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ABSTRACT

While text-to-image (T2I) generative models have become ubiquitous, they do not
necessarily generate images that align with a given prompt. While many metrics
and benchmarks have been proposed to evaluate T2I models for alignment, the
impact of the evaluation components (prompt sets, human annotations, evaluation
task) has not been systematically measured. We find that looking at only one slice

of data, i.e. one set of skills or human annotations, is not enough to obtain sta-
ble conclusions that generalise to new conditions or slices when evaluating T2I
models or alignment metrics. We address this by introducing an evaluation suite
of >100K annotations across four human annotation templates that comprehen-
sively evaluates models’ capabilities across a a range of methods for gathering hu-
man annotations and comparing models. In particular, we propose (1) a carefully
curated set of prompts – Gecko2K; (2) a statistically grounded method of com-
paring T2I models; and (3) a framework to systematically evaluate metrics under
three evaluation tasks – model ordering, pair-wise instance scoring, point-wise

instance scoring. Using this evaluation suite, we compare a wide range of metrics
and find that a given metric may do better in one setting but worse in another. As a
result, we introduce a new, interpretable auto-eval metric that is consistently bet-
ter correlated with human ratings than existing ones on our evaluation suite–across
different human templates and evaluation settings–and on TIFA160.

1 INTRODUCTION

Text-to-image (T2I) models (Saharia et al., 2022; Yu et al., 2022b; Betker et al., 2023; Rombach
et al., 2022) generate images of impressive quality, but the images are not necessarily aligned with
the prompt. The key to comparing T2I models is in the dataset of prompts and human annotations
we collect. Human annotation is slow and expensive, motivating the creation (Hu et al., 2023; Cho
et al., 2023a) of automatic-evaluation (auto-eval) metrics as a replacement. To evaluate both metrics
and models, human annotation is the gold standard. However, Clark et al. (2021) show that the
template design and annotator knowledge can significantly impact results in the text domain. In this
work, we create a comprehensive benchmark to answer the question: how do the choices around

prompts and human annotation templates impact our metric and modelling decisions?

There has been limited work analysing the impact on model and metric ranking due to these choices.
Previous work builds a benchmark by collecting annotations across one template and prompts that
cover a limited distribution of skills (see Table 1 for a comparison). A skill refers to a generation
challenge, such as text rendering or generating different colors and shapes and a sub-skill refers to
sub-challenges (e.g. generating longer text or Gibberish). Other work does not systematically gather
prompts to ensure a wide coverage of skills and properties with the exception of Zhu et al. (2023).
Cho et al. (2023a) does consider different lengths of prompts and Zhu et al. (2023) some skills but
this is done for a specific template and does not consider varied challenges for a given skill.

By looking at one slice of data (e.g., too few or too specific prompts or one human annotation tem-
plate), we are at risk of drawing conclusions that are only specific to that slice and do not generalise.
As a result, we collect a comprehensive dataset (Table 1) systematically over both different prompt
sources and also different skills and subskills. Given this prompt set, we generate images from four
T2I models and rate them across four different human annotation templates. By considering model
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Likert Word Level DSG(H) Side-by-Side
Model 1 (M1)

1-2-3-4-5

A cartoon cat in a

professor outfit , writing a

book with the title “ what

if a cat wrote a book .”

Q1: Is there a cat? 4
Q2: Is the cat a cartoon? 7
Q3: Is the cat in a professor outfit? 4
Q4: Is the cat writing a book? 4
Q5: Is the book title “what if a cat
wrote a book?” 7

=

Model 2 (M2)

1-2-3-4-5

A cartoon cat in a

professor outfit , writing a

book with the title “ what

if a cat wrote a book .”

Q1: Is there a cat? 4
Q2: Is the cat a cartoon? 7
Q3: Is the cat in a professor outfit? 4
Q4: Is the cat writing a book? 4
Q5: Is the book title “what if a cat
wrote a book?” 7

=

Model ordering M1 < M2 M1 > M2 M1 = M2 M1 = M2

Figure 1: Model ordering outcomes for one annotation template do not necessarily generalise
to other templates. We generate images for two models using the prompt: A cartoon cat in a

professor outfit, writing a book with the title “what if a cat wrote a book.”. By collecting extensive
human evaluation, we expose disparities across templates: outcomes between T2I models or auto-
eval metric obtained for one template may not generalise to others.

rankings across annotation templates for a given prompt, we can further determine how reliably a
prompt measures alignment.

Similarly, the choice of task may impact our results. Auto-eval metrics are typically evaluated
using correlation with human judgement. However, in practice, we would want to use metrics for
three tasks: (1) model ordering, ranking T2I models based on significant relationships; (2) pair-wise
instance scoring, choosing whether a given output is better than another and (3) point-wise instance
scoring, an estimation of a samples’ overall alignment. Evaluating metrics on one task is not enough:
we may think we are choosing the best metric for all three but we show that conclusions for one task
do not necessarily generalise. An overview of our contributions follows:

• Gecko: An evaluation suite for T2I alignment which includes a comprehensive set of 2K
prompts, 4 human templates to evaluate 4 T2I models to give ⇠100K human annotations
(Table 1). We get predictions from a wide range of auto-eval metrics and evaluate under 3
realistic settings (model ordering, pair-wise instance scoring, point-wise instance scoring).

