INTRINSIC TRAINING DYNAMICS OF DEEP NEURAL NETWORKS

Anonymous authorsPaper under double-blind review

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

035

037

038

040 041

042

043

044

046

047

048

051

052

ABSTRACT

A fundamental challenge in the theory of deep learning is to understand whether gradient-based training can promote parameters belonging to certain lowerdimensional structures (e.g., sparse or low-rank sets), leading to so-called implicit bias. As a stepping stone, motivated by the proof structure of existing intrinsic bias analyses, we study when a gradient flow on a parameter θ implies an intrinsic gradient flow on a "lifted" variable $z = \phi(\theta)$, for an architecture-related function ϕ . We express a so-called intrinsic dynamic property and show how it is related to the study of conservation laws associated with the factorization ϕ . This leads to a simple criterion based on the inclusion of kernels of linear maps, which yields a necessary condition for this property to hold. We then apply our theory to general ReLU networks of arbitrary depth and show that, for any initialization, it is possible to rewrite the flow as an intrinsic dynamic in a lower dimension that depends only on z and the initialization, when ϕ is the so-called path-lifting. In the case of linear networks with ϕ , the product of weight matrices, the intrinsic dynamic is known to hold under so-called balanced initializations; we generalize this to a broader class of relaxed balanced initializations, showing that, in certain configurations, these are the *only* initializations that ensure the intrinsic metric property. Finally, for the linear neural ODE associated with the limit of infinitely deep linear networks, with relaxed balanced initialization, we explicit the corresponding intrinsic dynamics.

1 Introduction

A central question in deep learning theory is how the complexity of gradient-based training can give rise to simpler, lower-dimensional dynamics. In this work, we explore when the gradient flow on parameters θ naturally induces a gradient flow on a "lifted" variable $z=\phi(\theta)$, where ϕ captures structural aspects of the model.

Intrinsic lifted flow. The study of optimization flows arising in the training of neural networks often benefits from the identification of lower-dimensional intrinsic dynamics. Specifically, due to the natural symmetries of linear and ReLU networks, it is of considerable interest to rewrite a parameter flow $\theta(t)$ in terms of an representation $z(t) = \phi(\theta(t))$, using a suitable architecture-related reparametrization ϕ (often called a *lifting*) that factors out certain symmetries.

When dissected, the most advanced recent results characterizing the implicit bias induced by gradient-based optimization algorithms notably rely on two key analysis ingredients: (i) establishing that the dynamics of z(t) is intrinsic, i.e., that it can be expressed as a Riemannian gradient flow with a metric depending only on z and the initial parameters $\theta(0)$; (ii) further proving that this flow on z(t) admits a mirror flow representation. With the combination of these two ingredients one gains access to powerful analytical tools rooted in convex optimization theory, allowing explicit characterization of the induced implicit bias. In particular, prior research has successfully leveraged mirror flow formulations to rigorously demonstrate implicit regularization effects, such as sparsity in scalar linear neural networks and two-layer networks with a single neuron (Gunasekar et al. (2018)), as well as maximum-margin classification for logistic regression problems in separable data scenarios (Soudry et al. (2018); Chizat & Bach (2020)).

Recent work by Li et al. (2022) identifies sufficient conditions under which (i)+(ii) can both be established, requiring that the parametrization ϕ be *commuting*. However, this commuting condition is rarely satisfied in practical scenarios. This work focuses on characterizing weaker conditions

055

056

057

058

060

061 062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

083

084

085

087

880

089

090 091

092

094

095

096

098

100

101

102

103

104

105

106

107

ensuring that the flow on z(t) is still driven by an intrinsic Riemannian gradient flow (but not necessarily a mirror flow anymore), which we believe is an important step forward and a starting point for future investigations encompassing variants of (ii) with *warped* mirror flows (Azulay et al., 2021) for practical (deep) network architectures. A first sufficient condition for (i), introduced by Marcotte et al. (2023), demands merely that the parametrization be involutive. Marcotte et al. (2023) have shown that this weaker condition applies specifically to the parametrization used in *two-layer* ReLU networks (Stock & Gribonval (2022)). As we will see, a consequence of the analysis conducted in our paper is the extension of this result to arbitrary DAG ReLU networks (Gonon et al., 2023).

Conservation laws. The functions conserved during the training dynamics play a crucial role in establishing that the dynamics of z(t) is governed by an (intrinsic) Riemannian metric that depends only on z and the initialization $\theta(0)$. Indeed, when a trajectory $\theta(t)$ is known to remain within level sets $\{\theta: \mathbf{h}(\theta) = \mathbf{h}(\theta_0)\}$ where h is a (vector-valued) conserved function, the dynamics are effectively restricted to a manifold of lower dimension that is entirely determined by the initialization. A particularly important class of conserved functions along these trajectories is given by the conservation laws associated with a certain architecture-dependent parametrization ϕ , a concept introduced in Marcotte et al. (2023). These laws depend exclusively on ϕ , and notably, in the context of neural network training dynamics, they represent quantities preserved across trajectories irrespective of the initial conditions or the training data-set. In the specific case of linear and ReLU neural networks, these conservation laws correspond exactly to previously known "canonical" conserved functions identified in Du et al. (2018), as demonstrated by Marcotte et al. (2023). Furthermore, Marcotte et al. (2023) establish that if the parametrization ϕ is involutive, there exist sufficiently many scalar conservation laws to fully rewrite the original trajectory $\theta(t)$ in terms of $\phi(\theta(t))$ and the initial conditions alone. In the linear network case, when so-called balanced conditions (a notion introduced in Arora et al. (2019)) are satisfied (i.e., when the initialization sets all canonical conservation laws (Chitour et al. (2018)) to zero, $h(\theta_0) = 0$), it becomes possible to rewrite the flow in terms of $z = \phi(\theta)$, where ϕ corresponds to the product of weight matrices, as an intrinsic Riemannian metric (Arora et al. (2018); Bah et al. (2022)). Moreover, Achour et al. (2025) extended this result to linear convolutional networks in the case of a mean squared loss, but this time for arbitrary initializations, with the Riemannian metric depending on the initialization. For linear networks and in the particular case when the loss function is the square loss, Bah et al. (2022) show that the trajectory evolves on the manifold of matrices having some fixed rank under balanced condition. Still in the square-loss setting, and in the case of two-layer linear networks, Tarmoun et al. (2021); Braun et al. (2022); Dominé et al. (2025) exploit the conservation laws to obtain an exact closed-form expression for z(t)under specific configurations, whereas Varre et al. (2023) uses the same laws to analyse an implicit bias of this dynamic.

Our main contributions. We first define the notion of intrinsic *dynamic* property (Definition 2.6), then the notion of intrinsic *metric* property (Definition 2.10) and finally the one of intrinsic *recoverability* property (Definition 3.1), and we show the implications (Lemma 2.11 and Lemma 3.2):

Intrinsic Recoverability \implies Intrinsic Metric \implies Intrinsic Dynamic.

We then provide a simple criterion that characterizes the intrinsic recoverability property (Theorem 3.3), and show (Proposition 3.7) that this criterion is quasi equivalent to the Frobenius property (Definition 3.6). We prove that the so-called path-lifting (Gonon et al., 2023) reparametrization for general ReLU networks of arbitrary depth satisfies this property (Theorem 3.8), establishing that any initialization of a general ReLU network satisfies the intrinsic recoverability property (Corollary 3.9), as illustrated by a characterization of the intrinsic dynamic of a 3-layer neural network (Proposition 3.10). Next, by establishing a necessary condition for the intrinsic metric property to hold based on the study of kernels of linear mappings Theorem 2.14, we show that the intrinsic metric property fails to hold for the natural reparametrizations corresponding of 2-layer linear networks (resp. of attention layers), unless the initialization satisfies the relaxed balanced condition introduced in Definition 4.1 (Theorem 4.4). We then show that relaxed balanced initializations do satisfy the intrinsic metric property, not only in 2-layer networks (Theorem 4.3) but also in linear networks of arbitrary depth (Theorem 4.6), and we characterize the resulting intrinsic dynamic. Finally, we extend our analysis to the infinite-depth limit of linear networks. We show that a set of functions is conserved along the trajectory (Proposition 4.7), and, in contrast to the case L > 2-layer, we derive a closed-form expression for the metric in the case of relaxed balanced initializations (Theorem 4.8).

2 DYNAMICS OF OVER-PARAMETERIZED MODELS

In most machine learning models, overparameterization occurs due to inherent symmetries (such as rescaling) within the parameter space $\theta \in \mathbb{R}^D$. In practice, this redundancy can be factored out through a function ϕ (often called a lifting (Candès et al., 2013; Gonon et al., 2023)) that captures these symmetries. Although the resulting lifted variable $z = \phi(\theta) \in \mathbb{R}^d$ often lives in higher dimension $d \gg D$, it also belongs to a lower dimensional manifold $\mathcal Z$ of dimension d' < D, and provides a representation of the essential structure of the model. We consider parameters $\theta(t) \in \mathbb{R}^D$ that evolve according to the **gradient flow** dynamic with some initialization θ_0 :

$$\dot{\theta}(t) = -\nabla \ell(\theta(t)), \quad \theta(0) = \theta_0 \tag{1}$$

to minimize the function ℓ . In machine learning, $\ell(\theta)$ is typically defined as the empirical average over training samples (x_i,y_i) of a quantity that depends on the output $g(\theta,x_i)$ of a neural network with weights and biases collected in the parameter vector θ . The function $g(\theta,x)$ can often be locally reparameterized via an architecture-dependent lifting $\phi(\theta)$, leading to the same factorization for the global loss ℓ . This is the starting point of our analysis, captured via the following assumption:

Assumption 2.1 (Local reparameterization). There exists d and $\phi \in \mathcal{C}^2(\mathbb{R}^D, \mathbb{R}^d)$ such that: for each parameter $\theta_0 \in \mathbb{R}^D$, there is an open neighborhood $\Omega \ni \theta_0$ and a function $f \in \mathcal{C}^2(\Omega, \mathbb{R})$ such that

$$\forall \theta \in \Omega, \quad \ell(\theta) = f(\phi(\theta)).$$
 (2)

The following examples illustrate common choices of ϕ for various neural network architectures.

Example 2.2 (Linear neural networks). For a two-layer network with r hidden neurons and $\theta = (U,V) \in \mathbb{R}^{n \times r} \times \mathbb{R}^{m \times r}$ (where D = (n+m)r), the model $g(\theta,x) \coloneqq UV^{\top}x$ is factorized via the map $\phi_{\mathtt{Lin}}(\theta) \coloneqq UV^{\top} \in \mathbb{R}^{n \times m}$, thus the empirical risk ℓ can also be factorized by $\phi_{\mathtt{Lin}}$. This extends to L layers where $\theta = (U_L, \cdots, U_1)$, with $g(\theta,x) \coloneqq U_L \cdots U_1 x$ and $\phi_{\mathtt{Lin}}(\theta) \coloneqq U_L \cdots U_1$. The resulting factorization of ℓ holds globally on $\Omega = \mathbb{R}^D$.

Example 2.3 (ReLU neural networks). Consider $g(\theta,x) = U\sigma(V^{\top}x)$, with $\sigma(y) \coloneqq (\max(y_i,0))_i$ the ReLU activation function. Denoting $\theta = (U,V)$ with $U = (u_1,\cdots,u_r) \in \mathbb{R}^{n \times r}, V = (v_1,\cdots,v_r) \in \mathbb{R}^{m \times r}$ (so that D = (n+m)r). Consider $\theta(0) = (U(0),V(0)) \in \mathbb{R}^D$ and let $x \in \mathcal{X}_{\theta(0)} := \mathbb{R}^m - \bigcup_j \{v_j(0)^{\top}x = 0\}$. Then on any domain $\Omega \subset \mathbb{R}^D$ such that $\theta(0) \in \Omega$ and $\theta \mapsto 1(v_j^{\top}x > 0) = \epsilon_{j,x}$ is constant over $\theta \in \Omega$, the model $g_{\theta}(x)$ can be factorized by the reparametrization $\phi_{\text{ReLU}}(\theta) = (u_jv_j^{\top})_{j=1}^r$ (here d = rmn) using $g(\theta,x) = \sum_j \epsilon_{j,x}\phi_jx$, so ℓ can be factorized by ϕ_{ReLU} with some forward function f: the reparametrization $\phi_{\text{ReLU}}(\theta)$ contains r matrices of size $n \times m$ (each of rank at most one, so in particular one has $d' \leq D - r$) associated to a "local" f valid in a neighborhood of θ . A similar factorization is possible for deeper ReLU networks (cf Neyshabur et al. (2015); Stock & Gribonval (2022); Gonon et al. (2023)) and we still write it ϕ_{ReLU} , as further discussed in the proof of Theorem 3.8.

Example 2.4 (Attention layer). For an attention layer, the input $X \in \mathbb{R}^{N \times \dim}$ is the horizontal concatenation of N tokens $x^{(i)} \in \mathbb{R}^{\dim}$. The layer output is

$$g(\theta, X) = \operatorname{softmax}(XQ^\top KX^\top) XV^\top O \in \mathbb{R}^{N \times \dim} \quad \text{where} \quad \operatorname{softmax}(A)_i = \frac{\exp(A_i)}{\sum_{k=1}^N \exp(A_{ik})},$$

with $Q, K, V, O \in \mathbb{R}^{d_1 \times \text{dim}}$. We use the reparameterization $\phi_{\mathtt{Att}}(\theta) \coloneqq (\phi_1, \phi_2)$ where $\phi_1 \coloneqq Q^\top K$ and $\phi_2 \coloneqq V^\top O$, such that $g(\theta, X) = \operatorname{softmax}(X\phi_1 X^\top)X\phi_2$, as done in Marcotte et al. (2025).

Thus, similarly to the linear case Example 2.2, L can be globally factorized by ϕ_{Att} as f exhibits no dependency on the specific parameter configuration θ_0 . This naturally extends to multiple attention layers by concatenating the corresponding factorizations.

2.1 Dynamics of lifted parameters: to be or not to be intrinsic?

This paper addresses a fundamental question underlying much of the efforts to characterize the implicit bias of gradient-based methods: under what conditions does the gradient flow dynamics equation 1 in parameter space θ lead to a dynamics on the lifted parameters $z(t) := \phi(\theta(t))$ that can be expressed as an intrinsic gradient flow on z? This is notably key when attempting to establish that z(t) follows a mirror flow (Gunasekar et al., 2017), which is a key step to characterize the implicit bias of gradient-based optimization. We specifically examine when z(t) follows a flow with respect to a Riemannian metric which, by definition depends only on z (and the initial parameter configuration θ_0), thereby eliminating explicit dependence on the parameter trajectory $\theta(t)$.

A starting point of the analysis is that, under Assumption 2.1 and by the chain rule

$$\dot{z}(t) = \partial \phi(\theta(t))\dot{\theta}(t) = -\partial \phi(\theta(t))\partial \phi(\theta(t))^{\top} \nabla f(z(t)). \tag{3}$$

Thus our goal is to understand when the symmetric, positive semi-definite matrix

$$M(\theta) := \partial \phi(\theta) \partial \phi(\theta)^{\top} \tag{4}$$

(corresponding to the so-called path kernel in when Φ is the path-lifting associated to ReLU networks Gebhart et al. (2021)) can be solely expressed in terms of z and θ_0 during the trajectory, i.e. do we have a function $K = K_{\theta_0}$ such that $M(\theta(t)) = K(z(t))$? When this is the case equation 3 becomes

$$\dot{z}(t) = -K(z)\nabla f(z),\tag{5}$$

an ordinary differential equation (ODE) which is a Riemannian flow for the metric $K^{-1}(z)$ (or a sub-Riemannian flow for the pseudo-inverse $K^+(z)$ when K(z) is not invertible) Boumal (2023), hence associated to an *intrinsic* dynamic on the lifted parameters z(t).

As illustrated next, rewriting $M(\theta(t))$ as a function of z(t) along the trajectory $\theta(x)$ is indeed possible for simple linear networks, with a function $K(\cdot)$ that depends on the initialization θ_0 .

Example 2.5 (A simple linear network). Consider $g(\theta,x) = uvx$, with $\theta \coloneqq (u,v) \in \mathbb{R}_{\star} \times \mathbb{R}^{m}$, and $z = \phi(\theta) = uv \in \mathbb{R}^{m}$ (cf Example 2.2). Then $M(\theta) = \partial \phi(\theta) \partial \phi(\theta)^{\top} = vv^{\top} + u^{2} \mathbf{I} m$. During the trajectory $u^{2} - \|v\|^{2} = u_{0}^{2} - \|v\|^{2} =: \lambda$ (as $h(\theta) := u^{2} - \|v\|^{2}$ is conserved (Arora et al. (2019)),

and as $vv^{\top}=u^{-2}zz^{\top}$ we have $(u^2)^2-\lambda u^2-\|z\|^2=0$ so that $u^2=\frac{\lambda+\sqrt{\lambda^2+4\|z\|^2}}{2}$. As a result along the whole trajectory we have $M(\theta)=K_{\theta_0}(z)$ so that z(t) satisfies the ODE equation 5 with

$$K_{\theta_0}(z) = \frac{2}{\lambda + \sqrt{\lambda^2 + 4\|z\|^2}} z z^{\top} + \frac{\lambda + \sqrt{\lambda^2 + 4\|z\|^2}}{2} \mathrm{Id}_m, \quad \forall z.$$

In particular when m=1 one has $K_{\theta_0}(z)=\sqrt{(u_0^2-v_0^2)^2+4z^2}$ hence $\dot{z}=-\sqrt{\lambda^2+4z^2}\nabla f(z)$.

See Section B for more comments on that example. In the above example the function K_{θ_0} , as its notation suggest, only depends on the initialization but not on the function f such that $\ell = f \circ \phi$. In machine learning scenarios, f typically captures dependence on the training dataset. The intrinsic metric $K_{\theta_0}(z)$ thus captures parts of the dynamics of z(t) due to the network architecture (via ϕ) and of the training algorithm (the gradient flow equation 1) irrespective of the dataset and the learning task (of course the latter still play a role via the $\nabla f(z)$ term in the ODE $\dot{z} = -K_{\theta_0}(z)\nabla f(z)$). This motivates the introduction of the following definition.

Definition 2.6 (Intrinsic dynamic property). θ_0 verifies the *intrinsic dynamic property* on Ω with respect to ϕ , if there is $K_{\theta_0}: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ such that, for any $f \in \mathcal{C}^2$, the maximal solution $\theta(\cdot)$ of equation 1 with $\ell = f \circ \phi$ satisfies $M(\theta(t)) = K_{\theta_0}(\phi(\theta(t)))$ for each t such that $\theta(t) \in \Omega$.

2.2 Conservation laws

Example 2.5 illustrates a phenomemon that we will systematically exploit in our analysis: with the typical reparameterizations ϕ mentioned above, there exists a vector-valued function $\mathbf{h}:\theta\mapsto \mathbf{h}(\theta)\in\mathbb{R}^N$ that is conserved along the trajectory and allows to exhibit a function K_{θ_0} such that $M(\theta(t))=K_{\theta_0}(z(t))$ along the trajectory. As these will play a key role in our analysis we now introduce the essential concepts related to *conservation laws*.

We denote ϕ_1, \dots, ϕ_d the d coordinate functions of the reparameterization $\phi : \mathbb{R}^D \mapsto \phi(\theta) \in \mathbb{R}^d \in \mathcal{C}^{\infty}(\mathbb{R}^D, \mathbb{R}^d)$. Since ϕ yields a factorization of the loss, functions h such that $\nabla h(\theta) \perp \nabla \phi_i(\theta)$ for each i and each θ remain constant along the trajectory. This has been thoroughly analyzed, see e.g. Marcotte et al. (2023; 2024), using the following definition.

Definition 2.7 (Conservation law for ϕ). A function $h \in \mathcal{C}^1(\Omega, \mathbb{R})$ is a conservation law for ϕ on Ω if for any $\theta \in \Omega$ one has $\partial \phi(\theta) \nabla h(\theta) = 0$, i.e. for each $\theta \in \Omega$ and i, $\langle \nabla \phi_i(\theta), \nabla h(\theta) \rangle = 0$.

Proposition 2.8. Under Assumption 2.1 on ϕ , if $h \in C^1(\Omega, \mathbb{R})$ satisfies $\partial \phi(\theta) \nabla h(\theta) = 0$ for every $\theta \in \Omega$, then h remains constant during the trajectory $\theta(t)$ of equation 1 for any initialization $\theta_0 \in \Omega$.

The conservation laws associated with a given parameterization ϕ have been almost exhaustively studied for parameterizations corresponding to linear networks, ReLU networks, and attention layers. In particular, prior work has shown that all conservation laws for ϕ in the cases of ReLU

(cf Example 2.3) and linear (cf Example 2.2) networks (see Marcotte et al. (2023)) as well as for an attention layer (see Marcotte et al. (2025)) are captured by the following proposition (Marcotte et al. (2023)). This has been proven theoretically for two-layer networks and empirically validated for deeper architectures using symbolic computation (see Marcotte et al. (2023)). It is worth noticing that all conservation laws in such cases are polynomials.

