤
t=0 − vt=0v

⊤
t=0 ∈ Rr×r. Then one has ż = −

√
2tr(S2)− tr(S)2 + 4z2∇f(z).
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Proof. Since ∂ϕ(θ) = [v⊤, u⊤] we have

∂ϕ(θ)∂ϕ(θ)⊤ = ∥u∥2 + ∥v∥2.

Since h(θ) := uu⊤ − vv⊤ is a conservation law of ϕLin for every θ = (u, v) on the trajectory one
has: S = uu⊤ − vv⊤, and therefore S2 = ∥u∥2uu⊤ − zuv⊤ − zvu⊤ + ∥v∥2vv⊤. Thus

tr(S2) = ∥u∥4 + ∥v∥4 − 2z2.

As one also has: (∥u∥2 − ∥v∥2)2 = tr(S)2, one has:

(∂ϕ(θ)∂ϕ(θ)⊤)2 = (∥u∥2 + ∥v∥2)2 = 2(∥u∥4 + ∥v∥4)− (∥u∥2 − ∥v∥2)2

= 2(tr(S2) + 2z2)− tr(S)2

= 2tr(S2) + 4z2 − tr(S)2,

which concludes the proof.

L PROOF OF THEOREM 4.6.

Theorem 4.6. If θL(0) satisfies the relaxed balanced condition (Definition 4.1) with λ = (λi)i
then during the trajectory θL(t) of equation 1, the matrices in equation 11 satisfy Sj(θL(t)) =

Qj(UL(t)UL(t)
⊤) and Tj(θL(t)) = Rj(U1(t)

⊤U1(t)), where Qj(x) :=
∏L−j−1

k=0 (x − ak) with
a0 := 0 and ak :=

∑k
i=1 λL−i for k = 1, · · ·L − 1 and Rj(x) :=

∏j−2
k=0(x − bk) with b0 := 0

and bk := −
∑k

i=1 λi. Moreover ULU
⊤
L (resp. U⊤

1 U1) is the unique root of ZLZ
⊤
L = Q0(ULU

⊤
L )

(resp. of Z⊤
LZL = RL−1(U

⊤
1 U1)) with spectrum lower bounded by max0≤k≤L−1 ak (resp. by

max0≤k≤L−2 bk). This implies that all matrices in equation 11 are entirely characterized by ZL and
the initialization, hence θL(0) satisfies the intrinsic dynamic property on RD with respect to ϕLin.

Proof. Let us first outline the main steps of the proof. We first show that the equalities ZLZ
⊤
L =

Q0(ULU
⊤
L ) and Z⊤

LZL = RL−1(U
⊤
1 U1) hold on the whole trajectory. Then we prove that this

implies the expression of Sj (resp. of Tj) in terms of ULU
⊤
L (resp. of U⊤

1 U1) along the whole
trajectory too. Finally we show that along the whole trajectory ULU

⊤
L and U⊤

1 U1 (and therefore all
Sj’s and Tj’s) are entirely characterized by ZL = ϕLin(θL) and the initial conditions (captured by λ).
This will thus imply that θL(0) satisfies the intrinsic dynamic property on RD with respect to ϕLin.

Step 1: Expression of ZLZ
⊤
L as a polynomial in ULU

⊤
L

Since U⊤
j+1Uj+1 − UjU

⊤
j is a set of conservation laws for ϕLin, the fact that the relaxed balanced

conditions equation 12 hold at initialization implies that they hold along the whole trajectory.

We prove by induction on 1 ≤ ℓ ≤ L that Zℓ := Uℓ . . . U1 satisfies ZℓZ
⊤
ℓ = Pℓ(UℓU

⊤
ℓ ) for some

polynomial Pℓ of degree ℓ that satisfy P1(x) = x and Pℓ(x) = xPℓ−1(x − λℓ−1) for 2 ≤ ℓ ≤ L.
For ℓ = 1 we trivially have Zℓ = Uℓ hence the result is true. Now consider 2 ≤ ℓ ≤ L and assume
that the result holds true for ℓ− 1. Since Zℓ = UℓZℓ−1 we have

ZℓZ
⊤
ℓ = Uℓ(Zℓ−1Z

⊤
ℓ−1)U

⊤
ℓ = UℓPℓ−1(Uℓ−1U

⊤
ℓ−1)U

⊤
ℓ

equation 12
= UℓPℓ−1(U

⊤
ℓ Uℓ − λℓ−1id)U

⊤
ℓ

where we used equation 12 for i = ℓ − 1. Denoting P̂ℓ−1(x) := Pℓ−1(x − λℓ−1) we obtain
ZℓZ

⊤
ℓ = UℓP̂ℓ−1(U

⊤
ℓ Uℓ)U

⊤
ℓ = UℓU

⊤
ℓ P̂ℓ−1(UℓU

⊤
ℓ ) = Pℓ(UℓU

⊤
ℓ ). This concludes the induction.

Given the recursion formula for Pℓ, another easy induction yields

Pℓ(x) = Πℓ−1
k=0(x−

k∑
i=1

λℓ−i), 1 ≤ ℓ ≤ L. (27)

Specializing to ℓ = L we obtain PL = Q0 as claimed.

Step 2: Expression of Sj (resp. of Z⊤
LZL and Tj) as a polynomial in ULU

⊤
L (resp. in U⊤

1 U1).
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It is a direct consequence of the first step, as we now explain. To show the result on Sj , consider
the new variable θ′ = (U ′

L−j , . . . , U
′
1) := (UL, . . . , Uj+1) and Z ′ := U ′

L−j · · ·U ′
1 = UL · · ·Uj+1.

With these notations we have Sj = Z ′Z ′⊤, and the relaxed balanced conditions imply that:

(U ′
i+1)

⊤U ′
i+1 − U ′

i(U
′
i)

⊤ = λ′iIdn, 1 ≤ i ≤ L− j − 1

where λ′ = (λ′L−j−1, . . . , λ
′
1) := (λL−1, . . . , λj+1). By the first step we obtain the desired expres-

sion.