• Using our suite, we demonstrate limitations of looking at a single slice of data as currently
done in the literature: different metrics and models show different results depending on the
prompt slice or template.

• Based on our analyses, we introduce an interpretable state-of-the-art QA/VQA metric. It
gets the most number of model comparisons right, and performs on average 40.5%/22%
better than interpretable baselines on our dataset in terms of pair-wise instance scoring and
point-wise instance scoring respectively, and 10.5% better on TIFA160 (Hu et al., 2023).

2 RELATED WORK

Benchmarking alignment in T2I models. Many benchmarks have been proposed to holistically
evaluate model capabilities within T2I alignment. Early benchmarks are small scale and created
alongside model development to perform side-by-side model comparisons (Saharia et al., 2022; Yu
et al., 2022b; Betker et al., 2023). Later work (e.g., TIFA (Hu et al., 2023), DSG1K (Cho et al.,
2023a) and HEIM (Lee et al., 2024)) focuses on creating holistic benchmarks by drawing from ex-
isting datasets (e.g., MSCOCO (Lin et al., 2014), Localized Narratives (Pont-Tuset et al., 2020) and
CountBench (Paiss et al., 2023)) to evaluate a range of capabilities including counting, spatial re-
lationships, and robustness. Other datasets focus on a specific challenge such as compositionality
(Huang et al., 2024a), contrastive reasoning (Zhu et al., 2023), text rendering (Tuo et al., 2023),
reasoning (Cho et al., 2023b), spatial reasoning (Gokhale et al., 2022), or specifically image order-
ing given an increasing number of errors (Saxon et al., 2024). The Gecko2K benchmark is similar

2
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Likert Word
Level

DSG(H) SxS # prompts
annotated

# anns

# img
# anns # Skills (All

Categories)
# Sub-Skills

DSG1K (Cho et al., 2023a) 7 7 X 7 1.06K 3 9.6K 11(13) 7
DrawBench (Saharia et al., 2022) 7 7 7 X 200 25 25K 7(11) 7
PartiP. (Yu et al., 2022b) 7 7 7 X 1.6K 5 16K 9(23) 7
TIFA160 (Hu et al., 2023) X 7 7 7 160 2 1.6K 8(12) 7
PaintSkills (Cho et al., 2023b) X 7 7 7 150 5 2.25K 3(3) 7
W-T2I (Zhu et al., 2023) X 7 7 7 200 3 2.4K 15(20) 9
HEIM (Lee et al., 2024) X 7 7 7 708 ⇠5.4 ⇠150K 6(6) 7
Gecko2K X X X X 2K ⇠13.5 ⇠108K 12(12) 36

Gecko(R) X X X X 1K ⇠13.5 ⇠54K 11(11) 7
Gecko(S) X X X X 1K ⇠13.5 ⇠54K 12(12) 36

Table 1: Comparison of annotated alignment datasets. We report the amount of human annotation
and skill division for each dataset. We can see that many datasets include only a handful of annotated
prompts or a small number of annotations (anns) per image or overall. No dataset besides Gecko2K
collects ratings across multiple different human annotation templates. We also include the number of
skills and sub-skills in each dataset. Again, Gecko includes the most number of sub-skills, allowing
for a fine-grained evaluation of metrics and models. When datasets do not include skills, we map
their categories into skills/sub-skills as appropriate.

in spirit to TIFA and DSG1K in that it evaluates a set of skills. However, in addition to drawing
from previous datasets—which may be biased or poorly representative of the challenges of a partic-
ular skill—we collate prompts across sub-skills for each skill to obtain a discriminative prompt set.
Moreover, we gather human annotations across multiple templates and many prompts (see Table 1).

Automatic metrics measuring T2I alignment. Inspired by work in image captioning, a widely
used auto-eval metric is CLIPScore (Hessel et al., 2021). However, such metrics poorly capture
finer-grained aspects of images (Bugliarello et al., 2023; Yuksekgonul et al., 2022). Motivated by
work in NLP on evaluation using entailment or QA metrics (Maynez et al., 2020; Kryściński et al.,
2019; Honovich et al., 2021), similar metrics (Yarom et al., 2024) have been devised for T2I align-
ment. However, such a metric may not generalise to new settings and is not interpretable—one
cannot diagnose why an alignment score is given. Visual question answering (VQA) methods such
as TIFA (Hu et al., 2023), VQ2 Yarom et al. (2024) and DSG (Cho et al., 2023a) do not require
task-specific finetuning and give an interpretable explanation for their score. These metrics create
QA pairs which are then scored with a VLM given an image and aggregated into a single score.
However, the performance of such methods is conditional on the behaviour of the underlying LLMs
used for question generation, and VLMs used for answering questions.

3 Gecko2K: THE GECKO BENCHMARK

We curate a fine-grained skill-based benchmark, Gecko2K, with good coverage by curating two sets
of prompts: one created systematically based on a set of skills and subskills (Gecko(S)) and one
generated by combining existing datasets but tagging them and resampling in order to ensure good
coverage over those tags (Gecko(R)). We generate Gecko(R) by extending the DSG1K (Cho et al.,
2023a) benchmark creation approach to use automatic tagging and improve the distribution of skills
and linguistic properties (see App. B for details on the automatic tagging). However, due to the
automatic tagging and nature of the underlying datasets, Gecko(R) is limited in the skills and sub-
skills it covers. To generate our systematic set we propose a hierarchical methodology combined
with LLM generation in order to ensure a systematic distribution across skills (e.g., counting) and
subskills (e.g., simple modifier: ‘1 cat’ vs additive: ‘1 cat and 3 dogs’). This notion of sub-skills
ensures we are capturing a wide distribution of prompts and not just one easy slice (e.g.generating
counts of 1-4 objects).

