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It Takes Two to Tango: Directly Optimizing for Constrained Synthesizability in
Generative Molecular Design

Anonymous Authors1

Abstract
Constrained synthesizability is an unaddressed
challenge in generative molecular design. In
particular, designing molecules satisfying multi-
parameter optimization objectives, while simul-
taneously being synthesizable and enforcing the
presence of specific building blocks in the syn-
thesis. This is practically important for molecule
re-purposing, sustainability, and efficiency. In this
work, we propose a novel reward function called
TANimoto Group Overlap (TANGO), which
uses chemistry principles to transform a sparse
reward function into a dense reward function –
crucial for reinforcement learning (RL). TANGO
can augment molecular generative models to di-
rectly optimize for constrained synthesizability
while simultaneously optimizing for other proper-
ties relevant to drug discovery. Our framework is
general and addresses starting-material, interme-
diate, and divergent synthesis constraints. Con-
trary to many existing works in the field, we show
that incentivizing a general-purpose model with
RL is a productive approach to navigating chal-
lenging synthesizability optimization scenarios.
We demonstrate this by showing that the trained
models explicitly learn a desirable distribution.
Our framework is the first generative approach to
successfully address constrained synthesizability.
The code is provided at https://figshare.
com/s/0aa1bb23734ee16d4331.

1. Introduction
Synthesizable generative molecular design is becoming in-
creasingly prevalent (Gao & Coley, 2020; Stanley & Segler,
2023), paralleling the rise in the number of experimentally
validated generative design case studies (Du et al., 2024).
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Controlling how generated molecules can be synthesized
offers great potential for the push towards closed-loop dis-
covery (Coley et al., 2020a;b) as molecules that can be
made from specific reagents or reactions are naturally more
amenable to robotic synthesis automation, which can be
specialized for certain chemistries (Tom et al., 2024; Strieth-
Kalthoff et al., 2024; Sin et al., 2024). Moving beyond meth-
ods that optimize for synthesizability heuristics (Stanley &
Segler, 2023; Neeser et al., 2023), approaches that explic-
itly assess synthesizability can be broadly categorized into
forward- or retro-synthesis which builds molecules from
simple building blocks, or recursively decomposes a target
molecule into constituent building blocks, respectively. An
example of forward-synthesis in the context of molecular
design is synthesizability-constrained molecular generation.
These methods anchor molecular generation in viable chem-
ical transformation rules, thus promoting synthesizability
(Gao et al., 2022; 2024). On the other hand, retrosynthesis
planning (Liu et al., 2017; Segler & Waller, 2017; Coley
et al., 2017; Segler et al., 2018) proposes viable synthetic
routes to a target molecule, and these models are often used
as stand-alone tools to assess synthesizability. Such models
have become increasingly adopted and are now routinely
used to filter generated molecules (Shields et al., 2024). Re-
cent work has shown that generative models can directly
generate molecules deemed synthesizable by retrosynthesis
models by treating them as another oracle (computational
prediction) to optimize for (Guo & Schwaller, 2024c). Sub-
sequently, constrained synthesis planning has become a
research focus, whereby proposed synthetic routes incorpo-
rate enforced building blocks. This is especially relevant
for sustainability and efficiency and examples include semi-
synthesis (Vollmann et al., 2022) (start from reagents iso-
lated from natural sources) and divergent-synthesis (Li et al.,
2018) (pass through common intermediates). More exam-
ples include starting-material constrained synthesis (Granda
et al., 2018; Wołos et al., 2020), which can also re-purpose
waste to valuable molecules (Wołos et al., 2022; Żądło-
Dobrowolska et al., 2024). More recently, constrained ret-
rosynthesis algorithms have been proposed (Johnson et al.,
1992; Yu et al., 2022; 2024). However, to date, there are
no molecular generative models that can enforce specific
building blocks in the proposed routes.
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Figure 1. TANGO guides the generation of molecules directly op-
timized for constrained synthesizability with enforced building
blocks while simultaneously optimizing other properties. Our
method generalizes across starting-material, intermediate, and di-
vergent synthesis constraints.

In this work, we show that a general-purpose molecu-
lar generative model, without any constraints, can be in-
centivized to generate synthesizable molecules that sat-
isfy multi-parameter optimization (MPO) objectives while
jointly enforcing a set of building blocks. Our contribu-
tion is as follows: (1) We leverage chemistry principles and
propose the TANimoto Group Overlap (TANGO) reward
function to generate molecules deemed synthesizable by
retrosynthesis models with the presence of enforced build-
ing blocks using reinforcement learning (RL). (2) We show
that generated molecules satisfy MPO objectives, and by
design, enable the construction of synthesis networks where
common intermediates branch towards diverse, high-reward
molecules. (3) We show that letting a general purpose model
freely learn (using incentives), can be a productive approach
to optimizing challenging synthesizability objectives.

2. Related Work
Retrosynthesis Models. Retrosynthesis planning aims to
find a set of commercial building blocks and viable chem-
ical transformations that can be combined to synthesize a
target molecule. Existing works encode chemically plau-
sible transformations either as reaction templates (coded
patterns) (Chen & Jung, 2021; Xie et al., 2023) or template-
free approaches (learn from data) operating on SMILES
strings (Liu et al., 2017; Segler & Waller, 2017; Schwaller
et al., 2020; Thakkar et al., 2023; Han et al., 2024) or graphs
(Sacha et al., 2021; Zhong et al., 2023). Subsequently, multi-
step retrosynthesis planning is tackled by coupling a search
algorithm such as Monte Carlo tree search (Segler et al.,
2018), Retro* (Chen et al., 2020), Planning with Dual Value
Networks (PDVN) (Liu et al., 2023), or the recent Double-
Ended Synthesis Planning (DESP) (Yu et al., 2024). With
retrosynthesis planning being a ubiquitous task in molec-
ular discovery, many platform solutions exist, including
SYNTHIA (Szymkuć et al., 2016; Grzybowski et al., 2018),
AiZynthFinder (Genheden et al., 2020; Saigiridharan et al.,
2024), ASKCOS (Coley et al., 2019; Tu et al., 2025), Eli
Lilly’s LillyMol (Watson et al., 2019), Molecule.one’s M1

platform (Molecule.one), and IBM RXN (Schwaller et al.,
2020). In the context of generative molecular design, ret-
rosynthesis models are usually used for post-hoc filtering
due to their inference cost, but recent work has shown that
with a sample-efficient model, they can be incorporated
directly as an optimization objective (Guo & Schwaller,
2024c).

Synthesizability-constrained Molecular Generation.
Bridging concepts from retrosynthesis, synthesizability-
constrained models anchor molecular generation by en-
forcing a set of valid chemical transformations (Vinkers
et al., 2003; Hartenfeller et al., 2012; Ghiandoni et al., 2022;
2024; Bradshaw et al., 2019; 2020; Korovina et al., 2020;
Gao et al., 2022; Seo et al., 2023; Koziarski et al., 2024;
Gao et al., 2024; Cretu et al., 2024; Luo et al., 2024; Got-
tipati et al., 2020; Horwood & Noutahi, 2020; Fialková
et al., 2021; Jocys et al., 2024; Seo et al., 2024). To date,
there are no molecular generative models that can enforce
the presence of specific building blocks in the synthesis
graph and the closest works are SynNet (Gao et al., 2022)
and the very recent SynFormer (Gao et al., 2024) mod-
els which can condition on a target molecule to propose
a synthetic route. Current synthesizability-constrained ap-
proaches cannot reliably (or are sample-inefficient) satisfy
MPO objectives which is a necessary requirement for prac-
tical applications. In this work, we show that a general-
purpose model, can generate synthesizable molecules that
satisfy MPO objectives while enforcing the presence of a
small set of building blocks either at the start of the synthe-
sis (starting-material constrained), as a common intermedi-
ate (intermediate-constrained), or non-commercial building
blocks that diverge to diverse, favorable generated molecules
(divergent synthesis) (Fig. 1). To our knowledge, there are
only several works (Johnson et al., 1992; Yu et al., 2022;
2024; Szymkuć et al., 2016; Grzybowski et al., 2018) that
enable some notion of building block-constrained synthesis
planning. In particular, the very recent DESP (Yu et al.,
2024) retrosynthesis search algorithm proposes a bidirec-
tional search that can constrain on a starting-material. Our
work differs in that we are not proposing a search algorithm,
but rather the first generative approach that jointly tackles
constrained synthesizability and MPO. Moreover, our frame-
work can consider the constraint of many building blocks
simultaneously.

3. Methods
In this section, we describe the problem formulation, the
generative model, the TANGO reward function, and the
experimental setup.

Constrained Synthesizability Problem Formulation. In
synthesis planning, the goal is to propose a valid synthetic
route to a target molecule using (commercially) available
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Figure 2. TANGO reward function: the maximum similarity be-
tween every non-root node (generated molecule) molecule and the
set of enforced building blocks. Every synthesizable generated
molecule returns a non-zero reward.

building blocks, B, and a set of reaction rules, R. We define
a synthesis graph, G(M,R), where each node represents
an intermediate molecule, m, that need not necessarily be
an available building block, b, and the edges represent reac-
tions, r ∈ R. The depth of a node is the number of edges
from the root node (the target molecule). A valid synthetic
route requires that all leaf nodes correspond to commercially
available building blocks, b ∈ B. We further define enforced
building blocks, Benf ⊆ B. In practice, |Benf | << |B|,
and in this work, we consider |Benf | ∈ {10, 100}. We
address three cases of constrained synthesis in this work:

Case 1: Starting-material Constrained Synthesis. A
synthesis graph is considered starting-material constrained
if at least one leaf node, m ∈ G(M,R), satisfies both of
the following conditions: (1) m = b ∈ Benf , and (2)
depth(m) = max depth:

∃m ∈ G(M,R) s.t. depth(m) = max depth and m = b ∈ Benf

A practical reason why one would want to enforce a starting-
material constraint is that they may be inexpensive reagents.
As such, they can be obtained in larger quantities for use
in multi-step synthesis, which necessarily loses material at
every synthetic step.