Similar computations with θ′ = (U⊤
1 , . . . , U

⊤
j−1), Z

′ = U⊤
1 . . . U⊤

j−1 and λ′ = (−λ1, . . . ,−λj−2)

show the desired expression for Tj = Z ′Z ′⊤ and Z⊤
LZL as well.

Step 3: Characterization of ULU
⊤
L via ZL and the initial conditions. The proof that U⊤

1 U1 is
characterized by ZL (in fact Z⊤

LZL) and the initial conditions is similar and therefore omitted.

By the first step we have ZLZ
⊤
L = Q0(ULU

⊤
L ), hence ULU

⊤
L is indeed a matrix root of this equation.

As both matrices ZLZ
⊤
L and ULU

⊤
L are real symmetric, the above expression shows that we can

reduce to the scalar study of their eigenvalues.

As we show below, a consequence of the relaxed balancedness conditions equation 12 is
that all eigenvalues of the positive semi-definite matrix ULU

⊤
L belong to the interval I :=

[max(0, a1, . . . , aL−1),∞). Thus, considering any eigenvalue e ≥ 0 of the positive semi-definite
matrix ZLZ

⊤
L , it is enough to show that the polynomial equation R(X) := Q0(X)− e = 0 admits a

unique root in this interval.

The existence of a root in I is a consequence of the mean value theorem, since
R(max(0, a1, · · · , aL−1)) = −e ≤ 0 and limx→∞R(x) = +∞. To prove uniqueness, we
proceed by contradiction: assume that R(X) admits two distinct roots x1 < x2 in I . By
Rolle’s theorem R′(X) = Q′

0(X) has a root in ]x1, x2[. This contradicts the fact that, by the
construction of Q0 and Rolle’s theorem, all roots of Q′

0(X) are contained in the open interval
(min(0, a1, ..., aL−1),max(0, a1, ..., aL−1)).

To conclude the proof, we show that indeed all eigenvalues of ULU
⊤
L belong to I :=

[max(0, a1, . . . , aL−1),∞). Denote σi = inf sp(UiU
⊤
i ), 1 ≤ i ≤ L. Since each matrix Uℓ is

square and positive semi-definite, we have sp(UiU
⊤
i ) = sp(U⊤

i Ui) ⊆ [0,∞) for every 1 ≤ i ≤ L,
and by equation 12 we also have sp(Ui+1U

⊤
i+1) = λi + sp(UiU

⊤
i ), hence σi+1 = σi + λi ≥ 0 for

1 ≤ i ≤ L − 1. An easy recursion shows that σi ≥ max(0,
∑i−1

j=1 λj) for 1 ≤ i ≤ L, hence the
result.

We now anticipate a slight generalization part of the results of Theorem 4.6 that will be used later in
the proof of Theorem 4.8.
Lemma L.1 (Perturbed relaxed balanced condition). Consider matrices (Uk)

L−1
k=0 ⊂ Rn×n and

scalars (λk)L−1
k=0 . Denoting h := 1/L, define

CU := max(1,max
k

∥Uk∥), Cλ := max
k

|λk| (28)

η := L2 · max
0≤k≤L−2

∥(U⊤
k+1Uk+1 − UkU

⊤
k )− h2λk Idn∥ (29)

Fix j ∈ {0, . . . , L − 2} and recall that Sj := (UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤. Define a0 := 0

and, for k ≥ 1, ak := h2
∑k

i=1 λL−1−i, C0 := 2Cλ, C1 := (C2
U + ηh2 − 1)/h. Then

max
j

∥Sj −
L−1−(j+1)∏

k=0

(
UL−1U

⊤
L−1 − akIdn

)
∥ ≤

(
C0e

C1eC0(1+C1) + eC1

)
η. (30)

Before proving this lemma, we state the following lemma, as it will be essential in the proof of
Lemma L.1: it provides a uniform bound on the Lipschitz constant of a class of polynomials.
Lemma L.2 (Uniform Lipschitz bound). Consider C0 > 0, C1 > 0. For any 0 < h ≤ 1, any integer
1 ≤ d ≤ 1/h, any degree–d polynomial

Qd(x) =

d∏
k=1

(x− ck),
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with maxk |ck| ≤ C0h, and any matrices A, A + ∆ ∈ BR(h) := {X : ∥X∥ ≤ R(h)} where
R(h) := 1 + C1h and where ∥ · ∥ denotes the Frobenius norm, one has

∥Qd(A+∆)−Qd(A)∥ ≤ K

h
∥∆∥, with K = K(C0, C1) = C0e

C0(1+C1) + eC1 . (31)

Proof. Step 1: Scalar Lipschitz constant on the ball BR. For any matrix polynomial Q(x) =∑d
m=0 αmx

m one has, denoting DQ(X)[H] =
∑d

m=1 αm

∑m−1
j=0 XjHXm−1−j :

Q(A+∆)−Q(A) =

∫ 1

0

DQ
(
A+ t∆

)
[∆] dt,

∥DQ(X)[H]∥ ≤ LQ(∥X∥2→2) ∥H∥≤ LQ(∥X∥) ∥H∥, ∀X, ∀H

where LQ(R) :=
∑d

m=1 |αm|mRm−1 (we used here that the spectral norm is bounded by the
Frobenius norm).

Step 2: Bounding LQd
(R(h)). Exploiting the coefficient–root relation on Qd that is unitary yields

|αm| ≤
(
d
m

)
βm where β := C0h for any 0 ≤ m ≤ d− 1. Since αd = 1, for any R > 0 we obtain

LQd
(R) ≤ β

d∑
m=1

(
d

m

)
m(βR)m−1 + dRd−1 = dβ(1 + βR)d−1 + dRd−1.

