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1. Introduction

The ability to robustly categorize objects under conditions and transformations that pre-
serve the object categories is essential to animal intelligence, and to pursuits of practical
importance such as improving computer vision systems. One way to achieve such robust-
ness is equivariance. When such transformations are restricted to be an algebraic group,
the resulting equivariant representations have found significant success in machine learning
starting with classical convolutional neural networks (CNNs) (Denker et al., 1989; LeCun
et al., 1989) and recently being generalized by the influential work of Cohen and Welling
(2016).

While it is clear that equivariance imposes a strong constraint on the geometry of rep-
resentations, the implications of such constraints on model expressivity are not well under-
stood. In this work we take a step toward addressing this gap.

Our particular contributions are the following:

• We extend Cover’s function counting theorem (a measure of expressivity) to equivariant
representations, finding that expressivity scales with the dimension of the subspace fixed
by the group action.

• We demonstrate the applicability of our result to G-convolutional network layers – in-
cluding pooling layers – through theory and verify through simulation.

This abstract is based on recently published work (Farrell et al., 2022).
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2. Problem formulation

Suppose x abstractly represents an object and let r(x) ∈ RN be some feature map of x to an
N -dimensional space (such as an intermediate layer of a deep neural network). We consider
transformations of this object such that they form a group G in the algebraic sense of the
word. We denote the abstract transformation of x by element g ∈ G as gx. Groups G may
be represented by invertible matrices, which act on a vector space V (which themselves form
the group GL(V ) of invertible linear transformations on V ). We are interested in feature
maps r which satisfy the following group equivariance condition:

r(gx) = π(g)r(x),

where π : G → GL(RN ) is a linear representation of G which acts on feature map
r(x). Note that many representations of G are possible, including the trivial representation:
π(g) = I for all g.

We are interested in perceptual object manifolds generated by the actions of G. Each
of the P manifolds can be written as a set of points {π(g)rµ : g ∈ G} where µ ∈ [P ] ≡
{1, 2, . . . , P}; that is, these manifolds are orbits of the point rµ ≡ r(xµ) under the action
of π. We will refer to such manifolds as π-manifolds.

Each of these π-manifolds represents a single object under the transformation encoded
by π; hence, each of the points in a π-manifold is assigned the same class label. To measure
the expressivity of this representation, we consider a perceptron endowed with a set of
linear readout weights w that attempts to determine the correct class of every point in
every manifold. The condition for realizing (i.e. linearly separating) the dichotomy {yµ}µ
can be written as yµw⊤π(g)rµ > 0 for all g ∈ G and µ ∈ [P ], where yµ = +1 if the
µth manifold belongs to the first class and yµ = −1 if the µth manifold belongs to the
second class. The perceptron capacity is the fraction of dichotomies that can be linearly
separated; that is, separated by a hyperplane.

The proofs for results in the main text are in Appendix A.2.

3. Separability of π-manifolds

We begin with a lemma which states that classifying the P π-manifolds can be reduced to
the problem of classifying their P centroids. Let π : G → GL(RN ) be an arbitrary linear
representation of a compact group G.1 We denote the average of π over G with respect
to the Haar measure by ⟨π(g)⟩g∈G; for finite G this is simply 1

|G|
∑

g∈G π(g) where |G| is
the order (i.e. number of elements) of G. For ease of notation we will generally write
⟨π⟩ ≡ ⟨π(g)⟩g∈G when the group G being averaged over is clear.

Lemma 1 A dataset {(π(g)rµ, yµ)}g∈G,µ∈[P ] consisting of P π-manifolds with labels yµ is
linearly separable if and only if the dataset {(⟨π⟩rµ, yµ)}µ∈[P ] consisting of the P centroids
⟨π⟩rµ with the same labels is linearly separable.

1. Note that our results extend to more general vector spaces than RN , under the condition that the group
be semi-simple.
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3.1. Relationship with Cover’s Theorem

The fraction f of linearly separable dichotomies on a dataset of size P for datapoints
in general position2 in N dimensions was computed by Cover (1965) and takes the form
f(P,N) = 21−P

∑N−1
k=0

(
P−1
k

)
where we take

(
n
m

)
= 0 for m > n. For fixed N , f(P,N) is

a nonincreasing sigmoidal function of P with inflection point at P = 2N . We take this
inflection point to be the capacity of the system, noting that as N → ∞ the sigmoid
sharpens into a step function.

Theorem 2 Suppose the points ⟨π⟩rµ for µ ∈ [P ] lie in general position in the subspace
V0 = range(⟨π⟩) = {⟨π⟩x : x ∈ V }. Then V0 is the fixed point subspace of π, and the fraction
of linearly separable dichotomies on the P π-manifolds {π(g)rµ : g ∈ G} is f(P,N0), where
N0 = dimV0.

The fixed point subspace is the subspace W = {w ∈ V |gw = w ,∀g ∈ G}. The condition
that the points ⟨π⟩rµ be in general position essentially means that there is no prescribed
special relationship between the rµ and between the rµ and ⟨π⟩. Taking the rµ to be drawn
from a full-rank Gaussian distribution is sufficient to satisfy this condition.

3.2. The regular representation of Zm

First we illustrate the theory in the case of the cyclic group G = Zm on m elements. This
group is isomorphic to the group of integers {0, 1, ...,m − 1} under addition modulo m,
and this is the form of the group that we will consider. An example of this group acting
on an object is an image that is shifted pixel-wise to the left and right, with periodic
boundaries. Suppose π : Zm → GL(V ) is the representation of Zm consisting of the cyclic
shift permutation matrices (this is called the regular representation of Zm). In this case
V = Rm and π(g) is the matrix that cyclically shifts the entries of a length-m vector g
places. For instance, if m = 3 and v = (1, 2, 3) then π(2)v = (2, 3, 1). The average of the
regular representation matrix is ⟨π⟩ = 1

|G|1m1⊤m, indicating that ⟨π⟩ projects data along
1m. See Appendix A.3 for more illustrative examples of group representations and their
capacities.