3.1 GECKO(R): RESAMPLING DAVIDSONIAN SCENE GRAPH BENCHMARK

The recent Davidsonian Scene Graph Benchmark (DSG1K, Cho et al. (2023a)) curates a list of
prompts from existing image-text datasets* but does not control for the coverage or complexity of a
given skill. The authors randomly sample 100 prompts and limit the prompt length to 200 characters.

*TIFA(Hu et al., 2023), Stanford Paragraphs (Krause et al., 2017), Localized Narratives (Pont-Tuset et al.,
2020), CountBench (Paiss et al., 2023), VRD (Lu et al., 2016), DiffusionDB Wang et al. (2022), Midjourney
(Turc & Nemade, 2023), PoseScript (Delmas et al., 2022), Whoops (Bitton-Guetta et al., 2023), DrawText-
Creative (Liu et al., 2022).
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The resulting dataset is imbalanced in terms of the distribution of skills. Also, as T2I models take in
longer and longer prompts, the dataset will not test models on that capability. We take a principled
approach in creating Gecko(R) by resampling from the base datasets in DSG1K for better coverage
and lifting the length limit. After this process, there are 175 prompts longer than 200 characters and
a maximum length of 570 characters. Also, this new dataset has better coverage over a variety of
skills than the original DSG1K dataset (see Fig. 6).

While resampling improves the distribution of skills, Gecko(R) has the following shortcomings.
Due to the limitations of automatic tagging, it does not include all skills we wish to explore (e.g.,
language). It also does not include sub-skills: e.g., text rendering prompts do not focus on numerical
text, or longer text (see Fig. 7). Finally, automatic tagging can be error prone.

3.2 GECKO(S): A CONTROLLED AND DIAGNOSTIC PROMPT SET

The aim of Gecko(S) is to generate prompts in a controllable manner for skills that are not well
represented in previous work. We divide skills into sub-skills to diversify the difficulty and content
of prompts. We take inspiration from psychology literature where possible (e.g., colour perception)
and known limitations of current T2I models.

Sub-skill Example

Numbers / sym-
bols

equation of ”3+4 = 7” etched into a rock

Length a neon sign with the words ”the future is already
here...” reflected on a rainy street. (n=29)

Gibberish graffiti made with bright pink paint on the con-
crete, saying ”fluff floop floof!”

Typography ”i love you” written in serif font in grass

Table 2: Subcategories and corresponding mo-
tivations for the text rendering skill.

Curating a controlled set of prompts with
an LLM. To generate a set of prompts semi-
automatically, we use an LLM. We first decide
on the sub-skills we wish to test for. For exam-
ple, for text rendering, we may want to test for
(1) English vs Gibberish to evaluate the model’s
ability to generate uncommon words, and (2)
the length of the text to be generated. We then
create a template which conditions the genera-
tion on these properties. Note that as we can
generate as much data as desired, we can define a distribution over the properties and control the
number of examples generated for each sub-skill. Finally, we run the LLM and manually validate
that the prompts are reasonable, fluent, and match the conditioning variables (e.g., the prompt has
the right length and is Gibberish / English). A sample template is given in App. B.3.

Gecko(S) make up. Using this approach and also some manual curation, we focus on twelve
skills falling into five categories (Fig. 5): (1) NAMED ENTITIES; (2) TEXT RENDERING; (3)
LANGUAGE/LINGUISTIC COMPLEXITY; (4) RELATIONAL: ACTION, SPATIAL, SCALE; (5) AT-
TRIBUTES: COLOR, COUNT, SURFACES (TEXTURE/MATERIAL), SHAPE, STYLE. For sub-skills,
we give a full breakdown for all skills in App. B.4. In Table 2 we give examples of the sub-skills and
corresponding prompts for TEXT RENDERING. Using this approach, we get better coverage over the
given sub-skills than other datasets (including Gecko(R)) as shown in Fig. 7.

4 COMPARING ANNOTATION TEMPLATES FOR MODELLING

We examine how the choice of human annotation template impacts results when comparing four
models: SD1.5 (Rombach et al., 2022), SDXL (Podell et al., 2023), Muse† (Chang et al., 2023),
and Imagen Vermeer (Vasconcelos et al., 2024). We consider absolute comparison templates (i.e.,
Likert, Word Level from Liang et al. (2023), and DSG(H) from Cho et al. (2023a)) which evaluate
models individually, and a template for relative comparison of two models (side-by-side or SxS). A
high-level visualisation of each template is in Fig. 1 and details in App. D.1. We further introduce a
principled method to determine significant model orderings based on human judgements.

