
Information Bottleneck of Quantum Neural Networks

Juexiao Wang
Department of Computer Science

Purdue University
wang5360@purdue.edu

Myeongsu Kim
Department of Computer Science

Purdue University
kim2167@purdue.edu

Sabre Kais
Department of Electrical and Computer Engineering

North Carolina State University
skais@ncsu.edu

Abstract

Occam’s Razor, as a principle of model selection, favors simpler models that
achieve the same empirical error rate to more complex models. Structural risk
minimization finds such optimal model with a structural search by minimizing
a high probability bound on the true error rate, enjoying the trade-off between
minimizing the empirical error rate and the generalization bound. Tishby and Za-
slavsky [2015] suggested to quantify such trade-off via the theoretical framework
of the Information Bottleneck theory. It claims that Deep Neural Networks learn
a compressed bottleneck representation that preserves only the relevant informa-
tion about the target label Y from the source data X . The optimal compression-
accuracy trade-off is characterized by the information-bottleneck function, pro-
viding a tight achievable lower bound on the representation length.
An open quantum system is equivalent to a noisy neural network that can perform
machine learning tasks with non-unitary evolution, leveraging the potential power
of entanglement and superposition. Therefore understanding the learnability of a
quantum system is crucial in the noisy intermediate-scale quantum (NISQ) era.
In this paper, we are generalizing the Information Bottleneck theory to quantum
Hilbert space to characterize the learnability of a quantum system with quantum
mutual information as the complexity measure of a quantum concept class and
the lower bound of the prediction accuracy of a quantum hypothesis. We com-
pared the training dynamics of quantum neural networks with the classical analog
in the information plane and, through numerical simulations, demonstrated that
the learned quantum representations are more expressive than classical represen-
tations.

1 Introduction

The Information-Bottleneck (IB) method, introduced in Tishby et al. [2000], considers extracting
relevant information about the target signal Y through a correlated observable X with a compressed
representation X̂ . The objective is to find such compressed representation with minimal average
description length, characterized by the mutual information I(X; X̂), subject to the constraint on the
expected distortion as the relevant information I(X̂;Y ) about the target signal Y . The optimal trade-
off between compressing the representation and preserving meaningful information is characterized
by the information bottleneck function that separates the achievable and non-achievable region of
representations.
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Information-Bottleneck method suggests a learning algorithm known as structural risk minimization,
minimizing a high probability bound on the true error rate of the learned hypothesis with respect to
a distribution, consisting of empirical error rate and generalization bound.

Mutual information provides a robust measure of the model complexity and the prediction accu-
racy of a hypothesis. I(X; X̂) characterizes the maximal achievable rate of the distinguishable
typical sequences with asymptotic zero probability of error which provides an ϵ-cover for the repre-
sentation space. Relevant information I(X̂;Y ) provides a lower bound of the prediction accuracy
Gilad-Bachrach et al. [2003], Cover and Thomas [2006]. Therefore minimizing the Lagrangian is
equivalent to minimizing the high probability bound.

Shwartz-Ziv and Tishby [2017] empirically demonstrated that neural network trained with stochastic
gradient descent (SGD) implicitly achieves the Information Bottleneck bound. The optimization
dynamics of SGD is a Wiener process with two distinct phases in resonance to the phase transition
in thermal annealing dynamics. Empirical risk minimization (ERM) phase minimizes the empirical
risks with an increase in I(X̂;Y ). Representation compression phase has decreasing rate I(X; X̂)
where the input feature is compressed into a finer grained clustered representation of X such that it
can generalize better.

Quantum Neural Networks (QNN) harness the power of entanglement and superposition, to per-
form machine learning task. A quantum model is a kernel function that maps data into a quantum
Hilbert space with dimension exponentially growing with the number of qubits. Quantum channels
characterized by unitary evolution transforms the computational basis followed by a projective mea-
surement in such basis defines a linear decision boundary in the quantum feature space. Training
a quantum model is equivalent to finding the optimal Positive-Operator Valued Measure (POVM)
measurement that minimizes a data-dependent cost function Schuld [2021].

In this paper, we compare the learning dynamics of quantum and classical neural network in the
information plane and conclude from the numerical simulation that the learned quantum representa-
tions are more expressive than the classical representations.