4. G-Equivariant Neural Networks
The proposed theory can shed light on the feature spaces induced by G-CNNs. Consider a
single convolutional layer feature map for a finite group G with the following activation:

ai,k(x) = ϕ(w⊤
i g

−1
k x) , gk ∈ G , i ∈ {1, ..., N} (1)

for some nonlinear function ϕ. For each filter i, and under certain choices of π, the feature
map ai(x) ∈ R|G| exhibits the equivariance property ai(gkx) = π(gk)ai(x). We will let
a(x) ∈ R|G|N denote a flattened vector for this feature map.

2. A set of P points is in general position in N -space if every subset of N or fewer points is linearly
independent. This says that the points are “generic” in the sense that there aren’t any prescribed
special linear relationships between them beyond lying in an N -dimensional space. Points drawn from a
Gaussian distribution with full-rank covariance are in general position with probability one.
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Figure 1: Capacity of GCNN representations. Solid lines denote the empirically measured
fraction f(α) of 100 random dichotomies for which a logistic regression classifier
finds a separating hyperplane, where α = P/N0. Dotted lines denote theoretical
predictions. Shaded regions depict 95% confidence intervals over random choice
of inputs, as well as network weights in (a) and (c). (a) f(α) of a random periodic
convolutional layer after ReLU (blue line) and followed by 2x2 max pool (orange
line), with P = 40 and N0 = # output channels. (b) f(α) of VGG-11 pretrained
on CIFAR-10 after a periodic convolution, batchnorm, and ReLU (blue line),
followed by a 2x2 maxpool (orange line), and then another set of convolution,
batchnorm, and ReLU (green line), with P = 20 and N0 = # output channels.

In a traditional periodic convolutional layer applied to inputs of width W and length L,
the feature map of a single filter ai(x) ∈ R|G| is equivariant with the regular representation
of the group G = ZW × ZL (the representation that cyclically shifts the entries of W × L
matrices). Here the order of the group is |G| = WL. Crucially, our theory shows that this
representation contributes exactly one dimension to the fixed point subspace per filter (see
Appendix A.6.1). Since the dimension of the entire collection of N feature maps a(x) is
N |G| for finite groups G, one might naively expect capacity to be P ∼ 2N |G| for large N .
However, Theorem 2 shows that for G-invariant classification, only the fixed point subspace
contribute to the classifier capacity. Since the dimension of the fixed point subspace present
in the representation is equal to the number of filters N , we have P ∼ 2N (recall that
P = 2N is the inflection point of f(P,N)).

We show in Figure 1 that our prediction for f(P,N) matches that empirically measured
by training logistic regression linear classifiers on the representation. The convolutions in
these networks are modified to have periodic boundary conditions while keeping the filters
the same – see Appendix A.6.1 and Figure A.2 for more information and the result of using
non-periodic convolutions, which impact the capacity but not the overall scaling with N0.

4.1. Pooling Operations

In CNNs, local pooling is typically applied to the feature maps which result from each
convolution layer. The impact of 2x2 maxpooling in CNNs is shown in Fig. 1, which reveals
that maxpooling reduces capacity. In Appendix A.4 we prove that maxpooling reduces
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capacity and bound this reduction. We also prove that average pooling leaves the capacity
unchanged.

4.2. Induced representations
Induced representations are a fundamental ingredient in the construction of general equivari-
ant neural network architectures (Cohen et al., 2019). Here we state our result, and relegate
a formal definition of induced representations and the proof of the result to Appendix A.6.4.

Proposition 3 Let π be a representation of a finite group induced from representation ρ.
Then the fraction of separable dichotomies of π-manifolds is equal to that of the ρ-manifolds.

5. Discussion and Conclusion
Equivariance has emerged as a powerful framework to build and understand representations
that reflect the structure of the world in useful ways. In this work we take the natural step of
quantifying the expressivity of these representations through the well-established formalism
of perceptron capacity. We find that the number of “degrees of freedom” available for solving
the classification task is the dimension of the space that is fixed by the group action. This
has the immediate implication that capacity scales with the number of output channels
in standard CNN layers, a fact we illustrate in simulations. However, our results are also
very general, extending to virtually any equivariant representation of practical interest – in
particular, they are immediately applicable to GCNNs.

Reproducibility Statement

Code for the simulations can be found at
https://github.com/msf235/group-invariant-perceptron-capacity.

This code includes an environment.yml file that can be used to create a python environment
identical to the one used by the authors.
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Appendix A. Appendix

Appendix A.1 a glossary of definitions and notation.

Appendix A.2 Proofs of Lemma 1 and Theorem 2.

Appendix A.3 Additional example applications of Theorem 2.

Appendix A.4 Proofs of local pooling results.

Appendix A.5 a derivation of the irreps for the regular representation of the cyclic group
Zm.

Appendix A.6 a description of the construction of the GCNNs used in the paper, the
methods for empirically measuring the fraction of linearly separable dichotomies, a
description of local pooling, and complete formal proofs of the fraction of linearly
separable dichotomies for these network representations (including with local pooling).
This appendix also includes more description of the induced representation and a
formal proof of the fraction of linearly separable dichotomies.

Appendix A.6.1 also contains an additional figure, Figure A.2.

