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Abstract

Building world models that accurately and comprehensively represent the real world is a holy
grail for image generative models as it would enable their use as world simulators. For condi-
tional image generative models to be successful world models, they should not only excel at
image quality and prompt-image consistency but also ensure high representation diversity.
However, current research in generative models mostly focuses on creative applications that
are predominantly concerned with human preferences of image quality and aesthetics. We
note that generative models have inference time mechanisms – or knobs – that allow the
control of generation consistency, quality, and diversity. In this paper, we use state-of-the-
art text-to-image and image&text-to-image models and their knobs to draw consistency-
diversity-realism Pareto fronts that provide a holistic view on consistency-diversity-realism
multi-objective. Our experiments suggest that realism and consistency can both be im-
proved simultaneously; however there exists a clear tradeoff between realism/consistency
and diversity. By looking at Pareto optimal points, we note that earlier models are better
at representation diversity and worse in consistency-realism, and more recent models excel in
consistency-realism while decreasing significantly the representation diversity. By computing
Pareto fronts on a geodiverse dataset, we find that the first version of latent diffusion models
tends to perform better than more recent models in all axes of evaluation, and there exist
pronounced consistency-diversity-realism disparities between geographical regions. Overall,
our analysis clearly shows that there is no best model and the choice of model should be deter-
mined by the downstream application. With this analysis, we invite the research community
to consider Pareto fronts as an analytical tool to measure progress towards world models.

1 Introduction

Progress in foundational vision-based machine learning models has heavily relied on large-scale Internet-
crawled datasets of real images (Schuhmann et al., 2022). Yet, with the acceleration of research on gen-
erative models and the unprecedented photorealistic quality achieved by recent text-to-image generative
models (Podell et al., 2023; Esser et al., 2024; Ramesh et al., 2022; Saharia et al., 2022), researchers have
started exploring their potential as world models that generate images to train downstream representation
learning models (Astolfi et al., 2023; Hemmat et al., 2023; Tian et al., 2024).

World models aim to represent the real world as accurately and comprehensively as possible. Therefore,
visual world models should not only be able to yield high quality image generations, but also generate content
that is representative of the diversity of the world, while ensuring prompt consistency. However, state-of-
the-art conditional image generative models have mostly been optimized for human preference, and thus,
a single high-quality and consistent sample fulfills the current optimization criteria. This vastly disregards
representation diversity (Hall et al., 2024; Sehwag et al., 2022; Zameshina et al., 2023; Corso et al., 2024;
Hemmat et al., 2023; Sadat et al., 2024), and questions the potential of state-of-the-art conditional image
generative models to operate as effective world models. Optimizing for human preferences only partially
fulfills the multi-objective optimization required to leverage conditional generative models as world models.

At the same time, state-of-the-art conditional image generative models have built-in inference time
mechanisms, hereinafter referred to as knobs, to control the realism (also referred to as quality or fidelity),
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consistency, and diversity dimensions of the generation process. For example, it has been shown that the
guidance scale in classifier free guidance of diffusion models (Ho & Salimans, 2021), trades image fidelity
for diversity (Saharia et al., 2022; Corso et al., 2024). Similarly, post-hoc filtering (Karthik et al., 2023)
is used to improve consistency. Although recent works have carried out extensive evaluations of image
generative models (Ku et al., 2024; Lee et al., 2024), these evaluations have been primarily designed from
the perspective of creative applications. To the best of our knowledge, a comprehensive and systematic
analysis of the effect of the knobs controlling the different performance dimensions of conditional image
generative models has not yet been carried out.

In this paper, we benchmark conditional image generative models in terms of the world models’ multi-
objective. In particular, we perform an optimization over both knobs and state-of-the-art models with the
goal of capturing the consistency-diversity, realism-diversity, and consistency-realism Pareto fronts that are
currently reachable. In our analysis, we include both text-to-image (T2I) models and image&text-to-image
(I-T2I) models. For T2I, we consider several version of latent diffusion models (LDM), namely LDM1.5 and
LDM2.1 (Rombach et al., 2022), as well as LDMXL (Podell et al., 2023), whereas for I-T2I, we consider a
retrieval-augmented diffusion model (RDM) (Blattmann et al., 2022) and LDM2.1-UnCLIP (Ramesh et al.,
2022), in addition to a neural image compression model, PerCo (Careil et al., 2024). We perform our T2I
and I-T2I models analysis using the ubiquitous MSCOCO (Lin et al., 2014) validation dataset and we extend
our evaluation of T2I models to the GeoDE dataset (Ramaswamy et al., 2024), composed of images from 6
world regions, to characterize the progress of these models from a geographic representation perspective. To
quantify the multi-objective, we use inter-sample similarity and recall (Kynkäänniemi et al., 2019) to measure
representation diversity; image reconstruction quality and precision (Kynkäänniemi et al., 2019) to quantify
realism; and the Davidsonian scene graph score (Cho et al., 2024)) to assess prompt-generation consistency.

By drawing the Pareto fronts, we observe that progress in conditional image generative models has been
driven by improvements in image realism and/or prompt-generation consistency, and that these improve-
ments result in models sacrificing representation diversity. In the T2I setup, our analysis suggests that more
recent models should be used when the downstream task requires samples with high realism – LDMXL-Turbo–
and consistency – LDMXL–. However, older models – LDM1.5 and LDM2.1– are preferable for tasks that
require good representation diversity. For I-T2I models, we observe that compression models – e.g., PerCo–
should be prioritized when working on downstream applications that require high realism and consistency.
However, when the downstream application requires high representation diversity, RDM and LDM2.1-UnCLIP
are preferable. Interestingly, on GeoDE we observe that the oldest model, LDM1.5, outperforms the most
recent ones, and consistently appears in the Pareto fronts of all regions considered. Moreover, the advances
in T2I models reduce region-wise disparities in terms of consistency and increase the disparities in terms of
image realism, while sacrificing diversity across all regions. Finally, by looking at the knobs, we observe that
guidance and post-hoc filtering have the highest effect on the consistency-diversity and realism-diversity
tradeoffs, increasing both realism and consistency at the expense of representation diversity. We believe that
the proposed evaluation framework and the findings that arise from it will enable faster progress towards
enabling the use of conditional image generative models as world models, and we hope it will encourage the
research community to work on models that present softer consistency-diversity-realism tradeoffs.

