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Abstract

Large Language Models (LLMs) show great
promise in software engineering tasks like Fault
Localization (FL) and Automatic Program Re-
pair (APR). This study examines how input order
and context size affect LLM performance in FL,
a key step for many downstream software engi-
neering tasks. We test different orders for meth-
ods using Kendall Tau distances, including "per-
fect" (where ground truths come first) and "worst"
(where ground truths come last). Our results show
a strong bias in order, with Top-1 accuracy falling
from 57% to 20% when we reverse the code order.
Breaking down inputs into smaller contexts helps
reduce this bias, narrowing the performance gap
between perfect and worst orders from 22% to just
1%. We also look at ordering methods based on tra-
ditional FL techniques and metrics. Ordering using
DepGraph’s ranking achieves 48% Top-1 accuracy,
which is better than more straightforward ordering
approaches like CallGraphpgs. These findings un-
derscore the importance of how we structure inputs,
manage contexts, and choose ordering methods to
improve LLM performance in FL and other soft-
ware engineering tasks.

1 Introduction

Software development has significantly trans-
formed with the emergence of Large Language
Models (LLMs) like ChatGPT (OpenAl, 2023).
These tools have revolutionized how develop-
ers code, debug, and maintain software sys-
tems (Zhang et al., 2023). LLMs are widely
adopted for their ability to simplify and acceler-
ate development workflows, providing insights into
complex tasks such as code generation and com-
prehension (Abedu et al., 2024; Lin et al., 2024).
Recent research has explored the use of LLMs
in various software engineering tasks, includ-

ing Fault Localization (FL) (Kang et al., 2024;
Yang et al., 2024) and Automatic Program Repair
(APR) (Zhang et al., 2024; Xia et al., 2024), which
show great potential for automatically resolving
real-world issues in large code bases. In particular,
FL is a foundational step in the process, where the
LLM processes structured lists to locate potential
faulty code that requires fixing. Hence, high FL ac-
curacy is instrumental to APR and automatic issue
resolution.

While LLMs have demonstrated strong reason-
ing capabilities, prior research from other domains
highlights a sensitivity to the order of input infor-
mation. Studies have shown that LLMs perform
better when information is presented in a sequence
aligned with logical steps, with accuracy dropping
significantly when the order is randomized (Chen
et al., 2024). Additionally, LLMs exhibit a pri-
macy effect, often prioritizing earlier information
in prompts (Wang et al., 2023). Although these
findings are well-documented in reasoning tasks,
whether such sensitivities extend to software en-
gineering scenarios like FL is unclear. Since FL
involves analyzing ordered lists of methods or el-
ements, the sequence in which this information
is presented may influence the model’s ability to
identify faults.

This paper investigates how input order and
context size affect the performance of large lan-
guage models (LLMs) in Fault Localization (FL).
We used Defects4] (Just et al., 2014) benchmark,
a widely used dataset in software engineering
for evaluating FL techniques. First, we evaluate
whether the order of methods impacts the LLM’s
ability to rank and identify faults by generating var-
ious input orders using Kendall Tau distance (Ci-
cirello, 2019), including perfect (ground truth meth-
ods first) and worst (ground truth methods last)
orders. We found that the LLM’s performance is
significantly influenced by input order, with Top-
1 accuracy dropping from 57% to 20% when the



perfect method list is reversed, indicating a strong
order bias. Next, we explore segmenting large
inputs into smaller contexts to address observed
order biases. We observed that segmenting input
sequences into smaller contexts reduces this bias;
for example, the Top-1 gap between Perfect-Order
and Worst-Order rankings decreased from 22% at a
segment size of 50 to just 1% at a size of 10. Finally,
we tested traditional FL and metrics-based order-
ing methods and found that using FL techniques
improved results, with DepGraph outperforming
Ochiai by 16% in Top-1 accuracy, while simpler
strategies like CallGraph and LOC produced sim-
ilar outcomes. These results highlight the impor-
tance of input order, context size, and effective
ordering methods for enhancing LLM-based fault
localization.
In summary, our contributions are as follows:

* Method order significantly impacts LLM per-
formance, with Top-1 accuracy dropping from
57% in Perfect-Order (ground truths first) to
20% in Worst-Order (ground truths last).