Proposition 2.9 (Conservation laws for classical ϕ on \mathbb{R}^D). Consider $\theta = (U_L, \dots, U_1)$ and $\phi_{\text{Lin}}(\theta) := U_L \dots U_1$ from Example 2.2 (resp. ϕ_{ReLU} from Example 2.3). The functions

$$\mathbf{h}_i: \theta \mapsto U_{i+1}^\top U_{i+1} - U_i U_i^\top (\textit{resp.} \ \mathbf{h}_i: \theta \mapsto \mathrm{Diag}(U_{i+1}^\top U_{i+1} - U_i U_i^\top))$$

are conservation laws for $\phi_{\mathtt{Lin}}$ (resp. $\phi_{\mathtt{ReLU}}$). Similarly, considering $\theta \coloneqq (Q, K, V, O)$ and $\phi_{\mathtt{Att}}$ from Example 2.4, $\mathbf{h} : \theta \mapsto (QQ^\top - KK^\top, VV^\top - OO^\top)$ is a set of conservation laws for $\phi_{\mathtt{Att}}$.

2.2.1 Intrinsic dynamics via conservation laws

Given conservation laws $\mathbf{h}(\theta)$ for ϕ , the trajectory $\theta(t)$ for equation 1 remains at all times on the set

$$\mathcal{M}_{\theta_0} := \{ \theta : \mathbf{h}(\theta) = \mathbf{h}(\theta_0) \}, \tag{6}$$

determined by θ_0 . This holds true for any function f such that $\ell = f \circ \phi$ (hence, in machine learning: for any task/loss and any dataset, provided that the network model is (locally) factorized via ϕ).

To establish the existence of a function $K_{\theta}(\cdot)$ such that $M(\theta(t)) = K_{\theta_0}(z(t))$ on the whole trajectory, a natural relaxation is thus to establish a related equality on the whole set \mathcal{M}_{θ_0} rather than only on a specific trajectory. This leads to the following definition and its immediate consequence.

Definition 2.10 (Intrinsic metric property). We say that θ_0 verifies the *intrinsic metric property* on an open set $U \ni \theta_0$ with respect to ϕ , if there exists conservation laws $\mathbf{h}(\theta) \in \mathbb{R}^N$ for ϕ and a function $K_{\theta_0} \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R}^{d \times d})$ such that $M(\theta) = K_{\theta_0}(\phi(\theta))$ for each $\theta \in \mathcal{M}_{\theta_0} \cap U$.

Lemma 2.11. If θ_0 verifies the intrinsic metric property 2.10 on U with respect to ϕ , then it also verifies the intrinsic dynamic property 2.6 on U with respect to ϕ .

Remark 2.12. It is not difficult to check on all examples considered in this paper that if θ_0 satisfies the intrinsic metric property with respect to ϕ on *some* open set U, then any $\theta_0' \in \mathcal{M}_{\theta_0}$ also satisfies the property on a properly modified open set U', with the same function K. This function thus only depends on $\mathbf{h}(\theta_0)$, and we denote it $K_{\mathbf{h}(\theta_0)}$ when needed to highlight this fact.

Remark 2.13. Lemma 2.11 remains valid with a slightly weakened version of Definition 2.10, where K_{θ_0} is not required to be smooth. Yet, since the existence of a smooth solution to the resulting intrinsic ODE equation 5 is simplified when K_{θ_0} is \mathcal{C}^1 we chose to include this in the definition.

The following theorem (proved in Section C) establishes a necessary condition for the intrinsic metric property to hold. We use it to show that the property *does not always* hold for linear networks.

Theorem 2.14. Consider $\mathbf{h} \in \mathcal{C}^1(\mathbb{R}^D, \mathbb{R}^N)$, $\phi \in \mathcal{C}^2(\mathbb{R}^D, \mathbb{R}^d)$, and $\theta_0 \in \mathbb{R}^D$ such that the matrix $\partial \mathbf{h}(\theta) \in \mathbb{R}^{N \times D}$ has constant rank on $\mathcal{M}_{\theta_0} \cap U$ with $U \ni \theta_0$ an open subset of \mathbb{R}^D and $\mathcal{M}_{\theta_0} := \mathbf{h}^{-1}(\{\mathbf{h}(\theta_0)\})$. Then $(i) \Longrightarrow (ii)$, where

(i) There exists an open set $O \supset \phi(\mathcal{M}_{\theta_0}) \cap U$ and a map $K_{\theta_0} \in \mathcal{C}^1(O, \mathbb{R}^{d \times d})$ such that for each $\theta \in \mathcal{M}_{\theta_0} \cap U$: $M(\theta) = K_{\theta_0}(\phi(\theta))$;

(ii)
$$\ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta) \subseteq \ker \partial M(\theta), \quad \forall \theta \in \mathcal{M}_{\theta_0} \cap U.$$
 (7)

A trivial case where equation 7 holds is when the intersection of kernels on the left hand side is zero: $\ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta) = \{0\}.$ (8)

This stronger assumption can in fact be shown to imply the intrinsic metric property (see Theorem 3.3 in the upcoming section), and we will show (cf Corollary 3.9) that, with ϕ_{ReLU} associated to general ReLU networks of any depth, there exists a set of conservation laws such that equation 8 indeed holds for any initialization. This implies the intrinsic metric property and therefore the intrinsic dynamic property irrespective of the initialization for ReLU networks with with ϕ_{ReLU} . For linear networks with more than one hidden neuron, we will show that it is *not* possible to reduce the problem to equation 8. Nevertheless, certain initializations (known as balanced conditions (Arora et al. (2019)) are known to satisfy the intrinsic metric property with respect to the reparametrisation ϕ_{Lin} (cf (Arora et al., 2018, Theorem 1), (Bah et al., 2022, Lemma 2)). In this paper, we generalize this result to so-called *relaxed balanced initializations* (see Definition 4.1). Moreover, we show that in certain configurations, relaxed balanced initializations *are exactly the only ones that satisfy the intrinsic metric property* (cf Theorem 4.3 and Theorem 4.4).

3 INTRINSIC RECOVERABILITY AND APPLICATION TO RELU NETWORKS

In this section we consider a stronger condition called *intrinsic recoverability property* which requires not only that $M(\theta(t))$ can be rewritten as a function of z(t) and the initialization, but that at each point of the trajectory $\theta(t)$ itself can be fully expressed in terms of z(t) and the initialization θ_0 . In other words, in this scenario, $\theta(t)$ can be *completely recovered* from the parameterization ϕ and the initialization alone, hence the name. As we will establish, this apparently strong property indeed holds when equation 8 is satisfied, which is always the case for ReLU networks.

3.1 Intrinsic recoverability implies intrinsic metric

Definition 3.1 (Intrinsic recoverability property). We say that θ_0 verifies the intrinsic recoverability property on an open set $U \ni \theta_0$ with respect to ϕ , if there exists conservation laws $\mathbf{h}(\theta) \in \mathbb{R}^N$ for ϕ and a function $\Gamma(\cdot) \in \mathcal{C}^1(\mathbb{R}^d \times \mathbb{R}^N, \mathbb{R}^D)$ such that $\theta = \Gamma(\phi(\theta), \mathbf{h}(\theta))$ for each $\theta \in U$.

When this property holds, each $\theta \in \mathcal{M}_{\theta_0}$ satisfies $M(\theta) = M[\Gamma(\phi(\theta), \mathbf{h}(\theta))] = M[\Gamma(\phi(\theta), \mathbf{h}(\theta_0))] = K_{\mathbf{h}(\theta_0)}(\phi(\theta))$ (with $K_{\mathbf{h}(\theta_0)}(\cdot) := M[\Gamma(\cdot, \mathbf{h}(\theta_0))]$), hence the following result.

Lemma 3.2. If θ_0 satisfies the intrinsic recoverability property on an open set $U \ni \theta_0$ with respect to ϕ , then θ_0 satisfies the intrinsic metric property on U with respect to ϕ .

The intrinsic recoverability property is equivalent to equation 8 (see Section D for a proof):

Theorem 3.3. Given $\phi \in C^2(\mathbb{R}^D, \mathbb{R}^d)$ and $\theta_0 \in \mathbb{R}^D$, the following are equivalent: (i) there are conservation laws $\mathbf{h} \in C^1(\Omega, \mathbb{R}^N)$ for ϕ on a neighborhood Ω of θ_0 such that equation 8 holds for each $\theta \in \mathcal{M}_{\theta_0} \cap \Omega$; (ii) there is an open set $U \subseteq \Omega$ on which θ_0 satisfies the intrinsic recoverability property Definition 3.1 (and thus the intrinsic metric property Definition 2.10) with respect to ϕ .

3.2 THE FROBENIUS PROPERTY IS ALMOST EQUIVALENT TO INTRINSIC RECOVERABILITY

We are interested in condition equation 8, as it implies the *intrinsic recoverability property*, and thus an intrinsic dynamics. It may not seem obvious a priori how to verify whether such a condition can hold, nor how to construct suitable conservation laws h in practice. Intuitively, one should select as many conservation laws as possible while ensuring they remain independent, in a specific sense defined by (Marcotte et al., 2023, Definition 2.18). As shown by Marcotte et al. (2023), knowing the maximal number of such conservation laws can be checked using Lie brackets of the associated vector fields. We recall the relevant definitions and explain how this criterion applies in our setting.

Definition 3.4 (Lie brackets). Given two vector fields $\chi_1, \chi_2 \in \mathcal{C}^{\infty}(\Theta, \mathbb{R}^d)$, the *Lie brackets* $[\chi_1, \chi_2]$ is the vector field defined by $[\chi_1, \chi_2](\theta) := \partial \chi_2(\theta) \chi_1(\theta) - \partial \chi_1(\theta) \chi_2(\theta)$.

Definition 3.5 (Generated Lie algebra). Given some function space $\mathbb{W} \subseteq \mathcal{C}^{\infty}(\Theta, \mathbb{R}^d)$, the *generated Lie algebra* of \mathbb{W} is the smallest subspace of $\mathcal{C}^{\infty}(\Theta, \mathbb{R}^d)$ that contains \mathbb{W} and that is stable by Lie brackets, and is denoted $\mathrm{Lie}(\mathbb{W})$.

The *trace* at $\theta \in \Theta$ of any set $\mathbb{W} \subset \mathcal{C}^{\infty}(\Theta, \mathbb{R}^D)$ of vector fields is defined as the linear space

$$\mathbb{W}(\theta) := \operatorname{span}\{\chi(\theta) : \chi \in \mathbb{W}\} \subseteq \mathbb{R}^D, \tag{9}$$

and for any infinitely smooth ϕ we denote $\mathbb{W}_{\phi} := \operatorname{span}\{\nabla \phi_i(\cdot), 1 \leq i \leq d\} \subseteq \mathcal{C}^{\infty}(\Theta, \mathbb{R}^d)$.

Definition 3.6 (Frobenius property). A \mathcal{C}^{∞} function ϕ satisfies the *Frobenius property* on Ω if for all $\theta \in \Omega$, $\text{Lie}(\mathbb{W}_{\phi})(\theta) = \mathbb{W}_{\phi}(\theta)$. This property is slightly weaker than involutivity (Isidori (1995)).

The following proposition (proved in Section E) relates this property to the intrinsic dynamic property of θ_0 . In particular, as Frobenius property does not hold for ϕ_{Lin} (Marcotte et al., 2023, Proposition I.1), it is not possible to have the intrinsic recoverability for linear networks with classical ϕ_{Lin} .

Proposition 3.7. We have the following implications $(i) \implies (ii) \implies (iii)$: $(i) \phi$ satisfies the Frobenius property on Ω and the trace of \mathbb{W}_{ϕ} has its dimension that is constant on Ω ; (ii) For any $\theta_0 \in \Omega$, there exists conservation laws \mathbf{h} for ϕ on a neighborhood $U \subset \Omega$ of θ_0 such that for each $\theta \in \mathcal{M}_{\theta_0}$ equation 8 holds; $(iii) \phi$ satisfies the Frobenius property on Ω .

The result presented in Li et al. (2022) can be recovered as a special case of Proposition 3.7: the authors require the reparametrization ϕ to be commuting, meaning that for all pairs ϕ_i , ϕ_j , the Lie bracket $[\nabla \phi_i, \nabla \phi_j]$ is equal to zero. In this setting, ϕ naturally satisfies the Frobenius property, and

the result of Li et al. (2022) establishes an even stronger property: the dynamics on $\phi(\theta)$ form a mirror flow. In particular, it is worth noting that diagonal networks satisfy that their parametrization (product of the diagonals) is commuting (as all coordinates functions are separable), which thus (Li et al. (2022)) implies a mirror flow dynamic, and thus an implicit bias (see e.g. Azulay et al. (2021)). In contrast, we consider a weaker condition; we seek only to determine whether the dynamics on $z = \phi(\theta)$ can be expressed intrinsically as a Riemannian gradient flow.

3.3 APPLICATION TO GENERAL DEEP RELU NETWORKS

We now show that the intrinsic recoverability property is satisfied *for any initialisation* for the parametrisation ϕ associated to a large class of (deep) ReLU neural networks. While this result is already known in the two-layer case (Marcotte et al., 2023, Examples 3.5 and 3.8), here we establish it for the general model of ReLU networks of Gonon et al. (2023), associated to a directed acyclic graph (DAG) of any depth, including skip connexions and arbitrary mixes of ReLU/linear/max-pooling activations. We first establish that $\phi_{\text{ReI},\text{IJ}}$ satisfies the Frobenius property (see Section F for a proof):

Theorem 3.8. The parameterization ϕ_{ReLU} used for ReLU neural networks with any DAG architecture (see Gonon et al. (2023) and our Example 2.3)) satisfies the Frobenius property on $(\mathbb{R}\setminus\{0\})^D$.

This leads to the following corollary (proved in Section G) which guarantees the existence of a maximal set of conservation laws big enough to ensure the intrinsic recoverability property.

Corollary 3.9. There exists a dense open set Θ of \mathbb{R}^D such that any $\theta_0 \in \Theta$ admits an open neighborhood $U \subseteq \Theta$ on which θ_0 satisfies the intrinsic recoverability property, and thus the intrinsic dynamic property with respect to ϕ_{ReLU} .

In practice, the known conservation laws given in Proposition 2.9 yield, on a dense open subset, m independent conservation laws, where m corresponds to the number of hidden neurons. To verify that these are indeed the only ones, one must check that the trace of $\mathbb{W}_{\phi_{\text{ReLU}}}$ has dimension D-m; while we do not prove this here, it is empirically supported by Marcotte et al. (2023), which confirms that $\text{Lie}\big(\mathbb{W}_{\phi_{\text{ReLU}}}\big)(\theta) = \mathbb{W}_{\phi_{\text{ReLU}}}(\theta)$ has dimension D-m when sampling random values of θ , as well as random dimensions and depths. As a concrete example the following proposition (proved in Section H) provides the first closed form formula of the intrinsic dynamic for a three-layer ReLU network with scalar input and output.

Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ϕ_{ReLU} reads¹ $Z = \phi_{\text{ReLU}}(u, V, w) := \text{diag}(u) V \text{diag}(w) \in \mathbb{R}^{n \times m},$

with $u \in \mathbb{R}^n$, $V \in \mathbb{R}^{n \times m}$, and $w \in \mathbb{R}^m$. Define $\Theta := \{(u, V, w) : u_i, V_{ij}, w_j \neq 0 \ \forall i, j\}$, and let $\theta(t)$ be the maximal solution to equation 1 with $\theta(0) = \theta_0 \in \Theta$. The flow preserves the n+m conservation laws $\mathbf{h}(\theta) := \left((u_i^2 - \sum_j V_{ij}^2)_{i=1}^n, (w_j^2 - \sum_i V_{ij}^2)_{j=1}^m\right)$, and the intrinsic dynamics $\dot{z} = -K_{\theta_0}(z)\nabla f(z)$ on $z = \mathrm{vec}(Z)$ corresponds to

 $\dot{Z} = -\mathrm{ddiag}(\nabla f(Z)Z^{\top})\,\mathrm{diag}(\boldsymbol{\alpha})^{-1}\,Z - \mathrm{diag}(\boldsymbol{\alpha})\,\nabla f(Z)\,\mathrm{diag}(\boldsymbol{\beta}) - Z\,\mathrm{diag}(\boldsymbol{\beta})^{-1}\,\mathrm{ddiag}(Z^{\top}\nabla f(Z)),$ where: a) for any matrix M, $\mathrm{ddiag}(M) := \mathrm{diag}(\mathrm{Diag}(M))$, where $\mathrm{Diag}(M)$ extracts its diagonal as a vector and $\mathrm{diag}(v)$ is the diagonal matrix with entries of v; and b) the vectors $\boldsymbol{\alpha} = \boldsymbol{\alpha}(Z, \mathbf{h}(\theta_0)) \in \mathbb{R}^n_{>0}$ (uniquely determined by Z and $\mathbf{h}(\theta_0)$) satisfy

 $\alpha^2 - |Z|^2 \operatorname{diag}(\beta)^{-1} \mathbf{1}_n - \lambda \odot \alpha = 0, \quad \beta^2 - (|Z|^2)^{\top} \operatorname{diag}(\alpha)^{-1} \mathbf{1}_m - \mu \odot \beta = 0,$ (10) with $|Z|^2 \in \mathbb{R}^{n \times m}$ the element-wise square on the matrix $Z \in \mathbb{R}^{n \times m}$) and with $\lambda \in \mathbb{R}^n$, $\mu \in \mathbb{R}^m$ such that $\mathbf{h}(\theta_0) = (\lambda, \mu)$. When $\lambda, \mu = 0$, equation 10 entirely characterizes (α, β) .

4 DEEP LINEAR NEURAL NETWORKS AND LINEAR NEURAL ODES

For L-layer linear networks, $\theta = (U_1, \dots, U_L)$ and the path-lifting formalism (Gonon et al., 2023) yields a factorization via ϕ_{ReLU} , leading to an intrinsic dynamics by the results of the previous section. It is more common however to consider the dynamics of $Z_L := \phi_{\text{Lin}}(\theta_L) = U_L \cdots U_1$, since ϕ_{Lin} is more efficient that ϕ_{ReLU} in terms of dimension reduction. We now analyze the dynamics of $Z_L(t)$. The gradient flow $\dot{\theta}_L = -\nabla \ell(\theta_L)$ gives the evolution of Z_L (see e.g. (Bah et al., 2022, Lemma 2)):

$$\dot{Z}_L = -\sum_{j=1}^L S_j \,\nabla f(Z_L) \,T_j, \quad \text{with} \quad \begin{cases} S_j := U_L \cdots U_{j+1} \,U_{j+1}^\top \cdots U_L^\top, & S_L = \text{Id}, \\ T_j := U_1^\top \cdots U_{j-1}^\top \,U_{j-1} \cdots U_1, & T_1 = \text{Id}. \end{cases}$$
(11)

¹When written as a $n \times m$ matrix, we denote Z instead of z and also view $\nabla f(Z)$ as an $n \times m$ matrix.

The metric $M(\theta_L)$ on $z_L = \text{vec}(Z_L)$ is thus entirely characterized by $(S_j(\theta_L), T_{j+1}(\theta_L))_{j=1}^{L-1}$.

Definition 4.1 (Relaxed balanced conditions). We say that $\theta_L := (U_L, \cdots, U_1)$ satisfies the relaxed balanced condition if there exists $\lambda := (\lambda_i)_i \in \mathbb{R}^{L-1}$ such that

$$U_{i+1}^{\top} U_{i+1} - U_i U_i^{\top} = \lambda_i \text{Id}, \quad \forall 1 \le i \le L - 1.$$
 (12)

(0-)balanced conditions (Bah et al., 2022, Def 1) (Arora et al., 2019, Def 1) correspond to $\lambda = 0$.

Remark 4.2. It is worth noting that Dominé et al. (2025) used this exact same condition and called it the λ -balanced condition. However, the definition of λ -balanced condition is already used (see (Arora et al., 2019, Def 1)) by the literature to refer to the weaker condition $\|U_{i+1}^{\top}U_{i+1}-U_iU_i^{\top}\| \leq \lambda_i$. Other works (see e.g. Tarmoun et al. (2021); Braun et al. (2022); Varre et al. (2023)) use stronger conditions on the initializations, that satisfy in particular the relaxed balanced conditions of Definition 4.1.

4.1 DEEP LINEAR NEURAL NETWORKS

We first detail the study of the two-layer case, and then generalize it to the deep case.

Matrix factorization. We consider the two-layer case where $\theta := (U, V) \in \mathbb{R}^{n \times r} \times \mathbb{R}^{m \times r}$ and with $Z = \phi_{\text{Lin}}(\theta) := UV^{\top} \in \mathbb{R}^{n \times m}$. We assume $\theta(t)$ satisfies the gradient flow equation 1 with $\theta(0) = (U_{t=0}, V_{t=0})$. We denote $S := U_{t=0}^{\top} U_{t=0} - V_{t=0}^{\top} V_{t=0} \in \mathbb{R}^{r \times r}$.

If θ_0 satisfies the balanced condition equation 12~S=0, then (Arora et al., 2018, Theorem 1) (Bah et al., 2022, Lemma 2) θ_0 satisfies the intrinsic metric property with respect to ϕ_{Lin} and

$$\dot{Z} = -\sqrt{ZZ^{\top}}\nabla f(Z) - \nabla f(Z)\sqrt{Z^{\top}Z}.$$
(13)

We generalize this result (see Section I for a proof) to a broader class of initializations: all initializations satisfying the relaxed balanced condition equation 12 possess the intrinsic metric property.