2 Methodology of the analysis

In this section, we introduce the notation adopted throughout the rest of the paper, present the metrics
we use to evaluate conditional image generative models, and describe existing knobs that control the
consistency-diversity-realism multi-objective. We refer to Appendix A for a comparison with related work.

Notation. Let us consider the following conditional image generation framework. An image generative
model, gθ, parameterized by a set of learnable parameters, θ, generates an image, Y , from a noise sample
Z ∼ N (0, I) and a conditioning prompt encoded by a vector, p ∈ R

d: Y = gθ(Z , p). In state-of-the-art
conditional image generative models, p encodes either text, an image, or a combination of both. In practice,
images are generated in batches of N elements, Y ∈ R

N×H×W ×3, conditioned on the same vector p and a
tensor Z ∈ RN×H×W ×3 representing N random noise samples:

Y = gθ(Z, p). (1)
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2.1 Evaluating conditional image generation

We evaluate conditional image generation in terms of prompt-sample consistency, sample diversity and
realism (also referred to as quality or fidelity in the literature). We consider two complementary ways of
quantifying the performance of conditional image generative models: conditional and marginal. On the one
hand, conditional metrics are prompt-specific scores computed on the set of image generations resulting
from a prompt. An overall score may be obtained by averaging out all prompt-specific scores. On the
other hand, marginal metrics are overall scores computed on the generations resulting from all the prompts
directly. In practice, marginal metrics compare a set of generated images to a reference dataset while
ignoring the prompts used to obtain the sets. In the reminder of this subsection, we define consistency –
that is always conditional –, conditional and marginal diversity, as well as conditional and marginal realism.

Consistency, C. Prompt-generation consistency is measured either with distance or similarity-based scores
– e.g., CLIPScore (Hessel et al., 2021), LPIPS score (Zhang et al., 2018) and DreamSim score (Fu et al.,
2023) – or with visual question answering (VQA) approaches – e.g., TIFA (Hu et al., 2023), VQAScore (Lin
et al., 2024), and DSG (Cho et al., 2024) metrics –. In our analysis, we opt to use VQA approaches as they
are reported to be more calibrated and interpretable than the distance and similarity-based scores (Cho
et al., 2024). Concretely, we measure the prompt-generation consistency with Davidsonian Scene Graph
(DSG) score. DSG relies on binary questions Q and answers A generated via LLMs based on the image
prompt p. A vision-language model finetuned for the VQA task, VQA(·), is fed with an image, Y, and
the set of questions of its respective prompt. The VQA model predict answers, which are compared to the
ground-truth to get a score. The resulting formulation for per-prompt consistency, Cp, reads as:

Cp = 1
N

N∑
j=1

1
Qj

Qj∑
i=1

1

(
VQA(Yj , Qi), Ai

)
, (2)

where N represents the number of images generated per conditioning prompt, Qj represents the number of
question per j-th image, and 1 represents the indicator function. The consistency over a set of prompts may
be aggregated into a global consistency score, C, by averaging all the conditioning-wise DSG scores, Cp.

Conditional diversity, DC . We measure per-prompt conditional diversity as follows:

Dp
C = 1

N2 − N

∑
j ̸=i

S(fϕ(Yj), fϕ(Yi)), (3)

where S is a similarity or distance function, and fϕ is an image feature extractor. In our analysis, we use
cosine similarity and the DreamSim (Fu et al., 2023) feature extractor. DreamSim leverages an ensemble of
modern vision encoders, including DINO (Caron et al., 2021) and two independently trained CLIP encoders,
and is reported to correlate well with human perception. The conditional diversity over a set of prompts
may be aggregated into a global score, DC , by averaging all the conditioning-wise scores, Dp

C .

Conditional realism, RC . We measure per-prompt conditional realism as follows:

Rp
C = 1

N

N∑
j=1

max
i

(S(fϕ(Xi), fϕ(Yj))), i ∈ {1, . . . , N ′}, (4)

where X ∈ RN ′×H×W ×3 represents a tensor of N ′ real images. Note that both X and Y represent generations
and real images of the same prompt p, respectively. Similarly to conditional diversity, we implement S as
cosine similarity and use DreamSim as feature extractor. The conditional realism over a set of prompts
may be aggregated into a global score, RC , by averaging all the conditioning-wise scores Rp

C .

Marginal diversity, DM . Commonly used metrics of marginal diversity, such as recall (Sajjadi et al., 2018;
Kynkäänniemi et al., 2019) or coverage (Naeem et al., 2020), compare real and generated image distributions
by leveraging a reference dataset of real images to ground the notion of diversity. Marginal diversity may
also be measured with metrics which do not rely on a reference dataset, such as the Vendi Score (Friedman
& Dieng, 2023). In our analysis, we use recall (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) to compute
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marginal diversity given its ubiquitous use in the literature. Recall measures marginal diversity as the
probability that a random real image falls within the support of the generated image distribution.

