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ABSTRACT

Watermarking is a commonly used strategy to protect creators’ rights to digital im-
ages, videos and audio. Recently, watermarking methods have been extended to
deep learning models – in principle, the watermark should be preserved when an
adversary tries to copy the model. However, in practice, watermarks can often be
removed by an intelligent adversary. Several papers have proposed watermarking
methods that claim to be empirically resistant to different types of removal attacks,
but these new techniques often fail in the face of new or better-tuned adversaries.
In this paper, we propose the first certifiable watermarking method. Using the
randomized smoothing technique proposed in Chiang et al., we show that our wa-
termark is guaranteed to be unremovable unless the model parameters are changed
by more than a certain `2 threshold. In addition to being certifiable, our watermark
is also empirically more robust compared to previous watermarking methods.

1 INTRODUCTION

With the rise of deep learning, there has been an extraordinary growth in the use of neural networks
in various computer vision and natural language understanding tasks. In parallel with this growth
in applications, there has been exponential growth in terms of the cost required to develop and train
state-of-the-art models (Amodei & Hernandez, 2018). For example, the latest GPT-3 generative
language model (Brown et al., 2020) is estimated to cost around 4.6 million dollars (Li, 2020) in
TPU cost alone. This does not include the cost of acquiring and labeling data or paying engineers,
which may be even greater. With up-front investment costs growing, if access to models is offered
as a service, the incentive is strong for an adversary to try to steal the model, sidestepping the costly
training process. Incentives are equally strong for companies to protect such a significant investment.

Watermarking techniques have long been used to protect the copyright of digital multimedia (Har-
tung & Kutter, 1999). The copyright holder hides some imperceptible information in images, videos,
or sound. When they suspect a copyright violation, the source and destination of the multimedia can
be identified, enabling appropriate follow-up actions (Hartung & Kutter, 1999). Recently, water-
marking has been extended to deter the theft of machine learning models (Uchida et al., 2017;
Zhang et al., 2018). The model owner either imprints a predetermined signature into the parameters
of the model (Uchida et al., 2017) or trains the model to give predetermined predictions (Zhang
et al., 2018) for a certain trigger set (e.g. images superimposed with a predetermined pattern).

A strong watermark must also resist removal by a motivated adversary. Even though the watermarks
in (Uchida et al., 2017; Zhang et al., 2018; Adi et al., 2018) initially claimed some resistance to var-
ious watermark removal attacks, it was later shown in (Shafieinejad et al., 2019; Aiken et al., 2020)
that these watermarks can in fact be removed with more sophisticated methods, using a combination
of distillation, parameter regularization, and finetuning. To avoid the cat-and-mouse game of ever-
stronger watermark techniques that are only later defeated by new adversaries, we propose the first
certifiable watermark: unless the attacker changes the model parameters by more than a certain `2
distance, the watermark is guaranteed to remain.

To the best of our knowledge, our proposed watermarking technique is the first to provide a cer-
tificate against an `2 adversary. Although the bound obtained by the certificate is relatively small,
we see it as a first step towards developing watermarks with provable guarantees. Additionally we
empirically find that our certified watermark is more resistant to previously proposed watermark
removal attacks (Shafieinejad et al., 2019; Aiken et al., 2020) compared to its counterparts – it is
thus valuable even when a certificate is not required.
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2 RELATED WORK

Watermark techniques (Uchida et al., 2017) proposed the first method of watermarking neural
networks: they embed the watermark into the parameters of the network during training through
regularization. However, the proposed approach requires explicit inspection of the parameters for
ownership verification. Later, (Zhang et al., 2018; Rouhani et al., 2018) improved upon this ap-
proach, such that the watermark can be verified through API-only access to the model. Specifically,
they embed the watermark by forcing the network to deliberately misclassify certain “backdoor”
images. The ownership can then be verified through the adversary’s API by testing its predictions
on these images.

In light of later and stronger watermark removal techniques (Aiken et al., 2020; Wang & Ker-
schbaum, 2019; Shafieinejad et al., 2019), several papers have proposed methods to improve neural
network watermarking. (Wang & Kerschbaum, 2019) propose an improved white-box watermark
that avoids the detection and removal techniques from (Wang & Kerschbaum, 2019). (Li et al., 2019)
propose using values outside of the range of representable images as the trigger set pattern. They
show that their watermark is quite resistant to a finetuning attack. However, since their trigger set
does not consist of valid images, their method does not allow for black-box ownership verification
against a realistic API that only accepts actual images, while our proposed watermark is effective
even in the black-box setting.