* We demonstrate that dividing input sequences
into smaller segments effectively mitigates or-
der bias, reducing the Top-1 performance gap
between perfect and worst orders from 22%
to just 1%.

* Ordering with different metrics and FL strate-
gies significantly impacts outcomes. Order-
ing based on DepGraph achieves 48% Top-1
accuracy, 13.4% higher than CallGraphprs.
However, simpler methods like CallGraphprs
reach 70.1% Top-10 accuracy, highlighting
their practicality in resource-constrained envi-
ronments.

2 Background and Related Works

2.1 Fault Localization

Fault Localization (FL) (Wong et al., 2016) is
a critical software engineering task identifying
specific program parts responsible for a failure.
It is particularly essential in large and complex
codebases, where manually finding faults can be
time-consuming and error-prone. FL saves sig-
nificant developer effort and serves as a corner-
stone for many downstream software engineer-
ing tasks such as Automatic Program Repair
(APR) (Le Goues et al., 2021), debugging automa-
tion (Zamfir and Candea, 2010), and performance

optimization (Woodside et al., 2007). The process
begins with some indication of a fault, typically
indicated by a failing test, which serves as the start-
ing point. The input for FL often consists of a set
of methods or code elements executed during the
failing test case. FL aims to produce a ranked list
of the most likely fault locations, providing devel-
opers with a focused starting point for investigation
and resolution. Its significance lies in facilitating
effective debugging and establishing the ground-
work for workflows that automate and optimize the
software development lifecycle.

2.2 Related Works

Spectrum-based and Supervised Fault Local-
ization. Traditional methods such as Spectrum-
Based Fault Localization (SBFL) use statistical
techniques to assess the suspiciousness of indi-
vidual code elements. (Abreu et al., 2007). The
intuition is that the code elements covered by more
failing tests and fewer passing tests are more sus-
picious. While simple and lightweight, these tech-
niques, such as Ochiai (Abreu et al., 2009), often
struggle with achieving high accuracy in complex
systems. To improve accuracy, supervised tech-
niques like DeepFL (Li et al., 2019) and Grace (Lou
et al., 2021) incorporate features such as code com-
plexity, historical fault data, and structural relation-
ships using machine learning and Graph Neural
Networks (GNNs). DepGraph (Rafi et al., 2024)
further refines this by leveraging code dependen-
cies and changing history for better fault ranking.
LLM-Based Fault Localization. Recent advances
in Large Language Models (LLMs) have demon-
strated significant potential for FL by leveraging
their ability to analyze both code and natural lan-
guage. Trained on extensive programming datasets,
LLMs can understand code structure, interpret test
failures, and even suggest fixes (Kang et al., 2024;
Wu et al., 2023; Pu et al., 2023). Building on these
capabilities, LLM agents extend LLM functionali-
ties by incorporating features like memory manage-
ment (Zhou et al., 2023) and tool integration (Roy
et al., 2024), enabling them to autonomously ex-
ecute tasks described in natural language. These
agents can also adopt specialized roles, such as
developers or testers, to enhance their domain-
specific reasoning and improve problem-solving
workflows (Hong et al., 2024; White et al., 2024).
Several recent works have leveraged LLMs for
FL. Wu et al.(Wu et al., 2023) leverage test failure
data to identify faulty methods or classes, enabling
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Figure 1: An overview of our overall approach

context-aware reasoning directly from the input.
AutoFL(Kang et al., 2024) enhances LLM capa-
bilities by integrating tools to fetch and analyze
covered classes and methods, providing additional
insights for FL. AgentFL (Qin et al., 2024) takes
a more specialized approach, using agents with a
Document-Guided Search method to navigate code-
bases, locate faults, and prioritize suspicious meth-
ods. In contrast, Agentless (Xia et al., 2024) simpli-
fies FL with a three-phase workflow—Ilocalization,
repair, and validation—eliminating the need for
agents or complex tools. These tasks often involve
handling large contexts, as LLMs process exten-
sive lists of methods or code snippets, making the
structure of input data a critical factor.

Prior research shows that LLMs are sensitive to
input order, impacting their reasoning and decision-
making. For example, studies have shown that
LLMs perform better when premises are presented
in a sequence aligned with logical reasoning steps,
with accuracy dropping substantially when the or-
der is randomized (Chen et al., 2024). Additionally,
LLMs exhibit a primacy effect, prioritizing ear-
lier information in prompts, influencing their out-
puts (Wang et al., 2023). In fault localization (FL),
where code is analyzed as ordered lists of meth-
ods, the presentation order may affect the ranking
of suspicious methods. This paper explores how
the sequence of code elements and context window
size influence LLM performance in fault localiza-
tion tasks.