4.1 DATA QUALITY

We validate the reliability of each template and examine if the choice of the template impacts the
quality of the collected data. Given the collected human ratings across the three templates, we
compute inter-annotator agreement (IAA) for each generative model by measuring Krippendorff’s

†Muse is based on the original model, but trained on different data sources.
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Figure 2: Comparing models using human annotations. We compare model rankings on
Gecko(S) and Gecko(R). Each grid represents a comparison between two models. Entries in the
grid depict results for WL, Likert (L), DSG(H) (D(H)), and side-by-side (SxS) scores. The > sign
indicates the left-side model is better, worse (<), or not significantly different (=) than the model on
the top.

↵, K↵ 2 [�1, 1] (Hayes & Krippendorff, 2007), where a value of 1 indicates perfect agreement and
0 chance (Zapf et al., 2016). Results reported in Table 3 show that agreements are all high, with
↵ > 0.5, except for the Likert—SD1.5 pair for Gecko(R); we conjecture this is due to the lower
quality images of SD1.5. Overall we find that fine-grained templates (WL and DSG(H)) are more
reliable (e.g., have higher IAA) and WL achieves the highest IAA for the diverse Gecko(R). We also
measure IAA for the SxS template in Table 11. We see lower IAA for the SxS template (though
still far above chance) compared to the fine-grained ones. The IAA is < 0.5 for 6 out of 12 model
comparisons. It seems, given the same number of annotators, the SxS template is less reliable.

Reliable prompts. Upon manual investigation, we find that differences in human ratings across
templates can arise when prompts are difficult to judge with respect to alignment (and not due to the
choice of the template): for example, when a prompt contains domain specific knowledge such as
“A bottle of Irn-Bru is sitting on a shelf” or subjective notions such as “a futuristic sculpture”. To
understand how this impacts our results, we consider a subset of the prompts that achieve high IAA
across templates and models. For each model and absolute template, we select the prompts for which
inter-rater disagreement

‡ is < 50% of the maximum disagreement observed across all prompts for
that model–template pair. The intersection of these prompts across models and templates gives our
reliable prompts. We additionally remove instances where all Likert ratings are Unsure to get 531
and 725 reliable prompts for Gecko(R) and Gecko(S), respectively. We first validate that using reli-
able prompts increases IAA on the SxS template (which was not used in the selection process) and
find that it increases the average K↵ from 0.45 to 0.47 on Gecko(R), and 0.49 to 0.54 on Gecko(S)
(see App. D.2 for details). In the next sections, we demonstrate how this subset of prompts increases
agreement among templates, but at the expense of removing some potentially meaningful prompts.

4.2 ABSOLUTE ANNOTATION TEMPLATES: COMPARING T2I MODELS

Average ratings. For the absolute annotation templates, previous work compares T2I models by
comparing the average ratings across examples. We report these values in Table 3 and find that the
chosen prompt set impacts which model is best (e.g. SDXL for Gecko(R) and Muse for Gecko(S)).
Moreover, the model with the lowest rating depends on both the prompt set and the template: given
Gecko(R), Imagen is worse if using Likert, but SD1.5 is worse if using DSG(H). This highlights the
importance of examining models in various conditions. When using T2I models in practice, we need
to make conclusions about model ordering with high confidence. We argue that this evaluation is
not enough: it does not measure if the difference between models is significant, which is particularly
important as models start to saturate. As a result, we introduce the model ordering task.

Model ordering. We verify the significance of outcomes by performing the Wilcoxon signed-rank
test with p < 0.001. Where results indicate the null-hypothesis is rejected (i.e., the distribution
of ratings is significantly different), we can say that one model is better than another. To deter-
mine which model is best, we compare the mean values of their ratings. In Fig. 2 we visualise the
outcomes for all model pairs across all templates. We see that Muse is not worse than any of the
contenders across all templates and prompt sets, except for 2 out of the 12 comparisons involving
Muse for Gecko(R); we determine it is the best overall model. In contrast with the results presented
in Table 3, where SDXL is identified as the best model for Gecko(R) across all the templates, we

‡Defined as the variance across image, word, and question ratings for Likert, WL and DSG(H) respectively.
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Gen. model
Inter annotator agreement Scores

Gecko(R) Gecko(S) Gecko(R) Gecko(S)
WL Likert DSG(H) WL Likert DSG(H) WL Likert DSG(H) WL Likert DSG(H)

Imagen 0.81 0.64 0.68 0.72 0.57 0.75 0.74±0.30 0.60±0.22 0.84±0.18 0.80±0.24 0.59±0.20 0.78±0.23

Muse 0.82 0.78 0.72 0.69 0.58 0.72 0.84±0.24 0.61±0.25 0.83±0.22 0.88±0.18 0.63±0.21 0.84±0.21

SDXL 0.75 0.76 0.57 0.67 0.56 0.70 0.87±0.19 0.68±0.22 0.86±0.16 0.80±0.23 0.60±0.21 0.79±0.22

SD1.5 0.66 0.36 0.66 0.69 0.59 0.74 0.86±0.16 0.67±0.22 0.76±0.23 0.61±0.33 0.49±0.21 0.68±0.27

Table 3: Inter-annotator agreement and ratings for all models and templates. We measure
inter-annotator agreement for each human evaluation template with Krippendorff’s ↵. Higher values
indicate better agreement. We also show the mean and std. deviation for the annotated judgements
of all templates after mapping the ratings to the [0, 1] interval, with 1 indicating perfect alignment.

observe that the significance results reveal that Muse and SDXL actually have similar performance,
showcasing the importance of determining significance before drawing conclusions.