(Szyller et al., 2019) proposed watermarking methods for models housed behind an API. Unlike our
method, their method does not embed a watermark into the model weights itself, and so cannot work
in scenarios where the weights of the model may be stolen directly, e.g. when the model is housed
on mobile devices.

Finally, (Lukas et al., 2019) propose using a particular type of adversarial example (“conferrable”
adversarial examples) to construct the trigger set. This makes the watermark scheme resistant even
to the strongest watermark removal attack: ground-up distillation which, starting from a random
initialization, trains a new network to imitate the stolen model (Shafieinejad et al., 2019). However,
for their approach to be effective, they need to train a large number of models (72) on a large amount
of data (e.g. requiring CINIC as opposed to CIFAR-10). While our approach does not achieve this
impressive resistance to ground-up distillation, it is also much less costly.

Watermark removal attacks However, one concern for all these watermark methods is that a
sufficiently motivated adversary may attempt to remove the watermark. Even though (Zhang et al.,
2018; Rouhani et al., 2018; Adi et al., 2018; Uchida et al., 2017) all claim that their methods are re-
sistant to watermark removal attacks, such as finetuning, other authors (Aiken et al., 2020; Shafieine-
jad et al., 2019) later show that by adding regularization, finetuning and pruning, their watermarks
can be removed without compromising the prediction accuracy of the stolen model. Wang & Ker-
schbaum (2019) shows that the watermark signals embedded by (Uchida et al., 2017) can be easily
detected and overwritten; (Chen et al., 2019) shows that by leveraging both labeled and unlabeled
data, the watermark can be more efficiently removed without compromising the accuracy. Even if
the watermark appears empirically resistant to currently known attacks, stronger attacks may even-
tually come along, prompting better watermark methods, and so on. To avoid this cycle, we propose
the first certifiably unremovable watermark: given that parameters are not modified more than a
given threshold `2 distance, the watermark will be preserved.

Certified defenses for adversarial robustness Our work is inspired by recent work on certified
adversarial robustness, (Cohen et al., 2019; Chiang et al., 2019; Wong & Kolter, 2017; Mirman et al.,
2018; Weng et al., 2018; Zhang et al., 2019; Eykholt et al., 2017; Levine & Feizi, 2019). Certified
adversarial robustness involves not only training the model to be robust to adversarial attacks un-
der particular threat models, but also proving that no possible attacks under a particular constraint
could possibly succeed. Specifically, in this paper, we used the randomized smoothing technique
first developed by (Cohen et al., 2019; Lecuyer et al., 2019) for classifiers, and later extended by
(Chiang et al., 2020) to deal with regression models. However, as opposed to defending against an
`2-bounded threat models in the image space, we are now defending against an `2-bounded adver-
sary in the parameter space. Surprisingly, even though the certificate holds only when randomized
smoothing is applied, empirically, when our watermark is evaluated in a black-box setting on the
non-smoothed model, it also exhibits stronger persistence compared to previous methods.
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3 METHODS

Below, we introduce the formal model for neural network watermarking, and the watermark removal
adversaries that we are concerned with. Then, we describe some background related to randomized
smoothing, and show that by using randomized smoothing we can create a watermark that provably
cannot be removed by an `2 adversary.

3.1 WATERMARKING

White box vs black box We first introduce the distinction between black box and white box
settings from the perspective of the owner of the model. In a white box setting, parameters are
known. In a black box setting, the model parameters are hidden behind an API. We consider cases
where the owner may have either black box or white box access to verify their watermarks.

Black-box watermarking In backdoor-based watermarking, the owner employs a “trigger set” of
specially chosen images that has disjoint distribution compared to the original dataset. If another
model makes correct predictions on this trigger set, then this is evidence that the model has been
stolen. A backdoor-based watermark can be verified in a black-box setting.

The trigger set may be chosen in various ways. (Zhang et al., 2018) considered three different
methods of generating the trigger set: embedded content, pre-specified noise, and abstract images.
Embedded content methods embed text over existing datasets and assigns all examples with the text
overlay the same fixed label. Pre-specified noise overlays Gaussian noise on top of existing dataset
and again assigns the examples with the same fixed label. For abstract images, a set of images from
a different domain is additionally used to train the network. For example, MNIST images could
form the trigger set for a CIFAR-10 network, so if an adversary’s model performs exceedingly well
on MNIST images, then the adversary must have used the stolen model. Examples of trigger set
images are presented in Figure 1.