Insert d− 1 ≤ d ≤ 1/h, β = C0h. Since R(h) = 1 + C1h ≤ R(1) = 1 + C1 (as h ≤ 1) we get:

LQd
(R(h)) ≤ 1

h
C0h (1+C0hR(h))

1/h+d(1+C1h)
1/h ≤ C0 e

C0R(h)+
eC1

h
≤ C0 e

C0(1+C1) + eC1

h
.

where the exponential bound uses (1 + t)1/t ≤ e for t > 0. We define K = K(C0, C1) :=
C0e

C0(1+C1) + eC1 .

Step 3: Conclusion. Applying the integral formula of Step 1with the bound from Step 2 gives

∥Qd(A+∆)−Qd(A)∥ ≤ (K/h) ∥∆∥,
for every A,∆ with A,A+∆ ∈ BR(h), which is equation 31.

We now prove Lemma L.1.

Proof. Step 0: Reindexing. Work with the truncated sequence (U ′
1, . . . , U

′
N ) :=

(Uj+1, . . . , UL−2, UL−1), where N := L − 1 − j. Define Zℓ := U ′
ℓ · · ·U ′

1 for 1 ≤ ℓ ≤ N
and Mℓ := U ′

ℓU
′
ℓ
⊤. Then Sj = ZNZ

⊤
N .

We also observe that by the definition of η in equation 29, since h = 1/L, we have for each
1 ≤ ℓ ≤ N

U ′
ℓ
⊤
U ′
ℓ −Mℓ−1 = U ′

ℓ
⊤
U ′
ℓ − U ′

ℓ−1U
′
ℓ−1

⊤
= h2λℓ+j−1Idn + r′ℓ−1, ∥r′ℓ−1∥ ≤ h2η. (32)

Step 1: Polynomial representation with a perturbation. We prove by induction on ℓ that

Eℓ := ZℓZ
⊤
ℓ − Pℓ(Mℓ) satisfies ∥Eℓ∥ ≤ ℓKC2ℓ

U · hη (33)

where the polynomials Pℓ are defined by

P1(x) := x, Pℓ(x) := xPℓ−1

(
x− bℓ−1

)
(2 ≤ ℓ ≤ N),

with bℓ−1 := h2λℓ+j−1 (matching the re-indexed sequence), and the constant K is obtained by
Lemma L.2 applied to the constants C0 := 2Cλ and C1 := (C2

U + ηh2 − 1)/h.

Base case ℓ = 1. Trivial: Z1 = U ′
1, so Z1Z

⊤
1 =M1 = P1(M1) and E1 = 0.

Induction step. Assume equation 33 holds at rank ℓ− 1. Since Zℓ = U ′
ℓZℓ−1,

ZℓZ
⊤
ℓ = U ′

ℓ

(
Zℓ−1Z

⊤
ℓ−1

)
U ′
ℓ
⊤ = U ′

ℓPℓ−1(Mℓ−1)U
′
ℓ
⊤ + U ′

ℓEℓ−1U
′
ℓ
⊤.
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By induction hypothesis and the fact that the spectral norm is bounded by the Frobenius norm, the
second term of the right hand side is bounded as

∥U ′
ℓEℓ−1U

′
ℓ
⊤∥ ≤ C2

U∥Eℓ−1∥ ≤ C2
U (ℓ− 1)KC

2(ℓ−1)
U hη ≤ (ℓ− 1)C2ℓ

U Khη,

hence we only need to show that

∥U ′
ℓPℓ−1(Mℓ−1)U

′
ℓ
⊤ − Pℓ(Mℓ)∥ ≤ C2ℓ

U K · hη.

Write Qℓ−1(x) := Pℓ−1(x− bℓ−1). From equation 32 and the definition of Mℓ−1 = U ′
ℓ−1[U

′
ℓ−1]

⊤

one gets
Mℓ−1 = U ′

ℓ
⊤U ′

ℓ − bℓ−1Idn − r′ℓ−1, ∥r′ℓ−1∥ ≤ h2η.

Hence

U ′
ℓPℓ−1(Mℓ−1)U

′
ℓ
⊤ = U ′

ℓQℓ−1

(
U ′
ℓ
⊤U ′

ℓ − r′ℓ−1

)
U ′
ℓ
⊤

= U ′
ℓQℓ−1(U

′
ℓ
⊤U ′

ℓ)U
′
ℓ
⊤︸ ︷︷ ︸

=Mℓ Qℓ−1(Mℓ)=Pℓ(Mℓ)

+U ′
ℓ

(
Qℓ−1(U

′
ℓ
⊤U ′

ℓ − r′ℓ−1)−Qℓ−1(U
′
ℓ
⊤U ′

ℓ)
)
U ′
ℓ
⊤.

Thus to conclude the induction step we only need to show that

∥U ′
ℓ

(
Qℓ−1(U

′
ℓ
⊤U ′

ℓ − r′ℓ−1)−Qℓ−1(U
′
ℓ
⊤U ′

ℓ)
)
U ′
ℓ
⊤∥ ≤ C2ℓ

U K · hη.

By the definition of C1, the matrices A = U ′
ℓ
⊤U ′, ∆ = −r′ℓ−1, satisfy max(∥A∥, ∥∆∥) ≤ ∥A∥ +

∥∆∥ ≤ C2
U + h2η ≤ 1 + C1h. Moreover, with the same induction that has led to equation 27, the

polynomial Pℓ−1(x) has all its roots bounded by Lh2Cλ, hence Qℓ−1(x) := Pℓ−1(x− bℓ−1) has all
its roots bounded by (L+ 1)h2Cλ ≤ 2Cλh = C0h, therefore we can apply Lemma L.2 to obtain,
with K = K(C0, C1) = C0e

C0(1+C1) + eC1 :

∥Qℓ−1(U
′
ℓ
⊤U ′

ℓ − r′ℓ−1)−Qℓ−1(U
′
ℓ
⊤U ′

ℓ)∥ ≤ K

h
∥r′ℓ−1∥ ≤ K · hη

∥U ′
ℓ

(
Qℓ−1(U

′
ℓ
⊤U ′

ℓ − r′ℓ−1)−Qℓ−1(U
′
ℓ
⊤U ′

ℓ)
)
U ′
ℓ
⊤∥ ≤ C2

UK · hη
CU≥1

≤ C2ℓ
U K · hη,

which concludes the induction.