Marginal realism, RM . The most commonly used metric to estimate image realism is the Fréchet
Inception Distance (FID) (Heusel et al., 2017). FID relies on a pre-trained image encoder (usually, the
Inception-v3 model trained on ImageNet-1k (Szegedy et al., 2015)) that embeds both generated and real
images from a reference dataset. The metric estimates the distance between distributions of features of
real images and features of generated images, relying on a Gaussian distribution assumption. The FID
summarizes image realism and diversity into a single scalar. In our analysis, to disentangle both axes of
evaluation, we use precision (Kynkäänniemi et al., 2019; Naeem et al., 2020) as marginal realism metric.
Precision measures marginal realism as the probability that a random generated image falls within the
support of the real image distribution.

2.2 Consistency-diversity-realism knobs

Guidance scale. To control the strength of the conditioning, a guidance scale (g-scale) hyper-parameter
can be used to bias the sampling of diffusion models like DDPM (Ho et al., 2020), see e.g., classifier (Dhariwal
& Nichol, 2021) or classifier-free guidance (CFG) (Ho & Salimans, 2021). More precisely, rewriting Eq. (1)
for diffusion models trained with CFG, we obtain:

Y = λgθ(Z, p) + (1 − λ)gθ(Z, ∅), (5)

where λ is the guidance scale, ∅ is an empty conditioning prompt, and the first and second terms indicate
conditional and unconditional samplings, respectively. Importantly, λ can be arbitrarily increased (> 1) in
order to steer the model to generate samples more aligned with the conditioning p.

Post-hoc filtering. To improve the generated images, e.g. in terms of realism or consistency, or to avoid
certain undesirable generations, a set of images generated for the same prompt may be filtered to retain the
top-m images based on a predefined criterion, which can be either based on human preferences or automatic
metrics. Considering the latter case, a common choice of metric is the CLIPScore, resulting in:

Y = top
(

m, S(p, fϕ(Yj))
)

, (6)

where decreasing m ensures higher consistency.

Retrieval-augmented generation. Generation can be conditioned on additional information, e.g. via
nearest-neighbor search in a database given a query image or prompt.

Y = gθ(Z, ⊕pj∈K∪{p}), (7)

where ⊕ denotes the aggregation operator and K is the set of nearest neighbors of p. Existing retrieval-
augmented image generative models adopt different aggregation operators. For instance, RDM (Blattmann
et al., 2022), KNN-Diffusion (Sheynin et al., 2023), and Re-Imagen (Chen et al., 2022), concatenate the
retrieved vectors, and use cross-attention to condition the generative process. Autoregressive models like
RA-CM3 (Yasunaga et al., 2023) and CM3Leon (Yu et al., 2023), concatenate the retrieved vectors to the
input before performing self-attention. Regardless of the type of aggregation, changing the value of k in
retrieval-augmented models can affect the conditional diversity and consistency of the generations.

Compression rate. Neural image compression models are generative autoencoder-like models that learn
to compress images into low-dimensional representations before reconstructing them. The compression rate,
usually expressed in bits-per-pixel (bpp), determines the ability to faithfully reconstruct the original image.
Some neural image compression models, such as PerCo (Careil et al., 2024), treat compression as a conditional
generative modeling problem, allowing to sample approximate reconstructions given the compressed image
code. In such cases, we could expect that by reducing the bitrate, the model might trade consistency/realism
for conditional diversity as the compressed image code will carry less information about the original image.
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Table 1: Knobs for text-to-image (T2I) and text&image-to-image (I-T2I) models used in our study. For
RDM, 1.3M corresponds to the training dataset, while 20M to the retrieval database.

Model Dataset size Knobs

g-scale top-m filtering k-neighbors comp. rate

T2I
LDM1.5 (Rombach et al., 2022) ∼2B ✓ ✓ ✗ ✗

LDM2.1 (Rombach et al., 2022) ∼2B ✓ ✓ ✗ ✗

LDMXL (Podell et al., 2023) ∼2B ✓ ✓ ✗ ✗

LDMXL-Turbo (Sauer et al., 2023) ∼2B ✗ ✓ ✗ ✗

I-T2I
PerCo (Careil et al., 2024) ∼300M ✓ ✓ ✗ ✓

RDM (Blattmann et al., 2022) 1.3M + 20M ✓ ✓ ✓ ✗

LDM2.1-UnCLIP (Ramesh et al., 2022) ∼2B ✓ ✓ ✗ ✗

2.3 Pareto fronts

We perform an optimization over state-of-the-art models and their knobs with the goal of capturing the
consistency-diversity, realism-diversity, and consistency-realism Pareto fronts that are currently reachable,
and building understanding on the consistency-diversity-realism multi-objective. More precisely, we
quantify consistency, diversity and realism for each pair of (model, knob-value) using the metrics presented
in Section 2.1. We then leverage all the resulting measurements to obtain the Pareto fronts that capture
the optimal consistency-diversity-realism values achieved by current state-of-the-art conditional image
generative models. For visualization ease, we transform the multi-objective into three bi-objectives:
consistency-diversity, realism-diversity and consistency-realism.

3 Experiments

In this section, we study T2I and I-T2I models and depict the achievable consistency-diversity-realism
Pareto fronts by altering the models and their associated knobs. We start by detailing the experimental
setups and follow with a detailed discussion of results, covering T2I models in Section 3.1 and I-T2I models
in Section 3.2. We then highlight the utility of our approach in a geodiversity analysis in Section 3.3.
Finally, we study the impact of using different knobs to control these tradeoffs in Section 3.4.

Models. We consider different state-of-the-art conditional image generative models and group them by their
conditioning modalities. For T2I models, we consider several versions of LDM: LDM1.5, LDM2.1 (Rombach
et al., 2022), LDMXL (Podell et al., 2023)1, and LDMXL-Turbo (Sauer et al., 2023). For I-T2I models, we pick
LDM2.1-UnCLIP (Ramesh et al., 2022), RDM (Blattmann et al., 2022), and the neural image compression
model PerCo (Careil et al., 2024), which conditions an LDM with a quantized image representation together
with its caption2. We summarize the models considered in our analysis and their knobs in Tab. 1.