2 Information Bottleneck Theory for Deep Learning

2.1 Mutual Information

Definition 2.1. (Classical Mutual information) Shannon’s mutual information between two random
variables X and Y with joint probability distribution PXY , is defined as the relative entropy between
the joint distribution PXY and the product of its marginal distributions PX ⊗ PY .

I(X;Y ) = D(PXY ||PX ⊗ PY )

= H(X) +H(Y )−H(X,Y )

The quantum generalization of the mutual information is defined with quantum relative entropy.
Definition 2.2. (Quantum Mutual Information) Quantum mutual information is defined as the quan-
tum relative entropy between the joint state ρXY and the product state ρX ⊗ ρY of individual sub-
systems.

I(X;Y )ρ = S(ρXY ||ρX ⊗ ρY )

= H(X)ρ +H(Y )ρ −H(X,Y )ρ

2.2 Information Bottleneck of classical DNNs

Information Bottleneck method introduced in Tishby et al. [2000] finds the optimal code for the
source signal that preserves the relevant information about a target signal with minimal codeword
length. Let X denote the signal space with a probability distribution PX and let X̂ denote its
quantized codebook. For every signal element x ∈ X , it is mapped to a codeword x̂ ∈ X̂ via a
stochastic map PX̂|X .
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The optimal representation X̂ is an approximate minimal sufficient statistics of X with respect to Y
that trades off between compressing the representation of X and preserving the meaningful infor-
mation about Y . Tishby et al. [2000] characterizes this trade-off through the information bottleneck
function RI(IY ), as the minimal achievable rate under a given constraint on the expected distortion
measured by I(X̂;Y ) Gilad-Bachrach et al. [2003].

RI(IY ) = min
PX̂|X :I(X̂;Y )≥IY

I(X; X̂) (1)

Finding the information-bottleneck function is a variational problem that can be solved by minimiz-
ing the Lagrangian functional

L[ PX̂|X ] = I(X̂;X)− βI(X̂;Y ) (2)

The positive Lagrange multiplier β controls the tradeoff between the complexity of the representa-
tion I(X; X̂) and the relevant information I(X̂;Y ) to recover Y . By varying the parameter β one
can explore the trade-off between the preserved meaningful information and compression at various
resolutions Tishby et al. [2000].

When applying the information bottleneck principle to DNNs, the layered structure of the network
generates a successive Markov chain of intermediate representations, which together form the (ap-
proximate) sufficient statistics.

2.3 Information Bottleneck of quantum DNNs

Catli and Wiebe [2022] introduces a quantum generalization of the information bottleneck theory
by replacing the KL-divergence with the quantum relative entropy in the definition of the mutual
information.
Definition 2.3. (Quantum Relative Entropy) Let ρA and ρB be density operators acting on C2n for
integer n, the quantum relative entropy is defined to be

S(ρA||ρB) = Tr(ρAlog(ρA))− Tr(ρAlog(ρB)) (3)

Definition 2.4. (Quantum Information Bottleneck Objective Function) The quantum information
bottleneck objective function for a distribution ρX̂XY and a quantum channel ϕ is denoted L[ϕ]
which is defined to be

L[ϕ] = I(X̂;X)ρ − βI(X̂;Y )ρ = S(ρXX̂ ||ρX ⊗ ρX̂)− βS(ρX̂Y ||ρX̂ ⊗ ρY ) (4)

To understand how the relevant information flows through a quantum network, Catli and Wiebe
[2022] introduces a quantum embedding of classical data x 7→ ρ(x) by encoding the classical joint
probability distribution PXY in a bipartite quantum state. Consider a training set S = {(xi, yi)}ni=1,
the equivalent quantum embeddings is characterized by the density operator of the ensemble

E ≡ {P̂XY (xi, yi), ρ(xi)⊗ ρ(yi)}ni=1 (5)

ρXY =
∑
x,y

P̂XY (x, y) |x⟩ ⟨x| ⊗ |y⟩ ⟨y| (6)

ρX̂Y =
∑
x̂,y

P̂X̂Y (x̂, y) |x̂⟩ ⟨x̂| ⊗ |y⟩ ⟨y| (7)

where P̂XY (x, y) is an empirical estimate of the joint distribution PXY . The density operators
ρX , ρX̂ and ρY can then be found by taking partial traces of the bipartite states.