Theorem 4.3. Consider $\theta_0 := (U_{t=0}, V_{t=0})$ where both $U_{t=0} \in \mathbb{R}^{n \times r}$ and $V_{t=0} \in \mathbb{R}^{m \times r}$ have full rank $r \le \min(n, m)$, and assume $S = \lambda \operatorname{Id}_r$ for some $\lambda \in \mathbb{R}$. Then, on a neighborhood Ω of $\theta_{t=0}$:

$$\dot{Z} = -\Pi_{ZZ^{\top}} \left[\frac{\lambda}{2} \operatorname{Id}_{n} + \frac{1}{2} \sqrt{\lambda^{2} \operatorname{Id}_{n} + 4 Z Z^{\top}} \right] \nabla f(X) - \nabla f(X) \Pi_{Z^{\top} Z} \left[-\frac{\lambda}{2} \operatorname{Id}_{m} + \frac{1}{2} \sqrt{\lambda^{2} \operatorname{Id}_{m} + 4 Z^{\top} Z} \right], \tag{14}$$

where Π_A is the orthogonal projector on range A.

Note that equation 13 corresponds indeed to equation 14 with $\lambda=0$. Note also that Theorem 4.3 generalizes to the case $r \leq \min(n,m)$ the expression obtained in (Dominé et al., 2025, Theorem 5.2) for the special case $r = \min(n,m)$ (if Dominé et al. (2025) focus in general on the squared loss, the proof of their Theorem 5.2 does not rely on the use of this specific loss: this result can be applied for any loss, as ours). The following theorem shows that the *relaxed balanced condition* is actually a necessary condition when $r \leq \max(n,m)$ to have the intrinsic metric property. Its proof (see Section J) relies on showing the non-inclusion of the kernels of equation 7.

Theorem 4.4. Let $\theta_0 := (U_{t=0}, V_{t=0})$. Assume that both $U_{t=0} \in \mathbb{R}^{n \times r}$ and $V_{t=0} \in \mathbb{R}^{m \times r}$ have a full rank and that $r \leq \max(n, m)$. If $S := U_{t=0}^{\top} U_{t=0} - V_{t=0}^{\top} V_{t=0} \neq \lambda \mathrm{Id}_r$, then θ_0 does not satisfy the intrinsic metric property (Definition 2.10) with respect to ϕ_{Lin} .

The case $r > \max(n, m)$ is still open. For n = m = 1 and any r, the following proposition (proved in Section K) shows that all initializations do satisfy the intrinsic metric property with respect to ϕ_{Lin} .

Proposition 4.5. Let
$$\theta := (u, v)$$
 with $u \in \mathbb{R}^r$ and $v \in \mathbb{R}^r$. Then $z := \phi_{\text{Lin}}(\theta) = \langle u, v \rangle \in \mathbb{R}$. We denote $S := u_{t=0}u_{t=0}^\top - v_{t=0}v_{t=0}^\top \in \mathbb{R}^{r \times r}$. Then one has $\dot{z} = -\sqrt{2\text{tr}(S^2) - \text{tr}(S)^2 + 4z^2}\nabla f(z)$.

In particular, it is important to note that the two-layer linear analysis allows these results to be applied directly to networks composed of attention layers (Example 2.4).

Deep linear neural networks. Consider linear neural networks of arbitrary depth, with square weight matrices $\theta_L := (U_L, \dots, U_1), U_i \in \mathbb{R}^{n \times n}$. The following theorem (proved in Section L) generalizes Theorem 4.3 to this setting. In the case of balanced conditions ($\lambda = 0$), our theorem recovers the dynamics described in (Arora et al., 2018, Theorem 1), (Bah et al., 2022, Lemma 2).

Theorem 4.6. If $\theta_L(0)$ satisfies the relaxed balanced condition (Definition 4.1) with $\lambda = (\lambda_i)_i$ then during the trajectory $\theta_L(t)$ of equation 1, the matrices in equation 11 satisfy $S_i(\theta_L(t)) =$

 $Q_j(U_L(t)U_L(t)^{ op})$ and $T_j(\theta_L(t)) = R_j(U_1(t)^{ op}U_1(t))$, where $Q_j(x) := \prod_{k=0}^{L-j-1}(x-a_k)$ with $a_0 := 0$ and $a_k := \sum_{i=1}^k \lambda_{L-i}$ for $k = 1, \dots L-1$ and $R_j(x) := \prod_{k=0}^{j-2}(x-b_k)$ with $b_0 := 0$ and $b_k := -\sum_{i=1}^k \lambda_i$. Moreover $U_LU_L^{ op}$ (resp. $U_1^{ op}U_1$) is the unique root of $Z_LZ_L^{ op} = Q_0(U_LU_L^{ op})$ (resp. of $Z_L^{ op}Z_L = R_{L-1}(U_1^{ op}U_1)$) with spectrum lower bounded by $\max_{0 \le k \le L-1} a_k$ (resp. by $\max_{0 \le k \le L-2} b_k$). This implies that all matrices in equation 11 are entirely characterized by Z_L and the initialization, hence $\theta_L(0)$ satisfies the intrinsic dynamic property on \mathbb{R}^D with respect to ϕ_{Lin} .

4.2 Infinitely deep linear networks

We next consider the limit when $L \to +\infty$ of deep linear residual networks with parameters $U_k = \operatorname{Id}_n + \mathcal{A}_{\frac{k}{L}}$, and thus focus on the analysis of the parameter $\theta = (\mathcal{A}_s)_{s \in [0,1]}$, where $\mathcal{A}_s \in \mathbb{R}^{n \times n}$ corresponding to linear neural ODEs (introduced by Chen et al. (2018)). Remarkably, our theoretical approach still applies in this regime, and yields a closed-form formula for the metric. We thus study the dynamics of parameters $\theta(t) \in \mathcal{X}$ where \mathcal{X} corresponds to the Banach space $(\mathcal{C}^1([0,1],\mathbb{R}^{n \times n}),\|\cdot\|_{\mathcal{C}^1})$ where $\|f\|_{\mathcal{C}^1} := \max\{\|f\|_{\infty},\|f'\|_{\infty}\}$, and such that the trajectory $t \mapsto \theta(t) = (\mathcal{A}_s(t))_{s \in [0,1]}$ is the solution of the gradient flow on $\ell(\theta)$, given by the (family of coupled) ODE

$$\forall s \in [0, 1], \quad \frac{\partial \mathcal{A}_s}{\partial t}(t) = -\mathfrak{g}_s(t), \quad \text{with} \quad \mathfrak{g}_s(t) := \frac{\partial \ell}{\partial \mathcal{A}_s} \left(\theta(t)\right) \in \mathbb{R}^{n \times n}, \tag{15}$$

where we assume that the loss function $\ell: \mathcal{X} \mapsto \mathbb{R}$ is such that $\theta \mapsto (\frac{\partial \ell}{\partial \mathcal{A}_s}(\theta))_{s \in [0,1]}$ is locally Lipschitz on \mathcal{X} (to ensure by the Cauchy-Lipschitz theorem that indeed there exists a unique maximal solution $\theta(\cdot) \in \mathcal{C}^1([0,T),\mathcal{X})$ of equation 15 with a given $\theta(0)$).

As an infinite-depth analog of $Z_L = U_L \dots U_1$, given any $\theta \in \mathcal{X}$ we consider $s \in [0,1] \mapsto Z_s = Z_s[\theta] \in \mathbb{R}^{n \times n}$ the unique global solution (as $\theta = (\mathcal{A}_s)_{s \in [0,1]} \in \mathcal{X}$) of the *state equation*

$$\frac{\mathrm{d}}{\mathrm{d}s}Z_s = \mathcal{A}_s Z_s, \quad Z_0 = \mathrm{Id}_n. \tag{16}$$

The analog to Assumption 2.1 is to assume that $\ell(\theta) = f\left(Z_{s=1}\right)$ with $f \in \mathcal{C}^1$, and we now want to know if it is possible to rewrite the dynamic $\frac{\partial Z_{s=1}}{\partial t}(t)$ as an intrinsic dynamic that only depends on $Z_{s=1}(t)$ and the initialization $\theta(0)$. The following proposition (see Section M for a proof) gives a set of conserved functions during all trajectories of equation 15.

Proposition 4.7. For any $s \in [0,1]$, consider $\mathbf{h}_s : \theta := (\mathcal{A}_s)_{s \in [0,1]} \in \mathcal{X} \mapsto \mathcal{A}_s' + \mathcal{A}_s'^\top + [\mathcal{A}_s^\top, \mathcal{A}_s] \in \mathbb{R}^{n \times n}$, where we denote $\mathcal{A}_s' := \frac{\mathrm{d}}{\mathrm{d}s} \mathcal{A}_s$. Then for any $s \in [0,1]$, one has for any $t : \mathbf{h}_s(\theta(t)) = \mathbf{h}_s(\theta(0))$, where $\theta(t)$ is the maximal solution of equation 15 with initialization $\theta(0)$.

Moreover, the following theorem (see Section N for a proof) shows that for relaxed balanced initializations, the evolution of $Z_1(t) = Z_{s=1}(t)$ is entirely described by Z and the initialization.

Theorem 4.8. If the initialization $\theta(0)$ satisfies that for each $s \in [0,1]$ $\mathbf{h}_s(\theta(0)) = \lambda(s)\mathrm{Id}_n$ for some $\lambda(\cdot) \in \mathcal{C}^0([0,1],\mathbb{R})$, then one has

$$\dot{Z}_1 = -\int_0^1 (Z_1 Z_1^\top)^{1-s} \exp(\gamma(s)) \nabla f(Z_1) (Z_1^\top Z_1)^s ds,$$

with $\gamma(s) := (1-s)\psi_1(1) - \psi_1(1-s) - s\psi_2(1) + \psi_2(s)$, where $\psi_1 : s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(1-v) dv du$ and $\psi_2 : s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(v) dv du$. If $\lambda(\cdot) \equiv 0$ (balanced-condition), then $\gamma(\cdot) \equiv 0$.

In a sense, this theorem captures the infinite-depth limit ($L \to +\infty$) of Theorem 4.6, while offering the key advantage of an explicit closed-form expression for the associated metric.

CONCLUSION

In this paper, we investigated when high-dimensional gradient flows can be recast as intrinsic Riemannian flows in lower-dimensional spaces. Our results show that such reductions are always possible for ReLU networks under path-lifting parametrization, and for linear networks under relaxed balanced initializations. A central contribution is our analysis of the "path-lifting metric", a recently introduced and still largely unexplored object, for which we provide an intrinsic characterization in the 3-layer case. Extending this analysis to deeper or more general architectures could shed new light on the geometry of gradient dynamics for general ReLU networks.

REFERENCES

- El Mehdi Achour, Kathlén Kohn, and Holger Rauhut. The riemannian geometry associated to gradient flows of linear convolutional networks, 2025. URL https://arxiv.org/abs/2507.06367.
- Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. In *International Conference on Machine Learning*, pp. 244–253. PMLR, 2018.
- Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for deep linear neural networks. In *International Conference on Learning Representations*, 2019.
- Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal mirror descent. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 468–477. PMLR, 18–24 Jul 2021.
- Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers. *Information and Inference: A Journal of the IMA*, 11(1):307–353, 2022.
- R. H. Bartels and G. W. Stewart. Algorithm 432 [c2]: Solution of the matrix equation ax + xb = c [f4]. *Commun. ACM*, 15(9):820–826, September 1972. ISSN 0001-0782. doi: 10.1145/361573.361582. URL https://doi.org/10.1145/361573.361582.
- F. Berthelin. *Equations différentielles*. Enseignement des mathématiques. Cassini, 2017. ISBN 9782842252298. URL https://books.google.fr/books?id=-tFMswEACAAJ.
- Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
- Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics of deep linear networks with prior knowledge. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 6615–6629. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/2b3bb2c95195130977a51b3bb251c40a-Paper-Conference.pdf.
- Emmanuel J Candès, Thomas Strohmer, and Vladislav Voroninski. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming. *Communications on Pure and Applied Mathematics*, 66(8):1241–1274, 2013. doi: 10.1002/cpa.21432. URL http://dx.doi.org/10.1002/cpa.21432. Publisher: Wiley Subscription Services, Inc., A Wiley Company.
- Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bbldfed68692a24c8686939b9-Paper.pdf.
- Yacine Chitour, Zhenyu Liao, and Romain Couillet. A geometric approach of gradient descent algorithms in linear neural networks. *arXiv preprint arXiv:1811.03568*, 2018.
- Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss. In *Conf. on Learning Theory*, pp. 1305–1338. PMLR, 2020.
- Clémentine Carla Juliette Dominé, Nicolas Anguita, Alexandra Maria Proca, Lukas Braun, Daniel Kunin, Pedro A. M. Mediano, and Andrew M Saxe. From lazy to rich: Exact learning dynamics in deep linear networks. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=ZXaocmXc6d.

- Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
 models: Layers are automatically balanced. *Advances in Neural Information Processing Systems*,
 31, 2018.
 - Thomas Gebhart, Udit Saxena, and Paul Schrater. A Unified Paths Perspective for Pruning at Initialization, January 2021. URL http://arxiv.org/abs/2101.10552.arXiv:2101.10552 [cs].
 - Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, and Rémi Gribonval. A path-norm toolkit for modern networks: consequences, promises and challenges. October 2023. URL https://openreview.net/forum?id=hiHZVUIYik.
 - Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization. *Advances in Neural Information Processing Systems*, 30, 2017.
 - Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. In *International Conference on Machine Learning*, pp. 1832–1841. PMLR, 2018.
 - A Isidori. Nonlinear system control. New York: Springer Verlag, 61:225–236, 1995.
 - Zhiyuan Li, Tianhao Wang, Jason D Lee, and Sanjeev Arora. Implicit bias of gradient descent on reparametrized models: On equivalence to mirror descent. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 34626–34640. Curran Associates, Inc., 2022.
 - Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow: Conservation laws for gradient flows. *Advances in neural information processing systems*, 36, 2023.
 - Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Keep the momentum: Conservation laws beyond euclidean gradient flows. In *41st International Conference on Machine Learning*, 2024.
 - Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Transformative or conservative? conservation laws for resnets and transformers. In 42nd International Conference on Machine Learning (ICML 2025), 2025.
 - Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-Based Capacity Control in Neural Networks. In *Proceedings of The 28th Conference on Learning Theory*, pp. 1376–1401. PMLR, June 2015. URL https://proceedings.mlr.press/v40/Neyshabur15.html. ISSN: 1938-7228.
 - L.S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. *The mathematical theory of optimal processes*. Wiley, NY, 1962.
 - Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. *The Journal of Machine Learning Research*, 19(1): 2822–2878, 2018.
 - Pierre Stock and Rémi Gribonval. An Embedding of ReLU Networks and an Analysis of their Identifiability. *Constructive Approximation*, 2022. doi: 10.1007/s00365-022-09578-1. Publisher: Springer Verlag.
 - Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the dynamics of gradient flow in overparameterized linear models. In *International Conference on Machine Learning*, pp. 10153–10161. PMLR, 2021.
 - Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, and Nicolas Flammarion. On the spectral bias of two-layer linear networks. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=FFdrXkm3Cz.

A TABLE THAT SUMMARIZES WHICH PARAMETRIZATIONS CAN BE USED TO ANALYZE WHICH TYPE OF NEURAL NETWORK, ALONG WITH THE CORRESPONDING RESULTS.

Parametrization Network type	$\phi_{ ext{Lin}}$	$\phi_{ m ReLU}$
Linear network	IMP: only for relaxed balanced θ_0	IMP: for all θ_0
	Dimension: $d' \ll D$	$d' = D - k \approx D$
DAG ReLU	N/A	IMP: for all θ_0
		$d' = D - k \approx D$

IMP = intrinsic metric property; d' = dimension of the manifold of $\phi(\theta)$; k= # hidden neurons

Table 1: The table summarizes which parametrizations can be used to analyze which type of neural network, along with the corresponding results.

B More comments on Example 2.5

In example equation 2.5, when $\lambda \to +\infty$ $K_{\theta_0}/\lambda \to I_m$ (the Euclidean metric). When $\lambda = 0$, one has $K_{\theta_0}(z) = \|z\|I_m + \frac{zz^\top}{\|z\|}$ for every $z \neq 0$, and in particular, by the uniqueness result in the Cauchy-Lipschitz theorem, 0 is reachable only if $z_0 = 0$. When $\lambda \to -\infty$, $K_{\theta_0}/|\lambda| \to \frac{zz^\top}{\|z\|^2}$. See the supplementary material for numerical illustrations of these different behaviors.

C Proof of Theorem 2.14

Theorem 2.14. Consider $\mathbf{h} \in \mathcal{C}^1(\mathbb{R}^D, \mathbb{R}^N)$, $\phi \in \mathcal{C}^2(\mathbb{R}^D, \mathbb{R}^d)$, and $\theta_0 \in \mathbb{R}^D$ such that the matrix $\partial \mathbf{h}(\theta) \in \mathbb{R}^{N \times D}$ has constant rank on $\mathcal{M}_{\theta_0} \cap U$ with $U \ni \theta_0$ an open subset of \mathbb{R}^D and $\mathcal{M}_{\theta_0} := \mathbf{h}^{-1}(\{\mathbf{h}(\theta_0)\})$. Then $(i) \Longrightarrow (ii)$, where

(i) There exists an open set $O \supset \phi(\mathcal{M}_{\theta_0}) \cap U$ and a map $K_{\theta_0} \in \mathcal{C}^1(O, \mathbb{R}^{d \times d})$ such that for each $\theta \in \mathcal{M}_{\theta_0} \cap U$: $M(\theta) = K_{\theta_0}(\phi(\theta))$;

(ii)
$$\ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta) \subseteq \ker \partial M(\theta), \quad \forall \theta \in \mathcal{M}_{\theta_0} \cap U.$$
 (7)

Proof. (i) \Rightarrow (ii).

Assume (i) and fix $\theta \in \mathcal{M}_{\theta_0} \cap U$ and a vector $v \in \ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta)$. Applying the chain rule in the ambient space \mathbb{R}^D (possible as $v \in \ker \partial \mathbf{h}(\theta) = T_\theta \mathcal{M}_{\theta_0}$ because $\partial \mathbf{h}(\theta)$ has its rank that remains constant on $\mathcal{M}_{\theta_0} \cap U$ by hypothesis) gives

$$\partial M(\theta) \cdot v = \partial K_{\theta_0}(\phi(\theta)) \cdot (\partial \phi(\theta) \cdot v) = \partial K_{\theta_0}(\theta) \cdot 0 = 0,$$

hence $v \in \ker \partial M(\theta)$ and (ii) holds.

D Proof of Theorem 3.3

Theorem 3.3. Given $\phi \in C^2(\mathbb{R}^D, \mathbb{R}^d)$ and $\theta_0 \in \mathbb{R}^D$, the following are equivalent: (i) there are conservation laws $\mathbf{h} \in C^1(\Omega, \mathbb{R}^N)$ for ϕ on a neighborhood Ω of θ_0 such that equation 8 holds for each $\theta \in \mathcal{M}_{\theta_0} \cap \Omega$; (ii) there is an open set $U \subseteq \Omega$ on which θ_0 satisfies the intrinsic recoverability property Definition 3.1 (and thus the intrinsic metric property Definition 2.10) with respect to ϕ .

Proof. We first show $(i) \Longrightarrow (ii)$. We assume (i). Observe that given any $\theta \in \mathbb{R}^D$ equation 8 is equivalent (by rank theorem) to

 $\operatorname{rank}\begin{pmatrix} \partial \phi(\theta) \\ \partial \mathbf{h}(\theta) \end{pmatrix} = D. \tag{17}$

By smoothness of ϕ and \mathbf{h} , if equation 17 holds at θ_0 is also holds in a whole neighborhood U of θ_0 . By the implicit function theorem, denoting $F(\theta) := (\phi(\theta), \mathbf{h}(\theta))$, it implies that θ can be expressed on UU as $\theta = F^{-1}(\phi(\theta), \mathbf{h}(\theta)) = \Gamma(\phi(\theta), \mathbf{h}(\theta))$.

We now show $(ii) \implies (i)$. We assume (ii). Then on U one has $\theta = \Gamma(\phi(\theta), \mathbf{h}(\theta))$. Thus on $\mathcal{M}_{\theta_0} \cap U$, one has $\theta = \Gamma(\phi(\theta), \mathbf{h}(\theta_0))$. We now fix some $\theta \in \mathcal{M}_{\theta_0} \cap U$ and we consider a vector $v \in \ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta)$.

Applying the chain rule in the ambient space \mathbb{R}^D on Γ gives

$$v = \operatorname{Id}_D v = \partial_{\phi(\theta)} \Gamma(\phi(\theta), \mathbf{h}(\theta_0)) \cdot (\partial \phi(\theta) \cdot v) = \partial \Gamma(\theta) \cdot 0 = 0,$$

and thus v=0.

E Proof of Proposition 3.7.