Case 2: Intermediate Constrained Synthesis. A synthesis
graph is considered intermediate constrained (general case
of starting-material constrained) if at least one intermediate
node, m ∈ G(M,R), belongs to Benf :

∃m ∈ G(M,R) s.t. m ∈ Benf

Case 3: Divergent Synthesis. A synthesis graph is con-

sidered divergent if at least one intermediate node, m ∈
G(M,R), satisfies both of the following conditions: (1)
m = b ∈ Benf , and (2) all b ∈ Benf are non-commercial.
The nuance of non-commercial is that they can be highly
specific building blocks and potentially much larger in size
than common commercial building blocks, which can enable
late-stage functionalization (Castellino et al., 2023):

∃m ∈ G(M,R) s.t. ∀b ∈ Benf , b is non-commercial, and m = b ∈ Benf

TANGO Reward Function. In the context of generative
molecular design, previous work has shown that retrosynthe-
sis models can be treated as an oracle and directly optimized
for (Guo & Schwaller, 2024c). The effect is that generated
molecules are synthesizable, as deemed by retrosynthesis
models (from here on, this will just be referred to as "syn-
thesizable", for brevity). In that work, the authors adopted
a brute-force approach to learning synthesizability, despite
the reward signal being binary, i.e., R ∈ {0, 1}, denoting
whether a molecule is synthesizable or not. This worked
because there are enough molecules that are synthesizable,
making the optimization landscape not too sparse. However,
in the constrained synthesis setting, it is highly unlikely
that a synthesizable molecule will also contain an enforced
building block in its synthesis graph, especially when the
number of Benf is small, which is common in real-world
applications (Granda et al., 2018; Wołos et al., 2020; 2022).
Consequently, this is a very sparse reward environment:
without a way to inform the model if it is getting "closer"
to achieving the goal, learning becomes extremely challeng-
ing. Drawing inspiration from RL, quantifying the degree
to which an arbitrary goal is achieved, while intending for
another goal is sometimes referred to as hindsight (Rauber
et al., 2019). Intuitively, defining a reward signal that is not
exactly the target objective but is informative to achieving
the target objective should guide learning (Andrychowicz
et al., 2017; Rauber et al., 2019), and can be done through
reward shaping (Ng et al., 1999; Silver et al., 2021).

In this work, we propose the TANimoto Group Overlap
(TANGO) reward function that leverages chemistry induc-
tive bias to transform the sparse reward environment as-
sociated with constrained synthesis, to a dense reward en-
vironment. Specifically, for every synthesizable molecule,
TANGO provides a signal on whether the model is "closer"
to incorporating Benf . Given G(M,R), this is achieved by
a notion of similarity between every node, m, and Benf .
We draw inspiration from previous works that leverage Tan-
imoto similarity (sub-graph similarity) for retrosynthesis
(Coley et al., 2017; Zhang et al., 2024). However, Tanimoto
similarity alone is insufficient as chemical reactivity is often
associated with functional groups and their neighborhoods
which dictate incompatibilities (Molga et al., 2019). Cor-

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

respondingly, we augment Tanimoto similarity with Func-
tional Group (FG) Overlap (does a given molecule have
similar functional groups to Benf?) and Fuzzy Matching
Substructure (FMS) (what is the maximum substructure
overlap by atom count to Benf?). We note that FMS, if en-
forcing exact atom hybridization, atom type, chirality, and
whether the atom is part of a ring, also implicitly considers
functional group overlap. In Appendix E, we systematically
evaluated various TANGO formulations and their ability to
distinguish "goodness" and conclude that equal weighting
(0.5) of Tanimoto similarity (TS) and FMS yields the best
learnable signal:

TANGO(m,Benf ) = TS(m,Benf ) · 0.5 + FMS(m,Benf ) · 0.5 ∈ [0, 1] (1)

We note that since the maximum value of Tanimoto similar-
ity and FMS is 1, TANGO is by design already normalized
∈ [0, 1]. The TANGO reward is the maximum value be-
tween all non-root nodes, m ∈ G(M,R) (Algorithm 1).
It follows that the type of constrained synthesizability can
be controlled by a simple toggle of whether only nodes at
max depth (starting-material) be considered or any node
(intermediate or divergent).

Algorithm 1 TANGO Reward Calculation
Input:
G(M,R) ▷ Synthesis graph of generated molecule
Benf ▷ Enforced building blocks
max depth ▷ Graph depth of terminal leaf nodes
enforce start ▷ Boolean flag for starting-material constraint

Output: reward

reward← 0
// Traverse all non-root nodes in the synthesis graph
foreach node m ∈ G(M,R) and depth(m) > 0 do

// Starting-material constrained or not
if enforce start then

if depth(m) ̸= max depth then
continue

end
end
reward← max(reward, TANGONodeReward(m,Benf ))

end
Function TANGONodeReward(node, Benf ):

node_reward← 0
// Loop through all enforced building blocks
foreach benf ∈ Benf do

// Compute current block’s reward
TanSim← ComputeTanimotoSimilarity(node, benf )

FMS ← ComputeFMS(node, benf )

block_reward← TanSim · 0.50 + FMS · 0.50
node_reward← max(node_reward, block_reward)

end
return node_reward

return TANGO_reward

Molecular Generative Model. Here, we build on Saturn
(Guo & Schwaller, 2024b) which is a general-purpose au-
toregressive language-based model operating on SMILES
strings (Weininger, 1988). Saturn uses the Mamba (Gu &
Dao, 2023) architecture and performs goal-directed genera-
tion using RL. The key mechanism is combining SMILES
augmentation (Bjerrum, 2017) with experience replay (Lin,
1992) which directly controls the exploration-exploitation

trade-off. In the original work, the authors found that ag-
gressive local sampling in chemical space improves sam-
ple efficiency across various drug discovery case studies.
By contrast, we show that the constrained synthesizabil-
ity setting necessitates a more exploratory behavior. We
pre-train Saturn on PubChem (Kim et al., 2023) after data
pre-processing (see Appendix A for details).

Retrosynthesis Model. In this work, we integrate Syn-
theseus (Maziarz et al., 2023), which is a wrapper around
various retrosynthesis models and search algorithms, into
Saturn. Through Syntheseus, we use MEGAN (graph-edits
based) (Sacha et al., 2021) as the single-step retrosynthesis
model coupled with the Retro* (Chen et al., 2020) search
algorithm with default hyperparameters. MEGAN was cho-
sen due to its fast inference speed but we emphasize that our
framework is retrosynthesis model-agnostic.

Commercial Building Blocks. In this work, B is com-
prised of the ‘Fragment‘ and ‘Reactive‘ subsets of ZINC
(Sterling & Irwin, 2015) (17,721,980) which are part of the
commercial building block stock used in the AiZynthFinder
(Genheden et al., 2020; Saigiridharan et al., 2024) retrosyn-
thesis model. We note that the size of B is much larger than
employed in previous synthesizability-constrained works
(Gao et al., 2022; Luo et al., 2024; Gao et al., 2024; Seo et al.,
2024) (which commonly use Enamine REAL (Grygorenko
et al., 2020) US Stock: 223,244 molecules and recently
Enamine Comprehensive Catalogue: 1,193,871 molecules).
Therefore, an additional result in this paper is showing that
our framework can navigate an enormous synthesizable
space. We also want to highlight that it is straightforward
to further increase the size of B, and does not require re-
training of the generative model. Next, Benf ⊂ B is ran-
domly sampled with the following criteria: 150 < molecular
weight < 200, no aliphatic carbon chains longer than 3, ex-
clude charged molecules, if rings are present, enforce size
∈ {5, 6}, and molecules must contain at least one nitrogen,
oxygen, or sulfur atom. We believe this criteria is a rea-
sonable representation of simple building blocks applicable
to drug design (see Appendix B for more details) We con-
sider |Benf | ∈ {10, 100} and denote these Benf−10 and
Benf−100, respectively.

Drug Discovery Case Study. The MPO optimization task
is to generate molecules with optimized QuickVina2-GPU-
2.1 (Trott & Olson, 2010; Alhossary et al., 2015; Tang et al.,
2023) docking scores against ATP-dependent Clp protease
proteolytic subunit (ClpP) (Mabanglo et al., 2023) (impli-
cated in cancer), high QED (Bickerton et al., 2012), and are
synthesizable with either the starting-material, intermediate,
or divergent synthesis constraints.

Experimental Details. For method development (see Ap-
pendix E for all experimental results), we ran every exper-
iment across 5 seeds (0-4 inclusive) with varying oracle
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budgets. Once we identified optimal hyperparameters, we
ran all main result experiments across 10 seeds (0-9 inclu-
sive) with a 10,000 oracle budget, and reported the wall
time to promote practical application. As our framework is,
to the best of our knowledge, the first generative approach
that tackles constrained synthesizability, we focus our inves-
tigation on the optimization dynamics and implications of
TANGO.

Metrics. We report Non-solved and Solved (Enforced) as
the number of generated molecules that the retrosynthesis
model deems unsynthesizable (no route returned) and is syn-
thesizable with the presence of an enforced building block,
respectively. Note that Solved (Enforced) is a much more
challenging metric than just synthesizable, which previous
work has shown is directly learnable (Guo & Schwaller,
2024c). We further report N as the number of replicates out
of 10 seeds where Solved (Enforced) > 0, and the mean
and standard deviation for the # Unique Enforced Blocks,
denoting how many unique enforced building blocks are in
the routes for the Solved (Enforced) molecules. Next, we
pool all Solved (Enforced) molecules and report the mean
and standard deviation of the # Reaction Steps. Similarly,
we report the mean and standard deviation of docking scores
and QED values across varying intervals. Jointly optimizing
for constrained synthesizability, minimizing docking scores,
and maximizing QED values is the MPO objective and a
robust model should be able to achieve this.