ρX = TrY ρXY =
∑
x

P̂X(x) |x⟩ ⟨x| (8)

ρX̂ = TrY ρX̂Y =
∑
x

P̂X̂(x̂) |x̂⟩ ⟨x̂| (9)

ρY = TrX ρXY =
∑
y

P̂Y (y) |y⟩ ⟨y| (10)
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The quantum embeddings above are considered as classical states when the states {|x⟩}ni=1,
{|x̂⟩}ni=1 and {|y⟩}ni=1 form an orthonormal basis, reflecting that the states of two quantum sub-
systems ρX , ρY are only classically correlated Grimsmo and Still [2016].

In the following numerical simulation, we consider the quantum embeddings {P̂X(xi), ρ(xi)}ni=1
to be orthogonal to each other so that the classical mutual information of a quantum channel can be
extracted to have a fair comparison with the classical channel in the output representation complex-
ity.

3 Mutual Information Estimation

Mutual information is a nonlinear functional of a joint probability distribution PXY over the product
measurable space X ×Y and it is invariant under invertible transformations. In a deterministic deep
neural network, the true mutual information I(X; X̂l) between the input X and the output of one
of its internal layer X̂l is provably a constant if X is a discrete random variable or infinite if X is a
continuous random variable Goldfeld et al. [2019]. Therefore it is meaningless to track information
flow in a deterministic network where I(X; X̂l) is independent of the system parameters and the
learned representations.

3.1 Classical mutual information estimation

Goldfeld et al. [2019] propose a stochastic DNN framework by injecting isotropic Gaussian noise to
the output of each of the DNN’s hidden layer neurons. The stochastic map makes I(X; X̂l) evolves
with the learned representations. Goldfeld et al. [2019] construct a provably accurate estimator of
differential entropy under Gaussian convolution by collecting monte carlo samples. Estimating the
mutual information in a classical noisy DNNs is reduced to estimating the differential entropy of
the representation distribution under Gaussian convolution. We apply the non-parametric Kernel
Density estimator and k-NN based estimator in Saxe et al. [2018] for mutual information estimation
in the training of classical neural networks.

3.2 Quantum mutual information estimation

Analogous to the classical noisy DNNs, we inject quantum noise to each qubit in QNNs, in par-
ticular we employ the amplitude damping channel as a layer of QNNs. Since the classical mutual
information of the bipartite state ρX̂Y =

∑
x̂,y P̂X̂Y (x̂, y) |x̂⟩ ⟨x̂| ⊗ |y⟩ ⟨y| characterizes the ϵ-cover

of the quantum concept class, we are extracting the classical mutual information of the quantum
channel. By estimating the von-Neumann entropy of an ensemble of orthogonal states, we are es-
sentially extracting the classical correlation between input and output states of a quantum channel
characterized by I(X;Y ).

We thank the reviewer for the insightful comments, to estimate the classical mutual information of
a quantum state under non-unitary evolution, in high dimensional space, non-unitary transformation
preserves the orthogonality between states with high probability so the von-Neumann entropy of the
bipartite state is equal to the classical Shannon entropy wih high probability.

4 Numerical simulation

We compared the learning dynamics of classical neural networks and quantum neural networks on
a constructed dataset in the information plane.

4.1 Dataset

The dataset is constructed to be a set of standard normal basis vectors S = {(xi, yi)}Ni=1, x
T
i xj =

0,∀i ̸= j and we apply the amplitude encoding to map the classical training example xi to a quantum
state |xi⟩ =

∑N
d=1 x

d
i |d⟩.
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Moreover, the training samples are linearly separable with a full rank feature matrix X thus there ex-
ists a unique linear separator that is consistent with the training samples w = X−1y which provides
a good sanity check on the training accuracy achieved by the two models.