Proposition 3.7. We have the following implications $(i) \implies (ii) \implies (iii)$: $(i) \phi$ satisfies the Frobenius property on Ω and the trace of \mathbb{W}_{ϕ} has its dimension that is constant on Ω ; (ii) For any $\theta_0 \in \Omega$, there exists conservation laws \mathbf{h} for ϕ on a neighborhood $U \subset \Omega$ of θ_0 such that for each $\theta \in \mathcal{M}_{\theta_0}$ equation 8 holds; $(iii) \phi$ satisfies the Frobenius property on Ω .

Proof. $(i) \implies (ii)$ is direct consequence of the proof of (Marcotte et al., 2023, Proposition 3.7).

We now show $(ii) \implies (iii)$. Let us assume (ii). We fix θ_0 . Then by assumption on $U \ni \theta_0$, $\theta = \Gamma(\mathbf{h}(\theta), \phi(\theta))$, and by using Proposition 3.7 one has $\ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta) = \{0\}$ on $\mathcal{M}_{\theta_0} \cap U$. Thus equation 17 holds on a open neighborhood O of θ_0 . As \mathbf{h} are conservation laws for ϕ on U, one has on $O \cap U$ that $\mathbb{W}_{\phi}(\theta) = D - \operatorname{rank} \partial h(\theta)$.

But as $\langle \nabla h(\theta), \nabla \phi_i(\theta) \rangle = \langle \nabla h(\theta), \nabla \phi_j(\theta) \rangle = 0 \implies \langle \nabla h(\theta), [\nabla \phi_i, \nabla \phi_j](\theta) \rangle = 0$, one has necessarly $\dim \operatorname{Lie} \mathbb{W}_{\phi}(\theta_0) \leq D - \operatorname{rank} \partial h(\theta_0)$ and as one also has $D - \operatorname{rank} \partial h(\theta_0) = \dim \mathbb{W}_{\phi}(\theta_0) \leq \dim \operatorname{Lie} \mathbb{W}_{\phi}(\theta_0)$ then one has $\mathbb{W}_{\phi}(\theta_0) = \operatorname{Lie} \mathbb{W}_{\phi}(\theta_0)$. This holds for any θ_0 , which concludes the proof. \square

F PROOF OF THEOREM 3.8.

Theorem 3.8. The parameterization ϕ_{ReLU} used for ReLU neural networks with any DAG architecture (see Gonon et al. (2023) and our Example 2.3)) satisfies the Frobenius property on $(\mathbb{R}\setminus\{0\})^D$.

Proof. We consider a parametrization $\phi:\theta\mapsto (\phi_i(\theta))_{i=1}^d$, where all ϕ_i are monomial in $\theta=(\theta_1,\cdots,\theta_D)\in (\mathbb{R}\backslash\{0\})^D$, i.e. $\phi_i(\theta)=\prod_{\ell=1}^D\theta_\ell^{\alpha_\ell^{(i)}}$. Moreover a variable θ_ℓ appears in some coordinate with exponent $\alpha_\ell^{(i)}>0$, then every other coordinate that contains θ_ℓ uses the *same* exponent $\alpha_\ell^{(k)}=\alpha_\ell^{(i)}$. These assumptions are indeed satisfied for the path-lifting parametrization ϕ_{ReLU} associated to general ReLU networks (Gonon et al. (2023); Stock & Gribonval (2022)), associated to a directed acyclic graph (DAG) of any depth, including skip connexions and arbitrary mixes of ReLU/linear/max-pooling activations (and even slight generalizations of max-pooling).

Now let us consider two indices $i,j \in \{1,\ldots,d\}$. Denote I (resp. J) the subset of all indices ℓ such that $\alpha_{\ell}^{(i)} \neq 0$ (resp. $\alpha_{\ell}^{(j)} \neq 0$). By abuse of notation we write $i \cap j$ (resp. $i \setminus j$ etc.) the set $I \cap J$ (resp. $I \setminus J$) and denote $\theta_{i \cap j}$ etc. the restriction of θ to the corresponding entries. In particular, one can decompose

$$\theta = (\theta_{i \cap j}, \ \theta_{i \setminus j}, \ \theta_{j \setminus i}, \ \theta_{(i \cap j)^c}).$$

We write

$$\phi_i(\theta) = \phi_{i \cap j}(\theta_{i \cap j}) \phi_{i \setminus j}(\theta_{i \setminus j}), \quad \phi_j(\theta) = \phi_{i \cap j}(\theta_{i \cap j}) \phi_{j \setminus i}(\theta_{j \setminus i}),$$

where $\phi_{i\cap j}(\cdot)$ is the maximal monomial factoring both $\phi_i(\cdot)$ and $\phi_j(\cdot)$, and $\phi_{i\setminus j}$ (resp. $\phi_{j\setminus i}$) is the unique monomial such that

$$\phi_i(\cdot) = \phi_{i \cap j}(\cdot) \phi_{i \setminus j}(\cdot), \qquad \phi_j(\cdot) = \phi_{i \cap j}(\cdot) \phi_{j \setminus i}(\cdot).$$

Then one has:

$$\nabla \phi_i(\theta) = \begin{pmatrix} \nabla \phi_{i \cap j} \phi_{i \setminus j} \\ \phi_{i \cap j} \nabla \phi_{i \setminus j} \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \nabla \phi_j(\theta) = \begin{pmatrix} \nabla \phi_{i \cap j} \phi_{j \setminus i} \\ 0 \\ \phi_{i \cap j} \nabla \phi_{j \setminus i} \\ 0 \end{pmatrix}$$

and

Thus

and similarly one has:

$$\partial^{2} \phi_{j}(\theta) \nabla \phi_{i}(\theta) = \phi_{i \setminus j} \begin{pmatrix} \partial^{2} \phi_{i \cap j} \nabla \phi_{i \cap j} \phi_{j \setminus i} \\ 0 \\ \nabla \phi_{j \setminus i} \| \nabla \phi_{i \cap j} \|^{2} \\ 0 \end{pmatrix}$$

Finally one has:

$$[\nabla \phi_i, \nabla \phi_j](\theta) = \begin{pmatrix} 0 \\ -\nabla \phi_{i \setminus j} \|\nabla \phi_{i \cap j}\|^2 \phi_{j \setminus i} \\ \nabla \phi_{j \setminus i} \|\nabla \phi_{i \cap j}\|^2 \phi_{i \setminus j} \end{pmatrix}$$
$$= \|\nabla \phi_{i \cap j}\|^2 \begin{pmatrix} 0 \\ -\nabla \phi_{i \setminus j} \phi_{j \setminus i} \\ \nabla \phi_{j \setminus i} \phi_{i \setminus j} \end{pmatrix}$$

But as:

$$\phi_{j \setminus i} \nabla \phi_i - \phi_{i \setminus j} \nabla \phi_j = \phi_{i \cap j} \begin{pmatrix} 0 \\ \phi_{j \setminus i} \nabla \phi_{i \cap j} \\ -\phi_{i \setminus j} \nabla \phi_{j \cap i} \end{pmatrix}$$

As
$$\phi_{i\cap j} \neq 0$$
 (indeed $\theta \in (\mathbb{R} \setminus \{0\})^D$, one then has $\begin{pmatrix} 0 \\ \phi_{j\setminus i} \nabla \phi_{i\cap j} \\ -\phi_{i\setminus j} \nabla \phi_{j\cap i} \end{pmatrix} \in \mathbb{W}_{\phi}(\theta)$ and thus $[\nabla \phi_i, \nabla \phi_j](\theta) \in \mathbb{W}_{\phi}(\theta)$.

G PROOF OF COROLLARY 3.9

 We first prove the following proposition (recall that \mathbb{W}_{ϕ} is defined in equation 9 and below).

Proposition G.1. If $\phi : \mathbb{R}^D \to \mathbb{R}^d$ is polynomial, then there exists a dense open set Θ of \mathbb{R}^D such that for any $\theta \in \Theta$, $\dim \mathbb{W}_{\phi}(\theta) = \max_{\theta' \in \mathbb{R}^D} \dim \mathbb{W}_{\phi}(\theta')$.

Proof. Denote $M \coloneqq \max_{\theta' \in \mathbb{R}^D} \dim \mathbb{W}_{\phi}(\theta') \in \mathbb{N}$. Considering $\theta_0 \in \mathbb{R}^D$ such that $\dim \mathbb{W}_{\phi}(\theta_0) = M$, there exists distinct indices i_1, \cdots, i_M such that the vectors $\nabla \phi_{i_j}(\theta_0) \in \mathbb{R}^D, 1 \leq j \leq M$ are linearly independent. There also exists a set I of M coordinates such that the restriction of these vectors to I remains linearly independent. The function $\theta \mapsto \eta(\theta) \coloneqq \det[(\nabla \phi_{i_1}(\theta))_I, \cdots, (\nabla \phi_{i_M}(\theta)_I]$ is a polynomial on \mathbb{R}^D with $\eta(\theta_0) \neq 0$, hence the set \mathcal{Z} of its zeros is a closed negligeable set of \mathbb{R}^D . Thus the open dense subset of \mathbb{R}^D defined by $\Theta \coloneqq \mathbb{R}^D \setminus \mathcal{Z}$ satisfies: for all $\theta \in \Theta$: $\dim \mathbb{W}_{\phi}(\theta) = M$.

Corollary 3.9. There exists a dense open set Θ of \mathbb{R}^D such that any $\theta_0 \in \Theta$ admits an open neighborhood $U \subseteq \Theta$ on which θ_0 satisfies the intrinsic recoverability property, and thus the intrinsic dynamic property with respect to ϕ_{ReLU} .

Proof. Since ϕ_{ReLU} is polynomial, we can apply Proposition G.1 to obtain an open dense set Θ on which the dimension of the trace of \mathbb{W}_{ϕ} remains constant. By Theorem 3.8, ϕ_{ReLU} satisfies the Frobenius property. By Proposition 3.7 every $\theta_0 \in \Theta$ admits a neighborhood U on which it satisfies the intrinsic recoverability property with respect of ϕ_{ReLU} . By Lemma 3.2 such a parameter θ_0 also satisfies the intrinsic metric property on U with respect to ϕ_{ReLU} .

H Proof of Proposition 3.10

Lemma H.1. Let $Y \in \mathbb{R}^{n \times m}_{>0}$. Then there exists a unique pair $(\alpha, \beta) =: \Gamma(Y)$ of vectors $\alpha \in \mathbb{R}^n_{>0}$, $\beta \in \mathbb{R}^m_{>0}$ such that

$$\alpha^2 = Y \operatorname{diag}(\beta)^{-1} \mathbf{1}_m$$
, and $\beta^2 = Y^{\top} \operatorname{diag}(\alpha)^{-1} \mathbf{1}_n$.

Proof. Define the mappings

$$S(\boldsymbol{\beta}) := \sqrt{Y \mathrm{diag}(\boldsymbol{\beta})^{-1} \mathbf{1}_m}, \quad T(\boldsymbol{\alpha}) := \sqrt{Y^\top \mathrm{diag}(\boldsymbol{\alpha})^{-1} \mathbf{1}_n}.$$

Let $D(a,a'):=\|\log(a/a')\|_{\infty}$ denote the Thompson metric on $(\mathbb{R}_+^*)^d$, where \mathbb{R}_+^* is the set of positive real numbers. It is known that $((\mathbb{R}_+^*)^d,D)$ is a complete metric space. The linear operator Y is 1-Lipschitz with respect to D, according to the Birkhoff contraction theorem. Moreover, the square root function is $\frac{1}{2}$ -Lipschitz in this metric. Hence, the composition $S \circ T$ is $\frac{1}{4}$ -contracting. By the Banach fixed-point theorem, there exists a unique fixed point of $S \circ T$, which implies the existence and uniqueness of the pair (α,β) solving the original equations.

Proposition 3.10. For a 3-layer ReLU MLP with scalar input/output, the factorization ϕ_{ReLU} reads²

$$Z = \phi_{\text{ReLU}}(u, V, w) := \text{diag}(u) V \text{diag}(w) \in \mathbb{R}^{n \times m},$$

with $u \in \mathbb{R}^n$, $V \in \mathbb{R}^{n \times m}$, and $w \in \mathbb{R}^m$. Define $\Theta := \{(u, V, w) : u_i, V_{ij}, w_j \neq 0 \ \forall i, j\}$, and let $\theta(t)$ be the maximal solution to equation 1 with $\theta(0) = \theta_0 \in \Theta$. The flow preserves the n+m conservation laws $\mathbf{h}(\theta) := \left((u_i^2 - \sum_j V_{ij}^2)_{i=1}^n, (w_j^2 - \sum_i V_{ij}^2)_{j=1}^m\right)$, and the intrinsic dynamics $\dot{z} = -K_{\theta_0}(z)\nabla f(z)$ on z = vec(Z) corresponds to

$$\dot{Z} = -\operatorname{ddiag}(\nabla f(Z)Z^{\top})\operatorname{diag}(\boldsymbol{\alpha})^{-1}Z - \operatorname{diag}(\boldsymbol{\alpha})\nabla f(Z)\operatorname{diag}(\boldsymbol{\beta}) - Z\operatorname{diag}(\boldsymbol{\beta})^{-1}\operatorname{ddiag}(Z^{\top}\nabla f(Z)),$$

where: a) for any matrix M, $\operatorname{ddiag}(M) := \operatorname{diag}(\operatorname{Diag}(M))$, where $\operatorname{Diag}(M)$ extracts its diagonal as a vector and $\operatorname{diag}(v)$ is the diagonal matrix with entries of v; and b) the vectors $\boldsymbol{\alpha} = \boldsymbol{\alpha}(Z, \mathbf{h}(\theta_0)) \in \mathbb{R}^n_{>0}$ and $\boldsymbol{\beta} := \boldsymbol{\beta}(Z, \mathbf{h}(\theta_0)) \in \mathbb{R}^m_{>0}$ (uniquely determined by Z and $\mathbf{h}(\theta_0)$) satisfy

$$\boldsymbol{\alpha}^2 - |Z|^2 \operatorname{diag}(\boldsymbol{\beta})^{-1} \mathbf{1}_n - \boldsymbol{\lambda} \odot \boldsymbol{\alpha} = 0, \quad \boldsymbol{\beta}^2 - (|Z|^2)^{\top} \operatorname{diag}(\boldsymbol{\alpha})^{-1} \mathbf{1}_m - \boldsymbol{\mu} \odot \boldsymbol{\beta} = 0, \quad (10)$$

²When written as a $n \times m$ matrix, we denote Z instead of z and also view $\nabla f(Z)$ as an $n \times m$ matrix.

with $|Z|^2 \in \mathbb{R}^{n \times m}$ the element-wise square on the matrix $Z \in \mathbb{R}^{n \times m}$) and with $\lambda \in \mathbb{R}^n$, $\mu \in \mathbb{R}^m$ such that $\mathbf{h}(\theta_0) = (\lambda, \mu)$. When $\lambda, \mu = 0$, equation 10 entirely characterizes (α, β) .

Proof. Given the general definition of ϕ_{ReLU} (see e.g. Neyshabur et al. (2015); Stock & Gribonval (2022); Gonon et al. (2023)), we study the factorization map

$$\phi(u, V, w) := \operatorname{diag}(u) V \operatorname{diag}(w),$$

where $u \in \mathbb{R}^n$, $V \in \mathbb{R}^{n \times m}$, $w \in \mathbb{R}^m$ with $u_i, w_i \neq 0$.

Step 1: Gradient flow in parameters.

Let $f: \mathbb{R}^{n \times m} \to \mathbb{R}$ and define the loss $\ell(u, V, w) = f(\phi(u, V, w))$. Writing $Z = \phi(u, V, w)$ and its gradient $G = \nabla f(Z)$, the gradient-flow ODE equation $1 \dot{u} = -\partial_u \ell$, $\dot{V} = -\partial_V \ell$, $\dot{w} = -\partial_w \ell$ is:

$$\dot{u} = -\operatorname{Diag}(G\operatorname{diag}(w) V^{\top}),$$

$$\dot{V} = -\operatorname{diag}(u) G\operatorname{diag}(w),$$

$$\dot{w} = -\operatorname{Diag}(V^{\top}\operatorname{diag}(u) G),$$

Step 2: Induced flow on z.

Since Z = diag(u)Vdiag(w), we have

$$\dot{Z} = \operatorname{diag}(\dot{u})V\operatorname{diag}(w) + \operatorname{diag}(u)\dot{V}\operatorname{diag}(w) + \operatorname{diag}(u)V\operatorname{diag}(\dot{w}).$$

Substituting the above yields

$$\dot{Z} = -\mathrm{ddiag}(G\operatorname{diag}(w)V^{\top})V\operatorname{diag}(w) - \mathrm{diag}(u^2)G\operatorname{diag}(w^2) - \mathrm{diag}(u)V\operatorname{ddiag}(V^{\top}\operatorname{diag}(u)G),$$

where we set ddiag(M) = diag(Diag(M))

Eliminating V via $V = \operatorname{diag}(u)^{-1} Z \operatorname{diag}(w)^{-1}$ (possible as $u_i, w_j \neq 0$ on Θ) and using $\operatorname{ddiag}(M \operatorname{diag}(a)) = \operatorname{ddiag}(M) \operatorname{diag}(a)$ one obtains

$$\dot{Z} = -\mathrm{ddiag}(Gz^{\top})\,\mathrm{diag}(u^{-2})\,Z - \mathrm{diag}(u^2)\,G\,\mathrm{diag}(w^2) - Z\,\mathrm{diag}(w^{-2})\,\mathrm{ddiag}(Z^{\top}G).$$

Moreover by Corollary 3.9 there exists conservation laws \mathbf{h} and a function Γ such that $\theta = (u, V, w) = \Gamma(\phi(\theta), \mathbf{h}(\theta)) = \Gamma(Z, \mathbf{h}(\theta))$ so that $\alpha := u^2$ and $\beta := w^2$ (entrywise multiplication) can both be expressed as functions $\alpha(Z, \mathbf{h}(\theta))$ and $\beta(Z, \mathbf{h}(\theta))$. Below we explicit such conservation laws and characterize properties of α and β .

Step 3: Conserved quantities and elimination of α , β .

The flow equation 1 preserves the following n + m conservation laws:

$$\forall i = 1, \dots, n : \quad u_i^2 - \sum_{j=1}^m V_{ij}^2 = \lambda_i,$$

$$\forall j = 1, \dots, m : \quad w_j^2 - \sum_{i=1}^n V_{ij}^2 = \mu_j,$$

for given constants $\lambda \in \mathbb{R}^n$ and $\mu \in \mathbb{R}^m$ determined by θ_0 . Since $V_{ij} = Z_{ij}/(u_i w_j)$, then $(u^2, w^2) > 0$ is a solution of the coupled system

$$u^2: u_i^4 - \sum_{j=1}^m \frac{Z_{ij}^2}{w_j^2} - \lambda_i u_i^2 = 0,$$

$$w^2: w_j^4 - \sum_{i=1}^n \frac{Z_{ij}^2}{u_i^2} - \mu_j w_j^2 = 0.$$

In vector-matrix form (with entrywise squaring):

$$\alpha = u^2, \quad \beta = w^2,$$

 $\alpha^2 - |Z|^2 \operatorname{diag}(\boldsymbol{\beta})^{-1} \mathbf{1}_m - \boldsymbol{\lambda} \odot \boldsymbol{\alpha} = 0, \quad \boldsymbol{\beta}^2 - (|Z|^2)^{\top} \operatorname{diag}(\boldsymbol{\alpha})^{-1} \mathbf{1}_n - \boldsymbol{\mu} \odot \boldsymbol{\beta} = 0,$

where $|Z|^2$ is the elementwise square of Z and \odot is the element-wise product.

Special case $\lambda = 0, \mu = 0$.

Then the system reduces to

$$\boldsymbol{\alpha}^2 = (|Z|^2)\operatorname{diag}(\boldsymbol{\beta})^{-1}\mathbf{1}_m, \quad \boldsymbol{\beta}^2 = (|Z|^2)^{\top}\operatorname{diag}(\boldsymbol{\alpha})^{-1}\mathbf{1}_n.$$
(18)

By Lemma H.1 with $Y = |Z|^2$ (possible as $Z_{ij} = u_i V_{ij} w_j \neq 0$ since $\theta \in \Theta$), the exists a unique solution $(\alpha, \beta) > 0$ of the system equation 18.

In the scalar case (n=m=1) with $|Z|^2=z^2$ a scalar, the solution is $\alpha=\beta=(|Z|^2)^{1/3}=|z|^{2/3}$.

I Proof of Theorem 4.3.

Theorem 4.3. Consider $\theta_0 := (U_{t=0}, V_{t=0})$ where both $U_{t=0} \in \mathbb{R}^{n \times r}$ and $V_{t=0} \in \mathbb{R}^{m \times r}$ have full rank $r \leq \min(n, m)$, and assume $S = \lambda \operatorname{Id}_r$ for some $\lambda \in \mathbb{R}$. Then, on a neighborhood Ω of $\theta_{t=0}$:

$$\dot{Z} = -\Pi_{ZZ^{\top}} \left[\frac{\lambda}{2} \operatorname{Id}_{n} + \frac{1}{2} \sqrt{\lambda^{2} \operatorname{Id}_{n} + 4 ZZ^{\top}} \right] \nabla f(X) - \nabla f(X) \Pi_{Z^{\top}Z} \left[-\frac{\lambda}{2} \operatorname{Id}_{m} + \frac{1}{2} \sqrt{\lambda^{2} \operatorname{Id}_{m} + 4 Z^{\top}Z} \right], \tag{14}$$

where Π_A is the orthogonal projector on range A.