4. Results and Discussion
4.1. Making Constrained Synthesizability Learnable

Understanding the Optimization Dynamics. In Appendix
E, we performed extensive ablation studies to understand
the optimization dynamics that enable direct optimization
of constrained synthesizability. We summarize our obser-
vations and show key results in Table 1: firstly, TANGO
is the most consistent learnable reward function that also
enables MPO. While just Tanimoto similarity as the reward
function can lead to successful runs, it is less stable (seeds
can fail and much higher variance) and MPO is consider-
ably worse, as docking and QED is optimized to a much
lesser extent than TANGO. FMS as a reward function is
also successful, but generates very few constrained synthe-
sizable molecules. Therefore, through ablation studies, we
show that it takes two to tango because TANGO’s perfor-
mance is much more consistent and robust (across seeds)
than using just Tanimoto similarity or FMS alone. Thus
far, TANGO was formulated with equal weighting to FMS
and Tanimoto similarity. We next investigated varying the
weighting, assigning 0.75 to either FMS or Tanimoto Sim-
ilarity and 0.25 to the other. The results in Appendix E.5
show that putting more weight on Tanimoto similarity leads
to more constrained synthesizable molecules, but at the ex-

pense of worse MPO. Since MPO is vital for practicality,
we chose to designate TANGO with equal weighting the
default reward function. Next, we found that the default hy-
perparameters of Saturn (Guo & Schwaller, 2024b) are too
exploitative and disadvantageous in this optimization setting.
Relaxing this behavior makes constrained synthesizability
much more consistently learnable (under the fixed oracle
budget). Lastly, once molecules with a specific enforced
building block are generated, Saturn heavily focuses on that
building block, such that within the same generative experi-
ment, often only one unique block is enforced (but variable
across seeds). We do not consider this a disadvantage as
it enables the construction of divergent synthesis networks
where a common block branches towards many optimal
molecules. We discuss the implications of this behavior
from a generative perspective in the next section.

Constrained Synthesizability Results. Table 2 shows the
results with Benf−10 and Benf−100 using TANGO (equal
weighting). We make the following observations: firstly, all
constraints can be learned within the 10,000 oracle budget
(approximate 8.5 hours wall time). Secondly, all runs gen-
erate non-solvable molecules and many solvable molecules
do not contain the enforced blocks, as expected (see Non-
solved and Solved (Enforced)). Nonetheless, generated
molecules can achieve docking scores < -10 (considered
optimal in previous works and is better than the reference
ligand (Koziarski et al., 2024; Guo & Schwaller, 2024c))
and optimal QED values. This demonstrates the capabil-
ity to perform MPO while also optimizing for constrained
synthesizability. Thirdly, # Unique Enforced Blocks is
relatively low as we observed that once the model incorpo-
rates one enforced building block, it focuses on generating
molecules whose syntheses can be decomposed to that spe-
cific block, since the reward it obtains is high and there
is a degree of exploitation. Fourthly, the starting-material
constraint is more difficult for Benf−100 but unexpectedly,
not for Benf−10. We speculate the reason for this is exactly
due to exploitation behavior. Since TANGO returns the max
reward in the synthesis tree (comparing to all Benf ), it is
possible that more blocks can be a hindrance when there are
specific blocks that are particularly favorable. We empha-
size that across different seeds, the enforced building blocks
can be different, which is important as one could run multi-
ple experiments in parallel and pool the results. Fifthly, we
ran the same experiments without the QED objective and the
optimization task becomes easier (as expected), with higher
Solved (Enforced) and molecules with docking scores <
-10 (Appendix E.6). We ran these sets of experiments for
completeness and comparison only, as particularly low QED
can result in lipophilic molecules that can be promiscuous
binders (Arnott & Planey, 2012). We highlight that the #
Reaction Steps is generally short, which shows that op-
timizing for constrained synthesizability does not lead to
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Table 1. Results for the promising reward functions: Tanimoto Similarity (TanSim), Fuzzy Matching Substructure (FMS), and
TANGO (equal weighting). All experiments were with 100 enforced building blocks. The mean and standard deviation across 5 seeds
(0-4 inclusive) are reported. The number of replicates (out of 5) with at least 1 generated molecule that is synthesizable with an enforced
building block is reported with N. The number of molecules (pooled across all successful replicates) are partitioned into different docking
score thresholds and statistics reported. # Reaction Steps is also reported for the pooled generated molecules that have an enforced block.
The total number of molecules in each pool across the 5 seeds is denoted by M. For the docking score intervals, we report the scores and
QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

TanSim 2275 ± 143 1863 ± 1827 -10.36 ± 0.24 (M=30) -9.36 ± 0.23 (M=487) -8.43 ± 0.25 (M=2389)

(N=3) 0.72 ± 0.09 0.76 ± 0.10 0.79 ± 0.09

FMS 1693 ± 174 114 ± 205 -10.36 ± 0.40 (M=5) -9.41 ± 0.25 (M=53) -8.48 ± 0.25 (M=173)

(N=5) 0.75 ± 0.15 0.85 ± 0.09 0.85 ± 0.07

TANGO 2229 ± 325 1743 ± 715 -10.34 ± 0.25 (M=218) -9.44 ± 0.25 (M=1606) -8.49 ± 0.26 (M=2206)

(N=5) 0.77 ± 0.11 0.83 ± 0.10 0.82 ± 0.10

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
TanSim 2.18 ± 1.16 (M=9319) 1.33 ± 0.47 10,000 (9h 11m ± 48m)
FMS 1.78 ± 1.04 (M=570) 1.8 ± 0.75 10,000 (7h 50 ± 26)
TANGO 2.35 ± 1.24 (M=8719) 2.2 ± 0.75 10,000 (8h 12m ± 15m)

inefficient synthesis plans. Moreover, amongst the most re-
cent synthesizability-constrained models (Seo et al., 2024),
our framework outputs shorter synthesis routes, on aver-
age, despite operating in the much more challenging setting.
This is because our framework can perform MPO and opti-
mizing for QED implicitly yields shorter synthesis routes,
on average, as it constrains the molecular weight. We note
that the # Reaction Steps in the divergent synthesis results
are longer because it takes one step in the first place, to
arrive at the divergent blocks. Finally, all runs only took
on average, 8.5 hours on a single GPU, which is reason-
able, as many commercial drug discovery projects run their
generative experiments for 24-72 hours (Livne et al., 2024).

Are the Results by Chance? While the results thus far
were promising, we noticed that many runs (across seeds)
converged to the same three enforced building blocks (Fig.
3). We questioned whether the success was simply due
to these "lucky" blocks. Therefore, we performed a set
of ablation experiments by removing these blocks and re-
running all configurations in Table 2. The results show
that the model can generate optimal molecules with other
enforced building blocks (Appendix E.7). These runs were
much less successful (across seeds) but recovered when
removing the QED objective. This suggests that the model
learns to use certain blocks that are more aligned with the
objective function. Next, we further push our framework
with an enforced building block set of 5 molecules dissimilar
to the "lucky" blocks. While much more challenging (most
runs are unsuccessful under the strict oracle budget), this
is still possible, with the routes containing Suzuki coupling
reactions (see Appendix E.8 and Fig. 12), which is notably
different to the amide coupling reactions in Fig. 3.

Figure 3. Example generated molecules under the starting-
material and divergent synthesis (one-step synthesis from a
non-commercial common intermediate to diverse, high-reward
molecules) constraints. The docking scores and QED values are
annotated. For the divergent synthesis graph, the ∆ docking score
(negative is better) and QED (positive is better) are additionally
annotated.

Synthesis Networks. Next, we tackle divergent synthe-
sis by incorporating larger, non-commercial molecules in
the enforced building blocks set. We curated a set of 10
non-commercial blocks from solved synthesis routes (Fig.
3) and ran the same experimental set-up. Table 2 shows
that this is also learnable within the oracle budget, albeit
much less consistently as only 4/10 seeds were success-
ful. We still argue that our framework is robust as this
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Table 2. Constrained synthesizability results. The reward function is TANGO (equal FMS and Tanimoto similarity weighting). "SM"
denotes starting-material constrained. "Unconstrained" denotes the experiment without enforcing building blocks, as a comparison. The
mean and standard deviation across 10 seeds (0-9 inclusive) are reported. The number of replicates (out of 10) with at least 1 generated
molecule that is synthesizable with an enforced building block is reported with N. The number of molecules (pooled across all successful
replicates) are partitioned into different docking score thresholds and statistics reported. # Reaction Steps is also reported for the pooled
generated molecules that have an enforced block. The total number of molecules in each pool across the 10 seeds is denoted by M. For
the docking score intervals, we report the scores and QED values.
a Denotes how many molecule are solvable by the retrosynthesis model. There is no notion of enforced in the unconstrained setting.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks 2288 ± 305 2111 ± 1169 -10.36 ± 0.28 (M=487) -9.42 ± 0.24 (M=3096) -8.47 ± 0.26 (M=5904)

(N=10) 0.79 ± 0.09 0.82 ± 0.09 0.81 ± 0.09

100 Blocks (SM) 1879 ± 186 1524 ± 502 -10.41 ± 0.31 (M=120) -9.41 ± 0.24 (M=985) -8.43 ± 0.25 (M=3156)

(N=10) 0.78 ± 0.09 0.81 ± 0.09 0.81 ± 0.09

10 Blocks 2425 ± 288 984 ± 1181 -10.38 ± 0.30 (M=659) -9.46 ± 0.25 (M=3981) -8.57 ± 0.25 (M=2419)

(N=6) 0.79 ± 0.10 0.83 ± 0.09 0.83 ± 0.10

10 Blocks (SM) 2228 ± 182 1004 ± 925 -10.37 ± 0.27 (794) -9.46 ± 0.24 (M=3881) -8.54 ± 0.25 (M=2790)

(N=9) 0.80 ± 0.09 0.83 ± 0.09 0.84 ± 0.10

Divergent Blocks 2166 ± 202 651 ± 1238 -10.36 ± 0.26 (M=187) -9.41 ± 0.24 (M=1311) -8.48 ± 0.25 (M=2694)

(N=4) 0.84 ± 0.10 0.86 ± 0.07 0.86 ± 0.07

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solveda DS < -10 -10 < DS < -9 -9 < DS < -8

Unconstrained 1827 ± 191 8127 ± 196 -10.36 ± 0.28 (M=5489) -9.42 ± 0.24 (M=20099) -8.47 ± 0.26 (M=26710)

(N=10) 0.87 ± 0.07 0.88 ± 0.07 0.87 ± 0.08

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks 2.37 ± 1.27 (M=21115) 2 ± 0.63 10,000 (8h 31m ± 40m)
100 Blocks (SM) 1.49 ± 0.91 (M=15247) 1.9 ± 0.7 10,000 (8h 33m ± 30m)
10 Blocks 2.70 ± 1.20 (M=9845) 1 ± 0 10,000 (8h 29m ± 30m)
10 Blocks (SM) 2.59 ± 1.04 (M=10040) 1 ± 0 10,000 (8h 39m ± 24m)
Divergent Blocks 3.68 ± 1.08 (M=6512) 1.75 ± 0.83 10,000 (8h 52m ± 42m)

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Unconstrained 1.86 ± 1.19 (M=81829) N/A 10,000 (5h 34m ± 39m)

is a much more challenging task (one can also increase
the oracle budget which leads to more successful seeds,
as we show in Appendix E.9) and we wanted to show the
model can learn to enforce these large building blocks from
scratch. This opens up practical applications for late-stage
functionalization, commonly employed in drug discovery
(Castellino et al., 2023). Correspondingly, Fig. 3 shows
example synthesis networks using results from the starting-
material and divergent synthesis constrained experiments.
All generated molecules achieve optimal docking scores
(although starting-material constrained resulted in slightly
worse scores) and QED values. In the divergent synthesis
case, a one-step amide coupling reaction from the enforced
block leads to notably improved docking scores, though
sometimes with lower QED. Examples of full synthesis
routes are shown in Appendix F.