Datasets. We benchmark the models on a popular computer vision dataset, MSCOCO (Lin et al., 2014;
Caesar et al., 2018). In particular, we use the validation set from the 2014 split (Lin et al., 2014), which
contains 41K images, to compute the marginal metrics, and the 2017 split (Caesar et al., 2018), which
contains 5K images, to compute the conditional metrics. This choice is mostly to limit computational
costs, as conditional metrics require multiple samples for each conditioning. In addition, we benchmark
geographic representation with GeoDE (Ramaswamy et al., 2024), which contains images from everyday
objects in countries across six geographic regions. Following Hall et al. (2024), we balance the dataset across
27 objects, yielding 29K images and 162 unique {object} in {region} prompts.

Implementation details. We adopt the Diffusers library for the LDM models (von Platen et al.,
2022) and the official models’ repos for RDM and PerCo. We set the number of inference steps to 50

1For LDMXL we use the base model v1.0 without the refiner
2We note that PerCo usually caption the input image with a captioner, while in our case we get the caption from the dataset.
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Figure 1: Consistency-diversity (left), realism-diversity (middle) and consistency-realism (right) Pareto
fronts for T2I generative models. (top) marginal, (bottom) conditional metrics. Each dot is a configuration
of model’s knobs. Labeled dots (A-D) are visualized in Fig. 2.

(20 for PerCo as suggested in their paper) using deterministic sampling strategies, DPM++ (Lu et al.,
2022) for Diffusers models and DDIM (Song et al., 2020) for others. For the conditional metrics on
MSCOCO, we sample 10 images per prompt, using the 5,000 image-caption pairs of the 2017 validation
split, while for the marginal metrics we sample 1 image per conditioning, using 30,000 randomly selected
data points from the validation set of 2014. Note that, as MSCOCO contains multiples captions for each
image, we fix the first caption as prompt for generations. For GeoDE, we sample 180 images for each of
the {object} in {region} prompts for both conditional and marginal metrics. We disaggregate metrics
by groups, per Hall et al. (2024), to measure disparities between geographic regions. For metrics based
on DreamSim we use the ensemble backbone as recommended from the official repository. For marginal
metrics we use improved precision and recall (Kynkäänniemi et al., 2019) with 5 nearest neighbors and
Inception-V3 (Szegedy et al., 2015) features, using the implementation of prdc. For DSG, we leverage
GPT-3.5-turbo to generate questions from the prompts, and InstructBLIP (Dai et al., 2024) to make the
predictions. When performing top-m filtering we use CLIPScore with CLIP-ViT-H-14-s32B-b79K from
Hugging Face. Moreover, in Appendix C, we report results ablating different marginal and conditional
metrics. Finally, we ablate different values for each knob as reported in Appendix B.

3.1 Consistency-diversity-realism multi-objective for text-to-image models

In Fig. 1, we depict consistency-diversity, realism-diversity and consistency-realism Pareto fronts for open
source T2I generative models. In particular, Fig. 1 (top) depicts marginal realism and diversity metrics
while Fig. 1 (bottom) shows their conditional counterparts. Note that consistency is computed in the same
way (DSG) in both figures. We now discuss each of the pair-wise metrics Pareto fronts.
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Figure 2: T2I qualitative results on MSCOCO. A-D refer to the models marked in Fig. 1. (left) Two planes
flying in the sky over a bridge. (right) There is a dog holding a Frisbee in its mouth.

Consistency-diversity. The Pareto fronts in Fig. 1 (left, top and bottom), are composed of three models:
LDM1.5, LDM2.1 and LDMXL. We observe that improvement in diversity, both marginal (Recall) and
conditional (DreamSim score), comes at the expense of consistency (DSG). On the one hand, LDM2.1 and
LDM1.5 achieve the best marginal and conditional diversities, respectively. On the other hand, and perhaps
unsurprisingly, LDMXL reaches the best consistency ( ≥ 95% of DSG accuracy), while LDM1.5 and LDM2.1
dominate the middle region of the frontier. Moreover, by comparing these two models, we notice that Pareto
optimal hyperparameter configurations of LDM2.1 obtain slightly higher consistency scores. In Fig. 2, we
validate these observations showcasing samples from LDM1.5 (A) at high-diversity/low-consistency, LDM2.1
(B) from the middle of the frontier, and LDMXL (C) at high-consistency/low-diversity. Both in the case of
the “two planes” and of the “dog”, the variance of colors and backgrounds are reduced when visual quality
is increased. Other samples are in Appendix C.

Realism-diversity. The marginal realism-diversity (Precision-Recall) Pareto front in Fig. 1 (middle, top),
is composed of three models: LDM1.5, LDM2.1 and LDMXL-Turbo. In this case, we also observe a tradeoff:
higher marginal diversity coincides with lower realism for LDM1.5 and LDM2.1. LDMXL-Turbo obtains the
samples of highest realism. However, we observe that the realism gain compared to LDM2.1 is rather small
and leads to a steep decrease in sample diversity. We attribute this drop to the adversarial objective used
to distill LDMXL-Turbo from LDMXL, as also noted by Sauer et al. (2023). Interestingly, LDMXL does not
appear on the Pareto front, and it is even quite far away from it. This is probably due to LDMXL (without
refiner) generating smooth images lacking of high frequency details (e.g., see the dog in Fig. 2 and (Podell
et al., 2023)), and the marginal metrics, which are computed with InceptionV3 features, are sensitive to those
frequencies (Geirhos et al., 2018). Instead, by looking at the conditional metrics in Fig. 1 (middle), which are
based on DreamSim that extract more sematical features (Fu et al., 2023), we observe that LDMXL belongs
to the Pareto front together with LDM1.5, LDM2.1. In particular, LDMXL achieves the best conditional
realism, obtained at the expense of conditional diversity. Here, we remark that LDMXL-Turbo only gets
comparable (slightly lower) realism but considerably lower diversity. This difference is evident by looking at
C (LDMXL) vs. D (LDMXL-Turbo) in Fig. 2. When comparing Pareto optimal points of LDM1.5 and LDM2.1,
we note that LDM1.5 reaches slightly better conditional realism than LDM2.1.