Our proposed method builds upon such backdoor-based watermarks, so our marked model can also
naturally be verified in the black-box manner even though our certificate is only valid in the white-
box setting described in the next section.

White-box watermarking White-box watermarks in general embed information directly into the
parameters. Our proposed watermark does not directly embed information into parameters, but
parameter access is required for verification, which makes our proposed method a white-box water-
mark. The rationale for using such a white-box watermark is detailed below.

In the black-box setting, to verify model ownership, we generally check that the trigger set accuracy
function from parameters to accuracy f(θ) is larger than a threshold (Shafieinejad et al., 2019). The
trigger set accuracy function takes in model parameter as input and outputs the accuracy on the
trigger set. Since directly certifying the function is hard, we first convert the trigger set accuracy
function f(θ) to its smoothed counterpart h(θ), and then check that h(θ) is greater than the threshold
t for ownership verification. Practically, one converts the base function to the smoothed function by
injecting random noise into the parameters during multiple trigger set evaluations, and then taking
the median trigger set accuracy as ĥ. Note that this verification process requires access to parameters,
so ownership verification using ĥ is considered a white-box watermark.

Watermark Removal Threat Model In our experiments, we consider three different threat mod-
els to the watermark verification: 1) distillation, 2) finetuning, and 3) an `2 adversary.

In the distillation threat model (1), we assume that the adversary initializes their model with our
original model, and then trains their model with distillation using unlabeled data that comes from
the same distribution. In other words, the adversary uses our original model to label the unlabeled
data for finetuning. (Shafieinejad et al., 2019) propose first adding some regularization during the
initial part of the attack to remove the watermark, and then later turning off the regularization to
fully recover the test accuracy of the model. We experiment with this distillation attack both with
and without regularization.
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In the finetuning threat model (2), the adversary has its own labeled dataset from the original data-
generating distribution. This adversary is strictly stronger compared to the distillation threat model.
In our experiments, we make the conservative assumption that the adversary has exactly the same
amount of data as the model owner.

The `2 adversary (3) obtains the original model parameters, and then is allowed to move the param-
eters at most a certain `2 distance to maximally decrease trigger set accuracy. Even though the `2
adversary is not a completely realistic threat model, we argue similarly to the adversarial robustness
literature (Carlini et al., 2019) that being able to defend against a small `2 adversary is a requirement
for defending against more sophisticated attacks. In our experiments, we empirically find that a large
shift of parameters in `2 distance is indicative of the strength of the adversary. For example, training
the models for more time, with a larger learning rate, or using ground truth labels as opposed to dis-
tillation are all stronger attacks, and as expected, they both remove the watermark faster and move
the parameters by a greater `2 distance (Table 2). Additionally, given a local Lipschitz constant of L
and a learning rate of r, the number of steps required to move outside of the ε-`2 ball can be upper
bounded by ε/(rL), and we think the number of steps is a good proxy to the computational budget
of the adversary.

3.2 WATERMARK CERTIFICATION

For our certificates, we focus on the `2 adversary described above: the goal of certification is to
bound the worst-case decrease in trigger set accuracy, given that the model parameters do not move
too far in `2 distance. Doing this directly is in general quite difficult (Katz et al., 2019), but using
techniques from (Chiang et al., 2020; Cohen et al., 2019), we show that by adding random noise to
the parameters it is possible to define a smoothed version of the model and bound the change in its
trigger set accuracy.

Deriving the certificate Before we start describing the watermark certificate, we will first intro-
duce the percentile smoothed function from (Chiang et al., 2020).

Definition 1 Given f : Rd −→ R and G ∼ N(0, σ2I), we define the percentile smoothing of f as

hp(x) = sup{y ∈ R | P[f(x+G) ≤ y] ≤ p} (1)

hp(x) = inf{y ∈ R | P[f(x+G) ≤ y] ≥ p} (2)

As mentioned in (Chiang et al., 2020), the two forms hp and hp are needed to handle edge cases
with discrete distributions. While hp may not admit a closed form, we can approximate it by Monte
Carlo sampling (Cohen et al., 2019).