Reliable prompts. Constraining Gecko(R) using the reliable subset decreases the number of con-
flicts between the different templates, but at the potential expense of comparing models on fewer,
potentially easier, prompts. Considering the two prompt sets, we observe that when using the syn-
thetic prompts, Gecko(S)-rel, all templates agree in Fig. 13 in Appendix D.2. We hypothesise this
is because the skills (e.g., color or shape), while hard to generate, are easy to evaluate within gen-
eration. For Gecko(R)-rel, we see disagreements between templates, where surprisingly, DSG(H)
often result in a different relation than the two other templates. We also consider the full prompt-set,
Gecko2K-rel, as it better captures the overall use cases of T2I models: we find that there is always a
majority agreement, and the two fine-grained templates (WL and DSG(H)) always agree.

Results by skill. We explore how human judgements vary by skill and template; average ratings for
each absolute template are shown in Fig. 23-Fig. 26 in the appendix. A lower average ratings per skill
across templates indicates how ‘challenging’ a given skill is: we can see that ‘lang compositional’,
‘lang complexity’, ‘count’ and ‘text’ are consistently difficult across templates.

4.3 RELATIVE ANNOTATION TEMPLATE: COMPARING T2I MODELS

Model ordering. For the SxS template, a model is considered better if it is chosen as preferred
more often than the competitor and the Unsure rating. To assess statistical significance, we perform
a similar procedure as for the absolute annotation templates using binary scores for the ratings: 0
when there was a tie, +1 when a model was preferred by the majority of raters, and -1 otherwise.

We also compare the SxS template with the considered absolute annotation templates by computing
the accuracy obtained by each absolute template when predicting the preferred model given by
SxS on Gecko2K-rel. Results presented in Table 12 in App.D.2 show that all absolute annotation
templates predict SxS judgements with similar average accuracy of around 70%, with DSG being
the overall best. This shows that, although the results of pairwise model comparisons are the same
in many cases for Gecko2K-rel as shown in Fig. 13, absolute and side-by-side annotations do not
necessarily correspond to the same model ordering at the datapoint level.

Takeaway 1: Fine-grained templates (i.e. ones that require multiple annotations per example),
WL and DSG(H), yield the highest inter-annotator agreement. Takeaway 2: All three absolute
annotation templates achieve similar, but not perfect, accuracy when predicting relative comparison
annotations for each datapoint. Takeaway 3: To compare models reliably, we need to measure the
significant model ordering. Model ordering depends on the human template and prompt set, but
some prompt sets lead to consistent agreement across templates (e.g., are discriminative) such as
our skill-based Gecko(S) or the larger, reliable set Gecko2k-Rel.

5 THE GECKO METRIC

An auto-eval metric is more useful if it is (1) interpretable—it reports where a model fails in ad-
dition to its overall goodness, (2) reference-free–does not require a reference distribution, and (3)
modular—can easily leverage better pretrained models for improved performance. As a result, we
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Gecko(R) Gecko(S)
WL Likert DSG(H) SxS WL Likert DSG(H) SxSMetrics Zero-shot

SpearmanR Acc SpearmanR Acc
Interpretable (QA/VQA)

TIFAPALM-2/PALI 3 0.26 0.34 0.28 41.7 0.39 0.32 0.39 53.2
DSGPALM-2/PALI 3 0.35 0.47 0.42 49.6 0.45 0.45 0.45 58.1

GeckoPALM-2/PALI 3 0.41 0.55 0.46 62.1 0.47 0.52 0.45 74.6
GeckoGemini Flash 3 0.43 0.58 0.48 72.2 0.54 0.59 0.56 78.8

Uninterpretable (single score)

CLIP 3 0.14 0.16 0.13 54.4 0.25 0.18 0.26 67.2
PyramidCLIP 3 0.26 0.27 0.26 64.3 0.22 0.25 0.23 70.7

VQAScoreGemini Flash 3 0.42 0.54 0.45 73.1 0.51 0.57 0.49 76.5
VNLI 7 0.37 0.49 0.42 54.4 0.45 0.55 0.45 72.7

Table 4: Correlation between auto-eval metrics and human ratings across annotation templates
on Gecko2K. With the same backend, Gecko outperforms all other QA/VQA metrics across all
evaluations and Gecko with GeminiFlash performs even better; it performs better or similar to the
strongest single-score approach (VQAScore). Bold: Top results. Underlined: Top results by category.

focus on improving recent work using a two-stage QA/VQA metric (Hu et al., 2023; Cho et al.,
2023a; Yarom et al., 2024) that matches this criteria (as opposed to metrics such as VNLI (Yarom
et al., 2024) and CLIP (Radford et al., 2021)). However, the QA/VQA pipelines are impacted by
the shortcomings of the pretrained models used. In particular, we identify two main limitations of
these pipelines and address them: the QA generation is not always grounded in the prompt as the
generated questions might not necessarily cover all key parts of the prompt and also there might be
hallucinated questions that are not related to the prompt. Moreover, at the VQA stage, the highest
scoring answer might still be low probably but is treated as the “right” answer—we model this un-

certainty in the VQA responses. Finally, we simplify the previously proposed methods by removing
complexities (such as scene graph generation in DSG) and show that our simplified and improved
setup is significantly better across the board.