4.2. Learning a Desirable Distribution

Fundamentally, generative models learn to model distribu-
tions. In this section, we further demonstrate that TANGO
is a learnable reward function and that the modeled distribu-
tion shifts to satisfy the MPO objective. To do so, we take
each final model checkpoint (across the 10 seeds) from the
experiment in Table 2 with 100 enforced building blocks
(and with QED) and sample 1,000 unique molecules. Fig.
4a shows that a considerable number of sampled molecules
are jointly synthesizable with an enforced building block
(Solved (Enforced)). The distribution shift is apparent when
compared to 1,000 unique molecules sampled from the pre-
trained model (before RL), which mostly generates unsyn-
thesizable molecules (Non-solved). Fig 4b pools (across
the 10 seeds) all the Solved (Enforced) molecules and
shows the density of docking and QED scores which have
shifted towards favorable values. Next, we take the sampled
molecules from one seed and plot a UMAP (McInnes et al.,
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Figure 4. The model learns a distribution of molecules that satisfy
the MPO objective. The final model checkpoint from the 100 en-
forced building blocks experiment (all 10 seeds) was used to sam-
ple 1,000 unique molecules. a. Counts of solvable molecules from
the checkpoints with the mean and standard deviation reported
(non-bolded). 1/10 final model checkpoints was unable to yield
"Solved (enforced)" molecules. The pre-trained model (before RL)
generates mostly unsynthesizable molecules and no synthesizable
molecules with enforced blocks (metrics are bolded). b. Dock-
ing Score (DS) and QED values of the pooled Solved (Enforced)
molecules across all seeds. c, d, e uses 1,000 unique molecules
sampled from one final model checkpoint. c. UMAP of sampled
molecules compared to the pre-trained model. d. Negative log-
likelihoods (NLLs) of the sampled molecules. It is much more
likely to generate the sampled molecules under the final model
checkpoint. e. Top-10 (by docking score) molecules with the
enforced building block highlighted. The NLLs are similar.

2018) embedding comparing to the molecules sampled from
the pre-trained model. It is clear that the checkpoint sampled
molecules are dissimilar but we show that the learned distri-
bution is not perfect, as the final checkpoint still sometimes
samples ill-suited (based on the MPO objective) molecules
that are similar to the pre-trained model. Subsequently, we
take the sampled molecules from the final model check-
point and compare the negative log-likelihoods as measured
by this checkpoint and the pre-trained model. We make
two observations: firstly, the molecules are much more
likely under the checkpoint, unsurprisingly. But secondly,
and more importantly, the likelihoods from the checkpoint
puts more probability mass in a narrower region. We now
cross-reference Fig. 4e which shows the top-10 sampled
molecules (by docking score) which all share the same en-
forced building block. The likelihoods are not drastically
different, and shows that some exploitation during RL is
advantageous as the likelihoods of molecules which share
a common structure can be quite similar. Very specifically,
given a favorable molecule represented as a SMILES, Sat-
urn’s (Guo & Schwaller, 2024b;a) mechanism of optimiza-
tion involves making it likely to generate any SMILES form
of the same molecular graph. If it is likely to generate
any SMILES sequences of the same favorable molecule,

small changes to the generated sequence amounts to small
chemical changes, which can be advantageous, as similar
molecules, on average, have similar properties. The model
learns to use the building blocks in a way that performs
local exploration and assigns a relatively similar likelihood
to the neighborhood of molecules. Overall, the results show
that taking a general-purpose model and incentivizing the
learning process with TANGO, can shift the modeled dis-
tribution to one that captures constrained synthesizability
while simultaneously satisfying MPO objectives. This is
practically useful, as one could simply sample molecules
from model checkpoints to get more desirable molecules (5
seconds to sample 1,000 unique molecules).

5. Conclusion
In this work, we proposed a novel reward function called
TANimoto Group Overlap (TANGO) that can guide a
general-purpose molecular generative model to directly op-
timize for constrained synthesizability while also simulta-
neously performing MPO. This work is the first example
of a generative approach for constrained synthesizability,
and tackles various degrees of constraints that are practi-
cally important in real-world applications: starting-material,
intermediate, and divergent synthesis constraints (Fig. 3).
The results show that the generative model, Saturn (Guo
& Schwaller, 2024b), when augmented with TANGO, can
generate optimal molecules for a drug discovery case study
involving molecular docking (Table 2). Moreover, the re-
sults show that our framework can learn to enforce building
block sets as small as 10 and even 5 (Appendix E.8), which
is practically relevant for re-purposing building blocks into
useful molecules (Granda et al., 2018; Wołos et al., 2020;
2022). From a generative model perspective, we have shown
that optimizing for constrained synthesizability necessitates
a better exploration-exploitation trade-off, providing prac-
tical insights into MPO in these settings. Furthermore, our
results show that incentivizing an unconstrained model can
lead to productive learning even in challenging synthesiz-
ability MPO settings. Our results clearly show that TANGO
guides Saturn to learn a desirable distribution, as sampling
molecules from the final model checkpoints yield molecules
tailored to the MPO objective (Fig. 4). Our framework is
general and can also be applied to the generative design
of functional materials. Finally, "true synthesizability" de-
pends on the accuracy of the retrosynthesis model and they
are not perfect. It is likely that some routes generated are not
synthetically feasible and/or lack regio- or stereo-selectivity
(Molga et al., 2019). This is a limitation of current retrosyn-
thesis models and is an ongoing challenge for improved
synthesis planning. As we are not proposing a new retrosyn-
thesis model, this is beyond the scope of this work, but we
believe this is important to explicitly acknowledge.
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Impact Statement
This paper presents a generative method to design molecules
that are synthesizable with pre-defined chemical reagents.
As it is a general method, the model could be used for the
design of potential therapeutics and functional materials.
With proper experimental validation, designed molecules
could have positive societal benefits such as treating diseases
and mitigating climate change.
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A. PubChem Pre-processing and Saturn Pre-training
This section contains the full data pre-processing and pre-training pipeline starting from the raw PubChem which was
downloaded from https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/. The exact file is "CID-
SMILES.gz".

The exact pre-processing steps along with the SMILES remaining after each step are:

1. Raw PubChem - 118,563,810

2. De-duplication - 118,469,904

3. Standardization (charge and isotope handling) based on https://github.com/MolecularAI/
ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb. All SMILES that
could not be parsed by RDKit were removed - 109,128,315

4. Tokenize all SMILES based on REINVENT’s tokenizer: https://github.com/MolecularAI/
reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py

5. Keep SMILES ≤ 80 tokens, 150 ≤ molecular weight ≤ 650, number of heavy atoms ≤ 40, number of rings ≤ 8, Size
of largest ring ≤ 8, longest aliphatic carbon chain ≤ 4 - 97,667,549

6. Removed SMILES containing the following tokens (due to undesired chemistry, low token frequency, and redundancy):
[Br+2], [Br+3], [Br+], [C+], [C-], [CH+], [CH-], [CH2+], [CH2-], [CH2], [CH], [C], [Cl+2], [Cl+3], [Cl+], [ClH+2],
[ClH2+2], [ClH3+3], [N-], [N@+], [N@@+], [NH+], [NH-], [NH2+], [NH3+], [NH], [N], [O+], [OH+], [OH2+], [O],
[S+], [S-], [S@+], [S@@+], [S@@], [S@], [SH+], [SH-], [SH2], [SH4], [SH], [S], [c+], [c-], [cH+], [cH-], [c], [n+],
[n-], [nH+], [nH], [o+], [s+], [sH+], [sH-], [sH2], [sH4], [sH], [s] - 88,618,780

The final vocabulary contained 35 tokens (2 extra tokens were added, indicating <START> and <END>) and carbon
stereochemistry tokens were kept. Saturn (Guo & Schwaller, 2024b) uses the Mamba (Gu & Dao, 2023) architecture and we
used the default hyperparameters in the code-base. With the vocabulary size of 35, the model has 5,265,408 parameters.
Saturn was pre-trained for 5 steps, with each step consisting of a full pass through the dataset. The model was pre-trained on
a workstation with an NVIDIA RTX 3090 GPU and AMD Ryzen 9 5900X 12-Core CPU. The pre-training parameters were:

1. Training steps = 5

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Randomize (Bjerrum, 2017) every batch of SMILES

Relevant metrics of the pre-trained model (final model checkpoint) are:

1. Average negative log-likelihood (NLL) = 30.914

2. Validity (10k) = 98.74%

3. Uniqueness (10k) = 98.73%

4. Wall time = 106 hours (takes a relatively long time, though we only used 1 GPU for training. Pre-training also only
needs to be done once.)

B. Retrosynthesis Details
This section contains details on the retrosynthesis model, the commercial building blocks, and the enforced building blocks.
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B.1. Retrosynthesis Framework

In this work, we use Syntheseus (Maziarz et al., 2023) (benchmark platform and wrapper around retrosynthesis models
and search algorithms) to run retrosynthesis. We integrate Syntheseus into Saturn (Guo & Schwaller, 2024b) and run the
MEGAN (Sacha et al., 2021) single-step model with the Retro* (Chen et al., 2020) search algorithm. In the Syntheseus
work, the authors standardize and benchmark many retrosynthesis models and configurations, reporting the inference time
and accuracy (across various metrics). We chose MEGAN because it has the fastest inference time, although the top-k
accuracies were lower than other models. We note that top-k single-step accuracy does not necessarily equate to better
performance on multi-step retrosynthesis. Faster inference time allowed us to iterate experiments and hypotheses faster and
is the main reason we chose MEGAN. Our framework is model-agnostic and any retrosynthesis model could be used in
place of MEGAN. All MEGAN hyperparameters were tuned by the Syntheseus authors and we use them as is.