3 Methodology and Experiment Design

This section describes our overall approach to con-
ducting experiments, summarized in Figure 1. First,
we collect coverage information, including details
about failing tests, stack traces, and the methods
covered. Next, we generate various input orderings
using Kendall Tau distance and different metrics.
We pass this information along with the prompt
to the LLMs for fault localization. Finally, we
evaluate the model’s bias by calculating the Top-
K accuracy across different orderings. Below, we
discuss more in detail.

Project #Faults LOC #Tests Fault-triggering Tests
Cli 39 4K 94 66
Codec 18 7K 206 43
Collections 4 65K 1,286 4
Compress 47 9K 73 72
Csv 16 2K 54 24
Gson 18 14K 720 34
JacksonCore 26 22K 206 53
JacksonXml 6 9K 138 12
Jsoup 93 8K 139 144
Lang 64 22K 2,291 121
Math 106 85K 4,378 176
Mockito 38 11K 1,379 118
Time 26 28K 4,041 74
Total 501 490 15,302 901

Table 1: The studied projects from Defects4J.

3.1 Methodology

Prompt Design. We use LLMs to rank the most
suspicious methods in fault localization tasks by
analyzing failing tests, stack traces, and covered
methods. We designed the prompts to be simple so
we could better study the order bias. Our prompts
consist of two primary components: a 1) System
Message and a 2) User Message, to guide the LLM
in ranking suspicious methods. The system mes-
sage establishes the task by instructing the LLM to
analyze a failing test, its stack trace, and a list of
covered methods during execution. The LLM ranks
the top ten methods in descending order based on
its analysis of suspicion. To ensure consistency in
the generated output, the system message specifies
the required output format as a JSON structure,
which includes method identifiers and their corre-
sponding ranks.

The user message provides the input data spe-
cific to a failing test, including the failing test code,
the minimized stack trace, and the covered meth-
ods. Following prior works (Kang et al., 2024; Wu
et al., 2023), we retain only the information directly
relevant to fault localization for stack traces, dis-
carding unrelated lines such as those from external
libraries or other modules. This reduction enhances
clarity and ensures that the LLM only processes es-
sential data to identify the root cause of the failure.
Covered methods are presented as an ordered list,
serving as the candidate set for ranking. Additional
details are provided in the appendix A.4.

3.2 Experiment Design

Benchmark Dataset. We conducted the experi-
ment on 501 faults across 13 projects from the De-
fects4] benchmark (V2.0.0) (Just et al., 2014). De-
fects4] is a widely used benchmark in the software



Analyze the provided failing test, stack trace, and
covered methods to localize faults and rank the top
10 most suspicious methods.

Test Code:
{test_code}

Stack Trace:
{stack_trace}
Covered Methods:
{covered_methods}

The output should follow the JSON format below:
JSON Format:

{
"methodB"”: "rank”,
"methodA”: "rank",

Figure 2: Prompt for Fault Localization.

engineering community for fault localization (Lou
et al., 2021; Sohn and Yoo, 2017; Chen et al., 2022;
Zhang et al., 2017; Rafi et al., 2024). It provides a
controlled environment for reproducing real-world
bugs from a variety of projects, which differ in type
and size. The benchmark includes both faulty and
fixed project versions, along with associated test
cases (including failing ones), metadata, and au-
tomation scripts, which facilitate research in FL,
testing, and program repair.

Table 1 gives detailed information on the

projects and faults we use in our study. We ex-
cluded a few projects from Defects4J due to compi-
lation errors that limited test coverage for most
bugs. In total, we studied 501 faults and over
1.4K fault-triggering tests (i.e., failing tests that
cover the fault). Note that since a fault may have
multiple fault-triggering tests, there are more fault-
triggering tests than faults.
Evaluation Metrics. We perform our fault local-
ization process at the method level in keeping with
prior work (Li et al., 2019; Lou et al., 2021; Vanc-
sics et al., 2021; Rafi et al., 2024; Kang et al., 2024).
Namely, we aim to identify the source code meth-
ods that cause the fault. We apply the following
commonly-used metrics for evaluation:

Accuracy at Top-N. The Top-N metric measures
the number of faults with at least one faulty pro-
gram element (in this paper, methods) ranked in
the top N. The results are a ranked list based on the
suspiciousness score. Prior research (Parnin and
Orso, 2011) indicates that developers typically only
scrutinize a limited number of top-ranked faulty el-
ements. Therefore, our study focuses on Top-N,
where N is set to 1, 3, 5, and 10.