Step 2: Factorisation of PN . With the same induction that has led to equation 27, we have

PN (x) =

N−1∏
k=0

(
x− ak

)
, a0 = 0, ak =

k∑
i=1

h2λL−1−i.

Applying equation 33 with ℓ = N and recalling Sj = ZNZ
⊤
N yields

Sj = PN (MN ) + EN =

N−1∏
k=0

(
MN − akIn

)
+ EN ,

where ∥EN∥ ≤ C2N
U NKhη ≤ (1 + C1h)

LKη ≤ exp(C1)Kη.

Since MN = U ′
NU

′
N

⊤
= UL−1UL−1

⊤, we recover equation 30 as claimed.

M PROOF OF PROPOSITION 4.7.

Proposition 4.7. For any s ∈ [0, 1], consider hs : θ := (As)s∈[0,1] ∈ X 7→ A′
s+A′⊤

s +[A⊤
s ,As] ∈

Rn×n, where we denote A′
s := d

dsAs. Then for any s ∈ [0, 1], one has for any t: hs(θ(t)) =
hs(θ(0)), where θ(t) is the maximal solution of equation 15 with initialization θ(0).

Proof. For convenience we recall the state equation equation 16 for Zs, where s ∈ [0, 1] indicates
depth:

dZs

ds
= As Zs, Z0 = Idn fixed, (34)
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and we recall that the objective function is factorized by ℓ(θ) = f
(
Zs=1

)
, where the parameters are

the family θ = {As : s ∈ [0, 1]}.

Let θ : [t ∈ [0, T ] 7→ θ(t) ∈ X ] ∈ C1([0, T ],X ) be the solution of the gradient flow given by the
family of coupled ODE equation 15

∀s ∈ [0, 1],
∂As

∂t
(t) = − gs(t), with gs(t) :=

∂ℓ

∂As

(
θ(t)

)
, (35)

with a given initialization θ(0). Our goal is to show that ∂
∂ths(θ(t)) = 0.

Step 1: Computations of ∂
∂ths(θ(t)).

For any s ∈ [0, 1], one has by definition

hs(θ(t)) =
∂As(t)

∂s
+

(
∂As(t)

∂s

)⊤

+
[
As(t)

⊤,As(t)
]
.

Taking the t-derivative yields

∂

∂t
hs(θ(t)) =

∂

∂t

(
∂As(t)

∂s

)
+
∂

∂t

(
∂As(t)

∂s

)⊤

+
∂

∂t

[
As(t)

⊤,As(t)
]

=
∂

∂s

(
∂As(t)

∂t

)
+

(
∂

∂s

∂As(t)

∂t

)⊤

+
∂

∂t

[
As(t)

⊤,As(t)
]
, (36)

where the exchange of derivatives is justified in Section M.1.

Moreover one has

∂

∂t

[
As(t)

⊤,As(t)
]
=
[∂As(t)

⊤

∂t
,As(t)

]
+
[
As(t)

⊤,
∂As(t)

∂t

]
.

Thus by using equation 35
∂As(t)

∂t
= − gs(t),

we obtain

∂

∂t
hs(θ(t)) =

∂

∂s

(
−gs(t)

)
+

(
∂

∂s

(
−gs(t)

))⊤

+
[
− gs(t)

⊤,As(t)
]
+
[
As(t)

⊤,− gs(t)
]

= −∂gs(t)
∂s

−
(
∂gs(t)

∂s

)⊤

−
[
gs(t)

⊤,As(t)
]
−
[
As(t)

⊤, gs(t)
]
. (37)

The remaining task is to show that the sum of these terms cancels, using an expression of the gradient.

Step 2: An expression of gs(t) using the adjoint equation.

To compute the gradient gs = ∂ℓ
∂As

, we introduce the adjoint variable (Pontryagin et al. (1962)) Λs(t),
which satisfies the adjoint equation

∂Λs(t)

∂s
= −As(t)

⊤Λs(t), Λ1(t) =
∂f

∂Z

(
Z1(t)

)
. (38)

Moreover it satisfies as shown in Section M.2:

gs(t) = Λs(t)Zs(t)
⊤. (39)

Step 3: Compute ∂
∂sgs(t).

By differentiating equation 39 with respect to s, we get:

∂

∂s
gs(t) =

∂Λs(t)

∂s
Zs(t)

⊤ + Λs(t)
∂Zs(t)

⊤

∂s
.
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Then by using the adjoint equation equation 38 and the state equation equation 34, one has
∂

∂s
gs(t) = −As(t)

⊤ Λs(t)Zs(t)
⊤ + Λs(t)Zs(t)

⊤ As(t)
⊤ (40)

= −As(t)
⊤ gs(t) + gs(t)As(t)

⊤ (41)

= −[As(t)
⊤, gs(t)]. (42)

Taking the transpose,(
∂

∂s
gs(t)

)⊤

= − gs(t)
⊤ As(t) +As(t) gs(t)

⊤ = [As(t), gs(t)
⊤] = −[gs(t)

⊤,As(t)]. (43)

Step 4: Conclusion. By substituting the computed expressions into equation 37, one obtains as
claimed that

∂

∂t
hs(θ(t)) = 0.

M.1 WE NOW DETAIL EQUATION 36.

Theorem M.1 (Commutation of mixed derivatives). Let
X = C1

(
[0, 1],Rn×n

)
, ∥f∥X := max

{
∥f∥∞, ∥f ′∥∞

}
,

and set B = C0([0, 1],Rn×n) with the sup–norm ∥ · ∥B = ∥ · ∥∞. Denote D : X −→ B, f 7→ f ′

the spatial derivative. Suppose θ(·) ∈ C1
(
[0, T ],X

)
and write A(t, s) := [θ(t)](s). Then

• the mixed derivatives
∂t∂sA(t, s) and ∂s∂tA(t, s)

exist for every (t, s) ∈ [0, T ]× [0, 1] and coincide:

∂t∂sA(t, s) = ∂s∂tA(t, s) ∀ (t, s) .