There are some differences from existing adversarial robustness work in how we apply these bounds.
First, while the robustness literature applies the smoothing results to bound outputs of the classifier
itself, we apply smoothing over the trigger set accuracy function to bound changes in trigger set
accuracy. Second, we are applying smoothing over parameters as opposed to input. Our trigger
set accuracy function f(X, θ) in general takes in two arguments: X , a set of images, and θ, the
model parameters. In the case of adversarial robustness, the model parameters θ are constant after
training while the attacker perturbs the image x. But in our case, the trigger set X remains constant
and the adversary can only change θ. Therefore, to defend against our specific adversary, we apply
smoothing over θ as opposed to X . Since the trigger set X is constant for our case, we simply write
the trigger set accuracy function as f(θ) for the remaining part of the paper.

In our proposed watermark, we use the median smoothed version (h50%) of the trigger set accuracy
function for ownership verification. Empirically evaluating h50% essentially involves adding noise
to several copies of the model parameters, calculating trigger set accuracy for all of them, and
taking the median trigger set accuracy. The details of evaluating smoothed trigger set accuracy are
described in Algorithm 1

Even though the evaluation process of h50% is more involved compared to the base trigger set accu-
racy function, the smoothed version allows us to use Lemma 1 from (Chiang et al., 2020) to bound
the worst case change in the trigger set accuracy given bounded change in parameters, as shown in
Corollary 1.
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Corollary 1 A median-smoothed function h50% with adversarial perturbation δ can be bounded as

hΦ(−ε/σ)(θ) ≤ h50%(θ + δ) ∀ ‖δ‖2 < ε, (3)

where Φ is the standard Gaussian CDF.

Using the above corollary, we can then bound the worst case trigger set accuracy given the ε ad-
versary by evaluating hΦ(−ε/σ)(x). Even though hΦ(−ε/σ)(x) does not have a closed form, we can
calculate an empirical estimator that would lower bound it with sufficient confidence c. We detail
steps for calculating the estimator in Algorithm 1.

Algorithm 1 Evaluate and Certify the Median Smoothed Model
function TRIGGERSETACCURACY(f , θ, σ, n)

ŵ ← AddGaussianNoise(θ, σ, n) . n simulations of noised parameter w
â← f(θ̂) . evaluate trigger accuracy for each simulation of w
â← Sort(â) . Sort simulated accuracies
amedian ← âb0.5nc . Take the median
return amedian

function TRIGGERSETACCURACYLOWERBOUND(f , θ, σ, ε, n, c)
θ̂ ← AddGaussianNoise(θ, σ, n) . n simulations of noised parameter w
â← f(θ̂) . evaluate trigger accuracy for each simulation of θ
â← Sort(â) . Sort simulated accuracies
k ← EmpiricalPercentile(n, c, σ, ε) . Algorithm 3 in Appendix
a← âk . âk Lower bound hΦ(−ε/σ)(θ) with confidence c
return a

Algorithm 2 Embed Certifiable Watermark
Required: training samples X , trigger set samples Xtrigger, learning rate τ , maximum noise
level ε, replay count k, noise sample count t
for epoch = 1, ... , N do

for B ⊂ X do
gθ ← E(x,y)∈B [∇θl(x, y, θ)]
θ ← θ − τgθ

for B ⊂ Xtrigger do
gθ = 0
for i = 1 to k do

σ ← i
k ε

for j = 1 to t do
G ∼ N(0, σ2I)
gθ ← gθ + E(x,y)∈B [∇θl(x, y, θ +G)]

gθ ← gθ/(kt)
θ ← θ − τgθ

Embedding the Certifiable Watermark To embed the watermark during training, we add Gaus-
sian noise and train on the trigger set images with the desired labels. For a given trigger set image,
we average gradients across several (in our experiments, 100) draws of noise to better approximate
the gradient of the smoothed classifier. Directly adding a large amount of noise into all parameters
makes training unstable, so we incrementally increase the levels of noise within each epoch. In our
experiments, we inject Gaussian noise with a range of standard deviations σ ranging from 0 to 1.
Empirically, we notice that the test accuracy drops when using this technique to embed the water-
mark, so to recover some of the lost test accuracy, we warm up the model with regular training and
only begin embedding the watermark after the fifth epoch. We note that using warm-up epochs to
recover clean accuracy is a common practice in the robustness literature (Balaji et al., 2019; Gowal
et al., 2018). The detailed training method is described in Algorithm 2.
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(a) Original (b) Embedded Content (c) Gaussian Noise (d) Unrelated

Figure 1: Samples of the backdoor images used for watermarking.