Consistency-realism. In Fig. 1 (right, top and bottom) we observe that realism and consistency show
relatively strong positive correlation as improvement in one metric oftentimes leads to an improvement in
the other metric, with the correlation being stronger for the conditional metrics than for the marginal ones.
We observe that the Pareto front is dominated by LDMXL and LDMXL-Turbo model, highlighting how the
advancement of T2I generative models have favored consistency-realism over the diversity objective. Indeed,
we can also notice that in the distribution of non-Pareto-optimal points, LDM2.1 seems better than LDM1.5,
matching the historical development of these models.
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Key insights
• Progress in T2I models has been driven by improvements in realism and/or consistency. State-of-the art T2I

models improve consistency and/or realism by sacrificing representation diversity. Yet, improvements in realism are
correlated with improvements in consistency.

• More recent models should be used when the downstream task requires samples with high realism – LDMXL-Turbo–
and consistency – LDMXL–. However, older models – LDM1.5 and LDM2.1– are preferable for tasks that require
good representation diversity.

• Both marginal and conditional metrics display correlated Pareto fronts..50 .60 .70 .80 .90
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Figure 3: Consistency-diversity (left), realism-diversity (middle) and consistency-realism (right) Pareto
fronts for I2I and I-T2I generative models. (top) marginal, (bottom) conditional metrics. Each dot is a
configuration of model’s knobs. Labeled dots are visualized in Fig. 4

3.2 Pareto fronts of image&text-to-image models

Consistency-diversity. The marginal consistency-diversity Pareto front in Fig. 3 (left, top) does not show
a clear tradeoff, as it is only composed by PerCo neural compression models achieving both high consistency
and diversity. On the contrary, for the conditional metrics (left, bottom), the tradeoff is clearly noticeable.
The Pareto front is composed of three models: RDM, LDM2.1-UnCLIP, and PerCo, RDM reaching the best
conditional diversity, LDM2.1-UnCLIP populating a large portion – from mid to high consistency – of the
tradeoff, and PerCo achieving the highest consistency, but only for a small margin. We visualize samples
from these models in Fig. 4 (A,B,C, respectively), confirming the findings exposed by the metrics. It is
important to note that PerCo achieves the highest marginal diversity and the lowest conditional diversity;
this is expected given the goal of a compression model to yield good reconstructions of the data. Obtaining
high realism reconstructions allows for a good reconstruction of the real data manifold, which in turn results
in high recall. However, in this case, multiple reconstructions of the same image will all look very similar,
hence producing low conditional diversity.
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Figure 4: I-T2I qualitative results on MSCOCO2014. A-D refer to the models marked in Fig. 3. “Reference”
column shows the conditioning image.

Realism-diversity. Considering marginal metrics in Fig. 3 (middle, top), PerCo is again the only model
producing Pareto optimal points, with even higher realism (precision) and diversity (recall) scores. Also,
the non-Pareto optimal points are mostly disposed along the main diagonal of the plot, suggesting rather
small realism-diversity compromises. Instead, and once again similarly to the consistency-diversity case, the
Pareto fronts obtained from conditional diversity and realism (middle, bottom) contain all the three models
considered, with RDM model producing the most conditionally diverse samples and PerCo producing the
samples with the highest conditional realism. Thus, by optimizing the model towards conditional realism,
the conditional diversity is being sacrificed.

Consistency-realism. Similarly to T2I models, in Fig. 3 (right, top and bottom) we observe a correlation
between realism (marginal or conditional) and consistency. Perhaps unsurprisingly, PerCo achieves the best
results in terms of both realism and consistency, and is the only model producing Pareto optimal points.
Despite not making it to the Pareto, we can still compare LDM2.1-UnCLIP and RDM as their hyperparameter
configurations constitute two easily separable clusters, with RDM achieving much lower consistency and
realism than the worst hyperparameter configuration of LDM2.1-UnCLIP. We might attribute this difference
to the different dataset scale (millions vs billions) and model capacities (400M vs. 840M) of the RDM and
LDM2.1-UnCLIP, respectively.

I-T2I vs T2I Pareto fronts. Comparing the two Pareto fronts, the I-T2I front exhibits lower consistency
and conditional diversity, while it is higher as per marginal diversity and realism (both conditional and
marginal). This can be explained by the fact that the image conditioning imposes additional constraints on
the generation compared to the T2I case, resulting in an image that visually resembles the real/conditioning
image more closely. On the one hand, this ensures greater realism; on the other hand, it diminishes inter-
sample diversity and often distances the generation from the prototypical representation of the given text
prompt, thereby reducing text-image consistency.

Key insights
• Progress in I-T2I models has been driven by improvements in realism and/or consistency. State-of-the-art models

often trade realism for conditional diversity, this tradeoff is not visible when considering marginal diversity.
• Marginal diversity is dominated by the models that reconstruct more faithfully the conditioning image. This is not the

case for the conditional metric that is sensitive to conditional diversity that oftentimes is important in downstream
applications.

• Compression models, PerCo, should be prioritized when working on downstream applications that require high re-
alism and consistency. However, when the downstream application requires high representation diversity, RDM and
LDM2.1-UnCLIP are preferable.
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3.3 Pareto fronts for geographic disparities in T2I models.15 .20 .25
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Figure 5: Consistency-diversity (left), realism-diversity (middle) and consistency-realism (right) Pareto fronts
for T2I models on the GeoDE dataset. Consistency measures only the presence of the object in the image.
Each models’ configuration differ solely for guidance scale value.