Following prior LLM-based FL studies (Kang

etal., 2024; Wu et al., 2023), we did not use metrics
like Mean First Rank (MFR) and Mean Average
Rank (MAR) to measure how early faulty methods
are ranked and their average position (Lou et al.,
2021; Li et al., 2019). These metrics are unsuitable
for LLM-based approaches, which makes it diffi-
cult to provide a specific score because LLM is a
language model.
Implementation and Environment. To collect
test coverage data and compute results for base-
line techniques, we utilized Gzoltar (Campos et al.,
2012), an automated tool that executes tests and
gathers coverage information. For the LLM-based
components, we employed OpenAl’s GPT-40 mini,
which currently points to gpt-40-mini-2024-07-18,
which has a context window of 128,000 tokens and
can output 16,384 tokens at once (OpenAl, 2024).
We used LangChain v0.2 to streamline the process
of our experiment (Langchain, 2024). To minimize
the variations in the output, we set the temperature
parameter to 0.

4 Experiment Results

4.1 RQ1: Does the order in which the model
processes code elements impact its
performance?

Motivation. LLMs often struggle to reason over
long input sequences, known as order bias, where
the model prioritizes input tokens at the beginning
or end of the sequence (Wang et al., 2023). While
order bias has been studied in NLP tasks, such as
deductive and mathematical reasoning (Chen et al.,
2024), its impact on software engineering tasks re-
mains under-explored. Order is crucial in software
engineering tasks, such as fault localization and
program repair, where the model must reason over
a long code sequence. Therefore, in this RQ, we
investigate how code sequence order affects LLM
accuracy in fault localization.

Approach. To study how code order sequences
affect LLM-based fault localization, we create
baselines with varying orderings. The first base-
line, Perfect-Order, places faulty methods (ground
truths) at the top, followed by non-faulty meth-
ods, ordered by their call-graph (see Appendix A.1
for details) to minimize arbitrariness. Our intu-
ition is that Perfect-Order serves as an idealized
benchmark to test the hypothesis that prioritizing
faulty methods should yield the highest accuracy
if LLMs favor earlier orders due to their sequential



processing nature. We then generate four additional
baselines by adjusting the order using Kendall Tau
distance (Cicirello, 2019), which measures the cor-
relation between two lists (i.e., 1 = perfect align-
ment with the Perfect-Order, -1 = complete mis-
alignment with the Perfect-Order). From Perfect-
Order, we derive: @ Random-Order (7 = 0; meth-
ods shuffled randomly), @ Worst-Order (1 = —1;
faulty methods last), ® Moderately Perfect-Order
(tr = 0.5; partial alignment), and @ Moderately
Inverted-Order (1 = —0.5; partial misalignment).
Comparing these baselines to Perfect-Order allows
us to assess how deviations from the Perfect-Order
affect FL results. Finally, we evaluate the model’s
FL performance by ranking methods based on sus-
piciousness and measuring Top-K accuracy. For
instance, a Top-1 score of 50% indicates that 50%
of 501 faults’ faulty methods were ranked first.
Results. LLMs exhibit a bias toward the initial
input order, achieving approximately 38% higher
Top-1 accuracy for Perfect-Order compared to
Worst-Order. Figure 3 shows the results of the
experiments. For Perfect-Order, the model identi-
fies 57.4% of faults in the Top-1 accuracy, while
Moderately Perfect-Order reduces the model’s fault
detection to 26.1% (A 31.1%). As Kendall Tau de-
creases, the accuracy declines further, reaching the
lowest (19.4%) for Worst-Order, despite the code
context remaining identical, except for the code
order. These results highlight key limitations in
how LLM:s process code, suggesting they may rely
more on surface-level patterns than on a deep
understanding of code semantics.