4 EXPERIMENTS

In our first set of experiments, we investigate the strength of our certificate under two datasets and
three watermark schemes. In our second set of experiments, we evaluate the watermark’s empirical
robustness to removal compared to previous methods that claimed resistance to removal attacks.

4.1 EXPERIMENTAL SETTINGS

To produce the trigger sets themselves, we consider the three schemes from Zhang et al. (2018):
images with embedded content (superimposed text), images with random noise, or images from an
unrelated dataset (CIFAR-10 for MNIST and vice versa) (Figure 1). While we generated certificates
for all three schemes, we focus on embedded content watermark for empirical persistency evaluation.

To train the watermarked model, we used ResNet-18, SGD with learning rate of .05, momentum of
.9, and weight decay of 1e-4. The model is trained for 100 epochs, and the learning rate is divided by
10 every 30 epochs. Only 50% of the data is used for training, since we reserve the other half for the
adversary. For our watermark models, we select σ of 1, replay count of 20, and noise sample count
of 100. For certification, we use 10000 instances of Monte Carlo sampling to perform smoothing.

To attack the model, we used Adam with learn rates of .1, .001 or .0001 for 50 epochs. We tested
three different types of attacks: finetuning, hard-label distillation, and soft-label distillation. Soft-
label distillation takes the probability distribution of the original model as labels, whereas hard-
label distillation takes only the label with maximum probability. We always give the adversary the
same amount of data as the owner (labeled for finetuning, unlabeled for distillation) to err on the
conservative side for our evaluation.

4.2 WATERMARK CERTIFICATE

In this section, we investigate the certified trigger set accuracy that our watermarking is able to
guarantee against `2 adversaries of various strengths. To contextualize the meaning of a certified
`2 radius, we consider the size of the empirical changes in parameters observed after performing
various watermark removal attacks.

As shown in Table 1, we are able to obtain nontrivial trigger set accuracy certificate for radius up
to 0.4 for all datasets and watermark schemes considered. Our certificate seems to be similarly
effective across all trigger set types. In the best scenario for CIFAR-10, we can certify that the
trigger set accuracy does not drop below 51% as long as parameters do not move more than an `2
distance of 1.

To see how long our certificates can persist in the face of attack, we measure the approximate amount
of `2 parameter change in the first epoch under different attack settings. In Table 2, with learning
rate 0.0001, parameters change by `2 distance of approximately 2-3. In other words, it would require
approximately 1/3 to 1/2 of an epoch to move outside of a certified radius of 1. (We focus here on
the first epoch because changes are relatively small in succeeding epochs; see appendix.)

Interestingly, attacks considered to be stronger correspond to changes of a greater distance. This
relationship helps support the use of `2 radius as a proxy for the strength of the adversary. For
example, fine-tuning has been found to be a stronger attack compared to hard label distillation, and
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`2 Radius (ε)
Dataset Watermark 0.2 0.4 0.6 0.8 1 1.2

MNIST Embedded content 100% 95% 47% 3% 0% 0%
MNIST Noise 100% 91% 7% 0% 0% 0%
MNIST Unrelated 100% 94% 45% 4% 0% 0%
CIFAR-10 Embedded content 100% 100% 100% 93% 51% 5%
CIFAR-10 Noise 100% 100% 100% 100% 47% 0%
CIFAR-10 Unrelated 100% 100% 100% 97% 35% 0%

Table 1: Certified trigger set accuracy at different radius

Attack Type Finetuning Distillation
Hard Label

Distillation
Soft Label Finetuning Distillation

Hard Label
Distillation
Soft Label

Learning Rate 0.0001 0.0001 0.0001 0.001 0.001 0.001

MNIST 2.67 2.39 1.56 19.39 17.58 20.35
CIFAR-10 2.85 2.41 2.06 19.93 19.40 19.29

Table 2: `2 distance change in the first epoch

correspondingly (Shafieinejad et al., 2019), fine-tuning moves the network by a larger distance in
the first epoch compared to hard label distillation. Similarly, an attack that is stronger due to a higher
learning rate moves the parameters much faster compared to an attack with a lower learning rate.