A standard QA setup (e.g., Hu et al. (2023)) consists of three steps: (1) QA generation: prompting an
LLM to generate a set of binary question-answer pairs {Qi, Ai}Ni=1 on a given T2I text description
T . (2) VQA assessment: employing a VQA model to predict answer {A0

i}Ni=1 for the generated
questions given the generated image I . (3) Scoring: computing the alignment score by assessing the
VQA accuracy using Eq. (1):

Alignment(T, I) =
1

N

NX

i=1

[A0
i = Ai]. (1)

Groundedness: increasing coverage. To ensure the coverage of questions over the key elements
in a text sentence T , we split the QA generation into two steps. We first prompt the LLM to index
the visually groundable words in the sentence. For example, the sentence “A red colored dog.”
is transformed into “A {1}[red colored] {2}[dog].” Subsequently, using the text with annotated
keywords {W 0

i}Ni=1 as input, we prompt the LLM again to generate a QA pair {qi, ai} for each word
labelled {w0

i} in an iterative manner (see App. C for the prompting details). This two-step process
ensures a more comprehensive and controllable QA generation process, particularly for complex or
detailed text descriptions where the prompted LLM often selectively generates questions for specific
segments of the text while overlooking others.

Groundedness: removing hallucination. LLMs can hallucinate (Bang et al., 2023; Guerreiro et al.,
2023), leading to the generation of low-quality, unreliable QA pairs. We filter out hallucinated QA
pairs by taking inspiration from previous work in NLP (Maynez et al., 2020; Kryściński et al., 2019):
we employ a Natural Language Inference (NLI) model (Honovich et al., 2022) model for measuring
the factual consistency between the text T and QA pairs {Qi, Ai}. QA pairs with a consistency
score lower than a threshold r are removed, ensuring that the remaining QAs are about the prompt.

Uncertainty: VQA score normalisation. Finally, we improve aggregation of scores from the VQA
model. The reliance on binary judgement—strictly matching A0

i and Ai without considering the
predicted probability of A0

i—overlooks the inherent uncertainty in the predictions; a VQA model
can predict a very similar score for two answers. If we simply take the max, then we lose this notion

7
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Metrics
Gecko(R) Gecko(S)

WL Likert DSG(H) WL Likert DSG(H)
Pearson

TIFA baseline 0.21 0.32 0.25 0.39 0.32 0.39
+ coverage 0.28 0.34 0.32 0.41 0.33 0.40

+ VQA score norm 0.32 0.42 0.37 0.43 0.37 0.41
+ NLI filtering 0.38 0.51 0.42 0.46 0.48 0.46

Table 5: Validation of each component of
the proposed Gecko metric on Gecko2K.
We evaluate the utility of the three proposed
improvements by adding them to the TIFA
baseline one by one. They all bring higher
correlation with human judgement across the
board on Gecko2K.

Figure 3: Per skill results of different metrics.
Likert correlation for each skill; square black in-
dicates p-values > 0.05. Full results in App. F.

of uncertainty reflected in the scores. As a result, we normalise the scores as follows,

Alignment(T, I) =
1

N

NX

i=1

saP
i si

, (2)

where the negative log likelihood of answer A0
i is si and the correct answer is A0

a with score sa.

6 EXPERIMENTS ON AUTO-EVAL METRICS

We evaluate metrics across multiple prompt sets and templates to determine how they fare on the
three tasks: (1) Do they give a good numeric measurement of overall alignment – point-wise in-
stance scoring; (2) Are they good indicators on side by side comparisons – pair-wise instance
scoring; (3) Can they predict model ordering. We demonstrate that the task can impact rankings
but that our Gecko metric consistently performs best for Gecko(S)/(R) across tasks and on TIFA160.
App. F.1 gives a thorough description of each task and intuitive examples for how they differ.

6.1 EXPERIMENTAL SETUP

Metrics. We benchmark two types of auto-eval metrics. First, metrics that give a single score,
including contrastive models (CLIP (Radford et al., 2021), PyramidCLIP (Gao et al., 2022) and 16
variants in Sec. F.4); (2) VNLI (Yarom et al., 2024); and (3) VQAScore (Lin et al., 2024). Second,
interpretable QA/VQA based methods: TIFA (Hu et al., 2023), DSG (Cho et al., 2023a) and our
metric Gecko (with two QA/VQA backends).

Back-end models. For CLIP, we use a ViT-B/32 (Dosovitskiy et al., 2020) CLIP model and ViT-
B/16 (Dosovitskiy et al., 2020) PyramidCLIP model. For VQAScore, we use a GeminiFlash (Reid
et al., 2024) backend. For all the VQA-based metrics, we use PaLM-2 (Anil et al., 2023) as the
LLM and PaLI (Chen et al., 2022) as the VQA models in all the metrics for fair comparison. When
evaluating the Gecko metric, apart from using the LLM and VQA models above, we utilise a T5-11B
model from Honovich et al. (2022) for NLI filtering and set the threshold r at 0.005. This threshold
was determined by examining QA pairs with NLI probability scores below 0.05. We observed
that QAs with scores below 0.005 are typically hallucinations. We re-use the original prompts
from TIFA for generating QAs, and add coverage notation to their selected texts as described in
Sec. 5. We additionally explore how the performance of point-wise instance scoring changes for the
Gecko metric if we swap out the QA/VQA models for a stronger Gemini Flash model. Finally, some
baseline models are trained with a maximum text input length L,e.g. LCLIP = 77 and LVNLI = 82.
For these models, we only take the first L tokens from the text as input.