A.1. Notation and Glossary

• x: an abstract notation for an input object

• r(x): a feature map of the input to an N dimensional vector space.

• π: N dimensional linear representation of group G. For each g ∈ G, π(g) ∈ GL(RN )
is an N ×N invertible real matrix.

• Equivariance property: r(gx) = π(g)r(x) for all g ∈ G and all x.

• Invariant measure: a measure µ : G → R+ on G with µ(gS) = µ(S) = µ(Sg). For
finite groups, the uniform distribution. For locally compact topological groups, the
Haar measure.

• ⟨·⟩g∈G: an average over the invariant measure of G

• Irreducible representation (irrep): an irreducible representation ρ on vector space V
satisfies ρ(g)v ∈ V for all v ∈ V, g ∈ G.

• Character χ(g): the trace of the representation χ(g) = Tr π(g).

• Fixed point subspace: the subspace V0 for which π(g)v ∈ V0 for all v ∈ V0.

• General position: a collection of P points in general position in an N dimensional vec-
tor space have the property that any subset of k ≤ N points are linearly independent.
These points are generic in the sense that they satisfy no more linear relationships
than they must.

• Dichotomy: a particular binary labeling {yµ} of P points {xµ}.
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• f(P,N): fraction of linearly separable dichotomies given by Cover’s function counting
theorem (Cover, 1965).

• VC dimension: the largest possible integer P such that there exist P points where all
possible dichotomies {yµ} can be realized by the model Abu-Mostafa et al. (2012).

• Capacity: the largest possible ratio αc = P/N where P points in general position
can be linearly separated by a N dimensional perceptron with probability 1 in an
asymptotic limit where P,N → ∞ with P/N = ON,P (1). The classical result is
αc = 2 (Gardner, 1987; Shcherbina and Tirozzi, 2003).

• P(·): a local pooling operation.

A.2. Proofs of Lemma 1 and Theorem 2

Lemma 1 A dataset {(π(g)rµ, yµ)}g∈G,µ∈[P ] consisting of P π-manifolds with labels yµ is
linearly separable if and only if the dataset {(⟨π⟩rµ, yµ)}µ∈[P ] consisting of the P centroids
⟨π⟩rµ with the same labels is linearly separable. Formally,

∃w ∀g ∈ G,µ ∈ [P ] : yµw⊤π(g)rµ > 0 ⇐⇒ ∃w ∀µ ∈ [P ] : yµw⊤⟨π⟩rµ > 0.

Proof The forward implication is obvious: if there exists aw which linearly separates the P
manifolds according to an assignment of labels yµ, that same w must necessarily separate
the centroids of these manifolds. This can be seen by averaging each of the quantities
yµw⊤π(g)rµ over g ∈ G. Since each of these quantities is positive, the average must be
positive.

For the reverse implication, suppose yµw⊤⟨π⟩rµ > 0, and define w̃ = ⟨π⟩⊤w. We will
show that w̃ separates the P π-manfolds since

yµw̃⊤π(g)rµ = yµw⊤⟨π⟩π(g)rµ (Definition of w̃)

= yµw⊤⟨π(g′)π(g)⟩g′∈Grµ (Definition of ⟨π⟩ and linearity of π(g))

= yµw⊤⟨π⟩rµ (Invariance of the Haar Measure µ(Sg) = µ(S) for set S)

> 0 (Assumption that w separates centroids)

Thus, all that is required to show that w̃ separates the π-orbits are basic properties of a
group representation and invariance of the Haar measure to G-transformations.

Theorem 2 Suppose the points ⟨π⟩rµ for µ ∈ [P ] lie in general position in the subspace
V0 = range(⟨π⟩) = {⟨π⟩x : x ∈ V }. Then V0 is the fixed point subspace of π, and the fraction
of linearly separable dichotomies on the P π-manifolds {π(g)rµ : g ∈ G} is f(P,N0), where
N0 = dimV0. Equivalently, N0 is the number of trivial irreducible representations that
appear in the decomposition of π into irreducible representations.

Proof By the theorem of complete reducibility (see Fulton and Harris (2004)), π admits a
decomposition into a direct sum of irreducible representations (irreps) π ∼= πk1 ⊕πk2 ⊕ ...⊕
πkM acting on vector space V = V1 ⊕ V2 ⊕ ...VM , where ∼= denotes equality up to similarity
transformation (see Serre (2014) for a definition of irreps). The indices kj indicate the
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(a) (b) (c)

Figure A.1: π-manifolds for different π, illustrating that only the fixed point subspace con-
tributes to capacity. In each panel two manifolds are plotted, with color de-
noting class label. Stars indicate the random points rµ for µ ∈ {1, 2} where
the orbits begin, and closed circles denote the other points in the π-manifold.
For (a) and (b) the group being represented is G = Z4 and for (c) G = Z3. (a)
Here π(g) is the 2× 2 rotation matrix R(2πg/4). The open blue circle denotes
the fixed point subspace {0}. (b) Here π(g) is the 3× 3 block-diagonal matrix
with the first 2× 2 block being R(2πg/4) and second 1× 1 block being 1. The
blue line denotes the fixed point subspace span{(0, 0, 1)}. (c) Here π(g) is the
3× 3 matrix that cyclically shifts entries of length-3 vectors by g places. The
blue line denotes the fixed point subspace span{(1, 1, 1)}.

type of irrep corresponding to invariant subspace Vj . The fixed point subspace V0 is the
direct sum of subspaces where trivial kj = 0 irreps act: V0 =

⊕
n:kn=0 Vn. By the Grand

Orthogonality Theorem of irreps (see Liboff (2004)) all non-trivial irreps average to zero
⟨πk,ij(g)⟩g∈G ∝ δk,0δi,j . Then, the matrix ⟨π⟩ simply projects the data to V0. By Lemma 1
the fraction of separable dichotomies on the π-manifolds is the same as that of their centroids
⟨π⟩rµ. Since, by assumption, the P points ⟨π⟩rµ lie in general position in V0, the fraction
of separable dichotomies is f(P,dimV0) by Cover’s Theorem.