Overall, it would take approximately 0.03 to 0.3 epochs for the attacker to escape the certified
radius, depending on the type of attack, watermark schemes, and dataset. Our certified bounds are
not trivial, but they are still quite small compared to what would be realistically useful – a common
problem involving certified properties of neural networks which can hopefully be remedied with
improved training and improved certification techniques. In the next section, we show that even
though our certificates are quite small, the watermarks are empirically stronger than the certificate
is able to guarantee: in most cases, our watermarks are more resistant to removal attacks compared
to previous methods in both the white-box and black-box settings.

4.3 EMPIRICAL WATERMARK PERSISTENCE EVALUATION

In this section, we evaluate the persistence of our proposed watermarking methods and the model’s
performance on the original dataset. For all experiments in this section, we use the embedded
content method to produce the trigger set. We compare our watermark method with the baseline
method from Zhang et al. (2018), which is the same as our watermark method but without noise
injection during training.

For persistence evaluation, we focus on two main attacks: the distillation attack and the finetuning
attack, as both of these have been shown to be very effective in (Shafieinejad et al., 2019; Aiken et al.,
2020). In addition, we tested the effect of different learning rates and label smoothing levels, which
have also been shown to influence the effectiveness of watermark removal techniques Shafieinejad
et al. (2019). To make our attacks more similar to Shafieinejad et al. (2019), we also experimented
with adding parameter regularization during attack.

We first evaluate our proposed watermark against finetuning attacks. In Table 3, we see that our pro-
posed watermark is much more robust with respect to finetuning attacks than the baseline method on
CIFAR-10, and is comparably resistant on MNIST. In the case of CIFAR-10, the baseline watermark
is completely removed within less than 10 epochs (See Figure 2 in Appendix), but our white-box
watermark is still visible after finetuning for up to 50 epochs. In the case of MNIST, both the pro-
posed method and the baseline are quite resistant. However, our proposed method achieves slightly
higher trigger set accuracy for both white-box watermarks and black-box watermarks throughout
the 50 epochs of the finetuning attack.

In the face of the distillation attack, we find our white-box watermark to be extremely resistant.
The trigger set accuracy remains 100% even after 50 epochs of attack. However, our black-box
watermark works more effectively on CIFAR-10 than MNIST. In the case of CIFAR-10, the black-
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Dataset Attack lr Baseline
Watermark

Black-box
Watermark

White-box
Watermark

MNIST Finetuning 0.0001 45.31% 59.38% 100.00%
MNIST Finetuning 0.001 50.00% 54.70% 100.00%
MNIST Hard-Label Distillation 0.001 42.19% 50.00% 100.00%
MNIST Soft-Label Distillation 0.001 96.88% 100.00% 100.00%
CIFAR-10 Finetuning 0.0001 17.20% 9.40% 100.00%
CIFAR-10 Finetuning 0.001 14.06% 10.94% 100.00%
CIFAR-10 Hard-Label Distillation 0.001 29.69% 81.25% 100.00%
CIFAR-10 Soft-Label Distillation 0.001 81.25% 100.00% 100.00%

MNIST Hard-Label Distillation + Reg 0.1 40.63% 32.81% 0.00%
CIFAR-10 Hard-Label Distillation + Reg 0.1 8.00% 27.00% 0.00%

Table 3: Trigger set accuracy after 50 epochs of removal attacks. We note that this is only a snap-
shot of the trigger set accuracy. During training, trigger set accuracies could sometimes fluctuate
significantly (see figures in Appendix). We use watermarks from Zhang et al. (2018) as the baseline
watermark.

box watermark remains at 81.25% after 50 epochs of distillation attack, whereas only 50.00% of
trigger set accuracy remains for MNIST.

When regularization is added in addition to distillation, we find that our white-box watermark is
completely removed. This could be due to regularization moving the parameters further in terms of
`2 norm. However, we note that our black-box watermark still persists similarly to the baseline.

In some cases, the baseline watermark persists quite strongly. For example, in the case of soft-
label distillation, the baseline watermark still achieves higher than 75% accuracy after attack. We
tried a variety of settings, but we had difficulty completely removing the watermark as described in
(Shafieinejad et al., 2019). Differences in performance could be due to architecture, regularization,
or other factors – experimental code was not released by (Shafieinejad et al., 2019), so it is hard to
know exactly what might be the cause. However, we note that our main goal is to show that our
proposed watermark is more resistant to removal, and our trigger set accuracy is consistently higher
compared to the baseline throughout the attack.