This trend persists across all Top-K metrics. For
Top-3, the model detects 70.9% of bugs in the
Perfect-Order, decreasing to 38.6% for Moder-
ately Perfect-Order, which then stabilizes to 33%
for both Random-Order and Moderately Inverted-
Order, then decreasing further to 26.3% with the
Worst-Order. We see similar trends for Top-5
and Top-10, with Perfect-Order detecting the most
faults, with 78% and 86% faults, respectively, com-
pared to the lowest fault detection of 30.5% and
35.2% for Worst-Order. These findings suggest
that LLMs are biased toward methods listed ear-
lier in the input, indicating a potential order bias
when analyzing code sequences.

The low variability in standard deviation
(STDEY) across multiple runs suggests consis-
tent order bias. To ensure the reliability of our
findings on order bias, we conducted the experi-
ments three times. Across all Top-K results, the
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Figure 3: Top-K fault localization. The x-axis represents
the number of bugs located, and the data points on the
lines indicate the percentage of bugs identified out of the
total (with standard deviation) at each Top-K position
for various Kendall Tau (7) values.

STDEV remains stable, ranging from 0.00 to 2.49.
For instance, the highest STDEV of 2.49 for Top-3
indicates minimal variations, with only two meth-
ods changing position across runs. This consistency
demonstrates that order bias is not an artifact of
randomness but a persistent limitation in how
LLM:s process code sequences.

The LLM’s fault localization performance is
significantly impacted by input order, with Top-
1 accuracy dropping from 57% to 20% when
the method list is reversed, indicating a bias
toward early-presented data.

4.2 RQ2: Does limiting context window help
reduce the bias towards order?

Motivation. In RQ1, we identified order bias in
the sequence in which methods are presented in the
zero-shot prompt. We hypothesize that a larger con-
text window might amplify the bias toward method
order, as the LLM processes all methods simulta-
neously and may weigh their order more heavily
when generating responses. In this RQ, we investi-
gate how the context window influences order bias.
Specifically, we examine how segmenting the input
sequence into smaller independent segments affects
LLM’s performance in software engineering tasks,
such as fault localization, where both context size
and order play a crucial role in reasoning.

Approach. We investigate whether a divide-and-
conquer approach, where the input sequence is
split into smaller contexts and each subset is rea-
soned individually, can reduce this bias. We
divide an ordered list of N methods, M =
{m1,ma,...,mpy}, into max([N/S], 1) contigu-
ous segments. Each segment M; C M (for ¢ =



{1,2,...,J}) contains up to S methods, ensuring
|M;| < S.If S > N, the entire list M/ forms a sin-
gle segment (J = 1). For this study, we experiment
with five segment sizes S € {10, 20, 30,40, 50}.
In each segment M;, the model ranks the Top-K
suspicious methods R;, and the results R; are sum-
marized into G;. For the subsequent segment S; 1,
the prompt includes both the M, and the contex-
tual information from ;. This iterative context-
passing approach allows the model to re-rank meth-
ods based on combined information from previous
segments. By incrementally varying the segment
size (.5), we analyze how the context window im-
pacts order bias in fault localization. Specifically,
we compare performance across two extreme order-
ing sequences: Perfect-Order (1 = 1) and Worst-
Order (T = —1) (defined in RQ1) to assess whether
the iterative context-passing effectively mitigates
order bias, improving reliability across diverse or-
dering sequences.

Results. The size of the context window impacts
Sault localization results, with larger context win-
dows exhibiting a stronger order bias. Table 2
presents the Top-K scores across different con-
text segments for Perfect-Order and Worst-Order.
When the context is provided in larger segments
(e.g., segment size 50), the model detects 278 bugs
(55.5%) in Top-1 with the Perfect-Order, while
the Worst-Order identifies only 170 bugs (33.9%),
around 22% fewer bugs than the Perfect-Order.
The large difference in Top-1 shows a significant
order bias towards the order of the input method
list. This is also evident in the Top 3, 5, and 10.
For example, in the Top-10, the Perfect ranking
reaches 408 (81.4%) compared to 292 (58.3%) for
the Worst ranking, detecting around 23% more
bugs.