We extend the use of consistency-diversity-realism Pareto fronts to characterize potential geographic
disparities of state-of-the-art conditional image generative models. In particular, we follow Hall et al. (2024)
and investigate geographic disparities of T2I models using the GeoDE dataset (Ramaswamy et al., 2024).

Consistency-diversity. Fig. 5 (left) depicts the region-wise consistency-diversity Pareto fronts. We
observe that Europe, the Americas, and Southeast Asia exhibit the best Pareto fronts, with consistently
higher diversity and consistency than Africa and West Asia. As previously noted, improving diversity
(computed as marginal or conditional) comes at the expense of consistency. When considering marginal
metrics (top), we observe that Europe and the Americas present the best Pareto fronts. Remarkably,
LDM1.5 appears in all region-wise Pareto fronts, whereas LDM2.1 appears remarkably less frequently, and

Eu
ro

pe

High realism

Af
ric

a

Eu
ro

pe

High realism

Af
ric

a

Figure 6: GeoDE qualitative. Left: A chair in {region}. Right: A car in {region}
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does not appear at all in the Pareto front of Europe. This is in line with prior works that demonstrate that
recent advancements on standard benchmarks may have come at the cost of reduced real world geographic
representations (Hall et al., 2024). However, we positively discover that disparity reduction occurs via
LDMXL which appears in the Pareto fronts of Africa, West Asia and South East Asia, bringing the results
of Africa closer to those of Europe or the Americas. Yet, LDMXL-Turbo only appears in the Pareto fronts of
some regions, and presents the highest consistency. We observe that the improvements achieved by LDMXL
for Africa are notably reduced when distilling the model into LDMXL-Turbo. When considering conditional
metrics (bottom), we see that all T2I models appear in the Pareto fronts. Once again, LDM1.5 shows the
highest diversity and LDMXL-Turbo the highest consistency. As in the previous case, LDMXL only appears
in the Pareto fronts of West Asia, Africa, and South East Asia, and bridges the consistency and diversity
performance gap between Africa and both Europe and the Americas. Yet, the improvements observed in
LDMXL for Africa disappear when considering LDMXL-Turbo.

Realism-diversity. Fig. 5 (middle) depicts the region-wise realism-diversity Pareto fronts. In the top panel
(precision vs. recall), we observe that, similarly to MSCOCO2014 (Fig. 1), realism and diversity performance
of T2I models present a clear tradeoff. Focusing on the regions, we see that the Pareto fronts of West Asia and
Africa are visibly worse than the others. In terms of models, LDM1.5 is the model that generally dominates
the Pareto fronts of all regions. Moving to conditional metrics (bottom), we notice similar trends. However,
LDMXL appears in the highest realism part of the Pareto front of Africa, and LDMXL-Turbo appears in
the highest realism part of the Pareto fronts of Europe and Southeast Asia. By looking at the inter-
region disparities along different areas of the Pareto fronts, we notice a gradual increase of the inter-region
variance when moving from high diversity (low realism) to high realism (low diversity). This result suggest
that maximizing realism might exacerbate stereotypes – as suggested by the lower diversity – and increase
geographical disparities – as suggested by the increased variance across region-wise Pareto fronts. We provide
a visual validation of this phenomenon in Fig. 6 (See Figs. 18 and 19 in Appendix C for more examples).

Consistency-realism. Fig. 5 (right) depics the region-wise consistency-realism Pareto fronts. As shown
in the figure, consistency and realism correlate as previously noticed on MSCOCO2014. The region-wise
stratification shows that West Asia and Africa are again the regions with the worst Pareto fronts. The regions
that exhibit the best Pareto fronts are East Asia, Southeast Asia, and Europe. Focusing on the top plot
(marginal metrics), the Pareto fronts of all regions except the Americas contain LDM1.5 and LDMXL-Turbo.
Note that LDM1.5 consistently stands out in terms of realism, whereas LDMXL-Turbo shines in consistency.
LDM2.1 and LDMXL are only present in the Pareto of the Americas and Africa, respectively. In the bottom
plot (conditional metrics), the situation is very similar, but we notice that for Europe and Southeast Asia
the Pareto is only composed by LDMXL-Turbo.

Key insights
• Improving generation diversity comes at the expense of consistency for all regions considered. Realism and diversity

also present a clear tradeoff for all regions, whereas realism and consistency appear correlated.
• Interestingly, the oldest model, LDM1.5 dominates the most recent ones, and consistently appears in the Pareto fronts

of all regions, when considering any pair-wise objective. However, LDMXL reduces the disparities between Africa and
Europe or the Americas in terms of diversity and consistency, as we move towards the high consistency part of the
Pareto fronts.

• Advances in T2I models reduce region-wise disparities in terms of consistency and increase the disparities in terms of
realism, while sacrificing diversity across all regions.

3.4 The impact of knobs on consistency-diversity-realism

Finally, in this section, we study the effect of different knobs that control consistency, diversity and realism
of conditional image generative models. In the interest of space, we focus on the conditional metrics, and
perform the analysis on MSCOCO2014.