• the map s 7→ ∂t∂sA(t, s) is continuous.

Proof. Step 1: D is continuous. For every f ∈ X ,
∥Df∥B = ∥f ′∥∞ ≤ max

{
∥f∥∞, ∥f ′∥∞

}
= ∥f∥X ,

so ∥D∥op ≤ 1; hence D is a bounded and thus a continuous linear map.

Step 2: Temporal differentiability is preserved by D. The fact that the function θ (valued in the
Banach space X ) is C1 means precisely that its (Fréchet) derivative θ̇(t) := ∂tθ(t) ∈ X exists for
each t and the map t 7→ θ̇(t) is continuous from [0, T ] to X .

Applying the continuous and linear operator D yields by linearity
D(θ(t+ h))−D(θ(t))

h
= D

(
θ(t+ h)− θ(t)

h

)
for every t ∈ [0, T ] and h small enough such that t+ h ∈ [0, T ], and since by continuity of D the
right hand side tends to D(θ̇(t)) when h→ 0, the left hand side also has a limit, showing that

d

dt

(
D(θ(t))

)
= D

(
θ̇(t)

)
for every t ∈ [0, T ]. (44)

Thus the mixed derivative ∂t∂sA(t, ·) exists as an element of B.

Step 3: symmetry of the mixed derivatives. Evaluating the identity equation 44 above pointwise in s
and writing A(t, s) = [θ(t)](s) gives

∂t∂sA(t, s) =
[
D(θ̇(t))

]
(s) = ∂s

[
θ̇(t)

]
(s) = ∂s∂tA(t, s).

Hence the two mixed derivatives exist everywhere and are equal.

Step 4: continuity of s 7→ ∂t∂sA(t, s). Since θ̇(t) ∈ X for each t, its derivative s 7→ ∂s
[
θ̇(t)

]
(s)

is continuous. As ∂s
[
θ̇(t)

]
(s) = ∂s∂tA(t, s), by the previous step, this exactly means that s 7→

∂t∂sA(t, s) is continuous.
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M.2 WE NOW SHOW EQUATION 39.

More precisely, to show equation 39, we will both prove that

gs(t) = (Zs(t)
−1)⊤Z1(t)

⊤∇f(Z1(t))Zs(t)
⊤ (45)

and that
Λs(t) = (Zs(t)

−1)⊤Z1(t)
⊤∇f(Z1(t)), (46)

which will indeed give equation 39.

We briefly explain why for a given t the matrix Zs(t) never loses its invertibility when s ∈ [0, 1]
varies, by showing that the determinant can never reach 0. As

∂sZs(t) = As(t)Zs(t), Z0(t) = Idn.

Jacobi’s rule gives

d

ds
detZs(t) = tr

(
As(t)

)
detZs(t), detZ0(t) = 1.

Solving this scalar ODE,

detZs(t) = exp
(∫ s

0

tr
(
Aτ (t)

)
dτ
)
̸= 0, s ∈ [0, 1].

Therefore Zs(t) ∈ GL(n) for every s.

Since t is fixed, in the following we lighten notations by dropping it from the equations. The proof of
equation 46 is direct by showing that Λs and (Z−1

s )⊤Z⊤
1 ∇f(Z1) satisfy the same ODE equation 38

with the same value at s = 1. Thus we only need to show equation 45.

Proof. To show equation 45 we will use Riesz theorem to identify the expression of the gradient. We
thus will consider the Hilbert space

L2 := L2
(
[0, 1],Rn×n

)
, ⟨U, V ⟩L2 :=

∫ 1

0

tr
(
U⊤
s Vs

)
ds,

in which the parameter θ = {As ∈ Rn×n : s ∈ [0, 1]} ∈ C1([0, 1],Rn×n) =: X ⊆ L2 lives.

We recall that Zs(θ) is the unique solution of the state equation equation 16:

∂sZs = AsZs, Z0 = Idn, ∀s ∈ [0, 1], (47)

and that the cost ℓ is factorized by the flow map Z1(θ) with a smooth scalar field f : Rn×n → R, i.e,
ℓ(θ) := f

(
Z1(θ)

)
.

1st step: expression of the Gateaux variation of the flow

Let θ = {As : s ∈ [0, 1]} ∈ X be fixed and pick an arbitrary δθ ∈ X . For ε ∈ R define the perturbed
coefficient θε := θ+ ε δθ, denoting its components θε = {Aϵ

s : s ∈ [0, 1]}. Denote by Zε
s := Zs(θ

ε)
the flow that satisfies the associated ODE:

∂sZ
ε
s = Aϵ

sZ
ϵ
s, Z

ϵ
0 = Idn, ∀s ∈ [0, 1]. (48)

As (s, ϵ, Z) 7→ Aϵ
sZ ∈ C1, th function (s, ϵ) 7→ Zϵ

s is C1 using the Cauchy–Lipschitz theorem with a
parameter. In particular for any s ∈ [0, 1], ϵ 7→ Zϵ

s is C1. Introduce the first variation

δZs =
d

dε
Zε
s

∣∣∣∣
ε=0

=: ∆s,

which corresponds to the Gateaux derivative of θ′ 7→ Zs(θ
′) at θ in the direction h = δθ. We now

show that ∆s satisfies the following inhomogeneous ODE:

∂s∆s = As∆s + δAs Zs, ∆0 = 0, ∀s ∈ [0, 1]. (49)
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where δAs :=
d
dεA

ε
s

∣∣
ε=0

.