6.2 COMPARING AUTO-EVAL METRICS ON POINT-WISE INSTANCE SCORING

We first evaluate how well metrics measure T2I alignment at an instance level. We compute the
Pearson and Spearman Ranked correlation between the auto-eval scores and human scores on all the
instances in a prompt set. The evaluations are done on the Gecko benchmark and TIFA160.

Component validation on proposed Gecko metric. We validate the utility of the three key
improvements we proposed: coverage, linear normalisation, and NLI filtering. Starting from our

8
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Metrics QA VQA Spearman’s ⇢ Kendall’s ⌧
ROUGE-L

N/A N/A

0.33 0.25
METEOR 0.34 0.27

SPICE 0.33 0.23
CLIP 0.33 0.23

TIFA
GPT-3 BLIP-2 0.56 0.44
GPT-3 MPLUG 0.60 0.47
PALM PaLI 0.43 0.32

DSG PALM PaLI 0.57 0.46
Gecko PALM PaLI 0.64 0.50

Table 6: Comparing different metrics by
their correlation with human Likert rat-
ings on TIFA160. The Gecko metric out-
performs the others by a significant margin.

Metrics WL Likert SxS
Pearson Acc

VideoCLIP 0.18 0.21 28.0
VQAScoreGemini Flash 0.30 0.33 52.0

GeckoGemini Flash 0.43 0.45 55.8

Table 7: Correlation between auto-eval
metrics and human ratings for text-to-
video evaluations. Gecko outperforms other
auto-eval metrics on VBench overall consis-
tency prompts, demonstrating the generality
of the approach to other modalities.

baseline TIFA, we include the improvements one at a time. The results in Table 5 uniformly demon-
strate a positive impact. NLI filtering brings the largest boost among the three, underscoring the
limitation of the PaLM-2 LLM in reliably generating high-quality and accurate QA pairs.

Results on Gecko benchmark We next compare auto-eval metrics. We start with metrics (CLIP and
its variants, TIFA, DSG, Gecko) that do not rely on fine-tuning. As shown in Table 4, the Gecko met-
ric outperforms other QA/VQA metrics using the same backend by a wide margin. Swapping out
the backend of Gecko with a stronger GeminiFlash model leads to large improvements across the
board. Contrastive models (e.g. CLIP variants) are worse than QA-based metrics, but VQAScore is
a strong baseline. Finally, we compare Gecko with VNLI, our supervised baseline, as it is fine-tuned
for text–image alignment on a mixed dataset containing COCO (which is used in Gecko(R)), while
other metrics are zero-shot. It is worth noting that the correlation scores of different auto-eval metrics
are generally higher on Gecko(S) than on Gecko(R). This validates that our skills-based benchmark
has a more objective and balanced measure of alignment. We observe similar conclusions on the
Gecko2K Reliable Prompts (Gecko2K-Rel) subset; results are in App. F.3.

TIFA160 results. We compare the Gecko metric with other metrics on TIFA160 (Hu et al., 2023),
a set of 160 text–image pairs, each annotated with two Likert ratings. In Table 6, we list the results
reported in Hu et al. (2023) and Cho et al. (2023a), and compare them with Gecko as well as our
re-implementation of TIFA / DSG. Gecko has the highest correlation, with an average correlation
0.07 higher than that of DSG, when using the same QA and VQA models. This shows that the power
of our proposed metric is from the method itself, not from the advance of models used.

Skill-based evaluation with Gecko. To better understand the differences between auto-eval metric-
s/annotation templates with respect to various skills, we visualise a breakdown of skills in Gecko(S)
in Fig. 3 and App. E.1, F.5. The metrics have different strengths: e.g., we see that while Gecko,
VQAScore, VNLI metrics are consistently good across skills, the Gecko metric is better on more
complex and compositional language, DSG is best on compositional prompts, and VNLI is better on
named entities. As with the overall results, these per skill conclusions seem to hold across templates.

Qualitative examples. We visualise examples in Fig. 4. For the negation example, the reason
DSG(H) gives inconsistent results with WL/Likert here is that the question generation is confused
by the negation (asking if there are cars as opposed to no cars). We can also see that VNLI and
DSG mistakenly think none of the images are aligned. VNLI and DSG perform better on the shape
prompt but VNLI scores Imagen incorrectly and DSG gives hard scores per question (0 or 1) and so
it is sometimes not able to capture subtler differences in the human ratings.