B.2. Commercial Building Blocks

All retrosynthesis models require commercial building blocks, B. In this work, we use the ‘Fragment‘ and ‘Reactive‘
sub-sets of ZINC (Sterling & Irwin, 2015), equating to 17,721,980 building blocks. These sub-sets were obtained from
the commercial building block stock used in AiZynthFinder (Genheden et al., 2020; Saigiridharan et al., 2024). Next, we
consider two sets of enforced building blocks, Benf−10 ⊂ Benf−100 ⊂ B. The enforced building block sets (10 or 100) are
sub-sets of B and were randomly sampled following the criteria:

1. 150 < molecular weight < 200

2. No aliphatic carbon chains longer than 3

3. Exclude charged building blocks

4. If rings are present, enforce size ∈ {5, 6}

5. All building blocks must contain at least one nitrogen, oxygen, or sulfur atom

The criteria we defined are based on enforcing building blocks that are "simple, common, and relevant for drug-like
molecules". While there is an inherent bias here, we emphasize that our TANGO framework is general and the set of
enforced building blocks can be freely changed. Finally, we want to highlight an important implication when considering
the commercial building blocks, B, and the generative model. Due to intentional data pre-processing of PubChem, which
was used to pre-train Saturn, the generative model cannot generate all the atom types present in B. The specific atom types
are phosphorus and silicon. We removed these atoms due to their seldom presence in "drug-like" molecules (although
phosphorus is common in pro-drugs). The effect of this is that some commercial building blocks are not relevant, but we did
not purge these and used the ZINC sub-sets as is. Similar to the enforced building blocks set, the set of commercial building
blocks can also freely be changed. The sets of enforced building blocks are provided in the code-base.

C. Compute Details
Every experiment (except pre-training Saturn) was run on a cluster equipped with NVIDIA L40S GPUs. As we used a
SLURM queuing system, many jobs could be allocated the same GPU to run simultaneously. This makes the wall time for
each individual run slower, but the total time to finish experiments is faster. We report the wall times as is.

D. Docking Reward Shaping
Saturn expected every property to be optimized to have a normalized reward ∈ [0, 1]. TANGO and QED are already by
design normalized but QuickVina2-GPU docking needs to be reward shaped. This is done by the shaping function shown
here.

E. TANGO Development and Ablations
In this section, we present the systematic development of TANGO, all ablation studies, and additional results. The section
will be divided sequentially into sub-sections detailing our hypotheses, the experiments we ran to study them, and the
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Figure 5. Reward shaping function for docking.

observations we made. All development experiments were run across 5 seeds (0-4 inclusive) while main result experiments
were run across 10 seeds (0-9 inclusive). This information will be noted. The MPO objective is:

1. Minimize QuickVina2-GPU-2.1 (Trott & Olson, 2010; Alhossary et al., 2015; Tang et al., 2023) docking scores
against ATP-dependent Clp protease proteolytic subunit (ClpP) (Mabanglo et al., 2023) (implicated in cancer)

2. Maximize QED (Bickerton et al., 2012)

3. Constrained Synthesizable, as deemed by the MEGAN (Sacha et al., 2021) retrosynthesis model coupled with Retro*
search (Chen et al., 2020)

Next, throughout TANGO development, we change the hyperparameters of Saturn, which directly control for the exploration-
exploitation trade-off. We briefly summarize the key hyperparameters and their effect:

1. Batch Size: Lower is more exploitative

2. Augmentation Rounds: Higher is more exploitative

Finally, for all sets of experiments, we report metrics averaged across either 5 (0-4 inclusive) or 10 (0-9 inclusive) seeds.
The number of seeds will be explicitly noted. The metrics are:

1. Non-solved: Number of generated molecules that do not have a solved synthetic route

2. Solved: Number of generated molecules that have a synthetic route with at least 1 enforced building block

3. Docking Scores - QED: Average and standard deviation of docking scores and QED values across various docking
score thresholds. The rationale for this is because we want to optimize all objectives and analyzing different partitions
is more informative

4. Oracle Budget: Number of oracle calls permitted
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5. Wall Time: Compute time for the run

Constrained Synthesizability denotes either start-material constrained (enforced building blocks appearing at the max
depth nodes in the synthesis graph), intermediate-constrained (enforced building blocks appearing anywhere in the synthesis
graph), or divergent synthesis (enforced non-commercial building blocks appearing anywhere in the synthesis graph). This
information will be explicitly noted. Finally, for brevity, we will write "synthesizable" to mean synthesizable, as deemed by
the MEGAN retrosynthesis model.

E.1. How can Constrained Synthesizability be made Learnable?

The starting point of TANGO development drew inspiration from (Coley et al., 2017; Zhang et al., 2024) which used
Tanimoto similarity for retrosynthesis problems. We hypothesized that Tanimoto similarity alone is insufficient to inform
chemical reactivity. Therefore, very initial experiments tried to "filter" nodes by matching for functional groups. Specifically,
for every molecule generated that was synthesizable, there is a corresponding synthesis graph whose nodes are every
intermediate molecule. The very first reward function traverses these nodes and computes the max Tanimoto similarity
to the set of enforced building blocks, provided that the node overlaps 75% of the functional groups with at least one of
the enforced building blocks, and returns this as the reward. With this initial reward formulation, we used Saturn’s (Guo
& Schwaller, 2024b) default hyperparameters of batch size 16 and 10 augmentation rounds. These parameters make the
model perform local sampling in chemical space aggressively. We had run this experiment across 5 seeds (0-4 inclusive)
with an oracle budget of 3,000 and only one seed was successful in generating some synthesizable molecules with the
enforced building blocks. All seeds showed some learning, in that the average Tanimoto similarity of the synthesis graphs
to the enforced building blocks was increasing (though it always stagnated). At the time, this was highly irreproducible,
considering only 1/5 runs were successful. However, these failed runs gave us sets of molecules possessing various Tanimoto
similarity to the enforced building blocks which we used to investigate various reward shaping functions. Specifically, we
took the set of all generated molecules from one of the seeds and partitioned all the molecules that were synthesizable into
the following Tanimoto similarity thresholds (to the enforced building blocks):

1. Low: 0.0 < TanSim < 0.2 (N = 237)

2. Med: 0.2 <= TanSim < 0.3 (N = 438)

3. Med-High: 0.3 <= TanSim < 0.4 (N = 734)

4. High: 0.4 <= TanSim < 0.5 (N = 38)

5. Very-High: 0.5 <= TanSim > 1.0 (N = 712)

The reward distributions of these sets of molecules were visualized under different reward formulations (Fig. 6). All
comparison are to the set of enforced building blocks:

1. Functional Groups (FG): Mean or max functional groups overlap

2. Tanimoto Similarity (TanSim): Mean or max Tanimoto Similarity

3. Fuzzy Matching Substructure (FMS): Mean or max fraction of atoms in the maximum matching substructure

4. TANGO-FG: Max TanSim + Mean FG

5. TANGO-FMS: Max TanSim + Max FMS

6. TANGO-All: Max TanSim + Mean FG + Max FMS

Based on Fig 6, Max TanSim, Max FMS, and TANGO-FMS are able to separate the partitioned Tanimoto similarity
intervals the best. These reward formulations are promising because they can distinguish between "closeness" to incorporating
the enforced building blocks and enables a gradient for learning. It is important to know that this analysis has an explicit
bias: we are assuming that Tanimoto similarity does in fact equate to being "closer", since we partitioned the generated set
based on this. However, this gave us the first hypotheses to work with.

Hypotheses:
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Figure 6. Reward distributions of different reward function formulations.

1. The initial run with 1/5 successful seeds used Batch Size = 16 and Augmentation Rounds = 10. This is likely too
exploitative. Try a more exploratory sampling behavior with Batch Size = 32 and Augmentation Rounds = 5.

2. Try the most promising reward functions: Max TanSim, Max FMS, and TANGO-FMS.

Fixed Parameters:

1. Oracle Budget = 3,000

2. Batch Size = 32

3. Augmentation Rounds = 5

4. Enforced Building Blocks = 100

Observations: Table 3 shows the results with the mean and standard deviation across 5 seeds (0-4 inclusive). We make the
following observations:

1. All reward functions can yield successful runs.

2. FMS and TanSim are inconsistent with 3/5 runs unsuccessful.

3. FMS finds very few molecules satisfying constrained synthesizability

4. TANGO-FMS yields the best average performance.
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Table 3. Results for Section 1: How can Constrained Synthesizability be made Learnable? The mean and standard deviation across 5
seeds (0-4 inclusive) are reported. The number of replicates (out of 5) with at least 1 generated molecule that is synthesizable with an
enforced building block is reported with N. The number of molecules (pooled across all successful replicates) are partitioned into different
docking score thresholds and statistics reported. # Reaction Steps is also reported for the pooled generated molecules that have an
enforced block. The total number of molecules in each pool across the 5 seeds is denoted by M. For the docking score intervals, we report
the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

TanSim 577 ± 32 333 ± 408 None -9.35 ± 0.24 (M=20) -8.38 ± 0.25 (M=248)

(N=2) N/A 0.70 ± 0.08 0.73 ± 0.10

FMS 578 ± 30 9 ± 12 None None -8.36 ± 0.26 (M=20)

(N=2) N/A N/A 0.85 ± 0.04

TANGO-FMS 643 ± 23 476 ± 377 -10.36 ± 0.25 (M=10) -9.40 ± 0.24 (M=146) -8.42 ± 0.25 (M=596)

(N=5) 0.70 ± 0.03 0.70 ± 0.09 0.77 ± 0.10

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
TanSim 2.53 ± 1.3 (M=1665) 2 ± 0 3,000 (5h 3m ± 24m)
FMS 2 ± 1.07 (M=48) 1.5 ± 0.5 3,000 (4h 29m ± 17m)
TANGO-FMS 2.27 ± 1.28 (M=2382) 1.2 ± 0.4 3,000 (5h 28m ± 45m)

E.2. Fuzzy Matching Substructure is an Asymmetric Reward Function

The FMS results from the previous section yielded false positives: A maximum reward (1.0) was assigned to many generated
molecules, yet these molecules did not contain any of the enforced building blocks in its synthesis graphs. The reason for
this is due to the asymmetric nature of the designed FMS reward function. We refer to Fig. 7. The FMS reward function
computes the maximum substructure overlap and then divides the number of atoms in this overlap by the number of atoms
in the enforced building block. Fig. 7 illustrates an edge case where the intermediate node contains the enforced building
block as a substructure, but the overall structures do not exactly match. The result was that FMS assigned a perfect reward
(1.0). This edge case can be handled by an additional check for exact match, and returning the asymmetric FMS otherwise.
This is one possible solution to avoid false positives, yet still reward the model since the overall node and enforced building
block structures are similar. Therefore, for all FMS reward function results, we used this formulation.