Proof. Step 1: rank of Z.

As $r \leq \min(n,m)$ and as both $U_{t=0} \in \mathbb{R}^{n \times r}$ and $V_{t=0} \in \mathbb{R}^{m \times r}$ have full rank equal to r, it remains the case in a neighborhood Ω of $\theta_0 := (U_{t=0}, V_{t=0})$, and it is also the case for $Z = UV^{\top}$.

Step 2: A quadratic equation for $P := UU^{\top}$.

Compute

$$ZZ^{\top} = UV^{\top}VU^{\top} = U(V^{\top}V)U^{\top}.$$

With the hypothesis $U^{\top}U - V^{\top}V = \lambda \mathrm{Id}_r$ we get $V^{\top}V = U^{\top}U - \lambda \mathrm{Id}_r$, hence

$$ZZ^{\top} = U(U^{\top}U - \lambda \operatorname{Id}_r)U^{\top} = UU^{\top}UU^{\top} - \lambda UU^{\top} = P^2 - \lambda P.$$

Thus P satisfies the quadratic matrix equation

$$P^2 - \lambda P - ZZ^{\top} = 0. ag{19}$$

Step 3: Simultaneous diagonalisation and scalar reduction.

Write $Z' := ZZ^{\top}$. Because

$$P = UU^{\top}, \qquad Z' = U(V^{\top}V)U^{\top},$$

and $U^{\top}U$ differs from $V^{\top}V$ only by a scalar multiple of the identity, we have $(U^{\top}U)(V^{\top}V) = (V^{\top}V)(U^{\top}U)$. Encapsulating by U and U^{\top} yields PZ' = Z'P. Hence P and Z' are simultaneously diagonalisable: there exists an orthogonal matrix $W \in \mathbb{R}^{n \times n}$ such that

$$P = W \operatorname{diag}(\sigma_1, \dots, \sigma_n) W^{\top}, \qquad Z' = W \operatorname{diag}(\mu_1, \dots, \mu_n) W^{\top},$$

with $\sigma_i, \mu_i \geq 0$ and where we assume $\sigma_1 \geq \cdots \geq \sigma_n$ and $\mu_1 \geq \cdots \geq \mu_n$.

In the common eigenbasis, equation 19 becomes for every i

$$\sigma_i^2 - \lambda \sigma_i - \mu_i = 0.$$

Its two roots are

$$\sigma_i^{\pm} = \frac{\lambda \pm \sqrt{\lambda^2 + 4\mu_i}}{2}.$$

By the first step, one already has that on Ω , for any i>r: $\sigma_i=\mu_i=0$ so that $\sigma_i=\sigma_i^-$, and that for any $i\le r$, $\sigma_i>0$ and $\mu_i>0$. Thus $\sqrt{\lambda^2+4\mu_i}>|\lambda|$, the "-" root is negative, while $P=UU^\top$ is positive-semidefinite. Therefore $\sigma_i=\sigma_i^+$ for $i\le r$. Let us define $\Pi_{ZZ^\top}:=W\operatorname{diag}(\underbrace{1,\cdots,1}_{0},0,\cdots,0)W^\top$ the orthogonal projector on $\operatorname{range}(ZZ^\top)$. It follows that:

$$P = \Pi_{ZZ^{\top}} \times \left[\frac{\lambda}{2} \mathrm{Id}_n + \frac{1}{2} \sqrt{\lambda^2 \mathrm{Id}_n + 4 ZZ^{\top}} \right]. \tag{20}$$

Step 4: The expression for $Q := VV^{\top}$. A fully analogous computation gives

$$Z^{\top}Z = VU^{\top}UV^{\top} = V(V^{\top}V + \lambda \operatorname{Id}_r)V^{\top} = Q^2 + \lambda Q,$$

so that Q satisfies

$$Q^2 + \lambda Q - Z^{\mathsf{T}} Z = 0. (21)$$

Because Q and $T := Z^{\top}Z$ commute, they share an orthonormal eigenbasis in which equation 21 reduces to

$$\tau_i^2 + \lambda \tau_i - \mu_i = 0 \quad (\tau_i \ge 0, \ \mu_i \ge 0).$$

By the first step, one already has that on Ω , for any i > r: $\tau_i = \mu_i = 0$ and that for any $i \le r$, $\tau_i \ne 0$ and $\mu_i \ne 0$. For $i \le r$ the positive root (as $\sqrt{\lambda^2 + 4\mu_i} > |\lambda|$) is

$$\tau_i = \frac{-\lambda + \sqrt{\lambda^2 + 4\mu_i}}{2},$$

so that

$$Q = \Pi_{Z^{\top}Z} \times \left[-\frac{\lambda}{2} I_m + \frac{1}{2} \sqrt{\lambda^2 \mathrm{Id}_m + 4T} \right], \tag{22}$$

with $T = Z^{\top}Z$ and where $\Pi_{Z^{\top}Z}$ is the orthogonal projector on range $(Z^{\top}Z)$.

Step 5: Uniqueness and conclusion In both cases equation 20-equation 22 are the only solutions consistent with $UU^{\top} \succeq 0$ and $VV^{\top} \succeq 0$ and with $\operatorname{rank}(Z) = r$ on Ω . Finally one has on Ω :

$$\begin{split} \dot{Z} &= -UU^{\top} \nabla f(Z) - \nabla f(Z) V V^{\top} \\ &= -\Pi_{ZZ^{\top}} \times \left[\frac{\lambda}{2} \mathrm{Id}_n + \frac{1}{2} \sqrt{\lambda^2 \mathrm{Id}_n + 4 \, Z Z^{\top}} \right] \nabla f(X) - \nabla f(X) \Pi_{Z^{\top} Z} \times \left[-\frac{\lambda}{2} I_m + \frac{1}{2} \sqrt{\lambda^2 \mathrm{Id}_m + 4 \, Z^{\top} Z} \right], \end{split}$$

which concludes the proof.

J Proof of Theorem 4.4

We first show the following lemma:

Lemma J.1. If $S \neq \lambda \operatorname{Id}_r$ with S a real symmetric matrix, then there exists a skew-symmetric matrix A such that $[A, S] \neq 0$.

Proof. Let us assume $S \neq \lambda \mathrm{Id}_r$ (in particular r > 1 necessarily). Thus there are at least two distinct eigenvalues of S δ and μ associated to the eigenvectors x and y. Then $A \coloneqq xy^\top - yx^\top \neq 0$ is a skew-symmetric matrix that satisfies:

$$\begin{split} [A,S] &= (xy^\top - yx^\top)S - S(xy^\top - yx^\top) \\ &= x(Sy)^\top - y(Sx)^\top - (Sx)y^\top + (Sy)x^\top \text{ as } S \text{ is symmetric} \\ &= \mu xy^\top - \delta yx^\top - \delta xy^\top + \mu yx^\top \\ &= (\underline{\mu - \delta})(xy^\top + yx^\top) \neq 0, \end{split}$$

as $\mu \neq \delta$, and which concludes the proof.

 Theorem 4.4. Let $\theta_0 := (U_{t=0}, V_{t=0})$. Assume that both $U_{t=0} \in \mathbb{R}^{n \times r}$ and $V_{t=0} \in \mathbb{R}^{m \times r}$ have a full rank and that $r \leq \max(n, m)$. If $S := U_{t=0}^{\top} U_{t=0} - V_{t=0}^{\top} V_{t=0} \neq \lambda \mathrm{Id}_r$, then θ_0 does not satisfy the intrinsic metric property (Definition 2.10) with respect to ϕ_{Lin} .

Proof. In light of the necessary condition of Theorem 2.14 we will first characterize $\ker \partial M(\theta)$ for any $\theta = (U, V)$. Then, with $\mathbf{h}(\theta) = U^\top U - V^\top V$ and $\phi(\theta) = \phi_{\mathrm{Lin}}(\theta) = UV^\top$, we will exhibit a subspace $\mathcal V$ of $\ker \partial \mathbf{h}(\theta) \cap \ker \partial \phi(\theta)$ such that $\mathcal V \subsetneq \ker \partial M(\theta)$. We will then conclude using the needed calculus and Theorem 2.14.

Step 1: Characterization of $ker \partial M(\theta)$ for any $\theta = (U, V)$.

By equation 11 (with L=2, $U_2=U, U_1=V^{\top}$), one can write $M(\theta)\mathrm{vec}(X)=\mathrm{vec}(UU^TX+XVV^{\top})$ for any matrix $X\in\mathbb{R}^{n\times m}$. Using the Kronecker product and the fact that $(A\otimes B)\mathrm{vec}(X)=\mathrm{vec}(BXA^{\top})$, this expression can be rewritten as:

$$M(\theta) = \mathrm{Id}_m \otimes (UU^T) + (VV^\top) \otimes \mathrm{Id}_n.$$
 (23)

Thus differentiating equation 23 yields that for any (H,K) of the same dimensions as (U,V) we have $\partial M(\theta).(H,K) = \operatorname{Id}_m \otimes (UH^T + HU^T) + (VK^\top + KV^\top) \otimes \operatorname{Id}_n$, and thus: $(H,K) \in \ker \partial M(\theta)$ if and only if $\operatorname{Id}_m \otimes (UH^T + HU^T) = -(VK^\top + KV^\top) \otimes \operatorname{Id}_n$. We now show that

$$\ker \partial M(\theta) = \left\{ (H, K) : \exists \mu \in \mathbb{R}, UH^\top + HU^\top = \mu \mathrm{Id}_n \text{ and } VK^\top + KV^\top = -\mu \mathrm{Id}_m \right\}. \tag{24}$$

The converse inclusion is clear. We now prove the direct inclusion. Let us consider $(H,K) \in \ker\partial M(\theta)$, then one has $\mathrm{Id}_m \otimes (UH^T + HU^T) = -(VK^\top + KV^\top) \otimes \mathrm{Id}_n$. Still using that $(A \otimes B)\mathrm{vec}(X) = \mathrm{vec}(BXA^\top)$ and denoting $U' \coloneqq UH^T + HU^T$ and $V' \coloneqq (VK^\top + KV^\top)$, this exactly means that for any matrix $X \in \mathbb{R}^{n \times m}$ one has $U'X = -XV'^\top$. To conclude, we only need to show that this implies the existence of $\mu, \mu' \in \mathbb{R}$ such that $U' = \mu \mathrm{Id}_n$ and $V' = -\mu' \mathrm{Id}_m$, since the equality $U'X = -XV'^\top$ then also implies $\mu = \mu'$. This is immediate if V' = 0 since in this case U' must also be equal to zero as U'X = 0 for every X. Assume now that V' is non-zero so there exists a vector v such that $V'^\top v \neq 0$. Considering any such v and any vector u, and setting $X = uv^\top$, we have

$$(U'u)v^{\top} = U'X = -XV' = -u(V'^{\top}v)^{\top}$$

hence U'u is colinear with u. Since this holds for any choice of u, we deduce indeed that U' is proportional to Id_n . A similar reasoning yields that $V' \propto \mathrm{Id}_m$. This concludes the proof of equation 24.

Step 2: Characterization of a subspace $V \subseteq \ker \partial \mathbf{h}(\theta) \cap \ker \partial \phi(\theta)$. Since $\mathbf{h}(\theta) = U^{\top}U - V^{\top}V$ and $\phi(\theta) = UV^{\top}$ we have

$$\begin{split} \partial h(\theta).(H,K) &= U^\top H + H^\top U - V^\top K - K^\top V \\ \partial \phi(\theta).(H,K) &= UK^\top + HV^\top \end{split}$$

and one can easily check that for any θ such that $\mathbf{h}(\theta) = S$ we have

$$\mathcal{V} := \left\{ \begin{pmatrix} U\Delta \\ -V\Delta^{\top} \end{pmatrix} : \Delta \in \mathbb{R}^{r \times r}, (\Delta^{\top} + \Delta) U^{\top}U + U^{\top}U (\Delta + \Delta^{\top}) = \Delta S + S \Delta^{\top} \right\}$$
$$\subseteq \ker \partial \mathbf{h}(\theta) \cap \ker \partial \phi(\theta).$$

Step 3: Proof that $\mathcal{V} \not\subset \ker \partial M(\theta)$. The fact that a matrix $\Delta \in \mathbb{R}^{r \times r}$ satisfies

$$\left(\Delta^\top + \Delta\right) U^\top U + U^\top U \left(\Delta + \Delta^\top\right) = \Delta \, S + S \, \Delta^\top,$$

is equivalent to

$$\Delta_S(2U^\top U - S) + (2U^\top U - S)\Delta_S = [\Delta_A, S].$$

with Δ_S (resp. Δ_A) the symmetric (resp. skew symmetric) part of Δ (so that $\Delta = \Delta_S + \Delta_A$). Denote \mathcal{S}_r (resp. \mathcal{A}_r) the set of $r \times r$ symmetric (resp. skew symmetric) matrices and L the Lyapunov operator defined by:

$$L: \Delta_S \in \mathcal{S}_r \mapsto L(\Delta_S) := \Delta_S (2U^\top U - S) + (2U^\top U - S)\Delta_S$$
$$= \Delta_S (U^\top U + V^\top V) + (U^\top U + V^\top V)\Delta_S \in \mathcal{S}_r$$

We obtain

$$\mathcal{V} = \left\{ \begin{pmatrix} U(\Delta_S + \Delta_A) \\ -V(\Delta_S - \Delta_A) \end{pmatrix} : (\Delta_S, \Delta_A) \in \mathcal{S}_r \times \mathcal{A}_r, L(\Delta_S) = [\Delta_A, S] \right\}.$$

As $S \neq \lambda \mathrm{Id}_r$, by Lemma J.1 there exists a skew-symmetric matrix $\Delta_A \in \mathcal{A}_r$ such that $[\Delta_A, S] \neq 0$. As $U^\top U + V^\top V$ is positive definite (as either U or V has full column-rank) its eigenvalues $\lambda_i > 0$ satisfy $\lambda_i + \lambda_j \neq 0$, so (see e.g. Bartels & Stewart (1972)) in particular the Lyapunov operator: $L: \mathcal{S}_r \to \mathcal{S}_r$ is invertible. Since $[\Delta_A, S] = \Delta_A S - S\Delta_A \in \mathcal{S}_r$, we obtain that there exists $\Delta_S \neq 0$ such that $L(\Delta_S) = [\Delta_A, S]$. This particular choice of Δ_S and Δ_A exhibits a parameter $\theta' = (U\Delta, -V\Delta^\top)$ that satisfies $\theta' \in \mathcal{V} \subseteq \ker \partial \phi(\theta) \cap \ker \partial \mathbf{h}(\theta)$. We now show that $\theta' \notin \ker \partial M(\theta)$. We proceed by contradiction: if $\theta' \in \ker \partial M(\theta)$ then, by equation 24, there exists $\mu \in \mathbb{R}$ such that $U(\Delta^\top + \Delta)U^\top = \mu \mathrm{Id}_n$ and $V(\Delta^\top + \Delta)V^\top = -\mu \mathrm{Id}_m$ that is to say

$$2U\Delta_S U^{\top} = \mu \mathrm{Id}_n \quad \text{and} \quad 2V\Delta_S V^{\top} = -\mu \mathrm{Id}_m.$$
 (25)

When $r \leq \max(m,n)$ and since U,V are full rank, at least one of the two matrices U or V is full column rank r. Without loss of generality let us assume that U is full column rank. Then $U^{\top}U$ is invertible and we deduce that,

$$2\Delta_S = \mu(U^\top U)^{-1}. (26)$$

Moreover if (as we indeed show below) $\operatorname{range} U^{\top} \cap \operatorname{range} V^{\top} \neq \{0\}$, then by considering $z = U^{\top}x = V^{\top}y \neq 0$ for some $x,y \in \mathbb{R}^r$, one deduces from equation 25 that $\mu \|x\|_2^2 = 2x^{\top}U\Delta_S U^{\top}x = z^{\top}\Delta_S z = 2y^{\top}V\Delta_S V^{\top}y = -\mu \|y\|_2^2$ and thus $\mu = 0$. Hence $\Delta_S = 0$ by equation 26, contradicting $L(\Delta_S) = [\Delta_A, S] \neq 0$, which shows that $\theta' \notin \ker \partial M(\theta)$.

Thus we only need to prove that one has range $U^{\top} \cap \text{range}V^{\top} \neq \{0\}$, and indeed:

$$\begin{split} \dim(\mathrm{range}(U^\top) \cap \dim(\mathrm{range}(V^\top)) &= \underbrace{\mathrm{rank}(U^\top)}_{=\mathrm{rank}(U)} + \underbrace{\mathrm{rank}(V^\top)}_{=\mathrm{rank}(V)} - \dim(\underbrace{\mathrm{range}(U^\top) + \mathrm{range}(V^\top)}_{\mathrm{range}((U^\top \mid V^\top))}) \\ &= \underbrace{\mathrm{rank}(U) + \mathrm{rank}(V)}_{\geq \min(r,n) + \min(r,m) \geq r+1} - \underbrace{\mathrm{rank}\left(\begin{pmatrix} U \\ V \end{pmatrix}\right)}_{\geq 0} > 0, \end{split}$$

where we used in the last line that $r \leq \max(n, m)$.

Step 4: Conclusion.

As both $U_{t=0}$ and $V_{t=0}$ have full rank it remains the case in a neighborhood Ω of θ_0 . Moreover as $r \leq \max(n,m)$ then one of the two matrices has a full column rank on Ω . In particular the vertical concatenation $\begin{pmatrix} U \\ V \end{pmatrix}$ has full rank (equal to r) on Ω as $r \leq \max(n,m) \leq n+m$.

Since $\binom{U}{V}$ has full rank on Ω , by (Marcotte et al., 2023, Proposition 4.2 and Corollary 4.4) the vector-valued function **h** contains a complete set of conservation laws.

We now show by contradiction that for any $\Omega' \subseteq \Omega$, θ_0 does not satisfy the intrinsic metric on Ω' . Let us assume there exists a neighborhood $\Omega' \subseteq \Omega$ of θ_0 and a set of conservation laws \mathbf{h}_0 for ϕ and a function K_{θ_0} such that $M(\theta) = K_{\theta_0}(\phi(\theta))$ for each $\theta \in \mathcal{M}_{\theta_0}^{\mathbf{h}_0} \cap \Omega'$, where $\mathcal{M}_{\theta_0}^{\mathbf{h}_0} \coloneqq \{\theta : \mathbf{h}_0(\theta) = \mathbf{h}_0(\theta_0)\}$. As the family of conservation laws \mathbf{h} is complete on Ω (and in particular on Ω') and as $\mathrm{Lie}(\mathbb{W}_{\phi})(\theta)$ has a constant dimension on Ω (and thus on Ω') by (Marcotte et al., 2023, Proposition 4.3), using (Marcotte et al., 2025, Proposition 2.12) yields that $\mathcal{M}_{\theta_0}^{\mathbf{h}_0} \coloneqq \{\theta : \mathbf{h}_0(\theta) = \mathbf{h}_0(\theta_0)\} \supset \mathcal{M}_{\theta_0}^{\mathbf{h}} \coloneqq \{\theta : \mathbf{h}(\theta) = \mathbf{h}(\theta_0)\}$. Thus the function K_{θ_0} also satisfies $M(\theta) = K_{\theta_0}(\phi(\theta))$ on $\mathcal{M}_{\theta_0}^{\mathbf{h}}$, hence \mathbf{h} satisfies assumption i) of Theorem 2.14. As the rank of $\partial h(\theta)$ is constant on Ω' , we deduce by Theorem 2.14 the inclusion equation 7, which contradicts the previous step.

K Proof of Proposition 4.5.

Proposition 4.5. Let $\theta := (u, v)$ with $u \in \mathbb{R}^r$ and $v \in \mathbb{R}^r$. Then $z := \phi_{\text{Lin}}(\theta) = \langle u, v \rangle \in \mathbb{R}$. We denote $S := u_{t=0}u_{t=0}^{\top} - v_{t=0}v_{t=0}^{\top} \in \mathbb{R}^{r \times r}$. Then one has $\dot{z} = -\sqrt{2\text{tr}(S^2) - \text{tr}(S)^2 + 4z^2}\nabla f(z)$.

Proof. Since $\partial \phi(\theta) = [v^{\top}, u^{\top}]$ we have

$$\partial \phi(\theta) \partial \phi(\theta)^{\top} = ||u||^2 + ||v||^2.$$

Since $\mathbf{h}(\theta) := uu^\top - vv^\top$ is a conservation law of $\phi_{\mathtt{Lin}}$ for every $\theta = (u,v)$ on the trajectory one has: $S = uu^\top - vv^\top$, and therefore $S^2 = \|u\|^2 uu^\top - zuv^\top - zvu^\top + \|v\|^2 vv^\top$. Thus

$$tr(S^2) = ||u||^4 + ||v||^4 - 2z^2.$$

As one also has: $(\|u\|^2 - \|v\|^2)^2 = \operatorname{tr}(S)^2$, one has:

$$(\partial \phi(\theta) \partial \phi(\theta)^{\top})^{2} = (\|u\|^{2} + \|v\|^{2})^{2} = 2(\|u\|^{4} + \|v\|^{4}) - (\|u\|^{2} - \|v\|^{2})^{2}$$
$$= 2(\operatorname{tr}(S^{2}) + 2z^{2}) - \operatorname{tr}(S)^{2}$$
$$= 2\operatorname{tr}(S^{2}) + 4z^{2} - \operatorname{tr}(S)^{2},$$

which concludes the proof.