A.3. Example Applications of Equivariant capacity

The 2 × 2 discrete rotation matrices R(θg) ≡
[
cos(θg) − sin(θg)
sin(θg) cos(θg)

]
where θg = 2πg/m and

g ∈ Zm, are one possible representation of Zm; in this case V = R2. This representation is
irreducible and nontrivial, which implies that the dimension of the fixed point subspace is 0
(only the origin is mapped to itself by R for all g). Hence the fraction of linearly separable
dichotomies of the π-manifolds by Theorem 2 is f(P, 0). This result can be intuitively seen
by plotting the orbits, as in Figure A.1a for m = 4. Here it is apparent that it is impossible
to linearly separate two or more manifolds with different class labels, and that the nontrivial
irrep R averages to the zero matrix.

The representation can be augmented by appending trivial irreps, defining π : G →

GL(RN ) by π(g) = R(θg)⊕ I ≡
[
R(θg) 0

0 I

]
where I is an (N − 2)× (N − 2)-dimensional
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identity matrix. The number of trivial irreps is N − 2, so that the capacity is f(P,N − 2).
This is illustrated in Figure A.1b for the case N = 3. Here we can also see that the trivial
irrep, which acts on the subspace span{(0, 0, 1)}, is the only irrep in the decomposition of π
that does not average to zero. This figure also makes intuitive the result of Lemma 1 that
dichotomies are realizable on the π-manifolds if and only if the dichotomies are realizable
on the centroids of the manifolds.

Suppose π : Zm → GL(V ) is the representation of Zm consisting of the cyclic shift
permutation matrices (this is called the regular representation of Zm). In this case
V = Rm and π(g) is the matrix that cyclically shifts the entries of a length-m vector g
places. For instance, if m = 3 and v = (1, 2, 3) then π(2)v = (2, 3, 1).

In Appendix A.5 we derive the irreducible representations (irreps) of this repre-
sentation, which consist of rotation matrices of different frequencies. There is one copy of
the trivial irrep π0(g) ≡ 1 corresponding with the fixed point subspace span{1m} where
1m is the length-m all-ones vector. Hence the fraction of separable dichotomies is f(P, 1).
This is illustrated in Figure A.1c in the case where m = 3. The average of the regular
representation matrix is ⟨π⟩ = 1

|G|1m1⊤m, indicating that ⟨π⟩ projects data along 1m.

A.3.1. Direct sums of Regular Representations
For our last example we define a representation using the isomorphism Zm

∼= Zm1 ⊕ Zm2

for m = m1m2 and m1 and m2 coprime3. Let π(1) : Zm1 → GL(Rm1) and π(2) : Zm2 →
GL(Rm2) be the cyclic shift representations (i.e. the regular representations) of Zm1 and
Zm2 , respectively. Consider the representation π(1) ⊕ π(2) : Zm → GL(Rm1+m2) defined
by (π(1) ⊕ π(2))(g) ≡ π(1)(g mod m1) ⊕ π(2)(g mod m2), the block-diagonal matrix with
π(1)(g mod m1) being the first and π(2)(g mod m2) the second block.

There are two copies of the trivial representation in the decomposition of π(1) ⊕ π(2),
corresponding to the one-dimensional subspaces span{(1m1 ,0m2)} and span{(0m1 ,1m2)},
where 0m1 is the length-k vector of all zeros. Hence the fraction of separable dichotomies
is f(P, 2). This reasoning extends simply to direct sums of arbitrary length ℓ, yielding a
fraction of f(P, ℓ).4 These representations are used to build a novel G-convolutional layer
architecture with higher capacity than standard CNN layers in Section A.6.3.

These representations are analogous to certain formulations of grid cell representations
as found in entorhinal cortex of rats (Hafting et al., 2005), which have desirable qualities
in comparison to place cell representations (Sreenivasan and Fiete, 2011).5 Precisely, a
collection {Zmk

×Zmk
}k of grid cell modules encodes a large 2-dimensional spatial domain

Zm × Zm where m =
∏

k mk.

A.3.2. SO(3): A Non-Abelian Lie Group

The special orthogonal group SO(3) on 3 dimensions (rotation group), the 3× 3 orthogonal
matrices with determinant +1, can also be analyzed within our theory. G-convolutional

3. Two numbers are coprime if they have no common prime factor.
4. Our results do not actually require that the mk be coprime, but rather that none of the mk divide one of

the others. To see this, take m̃ and m̃k, to be m and the mk after being divided by all divisors common
among them. Then Zm̃

∼= ⊕ℓ
k=1Zm̃k and provided none of the m̃k are 1, one still gets a fraction of

f(P, ℓ).
5. Place cells are analogous to standard convolutional layers.
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neural networks that are equivariant to SO(3) rotations have become of high interest in
the physical sciences and computer vision where the objects of interest often respect these
symmetries (Anderson et al., 2019; Cohen et al., 2018; Esteves et al., 2018; Kondor et al.,
2018) The irreducible representations have the formBkm whereBkm are (2km+1)×(2km+1)
block matrices, known as Wigner D-matrices (Wigner, 1931). The trivial irreps correspond
to the one-dimensional irreps with k = 0. Thus, the SO(3)-invariant classification capacity
merely counts the number of trivial irreps which have N0 =

∑
m δkm,0. The capacity is

again f(P,N0).