4.2 Neural Network Architecture

To have a fair comparison between the expressiveness of quantum neural networks and classical
neural networks, we employ a classical neural network architecture with identity activation function
with the same number of parameters as the quantum neural networks. In resonance to Shwartz-Ziv
and Tishby [2017], we have the Quantum Neural Network composed of a sequence of 6 non-unitary
operators composed of rotation gates on each qubits and pairwise CNOT gates.

4.3 Classical vs Quantum information plane

We compared the classical training dynamics with quantum training dynamics in the information
plane. The training trajectories are shown in Fig.1.

4.3.1 Sample complexity determined by I(X; X̂)

For large typical input patterns Shwartz-Ziv and Tishby [2017], 2I(X;X̂) provides an ϵ-cover of the
hypothesis class. The sample complexity of agnostic PAC learning a concept class is characterized
by MAG

ERM = O( 2
ϵ2 (2

I(X;X̂) + ln
(
2
δ

)
)).

At the end of the training with dataset consisting of 64 standard basis vectors, the mutual information
between quantum representations and the input is shown to be greater than that between classical
representations and the input I(X; X̂Q) ≈ 4.6 > I(X; X̂C) ≈ 1. The result can be interpreted as
that classical representations are clustered into two clusters I(X; X̂C) = H(X̂C) −H(X̂C |X) ≈
H(X̂C) = 1 while the quantum representations have more patterns due to the richness of the quan-
tum Hilbert space, which implies that the sample complexity to achieve the same generalization
guarantee for quantum neural networks is higher than that for the classical neural networks.

We conjecture that the higher degree of the expressiveness of quantum representations is a result of
the richness of the quantum Hilbert space, which is a complex vector space with more elements than
the real vector space and we can potentially prove it using the chain rule of mutual information under
the assumption that the input distribution PX and the noise model PX̂|X are the same and the real

component X̂R and imaginary component X̂I of the representation are distributed independently
and identically by decomposing the mutual information into I(X; X̂Q) = I(X; X̂R)+ I(X; X̂I) ≥
I(X; X̂R) = I(X; X̂C) Xie et al. [2014].

4.3.2 Test accuracy determined by I(X̂;Y )

For large typical input patterns Shwartz-Ziv and Tishby [2017], I(X̂;Y ) provides a lower bound on
the testing accuracy. At the end of the training with 64 standard normal basis vectors, the mutual
information between quantum representation and the target label is less than that between classical
representation and the target label I(X̂Q;Y ) ≈ 0.9 > I(X̂C ;Y ) ≈ 0.7, which might imply that the
quantum representations can provide better generalizations than the classical representations.

4.3.3 Loss landscape

We also observe that there exists a flatten area in the quantum information plane, as shown in Fig.
(1), where there is high degeneracy in I(Y ; X̂) which might be an indication of barren plateau in
the quantum loss landscape Mcclean et al. [2018].

5 Conclusion

In order to study the fundamental question in learning theory, the quantification of the basic tradeoff
between the complexity of a model and its predictive accuracy, Tishby and coworkers introduce the
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Figure 1: Information Plane of the training dynamics of a Quantum Neural Network (upper) and
Classical Neural Network (lower). The x-axis (I(X;M)) shows the mutual information between
the input X and the compressed representation M, while the y-axis (I(Y ;M)) represents the mutual
information between the target Y and the representation M, illustrating how much relevant informa-
tion is retained for prediction.

concept of “Information Bottleneck”. Thus, Shannon’s mutual information allows us to quantify
the tradeoff and measure both the model’s complexity and its prediction accuracy. Their work
focuses on classical machine learning by studying the nature of this complexity-accuracy tradeoff
and discuss some of its theoretical properties. Furthermore, they present relations to classical
information theoretic problems, such as rate-distortion theory, cost-capacity tradeoff and source
coding with side informationTishby and Zaslavsky [2015].

In this paper, we compared the training dynamics quantum neural network and classical neural net-
work in the information plane. We demonstrated through numerical simulations that quantum neural
network is a more expressive concept class which can fit dataset with more complicated structures
thus decreasing the approximation error, while taking more samples to achieve the same generaliza-
tion guarantee thus increasing the estimation error. For future work, further simulation results might
be needed to provide more convincing conclusions and exact bounds. The implementation and
related resources for this work are available at https://github.com/kim2167/Information_
Bottleneck_QNN.
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