L Proof of Theorem 4.6.

Theorem 4.6. If $\theta_L(0)$ satisfies the relaxed balanced condition (Definition 4.1) with $\lambda = (\lambda_i)_i$ then during the trajectory $\theta_L(t)$ of equation 1, the matrices in equation 11 satisfy $S_j(\theta_L(t)) = Q_j(U_L(t)U_L(t)^\top)$ and $T_j(\theta_L(t)) = R_j(U_1(t)^\top U_1(t))$, where $Q_j(x) := \prod_{k=0}^{L-j-1} (x-a_k)$ with $a_0 := 0$ and $a_k := \sum_{i=1}^k \lambda_{L-i}$ for $k = 1, \dots L-1$ and $R_j(x) := \prod_{k=0}^{j-2} (x-b_k)$ with $b_0 := 0$ and $b_k := -\sum_{i=1}^k \lambda_i$. Moreover $U_L U_L^\top$ (resp. $U_1^\top U_1$) is the unique root of $Z_L Z_L^\top = Q_0(U_L U_L^\top)$ (resp. of $Z_L^\top Z_L = R_{L-1}(U_1^\top U_1)$) with spectrum lower bounded by $\max_{0 \le k \le L-1} a_k$ (resp. by $\max_{0 \le k \le L-2} b_k$). This implies that all matrices in equation 11 are entirely characterized by Z_L and the initialization, hence $\theta_L(0)$ satisfies the intrinsic dynamic property on \mathbb{R}^D with respect to ϕ_{Lin} .

Proof. Let us first outline the main steps of the proof. We first show that the equalities $Z_L Z_L^{\top} = Q_0(U_L U_L^{\top})$ and $Z_L^{\top} Z_L = R_{L-1}(U_1^{\top}U_1)$ hold on the whole trajectory. Then we prove that this implies the expression of S_j (resp. of T_j) in terms of $U_L U_L^{\top}$ (resp. of $U_1^{\top}U_1$) along the whole trajectory too. Finally we show that along the whole trajectory $U_L U_L^{\top}$ and $U_1^{\top}U_1$ (and therefore all S_j 's and T_j 's) are entirely characterized by $T_L = \phi_{Lin}(\theta_L)$ and the initial conditions (captured by $T_L = \phi_{Lin}(\theta_L)$). This will thus imply that $T_L = \phi_{Lin}(\theta_L)$ are property on $T_L = \phi_{Lin}(\theta_L)$.

Step 1: Expression of $Z_L Z_L^{\top}$ as a polynomial in $U_L U_L^{\top}$

Since $U_{j+1}^{\top}U_{j+1} - U_jU_j^{\top}$ is a set of conservation laws for ϕ_{Lin} , the fact that the relaxed balanced conditions equation 12 hold at initialization implies that they hold along the whole trajectory.

We prove by induction on $1 \leq \ell \leq L$ that $Z_\ell := U_\ell \dots U_1$ satisfies $Z_\ell Z_\ell^\top = P_\ell(U_\ell U_\ell^\top)$ for some polynomial P_ℓ of degree ℓ that satisfy $P_1(x) = x$ and $P_\ell(x) = x P_{\ell-1}(x - \lambda_{\ell-1})$ for $2 \leq \ell \leq L$. For $\ell = 1$ we trivially have $Z_\ell = U_\ell$ hence the result is true. Now consider $2 \leq \ell \leq L$ and assume that the result holds true for $\ell - 1$. Since $Z_\ell = U_\ell Z_{\ell-1}$ we have

$$Z_\ell Z_\ell^\top = U_\ell (Z_{\ell-1} Z_{\ell-1}^\top) U_\ell^\top = U_\ell P_{\ell-1} (U_{\ell-1} U_{\ell-1}^\top) U_\ell^\top \stackrel{equation \ 12}{=} U_\ell P_{\ell-1} (U_\ell^\top U_\ell - \lambda_{\ell-1} \mathrm{id}) U_\ell^\top$$

where we used equation 12 for $i = \ell - 1$. Denoting $\hat{P}_{\ell-1}(x) := P_{\ell-1}(x - \lambda_{\ell-1})$ we obtain $Z_{\ell}Z_{\ell}^{\top} = U_{\ell}\hat{P}_{\ell-1}(U_{\ell}^{\top}U_{\ell})U_{\ell}^{\top} = U_{\ell}U_{\ell}^{\top}\hat{P}_{\ell-1}(U_{\ell}U_{\ell}^{\top}) = P_{\ell}(U_{\ell}U_{\ell}^{\top})$. This concludes the induction.

Given the recursion formula for P_{ℓ} , another easy induction yields

$$P_{\ell}(x) = \prod_{k=0}^{\ell-1} (x - \sum_{i=1}^{k} \lambda_{\ell-i}), \quad 1 \le \ell \le L.$$
 (27)

Specializing to $\ell = L$ we obtain $P_L = Q_0$ as claimed.

Step 2: Expression of S_j (resp. of $Z_L^{\top} Z_L$ and T_j) as a polynomial in $U_L U_L^{\top}$ (resp. in $U_1^{\top} U_1$).

It is a direct consequence of the first step, as we now explain. To show the result on S_j , consider the new variable $\theta' = (U'_{L-j}, \dots, U'_1) := (U_L, \dots, U_{j+1})$ and $Z' := U'_{L-j} \cdots U'_1 = U_L \cdots U_{j+1}$. With these notations we have $S_j = Z'Z'^{\top}$, and the relaxed balanced conditions imply that:

$$(U'_{i+1})^{\top}U'_{i+1} - U'_{i}(U'_{i})^{\top} = \lambda'_{i}\mathrm{Id}_{n}, \quad 1 \le i \le L - j - 1$$

where $\lambda' = (\lambda'_{L-j-1}, \dots, \lambda'_1) := (\lambda_{L-1}, \dots, \lambda_{j+1})$. By the first step we obtain the desired expression.

Similar computations with $\theta' = (U_1^\top, \dots, U_{j-1}^\top), Z' = U_1^\top \dots U_{j-1}^\top$ and $\lambda' = (-\lambda_1, \dots, -\lambda_{j-2})$ show the desired expression for $T_j = Z'Z'^\top$ and $Z_L^\top Z_L$ as well.

Step 3: Characterization of $U_L U_L^{\top}$ via Z_L and the initial conditions. The proof that $U_1^{\top} U_1$ is characterized by Z_L (in fact $Z_L^{\top} Z_L$) and the initial conditions is similar and therefore omitted.

By the first step we have $Z_L Z_L^{\top} = Q_0(U_L U_L^{\top})$, hence $U_L U_L^{\top}$ is indeed a matrix root of this equation. As both matrices $Z_L Z_L^{\top}$ and $U_L U_L^{\top}$ are real symmetric, the above expression shows that we can reduce to the scalar study of their eigenvalues.

As we show below, a consequence of the relaxed balancedness conditions equation 12 is that all eigenvalues of the positive semi-definite matrix $U_L U_L^{\top}$ belong to the interval $I := [\max(0, a_1, \dots, a_{L-1}), \infty)$. Thus, considering any eigenvalue $e \geq 0$ of the positive semi-definite matrix $Z_L Z_L^{\top}$, it is enough to show that the polynomial equation $R(X) := Q_0(X) - e = 0$ admits a unique root in this interval.

The existence of a root in I is a consequence of the mean value theorem, since $R(\max(0,a_1,\cdots,a_{L-1}))=-e\leq 0$ and $\lim_{x\to\infty}R(x)=+\infty$. To prove uniqueness, we proceed by contradiction: assume that R(X) admits two distinct roots $x_1< x_2$ in I. By Rolle's theorem $R'(X)=Q'_0(X)$ has a root in $]x_1,x_2[$. This contradicts the fact that, by the construction of Q_0 and Rolle's theorem, all roots of $Q'_0(X)$ are contained in the open interval $(\min(0,a_1,...,a_{L-1}),\max(0,a_1,...,a_{L-1}))$.

To conclude the proof, we show that indeed all eigenvalues of $U_LU_L^{\top}$ belong to $I:=[\max(0,a_1,\ldots,a_{L-1}),\infty)$. Denote $\sigma_i=\inf \operatorname{sp}(U_iU_i^{\top}),\ 1\leq i\leq L$. Since each matrix U_ℓ is square and positive semi-definite, we have $\operatorname{sp}(U_iU_i^{\top})=\operatorname{sp}(U_i^{\top}U_i)\subseteq [0,\infty)$ for every $1\leq i\leq L$, and by equation 12 we also have $\operatorname{sp}(U_{i+1}U_{i+1}^{\top})=\lambda_i+\operatorname{sp}(U_iU_i^{\top}),$ hence $\sigma_{i+1}=\sigma_i+\lambda_i\geq 0$ for $1\leq i\leq L-1$. An easy recursion shows that $\sigma_i\geq \max(0,\sum_{j=1}^{i-1}\lambda_j)$ for $1\leq i\leq L$, hence the result.

We now anticipate a slight generalization part of the results of Theorem 4.6 that will be used later in the proof of Theorem 4.8.

Lemma L.1 (Perturbed relaxed balanced condition). Consider matrices $(U_k)_{k=0}^{L-1} \subset \mathbb{R}^{n \times n}$ and scalars $(\lambda_k)_{k=0}^{L-1}$. Denoting $h \coloneqq 1/L$, define

$$C_U := \max(1, \max_k ||U_k||), \quad C_\lambda := \max_k |\lambda_k|$$
 (28)

$$\eta := L^2 \cdot \max_{0 \le k \le L - 2} \| (U_{k+1}^\top U_{k+1} - U_k U_k^\top) - h^2 \lambda_k \operatorname{Id}_n \|$$
 (29)

Fix $j \in \{0, \dots, L-2\}$ and recall that $S_j := (U_{L-1} \cdots U_{j+1})(U_{L-1} \cdots U_{j+1})^{\top}$. Define $a_0 := 0$ and, for $k \ge 1$, $a_k := h^2 \sum_{i=1}^k \lambda_{L-1-i}$, $C_0 := 2C_{\lambda}$, $C_1 := (C_U^2 + \eta h^2 - 1)/h$. Then

$$\max_{j} \|S_{j} - \prod_{k=0}^{L-1-(j+1)} \left(U_{L-1} U_{L-1}^{\top} - a_{k} \operatorname{Id}_{n} \right) \| \le \left(C_{0} e^{C_{1}} e^{C_{0}(1+C_{1})} + e^{C_{1}} \right) \eta.$$
 (30)

Before proving this lemma, we state the following lemma, as it will be essential in the proof of Lemma L.1: it provides a uniform bound on the Lipschitz constant of a class of polynomials.

Lemma L.2 (Uniform Lipschitz bound). Consider $C_0 > 0$, $C_1 > 0$. For any $0 < h \le 1$, any integer $1 \le d \le 1/h$, any degree-d polynomial

$$Q_d(x) = \prod_{k=1}^d (x - c_k),$$

with $\max_k |c_k| \le C_0 h$, and any matrices $A, A + \Delta \in B_{R(h)} := \{X : \|X\| \le R(h)\}$ where $R(h) := 1 + C_1 h$ and where $\|\cdot\|$ denotes the Frobenius norm, one has

$$\|Q_d(A+\Delta) - Q_d(A)\| \le \frac{K}{h} \|\Delta\|, \text{ with } K = K(C_0, C_1) = C_0 e^{C_0(1+C_1)} + e^{C_1}.$$
 (31)

Proof. Step 1: Scalar Lipschitz constant on the ball B_R . For any matrix polynomial $Q(x) = \sum_{m=0}^d \alpha_m x^m$ one has, denoting $DQ(X)[H] = \sum_{m=1}^d \alpha_m \sum_{j=0}^{m-1} X^j H X^{m-1-j}$:

$$Q(A + \Delta) - Q(A) = \int_0^1 DQ(A + t\Delta) [\Delta] dt,$$
$$||DQ(X)[H]|| \le L_Q(||X||_{2\to 2}) ||H|| \le L_Q(||X||) ||H||, \quad \forall X, \forall H$$

where $L_Q(R) := \sum_{m=1}^d |\alpha_m| \, m \, R^{m-1}$ (we used here that the spectral norm is bounded by the Frobenius norm).

Step 2: Bounding $L_{Q_d}(R(h))$. Exploiting the coefficient–root relation on Q_d that is unitary yields $|\alpha_m| \leq {d \choose m} \beta^m$ where $\beta := C_0 h$ for any $0 \leq m \leq d-1$. Since $\alpha_d = 1$, for any R > 0 we obtain

$$L_{Q_d}(R) \leq \beta \sum_{m=1}^d \binom{d}{m} m(\beta R)^{m-1} + dR^{d-1} = d\beta (1+\beta R)^{d-1} + dR^{d-1}.$$

Insert $d - 1 \le d \le 1/h$, $\beta = C_0 h$. Since $R(h) = 1 + C_1 h \le R(1) = 1 + C_1$ (as $h \le 1$) we get:

$$L_{Q_d}(R(h)) \leq \frac{1}{h} C_0 h \left(1 + C_0 h R(h)\right)^{1/h} + d(1 + C_1 h)^{1/h} \leq C_0 e^{C_0 R(h)} + \frac{e^{C_1}}{h} \leq \frac{C_0 e^{C_0 (1 + C_1)} + e^{C_1}}{h}.$$

where the exponential bound uses $(1+t)^{1/t} \le e$ for t>0. We define $K=K(C_0,C_1) := C_0 e^{C_0(1+C_1)} + e^{C_1}$.

Step 3: Conclusion. Applying the integral formula of Step 1with the bound from Step 2 gives

$$||Q_d(A + \Delta) - Q_d(A)|| \le (K/h) ||\Delta||,$$

for every A, Δ with $A, A + \Delta \in B_{R(h)}$, which is equation 31.

We now prove Lemma L.1.

Proof. Step 0: Reindexing. Work with the truncated sequence $(U'_1,\ldots,U'_N):=(U_{j+1},\ldots,U_{L-2},U_{L-1})$, where N:=L-1-j. Define $Z_\ell:=U'_\ell\cdots U'_1$ for $1\leq \ell\leq N$ and $M_\ell:=U'_\ell U'_\ell^{\top}$. Then $S_j=Z_N Z_N^{\top}$.

We also observe that by the definition of η in equation 29, since h=1/L, we have for each $1<\ell< N$

$$U_{\ell}^{\prime \top} U_{\ell}^{\prime} - M_{\ell-1} = U_{\ell}^{\prime \top} U_{\ell}^{\prime} - U_{\ell-1}^{\prime} U_{\ell-1}^{\prime}^{\top} = h^2 \lambda_{\ell+j-1} \mathrm{Id}_n + r_{\ell-1}^{\prime}, \qquad \|r_{\ell-1}^{\prime}\| \le h^2 \eta. \tag{32}$$

Step 1: Polynomial representation with a perturbation. We prove by induction on ℓ that

$$E_{\ell} := Z_{\ell} Z_{\ell}^{\top} - P_{\ell}(M_{\ell}) \quad \text{satisfies } ||E_{\ell}|| \le \ell K C_{U}^{2\ell} \cdot h\eta \tag{33}$$

where the polynomials P_{ℓ} are defined by

$$P_1(x) := x, \qquad P_{\ell}(x) := x P_{\ell-1}(x - b_{\ell-1}) \quad (2 \le \ell \le N),$$

with $b_{\ell-1} := h^2 \lambda_{\ell+j-1}$ (matching the re-indexed sequence), and the constant K is obtained by Lemma L.2 applied to the constants $C_0 := 2C_{\lambda}$ and $C_1 := (C_U^2 + \eta h^2 - 1)/h$.

- Base case $\ell = 1$. Trivial: $Z_1 = U_1'$, so $Z_1 Z_1^{\top} = M_1 = P_1(M_1)$ and $E_1 = 0$.
- Induction step. Assume equation 33 holds at rank $\ell-1$. Since $Z_{\ell}=U_{\ell}'Z_{\ell-1}$,

$$Z_{\ell} Z_{\ell}^{\top} = U_{\ell}' (Z_{\ell-1} Z_{\ell-1}^{\top}) U_{\ell}'^{\top} = U_{\ell}' P_{\ell-1} (M_{\ell-1}) U_{\ell}'^{\top} + U_{\ell}' E_{\ell-1} U_{\ell}'^{\top}.$$

By induction hypothesis and the fact that the spectral norm is bounded by the Frobenius norm, the second term of the right hand side is bounded as

$$||U_{\ell}' E_{\ell-1} U_{\ell}'^{\top}|| \le C_U^2 ||E_{\ell-1}|| \le C_U^2 (\ell-1) K C_U^{2(\ell-1)} h \eta \le (\ell-1) C_U^{2\ell} K h \eta,$$

hence we only need to show that

$$||U_{\ell}' P_{\ell-1}(M_{\ell-1}) U_{\ell}'^{\top} - P_{\ell}(M_{\ell})|| \le C_U^{2\ell} K \cdot h\eta.$$

Write $Q_{\ell-1}(x) := P_{\ell-1}(x-b_{\ell-1})$. From equation 32 and the definition of $M_{\ell-1} = U'_{\ell-1}[U'_{\ell-1}]^\top$ one gets

$$M_{\ell-1} = U_{\ell}^{\prime \top} U_{\ell}^{\prime} - b_{\ell-1} \mathrm{Id}_n - r_{\ell-1}^{\prime}, \qquad ||r_{\ell-1}^{\prime}|| \le h^2 \eta.$$

Hence

$$U'_{\ell}P_{\ell-1}(M_{\ell-1})U'_{\ell}^{\top} = U'_{\ell}Q_{\ell-1} \left(U'_{\ell}^{\top} U'_{\ell} - r'_{\ell-1} \right) U'_{\ell}^{\top}$$

$$= \underbrace{U'_{\ell}Q_{\ell-1} \left(U'_{\ell}^{\top} U'_{\ell} \right) U'_{\ell}^{\top}}_{=M_{\ell}Q_{\ell-1}(M_{\ell}) = P_{\ell}(M_{\ell})} + U'_{\ell} \left(Q_{\ell-1} \left(U'_{\ell}^{\top} U'_{\ell} - r'_{\ell-1} \right) - Q_{\ell-1} \left(U'_{\ell}^{\top} U'_{\ell} \right) \right) U'_{\ell}^{\top}.$$

Thus to conclude the induction step we only need to show that

$$||U'_{\ell}(Q_{\ell-1}(U'^{\top}_{\ell}U'_{\ell} - r'_{\ell-1}) - Q_{\ell-1}(U'^{\top}_{\ell}U'_{\ell}))U'^{\top}_{\ell}|| \le C_{U}^{2\ell}K \cdot h\eta.$$

By the definition of C_1 , the matrices $A=U_\ell'^\top U', \ \Delta=-r_{\ell-1}'$, satisfy $\max(\|A\|,\|\Delta\|)\leq \|A\|+\|\Delta\|\leq C_U^2+h^2\eta\leq 1+C_1h$. Moreover, with the same induction that has led to equation 27, the polynomial $P_{\ell-1}(x)$ has all its roots bounded by Lh^2C_λ , hence $Q_{\ell-1}(x):=P_{\ell-1}(x-b_{\ell-1})$ has all its roots bounded by $(L+1)h^2C_\lambda\leq 2C_\lambda h=C_0h$, therefore we can apply Lemma L.2 to obtain, with $K=K(C_0,C_1)=C_0e^{C_0(1+C_1)}+e^{C_1}$:

$$\|Q_{\ell-1}(U_{\ell}'^{\top}U_{\ell}' - r_{\ell-1}') - Q_{\ell-1}(U_{\ell}'^{\top}U_{\ell}')\| \le \frac{K}{h} \|r_{\ell-1}'\| \le K \cdot h\eta$$

$$\|U_{\ell}' \left(Q_{\ell-1}(U_{\ell}'^{\top}U_{\ell}' - r_{\ell-1}') - Q_{\ell-1}(U_{\ell}'^{\top}U_{\ell}')\right) U_{\ell}'^{\top}\| \le C_{U}^{2}K \cdot h\eta \stackrel{C_{U} \ge 1}{\le} C_{U}^{2\ell}K \cdot h\eta,$$

which concludes the induction.

Step 2: Factorisation of P_N . With the same induction that has led to equation 27, we have

$$P_N(x) = \prod_{k=0}^{N-1} (x - a_k), \quad a_0 = 0, \quad a_k = \sum_{i=1}^k h^2 \lambda_{L-1-i}.$$

Applying equation 33 with $\ell = N$ and recalling $S_j = Z_N Z_N^{\top}$ yields

$$S_j = P_N(M_N) + E_N = \prod_{k=0}^{N-1} (M_N - a_k I_n) + E_N,$$

where $||E_N|| \le C_U^{2N} NKh\eta \le (1 + C_1 h)^L K\eta \le \exp(C_1) K\eta$.