Indeed let us consider qεs :=
Zε

s−Zs

ε for any 0 < ε ≤ 1. In particular one has qεs −→
ε→0

∆s. Moreover
one has:

qεs = ε−1

∫ s

0

(Aε
uZ

ε
u −AuZu)du =

∫ s

0

Bϵ
uZudu+

∫ s

0

Aε
uq

ε
udu, (50)

where Bϵ
u :=

Aε
u−Au

ε =
Aε

u−A0
u

ε satisfies Bε
u −→

ε→0

d
dεA

ε
u

∣∣
ε=0

= δAu (as ϵ 7→ Aε
u is C1) and where

ε ∈ [0, 1] 7→ Bε
u is continuous (at 0, we define B0

u = δAu) as ε 7→ Aε
u is C1), and thus is bounded on

[0, 1] by a constant that does not depend on ε. By dominated convergence, when ε→ 0 in equation 50
one obtains the limit:

∆s =

∫ s

0

(Au∆u + δAu Zu)du,

which coincides with the unique solution of equation 49.

Since Zs is a solution for the homogeneous part ∂sZs = AsZs with Z0 = Idn, by the variation-of-
parameters method, one obtains (as ∆0 = 0):

∆s = Zs

∫ s

0

Z−1
τ δAτ Zτ dτ.

Evaluating at s = 1 gives

δZ1 = ∆1 =

∫ 1

0

Z1Z
−1
τ δAτ Zτ dτ. (51)

2d step: Differential of ℓ and identification of the gradient.

Because f ∈ C1(Rn×n,R) its (Fréchet) differential at M ∈ Rn×n is

Df(M)[H] = ⟨∇f(M), H⟩F , ∀H ∈ Rn×n. (52)

Applying the chain rule to ℓ = f ◦ Z1 with the Gateaux differentials DG at θ and in the direction
h = δθ, one obtains,

DGℓ(θ)[δθ] = DGf
(
Z1(θ)

)[
δZ1

]
.

But as by hypothesis both ℓ and f are Frechet differentiable, one has:

Dℓ(θ)[δθ] = Df
(
Z1(θ)

)[
δZ1

]
.

Using equation 52 with M = Z1(θ) and H = δZ1,

Dℓ(θ)[δθ] =
〈
∇f
(
Z1(θ)

)
, δZ1

〉
F
. (53)

By inserting the expression of δZ1 from equation 51 into equation 53, one has:

Dℓ(θ)[δθ] =

∫ 1

0

tr
(
∇f(Z1)

⊤ Z1Z
−1
τ δAτ Zτ

)
dτ.

Because tr(RS) = tr(SR), one get

tr
(
∇f(Z1)

⊤Z1Z
−1
τ δAτZτ

)
= tr

(
Zτ ∇f(Z1)

⊤Z1Z
−1
τ δAτ

)
,

and thus by defining for each τ

G⊤
τ := Zτ ∇f(Z1)

⊤Z1Z
−1
τ , (54)

one finally has

Dℓ(θ)[δθ] =

∫ 1

0

tr
(
G⊤

τ δAτ

)
dτ = ⟨G, δθ⟩L2 .

By Riesz theorem, the gradient in L2 (i.e. the Fréchet gradient) is the unique element G ∈ L2

verifying Dℓ(θ)[δθ] = ⟨G, δθ⟩L2 for every δθ:

∇ℓ(θ) = G.

The transpose in equation 54 finally yields the required formula.
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M.3 LINK WITH CONSERVATION LAWS IN FINITE DEPTH (INFORMAL).

We assume that θL := (UL, · · · , U1) satisfies the relaxed balanced conditions:

U⊤
i+1Ui+1 − UiU

⊤
i =

Hi

L2
,

then as Uk = Id + 1
LAk, using that Ak+1 = Ak + 1

LA
′
k + o

(
1
L

)
we get:

Hk

L2
= (Id +

1

L
Ak+1)

⊤(Id +
1

L
Ak+1)− (Id +

1

L
Ak)(Id +

1

L
A⊤

k )

=
A⊤

k+1 +Ak+1

L
− Ak +A⊤

k

L
− AkA

⊤
k

L2
+
A⊤

k+1Ak+1

L2

=
A′⊤

k +A′
k −AkA

⊤
k +A⊤

k Ak

L2
+ o

(
1

L2

)
=
hsk(θ)

L2
+ o

(
1

L2

)
,

Thus hs is such that hsk(θ) = Hk + o(1).

In particular if θL satisfies the quasi balanced condition

U⊤
i+1Ui+1 − UiU

⊤
i =

λi
L2

Id,

then one can choose hs as:
hs(θ) = λ(s)Idn,

with λ a function such that λ(sk) = λk. We say in that case that θ satisfies the relaxed balanced
condition.

N PROOF OF THEOREM 4.8.

N.1 PROOF OF THE THEOREM

Theorem 4.8. If the initialization θ(0) satisfies that for each s ∈ [0, 1] hs(θ(0)) = λ(s)Idn for some
λ(·) ∈ C0([0, 1],R), then one has

Ż1 = −
∫ 1

0

(Z1Z
⊤
1 )1−s exp(γ(s))∇f(Z1)(Z

⊤
1 Z1)

sds,

with γ(s) := (1−s)ψ1(1)−ψ1(1−s)−sψ2(1)+ψ2(s), whereψ1 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(1−v)dvdu

and ψ2 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(v)dvdu. If λ(·) ≡ 0 (balanced-condition), then γ(·) ≡ 0.

Proof. For any t and any integer L ≥ 1 we define sk := sLk = k
L for k = 0, · · · , L− 1 and:

Xk+1(t) = Xk(t) + hAsk(t)Xk(t), with h :=
1

L
and X0(t) = In.