A.4. Pooling

In this section, we describe how our theory can be adapted for codes which contain such
pooling operations. We will first assume that π is an N -dimensional representation of G.
Let P(r) : RN → RN/k be a pooling operation which reduces the dimension of the feature
map. The condition that a given dichotomy {yµ} is linearly separable on a pooled code is

∃w ∈ RN/k ∀µ ∈ [P ], g ∈ G : yµw⊤P(π(g)rµ) > 0 (2)

We will first analyze the capacity when P(·) is a linear function (average pooling) before
studying the more general case of local non-linear pooling on one and two-dimensional
signals.

A.4.1. Local Average Pooling

In the case of average pooling, the pooling function P(·) is a linear map, represented with
matrix P which averages a collection of feature maps over local windows. Using an argument
similar to Lemma 1 (Lemma 4 and Theorem 6 below), we prove that the capacity of a
standard CNN is not changed by local average pooling: for a network with N filters, local
average pooling preserves the one trivial dimension for each of the N filters. Consequently
the fraction of separable dichotomies is f(P,N).

A.4.2. Local Nonlinear Pooling

Often, nonlinear pooling operations are applied to downsample feature maps. For concrete-
ness, we will focus on one-dimensional signals in this section and relegate the proofs for
two-dimensional signals (images) to later in this section. Let r(x) ∈ RN×D represent a
feature map with N filters and length-D signals. Consider a pooling operation P(·) which
maps the D pixels in each feature map into new vectors of size D/k for some integer k.
Note that the pooled code is equivariant to the subgroup H = ZD/k, in the sense that
P(π(h)r) = ρ(h)P(r) for any h ∈ H. The representation ρ is the regular representation of
the subgroup H. We thus decompose G into cosets of size D/k: g = jh, where j ∈ Zk and
h ∈ ZD/k. The condition that a vector w separates the dataset is

∀µ ∈ [P ], j ∈ Zk, h ∈ H : yµw⊤ρ(h)P (π(j)rµ) > 0. (3)

We see that there are effectively k points belonging to each of the P orbits in the pooled
code. Since P (·) is nonlinear, the averaging trick utilized in Lemma 1 is no longer avail-
able. However, we can obtain a lower bound on the capacity, f(P, ⌊N/k⌋), from a simple
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extension of Cover’s original proof technique as we show in Appendix A.6.2. Alternatively,
an upper bound f ≤ f(P,N) persists since a w which satisfies Equation 3 must separate
⟨ρ(h)⟩h∈H P(rµ). This upper bound is tight when all k points ⟨ρ(h)⟩h∈H P(π(j)rµ) coin-
cide for each µ, giving capacity f(P,N). This is what occurs in the average pooling case
where the upper bound f ≤ f(P,N) is tight. Further, if we are only interested in the
H-invariant capacity problem, the fraction of separable dichotomies is f(P,N), since ρ is a
regular representation of H.

First we prove an extension of Lemma 1 to equivariant linear maps. This will be used
to show that average pooling does not affect the capacity of the regular representation of
Zm.

Lemma 4 Let π be a representation of the group G and suppose the matrix P is equivariant
with respect to the restriction of π to a subgroup H ⊆ G, so that for all h ∈ H Pπ(h) =
ρ(h)P for some representation ρ of H. Let R denote a set of representatives of G/H. Then
we have the following equivalence.

∃w ∀µ ∈ [P ], g ∈ G : yµw⊤Pπ(g)rµ > 0

⇐⇒ ∃w ∀µ ∈ [P ] ∀g′ ∈ R : yµw⊤P ⟨π(h)⟩h∈Hπ(g′)rµ > 0.

Proof For the forward implication, we write the coset decomposition g = hg′ of g and
average over H to find

∀g ∈ G : yµw⊤Pπ(g)rµ > 0 ⇐⇒ ∀h ∈ H, g′ ∈ R : yµw⊤Pπ(h)π(g′)rµ > 0

=⇒ ∀g′ ∈ R : yµw⊤P ⟨π(h)⟩h∈Hπ(g′)rµ > 0.

For the backward implication, suppose yµw⊤P ⟨π(h)⟩h∈Hπ(g′)rµ > 0 for all represen-
tatives g′ ∈ R, and define w̃ = ⟨ρ(h)⟩⊤h∈Hw. For any g ∈ G, take a coset decomposition
g = hg′ for h ∈ H and g′ ∈ R. We then have

yµw̃⊤Pπ(g)rµ = yµw̃⊤Pπ(h)π(g′)rµ (Coset decomposition)

= yµw̃⊤ρ(h)Pπ(g′)rµ (P is H-equivariant)

= yµw⊤ 〈
ρ(h′)

〉
h′∈H ρ(h)Pπ(g′)rµ (Definition of w̃)

= yµw⊤ ⟨ρ(h)⟩h∈H Pπ(g′)rµ (Invariance of measure)

= yµw⊤P ⟨π(h)⟩h∈H π(g′)rµ (P is linear and H-equivariant)

> 0 (By assumption). (4)

The implication follows.

Lemma 5 For the regular representation of G = ZD, a local average pooling over windows
of size k generates a matrix P which is equivariant with respect to the subgroup H = ZD/k

with the property that

P ⟨π(h)⟩h∈H = aP ⟨π(g)⟩g∈G (5)

where a > 0 is a positive constant.
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Proof First, note that the new pooled code is the regular representation of H since shifts
of size mk in the original feature map corresponds to shifts of length m in the pooled code.
Thus P is equivariant to H = ZD/k. Next we note the following two facts

P ⟨π(h)⟩h∈H = a′1D/k1
⊤
D (6)

P ⟨π(h)⟩g∈G = a′′1D/k1
⊤
D (7)

a′ and a′′ are positive constants and 1D and 1D/k are the D and D/k dimensional vector of
all ones, respectively. Thus, we have that P ⟨π(h)⟩h∈H = aP ⟨π(g)⟩g∈G where a is a positive
constant.