As the segment size decreases, the difference
between the Perfect-Order and Worst-Order be-
comes smaller across all Top-K. For a segment
size of 40, the model detects approximately 54% of
bugs in Top-1 with the Perfect-Order, which is 20%
more than the 34% bugs detected with the Worst-
Order ranking. This pattern holds for Top-3, Top-5,
and Top-10 as well. At a segment size of 30, the
difference in Top-1 narrows further to 17%, with
Perfect-Order identifying 51% of bugs compared
to 34% for Worst-Order. When the segment size
is reduced to 20, the Perfect-Order detects around
49% of bugs in Top-1, while Worst-Order detects
37%, shrinking the difference to 12%. This trend
continues for Top-3, Top-5, and Top-10, where

Perfect
Worst

50
50

278 (55.5%)
170 (33.9%)

338 (67.5%)
224 (44.7%)

368 (73.5%)
248 (49.5%)

408 (81.4%)
292 (58.3%)

Ordering | Seg. Size | Top-1 | Top3 | Top-5 | Top-10

Perfect 10 217 (43.3%) | 295 (58.9%) | 313 (62.5%) | 338 (67.5%)
Worst 10 211 (42.1%) | 298 (59.5%) | 330 (65.9%) | 362 (72.3%)
Perfect 20 | 247 (493%) | 311 (62.1%) | 343 (68.5%) | 374 (74.7%)
Worst 20 186 (37.1%) | 265 (52.9%) | 288 (57.5%) | 335 (66.9%)
Perfect 30 261 (52.1%) | 326 (65.1%) | 347 (69.3%) | 382 (76.2%)
Worst 30 175 (34.9%) | 236 (47.1%) | 266 (53.1%) | 309 (61.7%)
Perfect 40 270 (53.9%) | 328 (65.5%) | 347 (69.3%) | 390 (77.8%)
Worst 40 171 (34.1%) | 223 (44.5%) | 249 (49.7%) | 284 (56.7%)

Table 2: A comparison of fault localization performance
across techniques and segments. The table shows bugs
detected in the Top-1, Top-3, Top-5, and Top-10 posi-
tions using Perfect-Order and Worst-Order orders across
various segments.

the performance gap between the two rankings be-
comes progressively smaller.

At the smallest segment size of 10, there is nearly
no difference in Top-1 (only a 1% gap between
Perfect-Order and Worst-Order). Interestingly, for
Top-3, Top-5, and Top-10, the model performs
slightly better using the Worst-Order compared to
the Perfect-Order. These findings suggest that as
segment sizes decrease, the order bias toward the
input order diminishes.

As the context window size decreases, the order
bias diminishes significantly, with the Top-1
gap between Perfect-Order and Worst-Order
rankings reducing from around 22% at a seg-
ment size of 50 to just 1% at a size of 10. Larger
context windows tend to increase bias, whereas
smaller context windows help reduce it.

4.3 RQ3: How do different ordering strategies
influence fault localization performance?

Motivation. We find that LLMs may have order
biases toward Perfect-Order when investigating
a list of methods for FL. However, in practice,
such ground truth ordering is unknown. Hence, in
this RQ, we investigate whether ordering methods
based on the static or dynamic nature of the code
or using existing FL techniques can help LLMs
achieve better FL results.

Approach. We explore four types of ordering: (1)
Statistical-based and (2) Learning-based, which
are directly derived from FL techniques, and (3)
Metric-based and (4) Structure-based, which are
grounded in static code features and not specifi-
cally tied to FL. The first two approaches lever-
age dynamic execution data or advanced models
trained on FL tasks, making them more targeted
for identifying faults. In contrast, the latter two



approaches are agnostic to FL techniques. Hence,
they may lack the specificity needed for accurately
identifying faults, as they do not directly utilize FL
data. By integrating ordering strategies with the
rich contextual information in the prompt template
(see Figure 2), including test code, stack traces, and
coverage data, we aim to strengthen LLMs’ reason-
ing about the most relevant areas of the program,
ultimately improving fault localization.

For Metric-based ordering, we use Lines of Code
(LOC), ranking methods in descending order of
their lines of code. Longer methods are often
more complex and fault-prone (Herraiz and Hassan,
2010), making LOC a simple yet effective heuris-
tic for prioritization. For Structure-based ordering,
we consider the structure of the call graph asso-
ciated with each failing test. Specifically, we use
Call Graphpgs, which prioritizes deeper methods
by traversing the call graph using depth-first search
(DES), and Call Graphpgps, which highlights imme-
diate dependencies by traversing the call graph us-
ing breadth-first search (BFS). By explicitly encod-
ing dependency relationships, we evaluate whether
these structural insights can help LLMs reason
about fault propagation within the program and
improve fault localization.