However, we note that false positives only occur in the FMS reward function case, as TANGO-FMS cannot yield perfect
reward. Since TANGO-FMS is comprised of both FMS and Tanimoto similarity: even if FMS is a false positive, Tanimoto
similarity cannot equal 1.0, and thus TANGO-FMS cannot equal 1.0. We hypothesized that this false positive can actually
be beneficial, as a perfect reward biases the model towards generating molecules that yield a synthesis graph with an
intermediate node similar to an enforced building block. This exploitation behavior could be advantageous. In the next
section, we investigate the exploration-exploitation trade-off of the generative model when using TANGO-FMS as the reward
function. Once we identified optimal hyperparameters, we performed an ablation study in the section after to quantitatively
study this asymmetric FMS behavior. We sought to answer whether it is actually advantageous to return a "perfect reward
(1.0)" for the FMS component in these situations?

E.3. Can we Circumvent Reward Stagnation?

The results from the first section identified TANGO-FMS as the most stable reward function. However, during RL, we
observed that the reward improvement often stagnates.

Hypotheses:

1. Further relax the local sampling behavior of Saturn which may help reward stagnation

Fixed Parameters:

1. Oracle Budget = 5,000

2. Batch Size = 32 or 64

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Figure 7. Fuzzy Matching Substructure (FMS) is asymmetric depending on whether the number of matching atoms is divided by the
number of atoms in the enforced building block or the intermediate node.

3. Augmentation Rounds = Varied

4. Enforced Building Blocks = 100

Observations: Table 4 shows the results with the mean and standard deviation across 5 seeds (0-4 inclusive). We make the
following observations:

1. Batch32, AR5 is the most successful but imposes a much longer wall time. This is due to Saturn’s local sampling
behavior at low batch sizes and high augmentation rounds.

2. Batch64, AR0 is essentially completely unsuccessful. This affirms that some degree of exploitation is beneficial.

3. Batch64, AR10 is somewhat inconsistent, suggesting too much exploitation.

4. Batch64, AR2 and AR5 performs well with the latter notably better, suggesting AR5 may be a good balance between
exploration-exploitation.

E.4. Re-visiting Reward Function Formulation for Ablation Studies

The results from the previous section identified tentative hyperparameters with agood balance between exploration-
exploitation. With this "better" sampling behavior, we wanted to re-visit the reward function formulations as an extensive
ablation to affirm that TANGO-FMS is the best formulation.

Hypotheses:

1. TANGO-FMS may not be the best reward function formulation now that better exploration-exploitation parameters
have been identified. Try all reward function formulations.

2. In the previous section, Batch64, AR5 worked much better than Batch64, AR2, but it might be too exploitative when
we consider moving to a smaller set of enforced blocks and/or starting-material constraints.

3. More thoroughly study the effect of the sampling behavior by increasing the oracle budget.
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Table 4. Results for Section 2: Can we Circumvent Reward Stagnation? The mean and standard deviation across 5 seeds (0-4 inclusive)
are reported. The number of replicates (out of 5) with at least 1 generated molecule that is synthesizable with an enforced building block
is reported with N. Batch denotes "Batch Size" and AR denotes "Augmentation Rounds". The number of molecules (pooled across all
successful replicates) is partitioned into different docking score thresholds and statistics are reported. # Reaction Steps is also reported for
the pooled generated molecules that have an enforced block. The total number of molecules in each pool across the 5 seeds is denoted by
M. For the docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Batch32, AR5 1125 ± 110 960 ± 871 -10.34 ± 0.23 (M=11) -9.41 ± 0.25 (M=220) -8.41 ± 0.25 (1093)

(N=4) 0.82 ± 0.08 0.79 ± 0.11 0.80 ± 0.09

Batch64, AR10 954 ± 90 674 ± 706 -10.43 ± 0.38 (M=78) -9.46 ± 0.25 (M=208) -8.41 ± 0.25 (484)

(N=3) 0.68 ± 0.07 0.71 ± 0.10 0.81 ± 0.09

Batch64, AR5 1029 ± 78 857 ± 529 -10.3 ± 0.25 (M=14) -9.37 ± 0.21 (M=274) -8.44 ± 0.25 (M=1210)

(N=4) 0.73 ± 0.11 0.78 ± 0.10 0.81 ± 0.09

Batch64, AR2 1175 ± 89 33 ± 47 -10.7 ± 0 (M=1) -9.21 ± 0.10 (M=8) -8.39 ± 0.25 (M=49)

(N=4) 0.75 ± 0 0.82 ± 0.15 0.77 ± 0.11

Batch64, AR0 1921 ± 72 0.60 ± 0.49 None None -8.70 ± 0 (M=1)

(N=3) N/A N/A 0.55 ± 0

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Batch32, AR5 2.76 ± 1.41 (M=4800) 1 ± 0 5,000 (11h 44m ± 1h 38m)
Batch64, AR10 2.76 ± 1.12 (M=3370) 2 ± 0.82 5,000 (5h 56m ± 25m)
Batch64, AR5 2.13 ± 1.21 (M=4286) 1.25 ± 0.43 5,000 (4h 21m ± 18m)
Batch64, AR2 1.60 ± 0.82 (M=1234) 2 ± 1 5,000 (3h 20m ± 7m)
Batch64, AR0 1 ± 0 (M=3) 1 ± 0 5,000 (2h 52m ± 2m)

Fixed Parameters:

1. Oracle Budget = 10,000

2. Batch Size = 64

3. Augmentation Rounds = 2 or 5

4. Enforced Building Blocks = 100

Observations: Table 5 shows the results with the mean and standard deviation across 5 seeds (0-4 inclusive). We make the
following observations:

1. Surprisingly, Brute-force is sometimes successful but is inconsistent, as expected. Notably many molecules are
non-solved (no retrosynthesis route found).

2. FG poorly distinguishes between "goodness" and is essentially unsuccessful, as expected.

3. FMS can distinguish between "goodness" but is not very successful, somewhat unexpectedly.

4. TamSim continues to be successful but is inconsistent, mirroring initial results.

5. TANGO with components of FG are more unsuccessful, in agreement with FG being a poor reward function formulation.

6. TANGO-FMS is most stable, mirroring initial results.

7. TANGO-FMS with the "Asymmetric FMS" implementation (Appendix E.2) performs worse than without. The variance
for Solved (Enforced) is higher and much fewer molecules with good docking scores and QED are generated. For this
reason, from here on, the original FMS implementation is used, as detailed in Appendix E.2.
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8. TANGO-FMS (but with AR5) can outperform TANGO-FMS (AR2) but is notably more inconsistent. This affirms
our hypothesis that AR5 might be too exploitative. Importantly, the runs with AR5 also have a much longer wall
time, again, due to Saturn’s local sampling behavior. Based on these results, AR2 is likely a better balance between
exploration-exploitation.

Table 5. Results for Section 3: Re-visiting Reward Function Formulation for Ablation Studies. The mean and standard deviation across 5
seeds (0-4 inclusive) are reported. The number of replicates (out of 5) with at least 1 generated molecule that is synthesizable with an
enforced building block is reported with N. AR denotes "Augmentation Rounds". The number of molecules (pooled across all successful
replicates) is partitioned into different docking score thresholds and statistics are reported. # Reaction Steps is also reported for the pooled
generated molecules that have an enforced block. The total number of molecules in each pool across the 5 seeds is denoted by M. For the
docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Brute-force 5547 ± 1554 2175 ± 1954 -10.36 ± 0.25 (M=25) -9.33 ± 0.22 (M=529) -8.43 ± 0.25 (M=3196)

(N=3) 0.46 ± 0.16 0.60 ± 0.19 0.69 ± 0.19

TanSim 2275 ± 143 1863 ± 1827 -10.36 ± 0.24 (M=30) -9.36 ± 0.23 (M=487) -8.43 ± 0.25 (M=2389)

(N=3) 0.72 ± 0.09 0.76 ± 0.10 0.79 ± 0.09

FG 2144 ± 263 1 ± 1 None -9.20 ± 0 (M=1) -8.50 ± 0.28 (M=2)

(N=4) N/A 0.87 ± 0 0.85 ± 0.03

FMS 1693 ± 174 114 ± 205 -10.36 ± 0.40 (M=5) -9.41 ± 0.25 (M=53) -8.48 ± 0.25 (M=173)

(N=5) 0.75 ± 0.15 0.85 ± 0.09 0.85 ± 0.07

TANGO-FG 1957 ± 203 658 ± 967 -10.20 ± 0.10 (M=9) -9.27 ± 0.18 (M=205) -8.48 ± 0.25 (M=1280)

(N=5) 0.74 ± 0.07 0.78 ± 0.10 0.82 ± 0.09

TANGO-FMS 2229 ± 325 1743 ± 715 -10.34 ± 0.25 (M=218) -9.44 ± 0.25 (M=1606) -8.49 ± 0.26 (M=2206)

(N=5) 0.77 ± 0.11 0.83 ± 0.10 0.82 ± 0.10

TANGO-FMS 2249 ± 323 1866 ± 1083 -10.36 ± 0.27 (M=59) -9.39 ± 0.25 (M=513) -8.40 ± 0.25 (M=2049)