Theorem 6 The fraction of linearly separable dichotomies of a CNN pooling layer with
N filters after average pooling from feature maps with the size of the input image W × L
to pooled feature maps of size W/k × L/k is f(P,N), i.e. no capacity is lost due to local
average pooling.

Proof The CNN layer before pooling is a regular representation π of the full group G =
ZW × ZL, applied to each of the M input channels via a direct a sum

⊕M
j=1 π. The layer

after pooling is a regular representation ρ of the subgroup H = ZW/k × ZL/k, also applied

to the output channels via a direct sum
⊕N

j=1 ρ. Let R be a set of representatives of G/H.
Since P is equivariant to π and ρ over H we have by the previous two lemmas that

∀g ∈ G : yµw⊤Pπ(g)rµ > 0 ⇐⇒ ∀g′ ∈ R : yµw⊤P ⟨π(h)⟩h∈Hπ(g′)rµ > 0

⇐⇒ ∀g′ ∈ R : yµw⊤P ⟨π(g)⟩g∈Gπ(g′)rµ > 0

⇐⇒ yµw⊤P ⟨π(g)⟩g∈Grµ > 0

⇐⇒ yµw⊤P ⟨π(h)⟩h∈Hrµ > 0

⇐⇒ yµw⊤⟨ρ(h)⟩h∈HPrµ > 0

Thus the capacity is determined by the rank of ⟨ρ(h)⟩h∈H , assuming the ⟨ρ(h)⟩h∈HPrµ are
in general position. Since each ρ is a copy of the regular representation for H, the rank of
⟨
⊕N

j=1 ρ(h)⟩h∈H is merely N . Thus the fraction of linearly separable dichotomies is f(P,N),
the same as the capacity before pooling.

Now we prove local pooling operations in a standard CNN preserve a regular represen-
tation of a subgroup of the cyclic group.

Lemma 7 Suppose P is a local pooling operation on two-dimensional signals (CNN feature
maps), and that π is the regular representation of a group G = ZW × ZL on code a(x). A
pooled feature map r = P(a) which acts on k × k windows of a is a regular representation
of the subgroup H = ZW/k × ZL/k.

Proof Suppose an equivariant feature map a(x) ∈ RW×L×N has corresponding regular
representation of the group G = ZW × ZL for each of the N filters. Consider any local
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pooling operation P (·) (such as average or maximum) which acts on k × k patches where
k divides both W and L.

rij,h(x) = P
(
{ai′,j′,h(x) | i′ ∈ [ik, (i+ 1)k], j′ ∈ [jk, (j + 1)k]}

)
(8)

Note that for k > 1, r(x) is no longer equivariant to G since the representation does not
satisfy the homomorphism property for shifts with length ℓ not divisible by k. However, the
new code is equivariant to a subgroup H = ZW/k × ZL/k, namely vertical and horizontal
shifts with length divisible by k. Let πx

nk,mk represent a vertical shift of the image x by nk
pixels and horizontal shift by mk pixels. Note that aij,h(π

x
nk,mkx) = ai+nk,j+mk(x) since

a(x) is equivariant. Then, the h-th pooled feature map transforms as

rij,h(π
x
nk,mkx) = P

(
{ai′,j′,h(πx

nk,mkx) | i′ ∈ [ik, (i+ 1)k], j′ ∈ [jk, (j + 1)k]}
)

= P
(
{ai′+nk,j′+mk,h(x) | i′ ∈ [ik, (i+ 1)k], j′ ∈ [jk, (j + 1)k]}

)
(a is Equivariant to πx)

= P
(
{ai′,j′,h(x) | i′ ∈ [(n+ i)k, (n+ i+ 1)k], j′ ∈ [(m+ j)k, (m+ j + 1)k]}

)
,

(k divides W,H)

= ri+n,j+m,h(x) , (Definition of r)

We thus find that the code is a regular representation of the subgroup of the cyclic trans-
lations H = {(nk,mk)}n∈[H/k],m∈[W/k]. This new group G′ has dimension |H| = 1

k2
|G|.

A.5. Irreps for the cyclic group

Here we compute the irreducible representations (irreps) of representations π : Zm → GL(V )
of the cyclic group Zm over a real vector space V . See Serre (2014) for a definition of irrep,
and for a derivation of the irreps when V is a complex vector space. The irreps can be used
to determine the dimensionality of V0, as shown in the proof of Theorem 2 (Appendix A.2).
To find the irreps, one can use the form for the eigenvalues and eigenvectors for circulant
matrices, since all the π(g) are circulant. This results in the simultaneous diagonalization

π(g) = V (1⊕R(2πg/m)⊕R(4πg/m)⊕ · · · ⊕R((m− 1)πg/m))V ⊤

where V is the real-valued version of the discrete Fourier transform matrix (the columns are
proportional to cosines and sines of varying frequencies, along with a column proportional
to 1m).