Since this corresponds exactly to the Euler explicit method with step h for the ODE

∂sZs(t) = As(t)Zs(t), Z0(t) = Idn, s ∈ [0, 1],

one has for any t and L (computations postponed in Section N.2):

sup
0≤k≤L−1

∥Xk(t)− Zsk(t)∥ = O(h) (55)

∥∂tZ1(t)− ∂tXL(t)∥ = O(h), (56)

with ∥ · ∥ any matrix norm on Rn×n, the implicit constant in the notation O(·) is independent of k
and L while it can depend on t.
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We now fix some t and observe that Xk+1(t) = Uk(t)Xk(t) with

Uk(t) := Idn + hAsk(t). (57)

so that (from now on we drop the t variable for brevity)

∂tXL = h

L−1∑
j=0

(UL−1 · · ·Uj+1)(∂tAsj )Xj(t) = h

L−1∑
j=0

(UL−1 · · ·Uj+1)(∂tAsj )Uj−1 · · ·U0

By equation 15 and the relation equation 45 (shown in Section M.2) we have for any s ∈ [0, 1]

∂tAs = −gs = −(Z−1
s )⊤Z⊤

1 ∇f(Z1)Z
⊤
s

hence

∂tXL = −h
L−1∑
j=0

(UL−1 · · ·Uj+1)(Z
−1
sj )⊤Z⊤

1 ∇f(Z1)Z
⊤
sjUj−1 · · ·U0

As UL−1 · · ·Uj+1 = XLX
−1
j+1 = (Z1 + O(h))(Zsj+1

+ O(h))−1 = Z1Z
−1
sj+1

+ O(h) since
the invertibility of Zs and continuity of s 7→ Zs implies that ∥Z−1

s ∥ is uniformly bounded) and
Zsj+1Z

−1
sj = Idn +O(h) (since Zsj+1 = Zsj + hAsjZsj +O(h2)), we deduce that

(Z−1
sj )⊤Z⊤

1 = (Z1Z
−1
sj )⊤ = [(Z1Z

−1
sj+1

)Zsj+1
Z−1
sj ]⊤

= [(UL−1 · · ·Uj+1 +O(h))(In +O(h))]⊤

= (UL−1 · · ·Uj+1)
⊤ +O(h),

where in the last line we used that since with any relevant matrix norm since maxk ∥Uk∥ = 1 +
O(h) = 1 + O(1/L) we have ∥UL−1 . . . Uj∥ ≤ [1 + O(1/L)]L = O(1). Similarly we also have
∥Uj−1 . . . U0∥ = O(1) hence

∂tXL =− h

L−1∑
j=0

(UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤∇f(Z1)Z

⊤
sjUj−1 · · ·U0 + h

L−1∑
j=0

O(h)︸ ︷︷ ︸
=O(h) since h=1/L

Similarly as Uj−1 · · ·U0 = Xj = Zsj +O(h) by equation 55, we get Z⊤
sj = (Uj−1 · · ·U0)

⊤+O(h)
hence

∂tXL =− h

L−1∑
j=0

(UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤∇f(Z1)(Uj−1 · · ·U0 +O(h))⊤(Uj−1 · · ·U0)

=− h

L−1∑
j=0

(UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤∇f(Z1)(Uj−1 · · ·U0)

⊤(Uj−1 · · ·U0) +O(h)

(58)

We also have

U⊤
k+1Uk+1 − UkU

⊤
k = (Idn + hAsk+1

)⊤(Idn + hAsk+1
)− (Idn + hAsk)(Idn + hA⊤

sk
)

= h(A⊤
sk+1

+Ask+1
)− h(Ask +A⊤

sk
)− h2(AskA⊤

sk
) + h2(A⊤

sk+1
Ask+1

)

= h2(A′⊤
sk

+A′
sk

−AskA⊤
sk

+A⊤
sk
Ask) + o

(
h2
)

= h2hsk(θ) + o
(
h2
)

= h2λ(sk)Idn + o
(
h2
)
, (59)

as θ(0) satisfies the quasi-balanced condition and Ask+1
= Ask + hA′

sk
+ o (h), where the implicit

o(1) function in the notation o(h2) = h2o(1) is still independent of k and L as s ∈ [0, 1] 7→ A′
s is

continuous on the compact set [0, 1] and is thus uniformly continuous.

By Lemma L.1 with λk = λ(sk) and one has:
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(UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤ =

L−1−(j+1)∏
k=0

(UL−1U
⊤
L−1 − akIdn) + EL−1−j , (60)

with

a0 := 0, ak = h2
k∑

i=1

λ(sL−1 − si) for k ≥ 1, and ∥EL−1−j∥ ≤ Kη (61)

where K := (C0 exp(C1) exp(C0(C1 + 1) + exp(C1)) with C0 := 2Cλ, C1 := (C2
U + ηh2 − 1)/h,

CU := max(1,max
k

∥Uk∥), Cλ := max
k

|λk| (62)

η := L2 · max
0≤k≤L−2

∥(U⊤
k+1Uk+1 − UkU

⊤
k )− h2λk Idn∥. (63)

As λ(·) is continuous, Cλ ≤ ∥λ∥∞ < ∞ for any L. Similarly, we already used that as s ∈
[0, 1] 7→ As is continuous, CU = 1 + O(h), and thus C2

U = 1 + O(h), again with implicit
constant independent of L. Moreover by equation 59, ηh2 = η/L2 = o(h2), and we obtain
C1 = (C2

U + ηh2 − 1)/h = (O(h) + o(h2))/h = O(1), hence C1 is bounded uniformly. Finally
we obtain

max
j
EL−1−j = o(1) (64)

where the implicit function o(1) is still independent of L.

We denote

Fi(UL−1U
⊤
L−1) :=

i∏
k=0

(UL−1U
⊤
L−1 − akIdn) (65)

and use the shorthand Ak := AL
k (t) := Ask(t) ∈ Rn×n, for 0 ≤ k ≤ L− 1. Since Uk = Idn +hAk

with h = 1/L and sL−1 − si =
L−1
L − i

L = 1 − i+1
L for each integer i, we have (using Riemann

integration as λ(·) is continuous): since all the matrices in the product equation 65 commute

Fj(UL−1U
⊤
L−1) = exp

(
j∑

k=0

log(UL−1U
⊤
L−1 − akIdn)

)

equation 57−equation 61
= exp


j∑

k=0

log

Idn +
AL−1 +A⊤

L−1

L
+ o

(
1

L

)
− 1

L


1

L

k∑
i=1

λ(1− i+1
L )︸ ︷︷ ︸

=
∫ sk
0 λ(1−v)dv+o(1)

 Idn




= exp

(
j∑

k=0

(
AL−1 +A⊤

L−1

L
− 1

L

∫ sk

0

λ(1− v)dv · Idn + o

(
1

L

)))

= exp

sj(A1 +A⊤
1 )−

1

L

j∑
k=0

∫ sk

0

λ(1− v)dv︸ ︷︷ ︸
=
∫ sj
0

∫ u
0

λ(1−v)dvdu+o(1)

·Idn + o (1)

 .