Guidance scale. Fig. 7 depicts the effect of guidance scale on consistency-diversity (left panel),
realism-diversity (middle panel), and consistency-realism (right panel) objectives. By looking at the
consistency-diversity plot, we observe that increasing the guidance scale leads to improved consistency
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Figure 7: Ablation on guidance scale. To help readability, we report only a subset of the points presented
in Figs. 1 and 3, selecting runs with default values for other knobs.
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Figure 8: Ablation on top-m filtering.

at the expense of the diversity in most cases 3, with LDMXL showing the highest relative improvements.
Moreover, for all models we notice that the initial increase in the guidance scale – from 1.01 to 3.0 – leads
to the biggest consistency improvements. By looking at the realism-diversity plot, we note that the increase
in the guidance scale often leads to increase in realism at the expense of diversity, with LDM2.1-UnCLIP
and PerCo benefiting the most and the least from this knob, respectively. Moreover, we note that, in most
cases, increasing the guidance scales beyond 7.5 no longer results in realism improvements. Finally, the
consistency-realism plot reveals that by increasing the guidance scale the models generally improve both the
consistency and realism. However, too large values of guidance may lead to decreasing the image realism;
this happens for all models except of LDM2.1-UnCLIP and LDMXL.

Post-hoc filtering. Fig. 8 depicts the effect of applying top-m filtering. In the consistency-diversity plot
(left), we observe that top-m filtering (based on CLIPScore) leads to improvements in consistency for all
models – the lower the value of m, the higher the consistency. Unsurprisingly, the models that initially have
high consistency scores do not gain as much when leveraging top-m filtering as the models that start with
low consistency scores. Moreover, we observe that the post-hoc filtering consistently leads to a diversity
decrease. However, this decrease is less pronounced for the top-m filtering than for the guidance knob,
as is the case for the consistency increase (cf . Fig. 7). The diversity-realism plot (middle) shows that
post-hoc image filtering leads to an increase in the realism at the expense of diversity. By looking at the
realism-consistency plot (right), we note that the post-hoc filtering is an effective way to increase both
image realism and consistency, with the latter one improving faster.

3
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Figure 9: The effect of the neighborhood size on diversity, consistency and realism metrics. To improve
readability we report a zoomed-in view in the top right of each plot.
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Figure 10: The effect of the compression rate on diversity, consistency and realism metrics.

Retrieval augmentation neighborhood size. The amount of neighbors used in retrieval augmentation
may impact consistency, diversity, realism based on the semantic of the neighbors. In Fig. 9, we study the
impact of the neighborhood size k for RDM. We notice that, in absolute terms, the impact of k is minor in
all the pairs of metrics considered, suggesting that this knob is not as effective as the previous ones. In the
consistency-diversity plot (left), we observe that increasing k from 4 to 20 leads to a small but consistent
increase in diversity, while maintaining consistency. However, when increasing k from 1 to 4, we generally
see a small improvement in consistency. This result is expected as by increasing the neighborhood size we
might include more diverse neighbors, and as long as those neighbors are semantically similar to the query
image, they will not affect the consistency of the generation. In the realism-diversity plot (middle), we
observe similar trends: increasing k from 4 to 20 results in small diversity improvements with little to no
effect on realism, while increasing k from 1 to 4 results in small realism improvements. Interestingly, RDM
prompted with text achieves lower realism than the others models. Moreover, increasing k when the query
image is present together with the neighbors, slightly harms the realism. Finally, in the consistency-realism
plot (right), we note a positive correlation between the two metrics when text query or no query is used.

Compression rate. The reconstructions produced by an image compression model are highly dependent on
the selected compression rate, measured in terms of bit-per-pixel (bbp) of the compressed image, where high
compression rate means low bpp. In Fig. 10 we assess PerCo with different bitrates and at different guidance
scales. By looking at the left panel, we observe that decreasing the bitrate leads to notable increases in
conditional diversity, which is inline with qualitative observations made by Careil et al. (2024). Moreover,
these diversity increases only marginally reduce consistency, especially for guidance scales > 3, suggesting
that even at high compression rates, the reconstructed images maintain their semantics. By contrast, in
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realism-diversity (middle), higher compression leads to a pronounced loss in realism, suggesting that the
reconstructed images do not necessarily capture all the details from the original images. Finally, the results
presented for consistency-realism (right) suggest, once again, that consistency and realism are correlated.

Key insights
• Guidance scale trades diversity for consistency and realism. Consistency and realism improve with higher guidance

scale, but realism improvements saturate earlier than consistency improvements.
• Post-hoc filtering improves consistency and realism at the expense of diversity. Although both consistency and realism

improve with this knob, consistency increases at a faster pace. Overall, post-hoc filtering appears less effective than
guidance scale.

• The effect of retrieval augmentation on consistency-diversity-realism appears minor, questioning the knobs efficacy to
control the multi-objective.

• Compression rate affects image realism and diversity, but has little effect on consistency, as compression models tend
to maintain the image semantics.

4 Conclusions

We proposed consistency-diversity-realism Pareto fronts as a comprehensive framework to evaluate condi-
tional image generative models and their potential as visual world models. Using this framework, we have
been able to compare several existing models on the consistency-diversity-realism axes, which allowed us
to provide insights on which model is preferable over another based on the objective at hand. Our results
highlighted the presence of tradeoffs among the consistency-diversity and realism-diversity axes in all the
studied models. In particular, we discovered an interesting trend in the historical/temporal evolution of
image generative modes, with earlier models (e.g., LDM1.5 and LDM2.1) achieving higher diversity and more
balanced tradeoffs than latest models (e.g. LDMXL), which instead trade diversity to favour consistency and
realism. All in all, our analysis suggested that there is no best model and the choice of model should be
determined by the downstream application. We hope that Pareto fronts will become a new standard for
evaluating the potential of conditional image generative models as world models.