Since
$$M_N = U_N' U_N'^\top = U_{L-1} U_{L-1}^\top$$
, we recover equation 30 as claimed.

M Proof of Proposition 4.7.

Proposition 4.7. For any $s \in [0,1]$, consider $\mathbf{h}_s : \theta := (\mathcal{A}_s)_{s \in [0,1]} \in \mathcal{X} \mapsto \mathcal{A}_s' + \mathcal{A}_s'^\top + [\mathcal{A}_s^\top, \mathcal{A}_s] \in \mathbb{R}^{n \times n}$, where we denote $\mathcal{A}_s' := \frac{\mathrm{d}}{\mathrm{d}s} \mathcal{A}_s$. Then for any $s \in [0,1]$, one has for any $t : \mathbf{h}_s(\theta(t)) = \mathbf{h}_s(\theta(0))$, where $\theta(t)$ is the maximal solution of equation 15 with initialization $\theta(0)$.

Proof. For convenience we recall the state equation equation 16 for Z_s , where $s \in [0, 1]$ indicates depth:

$$\frac{\mathrm{d}Z_s}{\mathrm{d}s} = \mathcal{A}_s \, Z_s, \quad Z_0 = \mathrm{Id}_n \text{ fixed},\tag{34}$$

and we recall that the objective function is factorized by $\ell(\theta) = f(Z_{s=1})$, where the parameters are the family $\theta = \{A_s : s \in [0, 1]\}$.

Let $\theta: [t \in [0,T] \mapsto \theta(t) \in \mathcal{X}] \in \mathcal{C}^1([0,T],\mathcal{X})$ be the solution of the gradient flow given by the family of coupled ODE equation 15

$$\forall s \in [0, 1], \quad \frac{\partial \mathcal{A}_s}{\partial t}(t) = -\mathfrak{g}_s(t), \quad \text{with} \quad \mathfrak{g}_s(t) := \frac{\partial \ell}{\partial \mathcal{A}_s} \Big(\theta(t)\Big),$$
 (35)

with a given initialization $\theta(0)$. Our goal is to show that $\frac{\partial}{\partial t}h_s(\theta(t))=0$.

Step 1: Computations of $\frac{\partial}{\partial t}h_s(\theta(t))$.

For any $s \in [0, 1]$, one has by definition

$$h_s(\theta(t)) = \frac{\partial \mathcal{A}_s(t)}{\partial s} + \left(\frac{\partial \mathcal{A}_s(t)}{\partial s}\right)^\top + \left[\mathcal{A}_s(t)^\top, \mathcal{A}_s(t)\right].$$

Taking the t-derivative yields

$$\frac{\partial}{\partial t} h_s(\theta(t)) = \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{A}_s(t)}{\partial s} \right) + \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{A}_s(t)}{\partial s} \right)^\top + \frac{\partial}{\partial t} \left[\mathcal{A}_s(t)^\top, \mathcal{A}_s(t) \right]
= \frac{\partial}{\partial s} \left(\frac{\partial \mathcal{A}_s(t)}{\partial t} \right) + \left(\frac{\partial}{\partial s} \frac{\partial \mathcal{A}_s(t)}{\partial t} \right)^\top + \frac{\partial}{\partial t} \left[\mathcal{A}_s(t)^\top, \mathcal{A}_s(t) \right],$$
(36)

where the exchange of derivatives is justified in Section M.1.

Moreover one has

$$\frac{\partial}{\partial t} \left[\mathcal{A}_s(t)^\top, \mathcal{A}_s(t) \right] = \left[\frac{\partial \mathcal{A}_s(t)^\top}{\partial t}, \mathcal{A}_s(t) \right] + \left[\mathcal{A}_s(t)^\top, \frac{\partial \mathcal{A}_s(t)}{\partial t} \right].$$

Thus by using equation 35

$$\frac{\partial \mathcal{A}_s(t)}{\partial t} = -\mathfrak{g}_s(t),$$

we obtain

$$\frac{\partial}{\partial t} h_s(\theta(t)) = \frac{\partial}{\partial s} \left(-\mathfrak{g}_s(t) \right) + \left(\frac{\partial}{\partial s} \left(-\mathfrak{g}_s(t) \right) \right)^{\top} + \left[-\mathfrak{g}_s(t)^{\top}, \mathcal{A}_s(t) \right] + \left[\mathcal{A}_s(t)^{\top}, -\mathfrak{g}_s(t) \right] \\
= -\frac{\partial \mathfrak{g}_s(t)}{\partial s} - \left(\frac{\partial \mathfrak{g}_s(t)}{\partial s} \right)^{\top} - \left[\mathfrak{g}_s(t)^{\top}, \mathcal{A}_s(t) \right] - \left[\mathcal{A}_s(t)^{\top}, \mathfrak{g}_s(t) \right].$$
(37)

The remaining task is to show that the sum of these terms cancels, using an expression of the gradient.

1336 Step 2: An expression of $\mathfrak{g}_s(t)$ using the adjoint equation.

To compute the gradient $\mathfrak{g}_s = \frac{\partial \ell}{\partial \mathcal{A}_s}$, we introduce the adjoint variable (Pontryagin et al. (1962)) $\Lambda_s(t)$, which satisfies the adjoint equation

$$\frac{\partial \Lambda_s(t)}{\partial s} = -\mathcal{A}_s(t)^{\top} \Lambda_s(t), \quad \Lambda_1(t) = \frac{\partial f}{\partial Z} \Big(Z_1(t) \Big). \tag{38}$$

Moreover it satisfies as shown in Section M.2:

$$\mathfrak{g}_s(t) = \Lambda_s(t) \, Z_s(t)^\top. \tag{39}$$

Step 3: Compute $\frac{\partial}{\partial s}\mathfrak{g}_s(t)$.

By differentiating equation 39 with respect to s, we get:

$$\frac{\partial}{\partial s} \mathfrak{g}_s(t) = \frac{\partial \Lambda_s(t)}{\partial s} Z_s(t)^\top + \Lambda_s(t) \frac{\partial Z_s(t)^\top}{\partial s}.$$

Then by using the adjoint equation equation 38 and the state equation equation 34, one has

$$\frac{\partial}{\partial s} \mathfrak{g}_s(t) = -\mathcal{A}_s(t)^\top \Lambda_s(t) Z_s(t)^\top + \Lambda_s(t) Z_s(t)^\top \mathcal{A}_s(t)^\top$$
(40)

$$= -\mathcal{A}_s(t)^{\top} \, \mathfrak{g}_s(t) + \mathfrak{g}_s(t) \, \mathcal{A}_s(t)^{\top} \tag{41}$$

$$= -[\mathcal{A}_s(t)^\top, \mathfrak{g}_s(t)]. \tag{42}$$

Taking the transpose,

$$\left(\frac{\partial}{\partial s}\mathfrak{g}_s(t)\right)^{\top} = -\mathfrak{g}_s(t)^{\top}\mathcal{A}_s(t) + \mathcal{A}_s(t)\,\mathfrak{g}_s(t)^{\top} = [\mathcal{A}_s(t),\mathfrak{g}_s(t)^{\top}] = -[\mathfrak{g}_s(t)^{\top},\mathcal{A}_s(t)]. \tag{43}$$

Step 4: Conclusion. By substituting the computed expressions into equation 37, one obtains as claimed that

$$\frac{\partial}{\partial t}h_s(\theta(t)) = 0.$$

M.1 WE NOW DETAIL EQUATION 36.

Theorem M.1 (Commutation of mixed derivatives). *Let*

$$\mathcal{X} = \mathcal{C}^{1}([0,1], \mathbb{R}^{n \times n}), \qquad ||f||_{\mathcal{X}} := \max\{||f||_{\infty}, ||f'||_{\infty}\},$$

and set $B = \mathcal{C}^0([0,1], \mathbb{R}^{n \times n})$ with the sup-norm $\|\cdot\|_B = \|\cdot\|_{\infty}$. Denote $D: \mathcal{X} \longrightarrow B, \ f \mapsto f'$ the spatial derivative. Suppose $\theta(\cdot) \in \mathcal{C}^1([0,T],\mathcal{X})$ and write $\mathcal{A}(t,s) := [\theta(t)](s)$. Then

• the mixed derivatives

$$\partial_t \partial_s \mathcal{A}(t,s)$$
 and $\partial_s \partial_t \mathcal{A}(t,s)$

exist for every
$$(t,s) \in [0,T] \times [0,1]$$
 and coincide:

$$\partial_t \partial_s \mathcal{A}(t,s) = \partial_s \partial_t \mathcal{A}(t,s) \quad \forall (t,s)$$

• the map $s \mapsto \partial_t \partial_s \mathcal{A}(t,s)$ is continuous.

Proof. Step 1: D *is continuous.* For every $f \in \mathcal{X}$,

$$||Df||_B = ||f'||_\infty \le \max\{||f||_\infty, ||f'||_\infty\} = ||f||_{\mathcal{X}},$$

so $||D||_{\text{op}} \leq 1$; hence D is a bounded and thus a continuous linear map.

Step 2: Temporal differentiability is preserved by D. The fact that the function θ (valued in the Banach space \mathcal{X}) is \mathcal{C}^1 means precisely that its (Fréchet) derivative $\dot{\theta}(t) := \partial_t \theta(t) \in \mathcal{X}$ exists for each t and the map $t \mapsto \dot{\theta}(t)$ is continuous from [0,T] to \mathcal{X} .

Applying the *continuous and linear* operator D yields by linearity

$$\frac{D(\theta(t+h)) - D(\theta(t))}{h} = D\left(\frac{\theta(t+h) - \theta(t)}{h}\right)$$

for every $t \in [0,T]$ and h small enough such that $t+h \in [0,T]$, and since by continuity of D the right hand side tends to $D(\dot{\theta}(t))$ when $h \to 0$, the left hand side also has a limit, showing that

$$\frac{d}{dt}(D(\theta(t))) = D(\dot{\theta}(t)) \qquad \text{for every } t \in [0, T].$$
(44)

Thus the mixed derivative $\partial_t \partial_s \mathcal{A}(t,\cdot)$ exists as an element of B.

Step 3: symmetry of the mixed derivatives. Evaluating the identity equation 44 above pointwise in s and writing $A(t,s) = [\theta(t)](s)$ gives

$$\partial_t \partial_s \mathcal{A}(t,s) = [D(\dot{\theta}(t))](s) = \partial_s [\dot{\theta}(t)](s) = \partial_s \partial_t \mathcal{A}(t,s).$$

Hence the two mixed derivatives exist everywhere and are equal.

Step 4: continuity of $s \mapsto \partial_t \partial_s \mathcal{A}(t,s)$. Since $\dot{\theta}(t) \in \mathcal{X}$ for each t, its derivative $s \mapsto \partial_s \left[\dot{\theta}(t)\right](s)$ is continuous. As $\partial_s \left[\dot{\theta}(t)\right](s) = \partial_s \partial_t \mathcal{A}(t,s)$, by the previous step, this exactly means that $s \mapsto \partial_t \partial_s \mathcal{A}(t,s)$ is continuous.

M.2 WE NOW SHOW EQUATION 39.

More precisely, to show equation 39, we will both prove that

$$\mathfrak{g}_s(t) = (Z_s(t)^{-1})^{\top} Z_1(t)^{\top} \nabla f(Z_1(t)) Z_s(t)^{\top}$$
(45)

1409 and that

$$\Lambda_s(t) = (Z_s(t)^{-1})^{\top} Z_1(t)^{\top} \nabla f(Z_1(t)), \tag{46}$$

which will indeed give equation 39.

We briefly explain why for a given t the matrix $Z_s(t)$ never loses its invertibility when $s \in [0, 1]$ varies, by showing that the determinant can never reach 0. As

 $\partial_s Z_s(t) = \mathcal{A}_s(t) Z_s(t), \qquad Z_0(t) = \mathrm{Id}_n.$

Jacobi's rule gives

$$\frac{\mathrm{d}}{\mathrm{d}s} \det Z_s(t) = \mathrm{tr} (\mathcal{A}_s(t)) \det Z_s(t), \quad \det Z_0(t) = 1.$$

Solving this scalar ODE,

$$\det Z_s(t) = \exp\left(\int_0^s \operatorname{tr}(\mathcal{A}_\tau(t)) d\tau\right) \neq 0, \qquad s \in [0, 1].$$

Therefore $Z_s(t) \in GL(n)$ for every s.

Since t is fixed, in the following we lighten notations by dropping it from the equations. The proof of equation 46 is direct by showing that Λ_s and $(Z_s^{-1})^\top Z_1^\top \nabla f(Z_1)$ satisfy the same ODE equation 38 with the same value at s=1. Thus we only need to show equation 45.

Proof. To show equation 45 we will use Riesz theorem to identify the expression of the gradient. We thus will consider the Hilbert space

$$L^2 := L^2([0,1], \mathbb{R}^{n \times n}), \qquad \langle U, V \rangle_{L^2} := \int_0^1 \operatorname{tr}(U_s^\top V_s) \, ds,$$

in which the parameter $\theta = \{A_s \in \mathbb{R}^{n \times n} : s \in [0,1]\} \in \mathcal{C}^1([0,1],\mathbb{R}^{n \times n}) =: \mathcal{X} \subseteq L^2 \text{ lives.}$

We recall that $Z_s(\theta)$ is the unique solution of the state equation equation 16:

$$\partial_s Z_s = \mathcal{A}_s Z_s, \quad Z_0 = \mathrm{Id}_n, \qquad \forall s \in [0, 1],$$

$$(47)$$

and that the cost ℓ is factorized by the flow map $Z_1(\theta)$ with a smooth scalar field $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, *i.e*, $\ell(\theta) := f(Z_1(\theta))$.

1st step: expression of the Gateaux variation of the flow

Let $\theta = \{A_s : s \in [0,1]\} \in \mathcal{X}$ be fixed and pick an arbitrary $\delta \theta \in \mathcal{X}$. For $\varepsilon \in \mathbb{R}$ define the perturbed coefficient $\theta^{\varepsilon} := \theta + \varepsilon \, \delta \theta$, denoting its components $\theta^{\varepsilon} = \{A_s^{\varepsilon} : s \in [0,1]\}$. Denote by $Z_s^{\varepsilon} := Z_s(\theta^{\varepsilon})$ the flow that satisfies the associated ODE:

$$\partial_s Z_s^{\varepsilon} = \mathcal{A}_s^{\varepsilon} Z_s^{\varepsilon}, \ Z_0^{\varepsilon} = \mathrm{Id}_n, \qquad \forall s \in [0, 1].$$
 (48)

As $(s,\epsilon,Z)\mapsto \mathcal{A}_s^\epsilon Z\in\mathcal{C}^1$, th function $(s,\epsilon)\mapsto Z_s^\epsilon$ is \mathcal{C}^1 using the Cauchy–Lipschitz theorem with a parameter. In particular for any $s\in[0,1]$, $\epsilon\mapsto Z_s^\epsilon$ is \mathcal{C}^1 . Introduce the first variation

$$\delta Z_s = \left. \frac{d}{d\varepsilon} Z_s^{\varepsilon} \right|_{\varepsilon=0} =: \Delta_s,$$

which corresponds to the Gateaux derivative of $\theta' \mapsto Z_s(\theta')$ at θ in the direction $h = \delta\theta$. We now show that Δ_s satisfies the following inhomogeneous ODE:

$$\partial_s \Delta_s = \mathcal{A}_s \Delta_s + \delta \mathcal{A}_s Z_s, \qquad \Delta_0 = 0, \qquad \forall s \in [0, 1].$$
 (49)

where $\delta A_s \coloneqq \frac{d}{d\varepsilon} A_s^{\varepsilon} \big|_{\varepsilon=0}$.

 Indeed let us consider $q_s^{\varepsilon} := \frac{Z_s^{\varepsilon} - Z_s}{\varepsilon}$ for any $0 < \varepsilon \le 1$. In particular one has $q_s^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \Delta_s$. Moreover one has:

$$q_s^{\varepsilon} = \varepsilon^{-1} \int_0^s (\mathcal{A}_u^{\varepsilon} Z_u^{\varepsilon} - \mathcal{A}_u Z_u) du = \int_0^s B_u^{\varepsilon} Z_u du + \int_0^s \mathcal{A}_u^{\varepsilon} q_u^{\varepsilon} du, \tag{50}$$

where $B_u^{\varepsilon} \coloneqq \frac{\mathcal{A}_u^{\varepsilon} - \mathcal{A}_u}{\varepsilon} = \frac{\mathcal{A}_u^{\varepsilon} - \mathcal{A}_u^0}{\varepsilon}$ satisfies $B_u^{\varepsilon} \underset{\varepsilon \to 0}{\longrightarrow} \frac{d}{d\varepsilon} \mathcal{A}_u^{\varepsilon} \big|_{\varepsilon = 0} = \delta \mathcal{A}_u$ (as $\epsilon \mapsto \mathcal{A}_u^{\varepsilon}$ is \mathcal{C}^1) and where $\varepsilon \in [0,1] \mapsto B_u^{\varepsilon}$ is continuous (at 0, we define $B_u^0 = \delta \mathcal{A}_u$) as $\varepsilon \mapsto \mathcal{A}_u^{\varepsilon}$ is \mathcal{C}^1), and thus is bounded on [0,1] by a constant that does not depend on ε . By dominated convergence, when $\varepsilon \to 0$ in equation 50 one obtains the limit:

$$\Delta_s = \int_0^s (\mathcal{A}_u \Delta_u + \delta \mathcal{A}_u Z_u) du,$$

which coincides with the unique solution of equation 49.

Since Z_s is a solution for the homogeneous part $\partial_s Z_s = \mathcal{A}_s Z_s$ with $Z_0 = \operatorname{Id}_n$, by the variation-of-parameters method, one obtains (as $\Delta_0 = 0$):

$$\Delta_s = Z_s \int_0^s Z_\tau^{-1} \, \delta \mathcal{A}_\tau \, Z_\tau \, d\tau.$$

Evaluating at s = 1 gives

$$\delta Z_1 = \Delta_1 = \int_0^1 Z_1 Z_\tau^{-1} \, \delta \mathcal{A}_\tau \, Z_\tau \, d\tau. \tag{51}$$

2d step: Differential of ℓ and identification of the gradient.

Because $f \in \mathcal{C}^1(\mathbb{R}^{n \times n}, \mathbb{R})$ its (Fréchet) differential at $M \in \mathbb{R}^{n \times n}$ is

$$Df(M)[H] = \langle \nabla f(M), H \rangle_F, \qquad \forall H \in \mathbb{R}^{n \times n}.$$
 (52)

Applying the chain rule to $\ell = f \circ Z_1$ with the Gateaux differentials D_G at θ and in the direction $h = \delta \theta$, one obtains,

$$D_G \ell(\theta)[\delta \theta] = D_G f(Z_1(\theta)) [\delta Z_1].$$

But as by hypothesis both ℓ and f are Frechet differentiable, one has:

$$D\ell(\theta)[\delta\theta] = Df(Z_1(\theta))[\delta Z_1].$$

Using equation 52 with $M = Z_1(\theta)$ and $H = \delta Z_1$,

$$D\ell(\theta)[\delta\theta] = \langle \nabla f(Z_1(\theta)), \delta Z_1 \rangle_F.$$
 (53)

By inserting the expression of δZ_1 from equation 51 into equation 53, one has:

$$D\ell(\theta)[\delta\theta] = \int_0^1 \operatorname{tr} \left(\nabla f(Z_1)^\top Z_1 Z_\tau^{-1} \, \delta \mathcal{A}_\tau \, Z_\tau \right) d\tau.$$

Because tr(RS) = tr(SR), one get

$$\operatorname{tr}(\nabla f(Z_1)^{\top} Z_1 Z_{\tau}^{-1} \delta \mathcal{A}_{\tau} Z_{\tau}) = \operatorname{tr}(Z_{\tau} \nabla f(Z_1)^{\top} Z_1 Z_{\tau}^{-1} \delta \mathcal{A}_{\tau}),$$

and thus by defining for each τ

$$G_{\tau}^{\top} := Z_{\tau} \nabla f(Z_1)^{\top} Z_1 Z_{\tau}^{-1}, \tag{54}$$

one finally has

$$D\ell(\theta)[\delta\theta] = \int_0^1 \operatorname{tr}(G_{\tau}^{\top} \delta A_{\tau}) d\tau = \langle G, \delta\theta \rangle_{L^2}.$$

By Riesz theorem, the gradient in L^2 (i.e. the Fréchet gradient) is the unique element $G \in L^2$ verifying $D\ell(\theta)[\delta\theta] = \langle G, \delta\theta \rangle_{L^2}$ for every $\delta\theta$:

$$\nabla \ell(\theta) - G$$

The transpose in equation 54 finally yields the required formula.