Asymmetric-FMS (N=5) 0.71 ± 0.10 0.79 ± 0.10 0.80 ± 0.09

TANGO-FMS (AR5) 2157 ± 182 2521 ± 2060 -10.29 ± 0.18 (M=11) -9.33 ± 0.22 (M=382) -8.40 ± 0.24 (M=2881)

(N=4) 0.71 ± 0.12 0.80 ± 0.11 0.83 ± 0.09

TANGO-All 2049 ± 93 147 ± 245 -10.43 ± 0.27 (M=31) -9.41 ± 0.26 (M=227) -8.53 ± 0.25 (M=283)

(N=3) 0.74 ± 0.08 0.82 ± 0.09 0.84 ± 0.09

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Brute-force 3 ± 1.54 (M=10876) 1.33 ± 0.47 10,000 (7h 29m ± 2h 11m)
TanSim 2.18 ± 1.16 (M=9319) 1.33 ± 0.47 10,000 (9h 11m ± 48m)
FG 3.33 ± 1.80 (M=9) 1.75 ± 0.83 10,000 (7h 23m ± 16m)
FMS 1.78 ± 1.04 (M=570) 1.8 ± 0.75 10,000 (7h 50 ± 26)
TANGO-FG 2.21 ± 1.15 (M=3237) 1.8 ± 0.75 10,000 (8h 29m ± 25m)
TANGO-FMS 2.35 ± 1.24 (M=8719) 2.2 ± 0.75 10,000 (8h 12m ± 15m)
TANGO-FMS (Asymmetric-FMS) 2.24 ± 1.19 (M=9334) 2.2 ± 0.4 10,000 (8h 42m ± 26m)
TANGO-FMS (AR5) 2.58 ± 1.17 (M=12608) 1.5 ± 0.5 10,000 (12h 36m ± 52m)
TANGO-All 2.74 ± 1.18 (M=714) 2 ± 0.82 10,000 (8h 11m ± 12m)

E.5. In TANGO-FMS, is either FMS or Tanimoto Similarity more Important?

The results from the previous section identified hyperparameters with good balance between exploration-exploitation. Thus
far, all TANGO formulations weight each component equally. The next question we asked was whether certain components
were more important?

Hypotheses:

1. FMS should be more informative than Tanimoto similarity to inform chemical reactivity. Test the effect of components
weighting.

Fixed Parameters:

1. Oracle Budget = 10,000

2. Batch Size = 64
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3. Augmentation Rounds = 2

4. Enforced Building Blocks = 100

Observations: Table 6 shows the results with the mean and standard deviation across 5 seeds (0-4 inclusive). "High"
indicates 0.75 weighting while the other component is 0.25. TANGO-FMS has equal weighting (0.5 FMS, 0.5 Tanimoto).
We make the following observations:

1. TANGO-FMS with equal weighting performs the best in the context of MPO as docking scores are better.

2. TANGO-FMS-High-TanSim generates more solved molecules but docking scores are worse. These suggests suggest
that MPO is better with TANGO-FMS (equal weighting) and is the reward function we use from here on.

Table 6. Results for Section 4: In TANGO-FMS, is either FMS or Tanimoto Similarity more Important? The mean and standard deviation
across 5 seeds (0-4 inclusive) are reported. The number of replicates (out of 5) with at least 1 generated molecule that is synthesizable
with an enforced building block is reported with N. The number of molecules (pooled across all successful replicates) is partitioned into
different docking score thresholds and statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that
have an enforced block. The total number of molecules in each pool is denoted by M. For the docking score intervals, we report the scores
and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

TANGO 2229 ± 325 1743 ± 715 -10.34 ± 0.25 (M=218) -9.44 ± 0.25 (M=1606) -8.49 ± 0.26 (M=2206)

(0.50 FMS, 0.50 TanSim) (N=5) 0.77 ± 0.11 0.83 ± 0.10 0.82 ± 0.10

TANGO 1962 ± 166 1725 ± 747 -10.30 ± 0.17 (M=23) -9.32 ± 0.22 (M=498) -8.44 ± 0.25 (M=2554)

(0.75 FMS, 0.25 TanSim) (N=5) 0.78 ± 0.06 0.83 ± 0.07 0.85 ± 0.07

TANGO 2464 ± 437 2737 ± 1038 -10.31 ± 0.24 (M=84) -9.39 ± 0.25 (M=837) 8.43 ± 0.25 (M=3468)

(0.25 FMS, 0.75 TanSim) (N=5) 0.75 ± 0.10 0.78 ± 0.10 0.80 ± 0.10

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
TANGO (0.5 FMS, 0.5 TanSim) 2.35 ± 1.24 (M=8719) 2.2 ± 0.75 10,000 (8h 12m ± 15m)
TANGO (0.75 FMS, 0.25 TanSim) 2.39 ± 1.24 (M=8625) 1.6 ± 0.49 10,000 (8h 36m ± 16m)
TANGO (0.25 FMS, 0.75 TanSim) 2.30 ± 1.30 (M=13688) 1.6 ± 0.49 10,000 (8h 51m ± 26m)

E.6. Investigating Robustness

With optimal hyperparameters identified, we expand to robustness studies and run every experiment across 10 seeds (0-9
inclusive) and investigate enforcing a smaller set of building blocks. We also probe whether the starting-material constraint
is also learnable within the oracle budget. Finally, we also perform a set of experiments without the QED objective.

Fixed Parameters:

1. Oracle Budget = 10,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Enforced Building Blocks = 100

Observations: Table 7 shows the results with the mean and standard deviation across 10 seeds (0-9 inclusive). We make the
following observations:

1. All constraints are learnable.
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2. When not enforcing QED, the model generates many more molecules with "good" docking scores, and expectedly,
at the expense of QED. This affirms that the MPO is tunable, allowing tailored design of molecules that are also
constrained by synthesis.

3. As expected, when not enforcing QED, the average reaction steps is longer, since QED constrains molecular weight.

Table 7. Results for Section 5: Investigating Robustness. "SM" denotes starting-material constrained. The mean and standard deviation
across 10 seeds (0-9 inclusive) are reported. The number of replicates (out of 10) with at least 1 generated molecule that is synthesizable
with an enforced building block is reported with N. TThe number of molecules (pooled across all successful replicates) is partitioned into
different docking score thresholds and statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that
have an enforced block. The total number of molecules in each pool across the 10 seeds is denoted by M. For the docking score intervals,
we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks 2288 ± 305 2111 ± 1169 -10.36 ± 0.28 (M=487) -9.42 ± 0.24 (M=3096) -8.47 ± 0.26 (M=5904)

(N=10) 0.79 ± 0.09 0.82 ± 0.09 0.81 ± 0.09

100 Blocks (no QED) 1848 ± 158 3723 ± 681 -10.74 ± 0.55 (M=8649) -9.48 ± 0.26 (M=10633) -8.53 ± 0.25 (M=9771)

(N=10) 0.23 ± 0.06 0.27 ± 0.11 0.32 ± 0.15

100 Blocks (SM) 1879 ± 186 1524 ± 502 -10.41 ± 0.31 (M=120) -9.41 ± 0.24 (M=985) -8.43 ± 0.25 (M=3156)

(N=10) 0.78 ± 0.09 0.81 ± 0.09 0.81 ± 0.09

100 Blocks (SM, no QED) 1734 ± 172 1189 ± 963 -10.50 ± 0.40 (M=685) -9.43 ± 0.25 (M=2357) -8.49 ± 0.25 (M=4121)

(N=10) 0.31 ± 0.15 0.38 ± 0.17 0.45 ± 0.18

10 Blocks 2425 ± 288 984 ± 1181 -10.38 ± 0.30 (M=659) -9.46 ± 0.25 (M=3981) -8.57 ± 0.25 (M=2419)

(N=6) 0.79 ± 0.10 0.83 ± 0.09 0.83 ± 0.10

10 Blocks (no QED) 1967 ± 211 2640 ± 1066 -10.51 ± 0.39 (M=3453) -9.47 ± 0.25 (M=8402) -8.54 ± 0.25 (M=8332)

(N=9) 0.35 ± 0.16 0.39 ± 0.16 0.41 ± 0.16

10 Blocks (SM) 2228 ± 182 1004 ± 925 -10.37 ± 0.27 (794) -9.46 ± 0.24 (M=3881) -8.54 ± 0.25 (M=2790)

(N=9) 0.80 ± 0.09 0.83 ± 0.09 0.84 ± 0.10

10 Blocks (SM, no QED) 1753 ± 147 1563 ± 1111 -10.57 ± 0.45 (M=2439) -9.47 ± 0.25 (M=5120) -8.54 ± 0.25 (M=4649)

(N=8) 0.35 ± 0.15 0.43 ± 0.17 0.44 ± 0.17

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks 2.37 ± 1.27 (M=21115) 2 ± 0.63 10,000 (8h 31m ± 40m)
100 Blocks (no QED) 3.24 ± 1.20 (M=37231) 1.8 ± 0.75 10,000 (7h 27m ± 13m)
100 Blocks (SM) 1.49 ± 0.91 (M=15247) 1.9 ± 0.7 10,000 (8h 33m ± 30m)
100 Blocks (SM, no QED) 2.34 ± 1.18 (M=11890) 1.7 ± 0.64 10,000 (8h 3m ± 33m)
10 Blocks 2.70 ± 1.20 (M=9845) 1 ± 0 10,000 (8h 29m ± 30m)
10 Blocks (no QED) 3.18 ± 1.25 (M=26403) 1.22 ± 0.42 10,000 (7h 51m ± 33m)
10 Blocks (SM) 2.59 ± 1.04 (M=10040) 1 ± 0 10,000 (8h 39m ± 24m)
10 Blocks (SM, no QED) 2.65 ± 0.88 (M=15632) 1 ± 0 10,000 (8h 9m ± 27m)

E.7. Lucky Building Blocks?

From the previous set of experiments, we noticed that the generative model was always incorporating the same 3 enforced
building blocks. One in particular was especially common, such that most runs using the set of 10 enforced blocks, use it.
We questioned whether TANGO’s success was due to luck in having "suitable" building blocks. Therefore, we perform
further ablation experiments that purge these 3 building blocks. Similar to the previous set of experiments, we run every
configuration here across 10 seeds (0-9 inclusive).