Limitations. Our analysis only considers open models as evaluating closed models is very expensive or
sometimes not possible. It would be interesting placing the dots of closed state-of-the-art models within
the multi-objective pareto front. Moreover, it would be interesting to extend the analysis to ablate further
knobs. For example, we have not included the knob of structured conditioning, like layouts, sketches or other
form of control typically used to increase consistency. Another aspect that our analysis does not ablate is the
effect of different data distribution on the consistency-diversity-realism pareto fronts –this aspect is currenty
very hard to study due to the closed data filtering recipes of most models. Furthermore, for certain evaluated
knobs like the retrieval augmented generation, the analysis could be deepen by considering for example the
effect of different retrieval databases or stronger/more recent models than RDM—unfortunately, there is a
scarcity of open models using RAG. Finally, our work suggests future research to understand whether the
observed tradeoffs are fundamental, or could be overcome by future generations of better generative models.
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A Related work

The evaluation of recent state-of-the-art image generative models is often carried with human studies focusing
on human preference (Ku et al., 2024; Dong et al., 2024; Kirstain et al., 2023; Otani et al., 2023; Zhou et al.,
2019), where human annotators are asked to choose among images generated with different models. They
are usually asked to select either the image they like the most or the image that is more aligned with the
prompt used to generate it. However, due to the high cost of human annotations, works like Xu et al. (2024)
use the collected human preferences to train a model to predicts them, in order to compute these metrics
at lower cost. While the outcome of all these studies is useful to detect the most appealing generations,
it provides only limited signal when the objective is to evaluate image generative models as world models,
where several aspects need to be evaluated simultaneously. To this end, other works have focused on
extending the evaluation to different aspects of the generation like fine-grained prompt-image alignment
(e.g., object counting and color consistency) (Ghosh et al., 2024; Hinz et al., 2020), compositionality (Li
et al., 2024; Huang et al., 2023; Zhu et al., 2023; Park et al., 2021) and reasoning (Cho et al., 2023). Finally,
HEIM (Lee et al., 2024) and HRS (Bakr et al., 2023) recently proposed to holistically evaluate T2I models,
addressing up to 13 aspects including robustness, generalization, bias, fairness, and others, in addition to
prompt-image alignment and image quality. However, some crucial aspects such as sample diversity are not
investigated in these works, and more importantly, the several aspects analyzed are not combined together
to understand the trade-offs and the multi-objective optimization of world models. In this regard, Yang et al.
(2024); Rame et al. (2024) have investigated the multi-objective optimization in the context of finetuning
foundation models including multimodal models and T2I models. In particular, these studies use Pareto
fronts of multiple objectives as rewards to be directly optimized via reinforcement learning. However, none
of these works considers the consistency-diversity-realism multi-objectives for conditional generative models
as we do.

B Implementation details

Tab. 2 reports the exact knob values ablated for each model.

Table 2: Knob values ablated per model.

Knob values

g-scale All LDM models: [1.01, 3.0, 5.0, 7.5, 10.0, 12.5];
RDM: [1.01, 1.5, 2.0, 3.0, 5.0]
PerCo: [1.01, 3.0, 5.0, 7.5]

top-m filtering All but PerCo: [10, 20, 50, 100]%
k-neighbors RDM: [1, 4, 8, 12, 20]
comp. rate PerCo: [0.01, 0.005, 0.002]bpp

C Additional results

C.1 Additional T2I results on MSCOCO2014

Additional qualitative. Figs. 11 to 14 depict images generated with models present in the Pareto fronts
at different locations. Four models are chosen in order to provide exemplars of different areas of the Pareto:
one model has the highest diversity, one has balanced consistency-diversity or realism-diversity, one has
the highest consistency, and one has the highest realism. The visual comparison of the different models
(different rows) validates a noticeable difference among the models in terms of consistency, diversity, and
realism. Moreover, we notice that in the case of highest diversity the models tend to generate noisy images,
sometimes hardly relatable with the prompt.
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Additional metrics. Figs. 15 to 17 ablate alternatives metrics for the consistency, diversity, and realism
axes. We observe no major difference with respect to the Pareto fronts reported in the main paper.

C.2 Additional results on GeoDE

Additional qualitative. Figs. 18 and 19 depict images generated with models present in the Pareto fronts
at different locations. Four models are chosen in order to provide exemplars of different areas of the Pareto:
one model has the highest diversity, one has balanced consistency-diversity or realism-diversity, one has the
highest consistency, and one has the highest realism. By comparing the different block of rows, we notice
that, as consistency and realism are increased, stereotypical generations of each region get exacerbated.
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(a) p : A big burly grizzly bear is show with grass in the background.

Hi
gh

 d
iv

er
sit

y
Ba

la
nc

ed
 c

-d
Hi

gh
 c

on
sit

en
cy

Hi
gh

 re
al

ism

(b) p : The red, double decker bus is driving past other buses.
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(c) p : Two planes flying in the sky over a bridge.

Figure 11: “High diversity”: LDM1.5; “Balanced c-d”: LDM2.1; “High consistency”: LDMXL, “High consis-
tency”: LDMXL-Turbo
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(c) p : Two planes flying in the sky over a bridge.

Figure 12: “High Diversity”: RDM; “Balanced c-d”: LDM2.1-UnCLIP; “High consistency and realism”: PerCo
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(a) p : A stop sign is mounted upside-down on it’s post.
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(c) p : A large white bowl of many green apples.

Figure 13: “High diversity”: LDM1.5; “Balanced c-d”: LDM2.1; “High consistency”: LDMXL, “High consis-
tency”: LDMXL-Turbo
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(c) p : A large white bowl of many green apples.

Figure 14: “High diversity”: RDM; “Balanced c-d”: LDM2.1-UnCLIP; “High consistency and realism”: PerCo
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Figure 15: Using CLIPScore for consistency.
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Figure 16: Using density and coverage (Naeem et al., 2020) for the marginal realism and diversity, respec-
tively.
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Figure 17: Using Vendi score (Friedman & Dieng, 2023) for diversity.
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Figure 18: GeoDE qualitative. Left: A jug in {region}. Right: A dog in {region}
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Figure 19: GeoDE qualitative. Left: A chair in {region}. Right: A car in {region}
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