1512 M.3 Link with conservation laws in finite depth (informal).

We assume that $\theta_L := (U_L, \cdots, U_1)$ satisfies the relaxed balanced conditions:

$$U_{i+1}^{\top} U_{i+1} - U_i U_i^{\top} = \frac{H_i}{L^2},$$

then as $U_k=\mathrm{Id}+\frac{1}{L}A_k$, using that $A_{k+1}=A_k+\frac{1}{L}A_k'+o\left(\frac{1}{L}\right)$ we get:

$$\begin{split} \frac{H_k}{L^2} &= (\mathrm{Id} + \frac{1}{L} A_{k+1})^\top (\mathrm{Id} + \frac{1}{L} A_{k+1}) - (\mathrm{Id} + \frac{1}{L} A_k) (\mathrm{Id} + \frac{1}{L} A_k^\top) \\ &= \frac{A_{k+1}^\top + A_{k+1}}{L} - \frac{A_k + A_k^\top}{L} - \frac{A_k A_k^\top}{L^2} + \frac{A_{k+1}^\top A_{k+1}}{L^2} \\ &= \frac{A_k^{\prime \top} + A_k^\prime - A_k A_k^\top + A_k^\top A_k}{L^2} + o\left(\frac{1}{L^2}\right) \\ &= \frac{h_{s_k}(\theta)}{L^2} + o\left(\frac{1}{L^2}\right), \end{split}$$

Thus h_s is such that $h_{s_k}(\theta) = H_k + o(1)$.

In particular if θ_L satisfies the quasi balanced condition

$$U_{i+1}^{\top}U_{i+1} - U_iU_i^{\top} = \frac{\lambda_i}{L^2} \mathrm{Id},$$

then one can choose h_s as:

$$h_s(\theta) = \lambda(s) \mathrm{Id}_n,$$

with λ a function such that $\lambda(s_k) = \lambda_k$. We say in that case that θ satisfies the relaxed balanced condition.

N PROOF OF THEOREM 4.8.

N.1 Proof of the theorem

Theorem 4.8. If the initialization $\theta(0)$ satisfies that for each $s \in [0,1]$ $\mathbf{h}_s(\theta(0)) = \lambda(s)\mathrm{Id}_n$ for some $\lambda(\cdot) \in \mathcal{C}^0([0,1],\mathbb{R})$, then one has

$$\dot{Z}_1 = -\int_0^1 (Z_1 Z_1^\top)^{1-s} \exp(\gamma(s)) \nabla f(Z_1) (Z_1^\top Z_1)^s \mathrm{d}s,$$

with $\gamma(s) := (1-s)\psi_1(1) - \psi_1(1-s) - s\psi_2(1) + \psi_2(s)$, where $\psi_1 : s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(1-v) dv du$ and $\psi_2 : s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(v) dv du$. If $\lambda(\cdot) \equiv 0$ (balanced-condition), then $\gamma(\cdot) \equiv 0$.

Proof. For any t and any integer $L \ge 1$ we define $s_k := s_k^L = \frac{k}{L}$ for $k = 0, \dots, L-1$ and:

$$X_{k+1}(t) = X_k(t) + h\mathcal{A}_{s_k}(t)X_k(t), \quad \text{with } h := \frac{1}{L} \text{ and } X_0(t) = I_n.$$

Since this corresponds exactly to the Euler explicit method with step h for the ODE

$$\partial_s Z_s(t) = \mathcal{A}_s(t)Z_s(t), \quad Z_0(t) = \mathrm{Id}_n, \quad s \in [0, 1],$$

one has for any t and L (computations postponed in Section N.2):

$$\sup_{0 \le k \le L-1} \|X_k(t) - Z_{s_k}(t)\| = \mathcal{O}(h)$$
(55)

$$\|\partial_t Z_1(t) - \partial_t X_L(t)\| = \mathcal{O}(h), \tag{56}$$

with $\|\cdot\|$ any matrix norm on $\mathbb{R}^{n\times n}$, the implicit constant in the notation $\mathcal{O}(\cdot)$ is independent of k and L while it can depend on t.

We now fix some t and observe that $X_{k+1}(t) = U_k(t)X_k(t)$ with

$$U_k(t) := \mathrm{Id}_n + h \mathcal{A}_{s_k}(t). \tag{57}$$

so that (from now on we drop the t variable for brevity)

$$\partial_t X_L = h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (\partial_t A_{s_j}) X_j(t) = h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (\partial_t A_{s_j}) U_{j-1} \cdots U_0$$

By equation 15 and the relation equation 45 (shown in Section M.2) we have for any $s \in [0,1]$

$$\partial_t \mathcal{A}_s = -\mathfrak{g}_s = -(Z_s^{-1})^\top Z_1^\top \nabla f(Z_1) Z_s^\top$$

hence

$$\partial_t X_L = -h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (Z_{s_j}^{-1})^\top Z_1^\top \nabla f(Z_1) Z_{s_j}^\top U_{j-1} \cdots U_0$$

As $U_{L-1}\cdots U_{j+1}=X_LX_{j+1}^{-1}=(Z_1+\mathcal{O}(h))(Z_{s_{j+1}}+\mathcal{O}(h))^{-1}=Z_1Z_{s_{j+1}}^{-1}+\mathcal{O}(h)$ since the invertibility of Z_s and continuity of $s\mapsto Z_s$ implies that $\|Z_s^{-1}\|$ is uniformly bounded) and $Z_{s_{j+1}}Z_{s_j}^{-1}=\operatorname{Id}_n+\mathcal{O}(h)$ (since $Z_{s_{j+1}}=Z_{s_j}+h\mathcal{A}_{s_j}Z_{s_j}+\mathcal{O}(h^2)$), we deduce that

$$(Z_{s_j}^{-1})^{\top} Z_1^{\top} = (Z_1 Z_{s_j}^{-1})^{\top} = [(Z_1 Z_{s_{j+1}}^{-1}) Z_{s_{j+1}} Z_{s_j}^{-1}]^{\top}$$

$$= [(U_{L-1} \cdots U_{j+1} + \mathcal{O}(h)) (I_n + \mathcal{O}(h))]^{\top}$$

$$= (U_{L-1} \cdots U_{j+1})^{\top} + \mathcal{O}(h),$$

where in the last line we used that since with any relevant matrix norm since $\max_k \|U_k\| = 1 + \mathcal{O}(h) = 1 + \mathcal{O}(1/L)$ we have $\|U_{L-1} \dots U_j\| \leq [1 + \mathcal{O}(1/L)]^L = \mathcal{O}(1)$. Similarly we also have $\|U_{j-1} \dots U_0\| = \mathcal{O}(1)$ hence

$$\partial_t X_L = -h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (U_{L-1} \cdots U_{j+1})^\top \nabla f(Z_1) Z_{s_j}^\top U_{j-1} \cdots U_0 + \underbrace{h \sum_{j=0}^{L-1} \mathcal{O}(h)}_{=\mathcal{O}(h) \text{ since } h=1/L}$$

Similarly as $U_{j-1} \cdots U_0 = X_j = Z_{s_j} + \mathcal{O}(h)$ by equation 55, we get $Z_{s_j}^{\top} = (U_{j-1} \cdots U_0)^{\top} + \mathcal{O}(h)$ hence

$$\partial_{t}X_{L} = -h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (U_{L-1} \cdots U_{j+1})^{\top} \nabla f(Z_{1}) (U_{j-1} \cdots U_{0} + \mathcal{O}(h))^{\top} (U_{j-1} \cdots U_{0})$$

$$= -h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (U_{L-1} \cdots U_{j+1})^{\top} \nabla f(Z_{1}) (U_{j-1} \cdots U_{0})^{\top} (U_{j-1} \cdots U_{0}) + \mathcal{O}(h)$$
(58)

We also have

$$U_{k+1}^{\top} U_{k+1} - U_k U_k^{\top} = (\mathrm{Id}_n + h \mathcal{A}_{s_{k+1}})^{\top} (\mathrm{Id}_n + h \mathcal{A}_{s_{k+1}}) - (\mathrm{Id}_n + h \mathcal{A}_{s_k}) (\mathrm{Id}_n + h \mathcal{A}_{s_k})$$

$$= h(\mathcal{A}_{s_{k+1}}^{\top} + \mathcal{A}_{s_{k+1}}) - h(\mathcal{A}_{s_k} + \mathcal{A}_{s_k}^{\top}) - h^2(\mathcal{A}_{s_k} \mathcal{A}_{s_k}^{\top}) + h^2(\mathcal{A}_{s_{k+1}}^{\top} \mathcal{A}_{s_{k+1}})$$

$$= h^2(\mathcal{A}_{s_k}^{\prime\top} + \mathcal{A}_{s_k}^{\prime} - \mathcal{A}_{s_k} \mathcal{A}_{s_k}^{\top} + \mathcal{A}_{s_k}^{\top} \mathcal{A}_{s_k}) + o(h^2)$$

$$= h^2 \mathbf{h}_{s_k}(\theta) + o(h^2)$$

$$= h^2 \lambda(s_k) \mathrm{Id}_n + o(h^2) . \tag{59}$$

as $\theta(0)$ satisfies the quasi-balanced condition and $\mathcal{A}_{s_{k+1}} = \mathcal{A}_{s_k} + h\mathcal{A}'_{s_k} + o(h)$, where the implicit o(1) function in the notation $o(h^2) = h^2 o(1)$ is still independent of k and k as $k \in [0,1] \mapsto \mathcal{A}'_{s}$ is continuous on the compact set [0,1] and is thus uniformly continuous.

By Lemma L.1 with $\lambda_k = \lambda(s_k)$ and one has:

$$(U_{L-1}\cdots U_{j+1})(U_{L-1}\cdots U_{j+1})^{\top} = \prod_{k=0}^{L-1-(j+1)} (U_{L-1}U_{L-1}^{\top} - a_k \operatorname{Id}_n) + E_{L-1-j},$$
 (60)

with

$$a_0 := 0, \quad a_k = h^2 \sum_{i=1}^k \lambda(s_{L-1} - s_i) \text{ for } k \ge 1, \quad \text{and } ||E_{L-1-j}|| \le K\eta$$
 (61)

where $K := (C_0 \exp(C_1) \exp(C_0(C_1 + 1) + \exp(C_1)))$ with $C_0 := 2C_\lambda$, $C_1 := (C_U^2 + \eta h^2 - 1)/h$,

$$C_U := \max(1, \max_k ||U_k||), \quad C_\lambda := \max_k |\lambda_k|$$
(62)

$$\eta := L^2 \cdot \max_{0 \le k \le L - 2} \| (U_{k+1}^\top U_{k+1} - U_k U_k^\top) - h^2 \lambda_k \operatorname{Id}_n \|.$$
 (63)

As $\lambda(\cdot)$ is continuous, $C_{\lambda} \leq \|\lambda\|_{\infty} < \infty$ for any L. Similarly, we already used that as $s \in [0,1] \mapsto \mathcal{A}_s$ is continuous, $C_U = 1 + \mathcal{O}(h)$, and thus $C_U^2 = 1 + \mathcal{O}(h)$, again with implicit constant independent of L. Moreover by equation 59, $\eta h^2 = \eta/L^2 = o(h^2)$, and we obtain $C_1 = (C_U^2 + \eta h^2 - 1)/h = (\mathcal{O}(h) + o(h^2))/h = \mathcal{O}(1)$, hence C_1 is bounded uniformly. Finally we obtain

$$\max_{j} E_{L-1-j} = o(1) \tag{64}$$

where the implicit function o(1) is still independent of L.

We denote

$$F_i(U_{L-1}U_{L-1}^{\top}) := \prod_{k=0}^{i} (U_{L-1}U_{L-1}^{\top} - a_k \mathrm{Id}_n)$$
 (65)

and use the shorthand $A_k:=A_k^L(t):=\mathcal{A}_{s_k}(t)\in\mathbb{R}^{n\times n},$ for $0\leq k\leq L-1.$ Since $U_k=\mathrm{Id}_n+hA_k$ with h=1/L and $s_{L-1}-s_i=\frac{L-1}{L}-\frac{i}{L}=1-\frac{i+1}{L}$ for each integer i, we have (using Riemann integration as $\lambda(\cdot)$ is continuous): since all the matrices in the product equation 65 commute

$$F_{j}(U_{L-1}U_{L-1}^{\intercal}) = \exp\left(\sum_{k=0}^{j} \log(U_{L-1}U_{L-1}^{\intercal} - a_{k}\operatorname{Id}_{n})\right)$$

$$\stackrel{equation\ 57-equation\ 61}{=} \exp\left(\sum_{k=0}^{j} \log\left(\operatorname{Id}_{n} + \frac{A_{L-1} + A_{L-1}^{\intercal}}{L} + o\left(\frac{1}{L}\right) - \frac{1}{L}\left(\underbrace{\frac{1}{L}\sum_{i=1}^{k}\lambda(1 - \frac{i+1}{L})}_{=\int_{0}^{s_{k}}\lambda(1 - v)\operatorname{d}v + o(1)}\right)\operatorname{Id}_{n}\right)\right)$$

$$= \exp\left(\sum_{k=0}^{j} \left(\frac{A_{L-1} + A_{L-1}^{\intercal}}{L} - \frac{1}{L}\int_{0}^{s_{k}}\lambda(1 - v)\operatorname{d}v \cdot \operatorname{Id}_{n} + o\left(\frac{1}{L}\right)\right)\right)$$

$$= \exp \left(s_j (\mathcal{A}_1 + \mathcal{A}_1^\top) - \underbrace{\frac{1}{L} \sum_{k=0}^j \int_0^{s_k} \lambda(1-v) dv \cdot \mathrm{Id}_n + o(1)}_{= \int_0^{s_j} \int_0^u \lambda(1-v) dv du + o(1)} \cdot \mathrm{Id}_n + o(1) \right).$$

We denote $\psi_1: s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(1-v) dv du$. By equation 60 and the above derivations one has

$$Z_1 Z_1^{\top} = \lim_{L \to +\infty} X_L X_L^{\top} = \lim_{L \to +\infty} F_{L-1}(U_{L-1} U_{L-1}^{\top}) = \exp((A_1 + A_1^{\top}) - \psi_1(1) \cdot \operatorname{Id}_n),$$

and thus

$$\mathcal{A}_1 + \mathcal{A}_1^{\top} = \log(Z_1 Z_1^{\top}) + \psi_1(1) \cdot \mathrm{Id}_n$$

Thus

$$F_j(U_{L-1}U_{L-1}^{\top}) = (Z_1 Z_1^{\top})^{s_j} \exp\left(s_j \psi_1(1) - \psi_1(s_j) + o(1)\right). \tag{66}$$

Similarly as before and by adapting the proof of Lemma L.1 one gets:

$$(U_{j-1}\cdots U_0)^{\top}(U_{j-1}\cdots U_0) = \prod_{k=0}^{j-1} (U_0^{\top}U_0 - b_k \mathrm{Id}_n) + o(1) =: G_j(U_0^{\top}U_0) + o(1)$$
 (67)

with $b_k = -h^2 \sum_{i=0}^{k-1} \lambda(s_i)$ and $b_0 = 0$, and where we denote

$$G_j(U_0^{\top}U_0) := \prod_{k=0}^{j-1} (U_0^{\top}U_0 - b_k \mathrm{Id}_n)$$
 (68)

Similarly as above:

$$G_{j+1}(U_0^{\top}U_0) = \exp\left(\sum_{k=0}^{j} \log(U_0^{\top}U_0 - b_k \operatorname{Id}_n)\right)$$

$$= \exp\left(\sum_{k=0}^{j} \log\left(\operatorname{Id}_n + \frac{A_0 + A_0^{\top}}{L} + o\left(\frac{1}{L}\right) + \frac{1}{L}\left(\underbrace{\frac{1}{L}\sum_{i=0}^{k-1}\lambda(s_i)}_{=\int_0^{s_k}\lambda(v)\operatorname{d}v + o(1)}\right)\operatorname{Id}_n\right)\right)$$

$$= \exp\left(\sum_{k=0}^{j}\left(\frac{A_0 + A_0^{\top}}{L} + \frac{1}{L}\int_0^{s_k}\lambda(v)\operatorname{d}v \cdot \operatorname{Id}_n + o\left(\frac{1}{L}\right)\right)\right)$$

$$= \exp\left(s_j(A_0 + A_0^{\top}) + \underbrace{\frac{1}{L}\sum_{k=0}^{j}\int_0^{s_k}\lambda(v)\operatorname{d}v \cdot \operatorname{Id}_n + o(1)}_{=\int_0^{s_j}\int_0^{s_k}\lambda(v)\operatorname{d}v \cdot \operatorname{Id}_n + o(1)}\right).$$

We denote $\psi_2: s \in [0,1] \mapsto \int_0^s \int_0^u \lambda(v) \mathrm{d}v \mathrm{d}u$. By equation 67 and the above derivations we have

$$Z_1^{\top} Z_1 = \lim_{L \to +\infty} X_L^{\top} X_L = \lim_{L \to +\infty} G_L(U_0^{\top} U_0) = \exp((\mathcal{A}_0 + \mathcal{A}_0^{\top}) + \psi_2(1) \cdot \mathrm{Id}_n),$$

and thus

$$\mathcal{A}_0 + \mathcal{A}_0^{\top} = \log(Z_1^{\top} Z_1) - \psi_2(1) \cdot \mathrm{Id}_n$$

It follows that

$$G_{j+1}(U_0^{\top}U_0) = (Z_1^{\top}Z_1)^{s_j} \exp(-s_j\psi_2(1) + \psi_2(s_j) + o(1)).$$
(69)

Finally, combining equation 60-equation 64-equation 65-equation 66 and equation 67-equation 68-equation 69, we obtain

$$\partial_{t} X_{L} \stackrel{equation 58}{=} -h \sum_{j=0}^{L-1} (U_{L-1} \cdots U_{j+1}) (U_{L-1} \cdots U_{j+1})^{\top} \nabla f(Z_{1}) (U_{j-1} \cdots U_{0})^{\top} (U_{j-1} \cdots U_{0}) + \mathcal{O}(h)$$

$$= -h \sum_{j=0}^{L-1} \left[(Z_{1} Z_{1}^{\top})^{1-s_{j}} \nabla f(Z_{1}) (Z_{1}^{\top} Z_{1})^{s_{j}} \cdot \exp(\gamma(s)) + o(1) \right] + \mathcal{O}(h)$$

$$= -\int_{0}^{1} (Z_{1} Z_{1}^{\top})^{1-s} \nabla f(Z_{1}) (Z_{1}^{\top} Z_{1})^{s} \exp(\gamma(s)) ds + o(1),$$

where

$$\gamma(s) := (1-s)\psi_1(1) - \psi_1(1-s) - s\psi_2(1) + \psi_2(s).$$

Thus one has:

$$\partial_t Z_1(t) = -\int_0^1 (Z_1 Z_1^\top)^{1-s} \exp(\gamma(s)) \nabla f(Z_1) (Z_1^\top Z_1)^s \mathrm{d}s,$$

which concludes the proof.

N.2 Proof of Equation 55-Equation 56

We now show that equation 55-equation 56 hold for any t.

Proof. First we recall that

$$X_{k+1}(t) = X_k(t) + h\mathcal{A}_{s_k}(t)X_k(t),$$

with $X_0(t) = \mathrm{Id}_n$. This corresponds exactly to the Euler explicit formulation of the ODE:

$$\partial_s Z_s(t) = \mathcal{A}_s(t) Z_s(t), \quad Z_0(t) = \mathrm{Id}_n, \quad s \in [0, 1]$$

$$\tag{70}$$

1737 with step h = 1/L.

We now show both items at once. We fix some t. Set

$$W(s) := \begin{pmatrix} Z_s \\ Y_s \end{pmatrix} \in \mathbb{R}^{2n \times n}, \qquad Y_s := \partial_t Z_s, \qquad W(0) = \begin{pmatrix} \operatorname{Id}_n \\ 0 \end{pmatrix},$$

so that

$$\frac{\mathrm{d}}{\mathrm{d}s}W(s) = \begin{pmatrix} \mathcal{A}_s(t) & 0\\ \partial_t \mathcal{A}_s(t) & \mathcal{A}_s(t) \end{pmatrix} W(s). \tag{71}$$

The corresponding explicit-Euler discretization with step h=1/L reads

$$W_{k+1} = W_k + h \begin{pmatrix} \mathcal{A}_{s_k}(t) & 0\\ \partial_t \mathcal{A}_{s_k}(t) & \mathcal{A}_{s_k}(t) \end{pmatrix} W_k, \tag{72}$$

which coincides component-wise with the recursions for X_k and $T_k = \partial_t X_k$.

Because the right-hand side of equation 71 $(s, W) \mapsto \begin{pmatrix} \mathcal{A}_s(t) & 0 \\ \partial_t \mathcal{A}_s(t) & \mathcal{A}_s(t) \end{pmatrix} W$ is \mathcal{C}^1 (indeed both $s \mapsto \mathcal{A}_s(t)$ and $s \mapsto \partial_t \mathcal{A}_s(t)$ are C^1 (cf Theorem M.1) for each t), the Euler explicit scheme converges at order one (see e.g. (Berthelin, 2017, Proposition 10.30)):

$$\max_{0 \le k \le L} \|W(s_k) - W_k\| = \mathcal{O}(h).$$

In particular one get that for any k: $X_k(t) = Z_{s_k}(t) + O(h)$ and (reading the second bloc row at the final index k = L):

$$\|\partial_t Z_{s=1}(t) - \partial_t X_L(t)\| = \|Y_{s=1} - T_L\| = \mathcal{O}(h).$$

O LLM USAGE

The authors of this paper used Large Language Models to aid and polish the writing of this paper and as a tool to make some of the proofs.