Fixed Parameters:

1. Oracle Budget = 10,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Purged Enforced Building Blocks = 97 (Purged the 3 common enforced building blocks from the set of 100)
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Figure 8. 5 Enforced Building Blocks Set. The circled block is the Suzuki coupling reagent used in all the successful runs without QED
(N=2/10 seeds).

Observations: Table 8 shows the results with the mean and standard deviation across 10 seeds (0-9 inclusive). We make the
following observations:

1. Other building blocks can be enforced.

2. The runs become less consistent (less successful seeds out of 10). Runs without QED are consistently succcessful,
suggesting that the commonly enforced blocks were chosen due to being able to jointly satisfy QED and docking.

Table 8. Results for Section 6: Lucky Building Blocks? "SM" denotes starting-material constrained. The mean and standard deviation
across 10 seeds (0-9 inclusive) are reported. The number of replicates (out of 10) with at least 1 generated molecule that is synthesizable
with an enforced building block is reported with N. The number of molecules (pooled across all successful replicates) is partitioned into
different docking score thresholds and statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that
have an enforced block. The total number of molecules in each pool across the 10 seeds is denoted by M. For the docking score intervals,
we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks Purged 2322 ± 233 77 ± 229 -10.56 ± 0.37 (M=17) -9.38 ± 0.24 (M=117) -8.48 ± 0.25 (M=376)

(N=4) 0.85 ± 0.03 0.87 ± 0.05 0.89 ± 0.04

100 Blocks Purged (no QED) 1794 ± 193 1553 ± 1211 -10.65 ± 0.49 (M=2649) -9.47 ± 0.26 (M=4345) -8.52 ± 0.25 (M=4648)

(N=9) 0.25 ± 0.11 0.30 ± 0.15 0.36 ± 0.17

100 Blocks Purged (SM) 2179 ± 298 166 ± 333 -10.30 ± 0.17 (M=6) -9.39 ± 0.25 (M=128) -8.44 ± 0.24 (M=636)

(N=5) 0.83 ± 0.08 0.83 ± 0.09 0.87 ± 0.07

100 Blocks Purged (SM, no QED) 1688 ± 239 1456 ± 1112 -10.49 ± 0.38 (M=1032) -9.43 ± 0.25 (M=3871) -8.52 ± 0.25 (M=5624)

(N=8) 0.34 ± 0.11 0.36 ± 0.13 0.37 ± 0.15

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks Purged 5.97 ± 1.17 (M=769) 1.25 ± 0.43 10,000 (8h 54m ± 20m)
100 Blocks Purged (no QED) 3.35 ± 1.19 (M=15525) 1.44 ± 0.50 10,000 (7h 15m ± 12m)
100 Blocks Purged (SM) 4.12 ± 2.29 (M=1660) 1.2 ± 0.4 10,000 (8h 41m ± 28m)
100 Blocks Purged (SM, no QED) 3.30 ± 1.28 (M=14562) 1.62 ± 0.70 10,000 (7h 40m ± 25m)

E.8. 5 Enforced Blocks

We next push our framework further by curating 5 building blocks (Fig. 8) that are dissimilar and/or can be involved in
different reaction chemistries. Our objective was to investigate whether the model can learn to incorporate such a small set
of blocks and whether other chemical reactions can be enforced.

Fixed Parameters:

1. Oracle Budget = 10,000 or 15,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Enforced Building Blocks = 5 (dissimilar to the ones used thus far)
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Observations: Table 9 shows the results with the mean and standard deviation across 10 seeds (0-9 inclusive). We make the
following observations:

1. The task is challenging under the 10,000 oracle budget when QED is also optimized for.

2. Without optimizing for QED and increasing the oracle budget to 15,000 results in some successes (2/10 seeds).

3. The two successful replicates both enforced only the Suzuki block (Boron containing) which is circled in Fig. 8.

4. The results here show that learning to enforce such a small set of building blocks is possible. In practice, one could
further increase the oracle budget which we did not explore due to time limits on the cluster we used. The two
successful replicates (with a 15,000 oracle budget) took about 12.5 hours which we believe is still very reasonable.

Table 9. Results for Section 7: 5 Enforced Blocks. The mean and standard deviation across 10 seeds (0-9 inclusive) are reported. The
number of replicates (out of 10) with at least 1 generated molecule that is synthesizable with an enforced building block is reported with
N. The number of molecules (pooled across all successful replicates) is partitioned into different docking score thresholds and statistics
are reported. # Reaction Steps is also reported for the pooled generated molecules that have an enforced block. The total number of
molecules in each pool is denoted by M. For the docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

5 Blocks 2639 ± 186 0 ± 0 N/A N/A N/A

(N=0) N/A N/A N/A

5 Blocks (no QED, 15k Budget) 3333 ± 437 972 ± 2112 -11.73 ± 0.93 (M=7044) -9.51 ± 0.26 (M=1419) -8.59 ± 0.24 (M=670)

(N=2) 0.29 ± 0.07 0.38 ± 0.13 0.39 ± 0.16

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
5 Blocks N/A N/A 10,000 (9h 24m ± 25m)
5 Blocks (no QED, 15k Budget) 3.79 ± 0.83 (M=9723) 1 ± 0 15,000 (12h 33m ± 34m)

E.9. Divergent Synthesis

Often, divergent synthesis (Li et al., 2018) is desirable, whereby intermediates (usually non-commercially available) are
enforced in the synthesis path. This can be used for late-stage functionalization (Castellino et al., 2023) which is particularly
relevant in drug discovery to explore SAR. In this section, we select intermediate non-commercial blocks from solved paths.
We note that this is artificial in the sense that these selected intermediates were taken from solved routes, and are likely
"favorable". However, we were interested in whether a model can learn from scratch to enforce relatively large building
blocks. For this reason, we curated 10 selected intermediates and investigate the ability of TANGO to learn divergent
synthesis constraints.

Fixed Parameters:

1. Oracle Budget = 10,000 or 15,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Divergent Enforced Building Blocks = 10 (Curated from successful runs)

Observations: Table 10 shows the results with the mean and standard deviation across 10 seeds (0-9 inclusive). We make
the following observations:

1. Divergent blocks can be enforced but the runs are less consistently successful than with the original sets of enforced
building blocks, under a 10,000 oracle budget.
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2. The runs do not necessarily take longer which means that in practical applications, one could increase the oracle budget.
We believe that the wall times of all our experiments (7-9 hours) are reasonable and that much longer is tolerable in
real-world applications (<= 24h and even > 24h if the model can truly solve the MPO task).

3. Increasing the oracle budget to 15,000 results in more successful seeds. Therefore, simply using more compute (within
reason) is a straightforward solution.

Table 10. Results for Section 8: Divergent Synthesis. The mean and standard deviation across 10 seeds (0-9 inclusive) are reported. The
number of replicates (out of 10) with at least 1 generated molecule that is synthesizable with an enforced building block is reported
with N. The number of molecules (pooled across all successful replicates) is partitioned into different docking score thresholds and
statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that have an enforced block. The total
number of molecules in each pool across the 10 seeds is denoted by M. For the docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Divergent Blocks 2166 ± 202 651 ± 1238 -10.36 ± 0.26 (M=187) -9.41 ± 0.24 (M=1311) -8.48 ± 0.25 (M=2694)

(N=4) 0.84 ± 0.10 0.86 ± 0.07 0.86 ± 0.07

Divergent Blocks (15k Budget) 3720 ± 631 1519 ± 2321 -10.36 ± 0.25 (M=538) -9.44 ± 0.25 (M=3191) -8.47 ± 0.25 (M=6324)

(N=5) 0.82 ± 0.08 0.85 ± 0.08 0.87 ± 0.08

Divergent Blocks (no QED) 1937 ± 210 540 ± 1259 -10.61 ± 0.47 (M=1099) -9.48 ± 0.25 (M=1894) -8.56 ± 0.26 (M=1518)

(N=3) 0.29 ± 0.11 0.41 ± 0.18 0.52 ± 0.22

Divergent Blocks (no QED, 15k Budget) 2866 ± 523 839 ± 1972 -10.57 ± 0.42 (M=1861) -9.48 ± 0.26 (M=3058) -8.55 ± 0.22 (M=2154)

(N=4) 0.32 ± 0.13 0.40 ± 0.18 0.48 ± 0.21

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Divergent Blocks 3.68 ± 1.08 (M=6512) 1.75 ± 0.83 10,000 (8h 52m ± 42m)
Divergent Blocks (15k Budget) 3.61 ± 1.11 (M=15190) 1.80 ± 0.17 15,000 (15h 54m ± 1h 30m)
Divergent Blocks (no QED) 4.14 ± 1.36 (M=5397) 1 ± 0 10,000 (7h 39m ± 23m)
Divergent Blocks (no QED, 15k Budget) 4.30 ± 1.36 (M=8393) 1.75 ± 0.83 15,000 (12h 41m ± 25m)

F. Retrosynthesis Model: Synthesis Routes
In this section, we show examples of synthetic routes from the MEGAN (Sacha et al., 2021) retrosynthesis model with
enforced building blocks. The synthesis graph images were taken as is from Syntheseus’ (Maziarz et al., 2023) output. Each
figure in this section is from an experiment with a different enforced block set (100, 100 with "lucky" blocks purged, 10, 5,
and divergent). Moreover, all routes will be shown for molecules with docking score < -10.5 since these are the most optimal.
In addition, for the 5 Enforced Blocks, the routes shown were from the runs without QED. This is because these were the
only seeds that were successful under the oracle budget. The enforced block is boxed. We also try to show some diversity
in the route lengths to highlight that path length was not explicitly optimized for. QED implicitly encourages shorter paths
due to constraining the molecular weight, but even so, longer synthetic routes can still be observed (for example in Fig. 10).
Future work could also reward shorter paths.
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Figure 9. 100 Enforced Blocks example routes. The enforced block is boxed.
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Figure 10. 100 Enforced Blocks Purged example routes. The enforced block is boxed.
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Figure 11. 10 Enforced Blocks example routes. The enforced block is boxed.
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Figure 12. 5 Enforced Blocks example routes. Note that QED was not enforced here as the QED experiments did not successful generate
any enforced blocks under the oracle budget. The enforced block is boxed.
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Figure 13. Divergent Enforced Blocks example routes. The enforced block is boxed.
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