We denote ψ1 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(1− v)dvdu. By equation 60 and the above derivations one has

Z1Z
⊤
1 = lim

L→+∞
XLX

⊤
L = lim

L→+∞
FL−1(UL−1U

⊤
L−1) = exp((A1 +A⊤

1 )− ψ1(1) · Idn),

and thus
A1 +A⊤

1 = log(Z1Z
⊤
1 ) + ψ1(1) · Idn

Thus
Fj(UL−1U

⊤
L−1) = (Z1Z

⊤
1 )sj exp (sjψ1(1)− ψ1(sj)+o(1)) . (66)
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Similarly as before and by adapting the proof of Lemma L.1 one gets:

(Uj−1 · · ·U0)
⊤(Uj−1 · · ·U0) =

j−1∏
k=0

(U⊤
0 U0 − bkIdn) + o(1) =: Gj(U

⊤
0 U0) + o(1) (67)

with bk = −h2
∑k−1

i=0 λ(si) and b0 = 0, and where we denote

Gj(U
⊤
0 U0) :=

j−1∏
k=0

(U⊤
0 U0 − bkIdn) (68)

Similarly as above:

Gj+1(U
⊤
0 U0) = exp

(
j∑

k=0

log(U⊤
0 U0 − bkIdn)

)

= exp


j∑

k=0

log

Idn +
A0 +A⊤

0

L
+ o

(
1

L

)
+

1

L


1

L

k−1∑
i=0

λ(si)︸ ︷︷ ︸
=
∫ sk
0 λ(v)dv+o(1)

 Idn




= exp

(
j∑

k=0

(
A0 +A⊤

0

L
+

1

L

∫ sk

0

λ(v)dv · Idn + o

(
1

L

)))

= exp

sj(A0 +A⊤
0 ) +

1

L

j∑
k=0

∫ sk

0

λ(v)dv︸ ︷︷ ︸
=
∫ sj
0

∫ u
0

λ(v)dvdu+o(1)

·Idn + o(1)

 .

We denote ψ2 : s ∈ [0, 1] 7→
∫ s

0

∫ u

0
λ(v)dvdu. By equation 67 and the above derivations we have

Z⊤
1 Z1 = lim

L→+∞
X⊤

LXL = lim
L→+∞

GL(U
⊤
0 U0) = exp((A0 +A⊤

0 ) + ψ2(1) · Idn),

and thus
A0 +A⊤

0 = log(Z⊤
1 Z1)−ψ2(1) · Idn

It follows that
Gj+1(U

⊤
0 U0) = (Z⊤

1 Z1)
sj exp(−sjψ2(1) + ψ2(sj)+o(1)). (69)

Finally, combining equation 60-equation 64-equation 65-equation 66 and equation 67-equation 68-
equation 69, we obtain

∂tXL
equation 58

= −h
L−1∑
j=0

(UL−1 · · ·Uj+1)(UL−1 · · ·Uj+1)
⊤∇f(Z1)(Uj−1 · · ·U0)

⊤(Uj−1 · · ·U0) +O(h)

= −h
L−1∑
j=0

[
(Z1Z

⊤
1 )1−sj∇f(Z1)(Z

⊤
1 Z1)

sj · exp(γ(s)) + o(1)
]
+O(h)

= −
∫ 1

0

(Z1Z
⊤
1 )1−s∇f(Z1)(Z

⊤
1 Z1)

s exp(γ(s))ds+ o(1),

where
γ(s) := (1− s)ψ1(1)− ψ1(1− s)− sψ2(1) + ψ2(s).

Thus one has:

∂tZ1(t) = −
∫ 1

0

(Z1Z
⊤
1 )1−s exp(γ(s))∇f(Z1)(Z

⊤
1 Z1)

sds,

which concludes the proof.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

N.2 PROOF OF EQUATION 55-EQUATION 56

We now show that equation 55-equation 56 hold for any t.

Proof. First we recall that
Xk+1(t) = Xk(t) + hAsk(t)Xk(t),

with X0(t) = Idn. This corresponds exactly to the Euler explicit formulation of the ODE:

∂sZs(t) = As(t)Zs(t), Z0(t) = Idn, s ∈ [0, 1] (70)

with step h = 1/L.

We now show both items at once. We fix some t. Set

W (s) :=

(
Zs

Ys

)
∈ R2n×n, Ys := ∂tZs, W (0) =

(
Idn
0

)
,

so that
d

ds
W (s) =

( As(t) 0

∂tAs(t) As(t)

)
W (s). (71)

The corresponding explicit-Euler discretization with step h = 1/L reads

Wk+1 =Wk + h

( Ask(t) 0

∂tAsk(t) Ask(t)

)
Wk, (72)

which coincides component-wise with the recursions for Xk and Tk = ∂tXk.

Because the right-hand side of equation 71 (s,W ) 7→
( As(t) 0

∂tAs(t) As(t)

)
W is C1 (indeed both

s 7→ As(t) and s 7→ ∂tAs(t) are C1 (cf Theorem M.1) for each t), the Euler explicit scheme
converges at order one (see e.g. (Berthelin, 2017, Proposition 10.30)):

max
0≤k≤L

∥∥W (sk)−Wk

∥∥ = O(h).

In particular one get that for any k: Xk(t) = Zsk(t) +O(h) and (reading the second bloc row at the
final index k = L): ∥∥∂tZs=1(t)− ∂tXL(t)

∥∥= ∥Ys=1 − TL∥ = O(h).

O LLM USAGE

The authors of this paper used Large Language Models to aid and polish the writing of this paper and
as a tool to make some of the proofs.
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