6.3 COMPARING AUTO-EVAL METRICS ON PAIR-WISE INSTANCE SCORING

We measure how well an auto-eval metric is able to select between two generations given a prompt.
We compare metrics’ predictions with the human choices we collected by computing accuracy–the
percentage of times the metric gets the comparison right. Results are in the SxS column in Table 4.
Although Gecko was the clear winner on point-wise instance scoring, single-score metrics are gen-
erally very good at SxS comparison. PyramidCLIP was worse than TIFA and DSG on point-wise
instance scoring, but it has a much higher SxS accuracy, showing that different human annotation
templates do not always give the same result, and single-score metrics can be a good estimator on
the pair-wise instance scoring task. While VQAScore is better than the Gecko metric on SxS com-
parison on Gecko(S), Gecko is better on Gecko(R) and the Gecko metric is the only interpretable
metric that has better or comparable performance with single-score metrics on SxS comparisons.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Skill (subskill): lang/complexity (negation) Shape: (hierarchical)
Prompt: A bridge with no cars on it. The number 0 made of smaller circles

Imagen Muse SDXL SD1.5 Imagen Muse SDXL SD1.5

WL: 1. 1. 1. 1. 1. 1. 0. 0.67
Likert: 1. 1. 1. 0.87 1. 0.87 0.2 0.67

DSG(H): 0.5 0.5 0.5 0.67 0.92 1. 0. 0.89

Gecko: 0.96 0.94 0.93 0.91 0.9 0.95 0.55 0.75
DSG: 0.25 0.25 0.25 0.25 1. 1. 0. 0.
VNLI: 0.4 0.42 0.32 0.30 0.36 0.79 0.24 0.32

Figure 4: Qualitative results. We show image generations of the four T2I models on prompts in
Gecko(S), with the human annotation ratings and auto-eval scores.

6.4 COMPARING AUTO-EVAL METRICS ON MODEL ORDERING

A good auto-eval metric should be able to give an overall model ordering for a set of prompts. To
decide on a ground-truth ordering, we use Gecko2K-rel as it is the largest subset that has highest
agreement across templates. We take the majority vote relationship in Fig. 13 as the ground truth. We
compare these results to the significant relationships found using the auto-eval metrics in App. F.2
(we only use PaLM/PaLI-2 backends if there is a choice). We find that CLIP performs poorly,
confusing wins with losses. All other auto-eval metrics perform well, never confusing a win with a
loss but sometimes not finding significant relations when there is one or vice versa. Gecko correctly
finds and predicts all significant relations, unlike the other metrics.

6.5 EXTENDING GECKO TO OTHER MODALITIES

To explore the generality of our approach on different modalities, we validate it on text-to-video
generation. Similarly to image evaluations, we choose a prompt set from the VBench bench-
mark (Huang et al., 2024b) and compare the following text-to-video models: Lumiere (Bar-Tal et al.,
2024), Phenaki (Villegas et al., 2022) and WALT (Gupta et al., 2023). For human evaluation, we
consider absolute (i.e., Likert, Word Level) and side-by-side comparison templates. For automatic
evaluation, we benchmark contrastive models (i.e., VideoCLIP; Xu et al. 2021) and VQA-based
metrics. For VQA-based metrics, we extend the VQAScore and our fine-grained Gecko metric on
videos using Gemini Flash, which can process long context multimodal inputs. We present the re-
sults in Table 7 and find that the Gecko metric agrees more closely with human judgement across all
human templates than other metrics. See Appendix G for more details on the experimental setting.

Takeaway: Although Gecko is the best metric on different human templates and modalities, we
find that the ranking of different auto-eval metrics can change depending on whether they are
evaluated on an instance-level template (e.g., Likert or DSG(H)), a comparative template (e.g. SxS)
or for model ordering. It is important to evaluate metrics across a range of settings and in particular
on one relative and one absolute template if under budget constraints.

7 CONCLUSIONS

We introduce the Gecko evaluation suite, a comprehensive set of prompts, human ratings across
templates, and tasks to evaluate T2I models and alignment metrics. We find that looking at a single
slice of the data (e.g., a limited range of skills, one annotation template, or one evaluation task) can
give misleading observations of the relative benefits of one model or metric over another. Instead, we
show that we need to use a comprehensive prompt set (or manually evaluated “reliable prompts”) to
achieve consistent model orderings and thereby confidence in model rankings. Given this evaluation
suite, we demonstrate that our Gecko metric performs consistently best across three tasks, measuring
how metrics perform in scoring each image–text instance with respect to their alignment as well as
ranking models. Our work highlights the importance of standardising the evaluation framework with
respect to the prompt sets, the annotation templates, and metrics used. We believe that this is crucial
when comparing research on models and metrics, and also to make informed decisions.
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8 ETHICS STATEMENT

When gathering our dataset, we ensure that raters are compensated and provide consent as described
in App. D.1.1. We also run safety filters over the generated images before giving them to the raters.
This work is a step towards better evaluation of text-to-image models which are known to halluci-
nate. It gives tools to others developers and practitioners to properly understand and evaluate T2I
models in the future.

9 REPRODUCIBILITY STATEMENT

We give extensive details of our setup in the Appendix. For human annotation, we visualise the
templates used and give extensive detail on how these raw ratings are aggregated in App. D.1. For
the dataset collation, we give the few shot prompts used to generate tags and templates: the few shot
prompt for Gecko(R) is given in Listing 1. For Gecko(S), we give our full decomposition of skills
in Table 8 with examples and an explanation of how we generated prompts for each specific skill in
App. B.4 with sample few shot prompts. For metrics, we give full details of the baselines in Sec. 6.1
and the additional CLIP baselines in Sec. F.4. For Gecko metrics, we give the few shot prompt for
generating coverage in Listing 3 and for generating the QAs in Listing 4.
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