Note that the 2x2 rotation matrices R(2πgk/m) are irreps for k ̸= m/2 and k ̸= 0,
since there is no one-dimensional subspace of R2 that is invariant to R(2πgk/m) for all g.
The exception for k = m/2 if m is even, gives R(2πgk/m) = (−1)gI, which corresponds
to rotation of 180 degrees. The subspace span{(1, 0)} is invariant to this action, so that
R(2πgk/m) is not an irrep. This representation can thus be reduced to an action on a one-
dimensional subspace, represented by (−1)g. The case k = 0 gives the trivial representation.
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A.6. G-equivariant convolutional layers

A.6.1. Standard convolutional layers

A convolutional layer consists of a set of N k × k′ filters Fi that are convolved (technically
cross-correlated) with a stack of M W × L input tensors. Here M is the number of input
channels and N the number of output channels. The convolution runs each filter (i.e. takes
the dot product at all possible positions) over each of the W × L input tensors, and the
result is averaged across the M input channels to produce the output of one output channel.
In the positions where the filters approach the edges of the input tensor, different choices
can be made about how to handle these edge conditions. The standard choice is to pad the
edges with some number of zeros depending on the desired shape of the output tensor and
run the convolution out to the end of the padded image. Another possible choice is to loop
the edges of the input tensor together, so that the filter is applied to the other side of the
input tensor as it runs off the edge. This periodic boundary condition allows us to write
the convolution formally in terms of group actions, and to apply our theory directly. When
convolutions are not periodic, the resulting capacity increases somewhat but still follows
the P/N0 scaling of the periodic convolutions (Figure A.2).

For the random convolutional layers of Figure 1a, the input tensors are size 10 × 10
and the number of input channels are M = 3, as for standard color images. Each entry of
these tensors is normally distributed with mean 0. The filters are also of size 10× 10 with
periodic boundary conditions, and are initialized according to a normal Xavier distribution
with parameters that are the default for Pytorch 1.9. The convolution is implemented via
the Pytorch 1.9 implementation of Conv2d with padding mode=“circular” and padding=0
in the case of periodic boundary conditions. The bias term of the convolution is set to
zero and the convolution is followed by a ReLU nonlinearity (blue line). The resulting
figures do not change appreciably for different choices of input tensor size, number of input
channels, or size of filters (though note that the nonlinearity is essential for satisfying the
general position condition of Theorem 2; otherwise, the capacity would be determined by
the number of input channels rather than number of output channels). The output of this
convolution is then fed through a 2×2 max pooling layer (orange line in Figure 1a), provided
by Pytorch 1.9’s MaxPool2d.

The pretrained VGG-11 layers used in Figure 1b and Figure A.2 are taken from liukuang
(2017). The first convolutional block (blue line) consists of 3× 3 pretrained filters applied
to CIFAR-10 image tensors randomly selected from the validation set and normalized in
the same way they are normalized during training (see liukuang (2017) for details). These
images are of size 32×32 and have M = 3 input channels, followed by a batch normalization
layer in evaluation mode (fixed parameters), and then followed by a ReLU nonlinearity.
The boundary conditions of these convolutions are set to be periodic in Figure 1b and
nonperiodic with a zero padding sizes of 1 in Figure A.2, and the bias term is set to zero. The
batch normalization is an element-wise operation and so equivariant to the representations
we consider – thus this operation is not expected and is not observed to affect the perceptron
capacity. This convolutional block is then followed by a 2 × 2 max pooling layer (orange
line). Finally, another convolutional block of 3 × 3 filters, batch normalization, and ReLU
nonlinearity are applied (green line).
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Figure A.2: The fraction of realizable dichotomies of non-periodic convolutional layers is
higher than periodic convolutional layers, but still obeys the same scaling.
Details are exactly as in Figure 1b, but using non-periodic convolutions with
a zero padding of size 1. Here the theory line refers to the theory for periodic
convolutions.

The fraction of linearly separable dichotomies is measured empirically by using the scikit-
learn LogisticRegression implementation of logistic regression, with a tolerance value of
tol=1e-18 and an inverse regularization value of C=1e8. The maximum number of iterations
is set to 500. An intercept (i.e. bias) is not used for this fit.

To formally prove that the fraction of separable dichotomies is f(P,N) for standard
periodic convolutional layers, first note that the convolution is equivariant with respect
to cyclic permutation of the inputs and of the outputs. The representation for cyclically
permutating the output tensor can be written

⊕N
k=1 π where π is the representation that

cyclically permutes the entries of W ×L matrices. Since each copy of π contains one trivial
irrep in its decomposition into a direct sum of irreps, the direct sum

⊕N
k=1 π contains N

trivial irreps in its decomposition. The final step to use Theorem 2 is to argue that the
centroids of the manifolds are in general position. Since a nonlinearity (ReLU) is applied to
the output of the convolution, and since there is no particular structure in the convolutional
filters beyond possibly sparsity, we can generically expect this to be the case.

A.6.2. Lower Bound and Upper Bound on Capacity for Nonlinear Pooling

Theorem 8 Suppose a code which is equivariant to a finite group G is pooled to a new code
which is equivariant to a finite subgroup H ⊆ G. Suppose the number of trivial dimensions
in the original G-equivariant code is N0. Then the fraction of linearly separable dichotomies
on the G-invariant problem for the pooled code is at least f(P, ⌊N0/k⌋) where k = |G/H|.
Similarly the fraction is at most f(P,N0).
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Proof The pooled code, by assumption, has the property P(π(hg′)r) = ρ(h)P (π(g′)r)
for any h ∈ H and g′ ∈ R, where R is a set of representatives of G/H. The G-invariant
separability condition amounts to the proposition

∃w∀µ ∈ [P ] ∀h ∈ H, g′ ∈ R : yµw⊤ρ(h)P(π(g′)rµ) > 0 (9)