Even though our watermark is generally more resistant in both the white-box and black-box set-
tings, our proposed method does slightly decrease the accuracy of the model on the original dataset.
Test accuracies are decreased by 0.1% (from 99.5% to 99.4%) and 3.3% (from 89.3% to 86.0%)
for MNIST and CIFAR-10 respectively. We note that the decrease in clean accuracy has been his-
torically observed for other forms of robust training (Madry et al., 2017), and recovery of the test
accuracy in robust training is still an active area of research (Balaji et al., 2019).

5 CONCLUSION

We present the first (to our knowledge) certifiable neural network watermark – trigger set accuracy is
provably maintained unless the network parameters are moved by more than a given `2 distance. The
certificates are in practice somewhat small, and the threat model considered is somewhat narrow, but
we see this as the first step towards guaranteed persistence of watermarks in the face of adversaries –
a valuable property in real-world applications. Future improvements in theory could result in tighter
bounds, and future improvements in training and architecture could result in better certificates from
the existing bounds.

At the same time, we find that our certifiable watermarks are empirically far more resistant to re-
moval than the certified bounds can guarantee. Indeed in the face of the removal attacks from the
literature, our watermarks are more persistent than previous methods. Our randomized-smoothing-
based training scheme is therefore a watermarking technique of interest even where a certificate is
not needed. We are hopeful that our technique represents a contribution to both the theory and prac-
tice of neural network watermarking, and that this approach can lead to watermarks that are both
empirically useful while coming with provable guarantees.
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A APPENDIX - TRIGGER SET TRAJECTORIES DURING ATTACK
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Figure 2: CIFAR-10 trigger set accuracy when faced with finetuning attacks
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Figure 3: MNIST trigger set accuracy when faced with finetuning attacks
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Figure 4: MNIST trigger set accuracy when faced with distillation attacks
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Figure 5: CIFAR-10 trigger set accuracy when faced with distillation attacks
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Figure 6: Trigger set accuracy when faced with distillation+regularization attacks
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B APPENDIX - ALGORITHM FOR EMPIRICAL ORDER STATISTIC

Algorithm 3 Choosing the empirical order statistics that sufficiently lower bound the theoretical
percentile

function EMPIRICALPERCENTILE(n, c, σ, ε)
plower ← Φ(− ε

σ ) . calculate theoretical percentile that we should be lower bounding

K̂lower, K̂lower ← 0, bn · plowerc . initialized empirical order statistics for lower bound
while K̂lower − K̂lower > 1 do

K̇lower ← b(K̂lower + K̂lower)/2c
if 1-Binomial(n, K̇lower, plower) > c then

K̂lower ← K̇lower

else
K̂lower ← K̇lower

if K̂lower > 0 then
return K̂lower

else
return null
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C APPENDIX - `2 NORM CHANGE DURING ATTACK

Method 1st 2 3 4 5 6 7 8 9 10

CIFAR

Hard label 10−4 2.41 3.07 3.56 4.00 4.37 4.71 5.00 5.32 5.64 5.88
Hard label 10−3 19.4 21.33 23.45 25.71 27.95 30.02 32.06 34.06 36.12 38.04
Soft label 10−4 2.06 2.47 2.73 2.95 3.2 3.47 3.73 3.97 4.16 4.38
Soft label 10−3 19.29 20.19 21.00 21.9 22.75 23.7 24.64 25.5 26.36 27.34
Finetune 10−4 2.85 3.47 4.18 4.79 5.48 6.13 6.76 7.37 7.92 8.45
Finetune 10−3 19.93 22.57 25.54 28.41 31.34 34.31 37.31 40.18 42.98 45.73

MNIST

Hard label 10−4 2.39 3.14 3.71 4.17 4.66 5.04 5.32 5.63 5.92 6.25
Hard label 10−3 17.58 19.34 21.2 22.87 24.77 26.73 28.77 30.33 32.12 33.83
Soft label 10−4 1.56 2.23 2.86 3.46 3.98 4.45 4.94 5.35 5.76 6.15
Soft label 10−3 20.35 22.51 25.00 28.12 30.29 32.31 34.35 36.58 38.84 41.1
Finetune 10−4 2.67 3.44 4.08 4.61 5.12 5.67 6.03 6.45 6.87 7.22
Finetune 10−3 19.4 21.33 23.43 25.53 27.59 29.78 31.96 34.15 36.33 38.1

Table 4: Difference in `2 norm from previous parameters after each epoch of attack. After the first
epoch, the increase is general small on each successive epoch.
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