⇐⇒ ∃w∀µ ∈ [P ] ∀g′ ∈ R : yµw⊤ ⟨ρ(h)⟩h∈H P(π(g′)rµ) > 0; (10)

in other words, a solution on the right hand side affords a solution over all of the manifolds
generated in the input space. We see that, this requires considering if this particular
dichotomy is linearly separble on the Pk anchor points ⟨ρ(h)⟩h∈H P(π(g′)rµ). The simplest
strategy to obtain an upper bound is to consider what happens when a single new manifold
is added. We see that when a single new base point r is added it corresponds to k new
points in the orbit ⟨ρ⟩ P(π(g′)r) for all g′ ∈ R. Suppose that ⟨ρ(h)⟩h∈H has rank N0. Let
C(P,N0) represent the number of linearly separable dichotomies for P G-orbits in N0 trivial
dimensions. Upon the addition of the k new points (P → P + 1), we find that some of the
pre-existing separable dichotomies give a new separable dichotomy. This can be guaranteed
to occur when a w separates the old dichotomy and has w⊤ ⟨ρ⟩ · P(π(g′)r) = 0 for the new
anchor point r (but this condition is not necessary for a new dichotomy to be separable).
This condition means that the original dichotomy is separable in the N0 − k dimensional
subspace {w : w · P(π(g′)r) = 0}. By making infinitesimal adjustment to this w the
correct label on this new orbit can be achieved without altering the labels on any other
dichotomy. Since this argument gives a sufficient but not necessary condition to generate a
new dichotomy, we obtain the following inequality

C(P + 1, N0) ≥ C(P,N0) + C(P,N0 − k). (11)

Solving this recursion gives the capacity fPooled(P,N0) ≥ fCover(P, ⌊N0/k⌋). The greatest
capacity occurs in the special case where ⟨ρ⟩ P(π(g′)r) = ⟨ρ⟩ P(r). In this case, the usual
counting theorem applies giving a fraction of separable dichotomies of f(P,N0). This is
achieved, for instance in average pooling as we showed in Theorem 6.

A.6.3. Direct sum equivariant convolutional layers

Here we describe how to build a convolutional layer architecture that is equivariant with
respect to the regular representation in the input space and the direct sum representations
introduced in Section A.3.1 in the output space. For the following we assume that m1 and
m2 are coprime, though see the footnote in Section A.3.1 for a discussion of how to loosen
this requirement.

The input data is a W × L×M tensor where M is the number of input channels. The
first step is to simply take the output of a standard convolution (in our simulations we
also apply a ReLU nonlinearity) applied to this input with periodic boundary conditions,
resulting in a W × L × N tensor where N is the number of output channels. The next
step is to, for each of the output channels, take an average (or maximum) between entries
spaced m1 entries apart horizontally or vertically in the matrix, resulting in an m1 × m1

matrix. In our simulations we took averages rather than maximums. This is repeated for
the other number m2, resulting in an m2 ×m2 matrix. This is repeated for every output
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channel, resulting in N matrices of size m1 ×m1 and N matrices of size m2 ×m2. Finally,
the resulting matrices are flattened and appended into an (m2

1 +m2
2)×N matrix, and the

result is passed through a nonlinearity (ReLU).
As the input tensor is cyclically permuted according to a regular representation π of

Zm1m2 , the output of this equivariant convolutional layer permutes according to the repre-
sentation π(1) ⊕ π(2) where π(1) is the regular representation of Zm1 and π(2) is the regular
representation of Zm2 .

The proof that the fraction of separable dichotomies is given by f(P, 2N) follows the
same proof as for the standard periodic convolutions in Appendix A.6.1. Instead of a direct
sum

⊕N
k=1 π we get a direct sum

⊕N
k=1(π

(1) ⊕ π(2)). Each of the π(1) ⊕ π(2) contain two
trivial irreps in its decomposition, so that the final fraction is f(P, 2N).

A.6.4. Induced representations

First we state the definition of an induced representation. Let H be a subgroup of a finite
group G and let ρ : H → GL(W ) be a representation of H. Let V be the vector space
of functions f : G → W such that f(gh) = ρ(h)f(g) for all h ∈ H and g ∈ G. We now
define the induced representation π : G → GL(V ) to be the representation which satisfies
(π(g′)f)(g) = f(gg′).

For intuition, note that every element of g can be written g = rh where r is a rep-
resentative for a coset in G/H and h ∈ H. This is because the cosets G/H partition G
and the action of H stays within a coset; hence r selects out the coset, and h goes to the
desired element of the coset: g = rh. With this decomposition, the action of π is then
π(rh)f(g) = ρ(h)f(gr). Hence the r component under π has the effect of permuting to the
new coset that gr belongs in, and the h component under π then has the effect ρ(h) on the
resulting vector f(gr) that we originally specified. This is the most natural way to get a
representation of G from a representation of H. In the case of finite groups, one can think
of the r component as permuting a set of isomorphic copies of V , each copy corresponding
to a different coset.

To compute the capacity of induced representations, and so prove Proposition 3, we use
Frobenius reciprocity of characters. Recall that the character θ of a representation π : G →
GL(V ) is the map θ : G → C induced by the trace: θ(g) = Tr(π(g)). Now let θ be the
character of ρ : H → GL(V ) and let θG be the character of the induced representation. Then
⟨θG(g)⟩g∈G = ⟨θ(h)⟩h∈H by Frobenius reciprocity of characters (Mackey, 1970). The average
of the character is the number of trivial representations contained in the decomposition of
the representation (see Serre (2014)). Hence the capacity of the induced representation is
equal to the capacity of ρ. The existence of extensions beyond finite groups is not clear to
the authors, but we welcome information if such exists.
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