Statistical-based ordering relies on dynamic ex-
ecution data. For this, we use Ochiai, which pri-
oritize methods most likely to contain faults, of-
fering insights beyond static metrics or structural
heuristics. Ochiai is a lightweight unsupervised
Spectrum-Based Fault Localization (SBFL) tech-
nique (Sasaki et al., 2020) based on the intuition
that methods covered by more failing tests and
fewer passing tests are considered more suspicious
(e.g., faulty). Its suspiciousness score is computed
as:

Gey

Ochiai(aes, Gnf, Gep) =
R Y/ o=y 3 oy

Here, acf, a,f, and aep denote the number of
failed and passed test cases that execute or do not
execute a code statement. Scores range from O to
1, with higher values indicating higher fault like-
lihood. We order methods by aggregating their
statement-level scores.

Finally, for Learning-based ordering, we use
DepGraph, which is the state-of-the-art supervised
FL technique based on graph neural network (Rafi
et al., 2024) that transforms the rich static and dy-
namic code information into a graph structure. It

Technique | Top-1 | Top-3 | Top-5 | Top-10
Learning-based

DepGraph 242.0 (48.3%) | 338.0 (67.5%) | 386.0 (77.0%) | 419.0 (83.6%)
Structure-based

CallGraphggs | 175.0 (34.9%) | 252.0 (50.3%) | 294.0 (58.7%) | 343.0 (68.5%)

CallGraphprs | 173.0 (34.5%) | 253.0 (50.5%) | 305.0 (60.9%) | 351.0 (70.1%)
Statistical-based

Ochiai 164.0 (32.7%) | 252.0 (50.3%) | 293.0 (58.5%) | 342.0 (68.3%)
Metric-based

LOC 163.0 (32.5%) | 256.0 (51.1%) | 289.0 (57.7%) | 351.0 (70.1%)

Table 3: Comparison of fault localization performance
using different ordering strategies with the percentage
of bugs found across 501 total faults.

trains a graph neural network to rank faulty meth-
ods by analyzing structural code dependencies and
code change history (see Appendix A.2).

Results. The choice of ordering strategy is critical
in LLM’s ability to localize faults, with F L-derived
ordering using DepGraph detecting almost 13.4%
more faults in Top-1 compared to the next highest
Top-1, achieved by Call Graphpgps. Table 3 high-
lights the model’s effectiveness across different or-
dering strategies. DepGraph identifies 13.4% more
faults in the Top-1 rank. We see similar trends
among other Top-K, where DepGraph identifies
16% more faults in Top-3, 16.1% in Top-5, and
13.5% in Top-10. This performance difference is
expected, as DepGraph excels at ranking faulty
methods higher on the list through its advanced
fault localization capabilities. The additional faults
localized by DepGraph across all Top-K ranks re-
inforce our earlier observation that improved order-
ing strategies enable the model to prioritize the
most suspicious methods earlier.

Despite the importance of order bias, actual FL
methods like DepGraph provide significantly bet-
ter fault localization than techniques that do not use
LLMs. For instance, DepGraph’s Top-K results are
higher: 299 (Top-1), 382 (Top-3), 415 (Top-5), and
449 (Top-10) compared to the results from LLM-
based methods (see Appendix A.3). The results
suggest that while LLMs can help with tasks such
as ranking faulty methods, domain-specific meth-
ods (like DepGraph) are still superior for accurate
results.

Interestingly, Ochiai reveals an interesting trend:
leveraging simple statistical metrics can enable
LILMs to improve fault localization by better pri-
oritizing fault-prone methods. This finding indi-
cates that while Ochiai, a simpler Statistical-based
method, does not match the accuracy of DepGraph,
it can still effectively assist in fault localization,
particularly when computational efficiency or sim-



plicity is a priority. Ochiai offers LLMs a simpler
way to rank methods based on test outcomes, which
aligns well with their ability to process observable
patterns. In contrast, DepGraph relies on complex
code structures like dependencies and execution
traces, which require a deeper understanding that
LLMs may not possess, making it harder for them
to reason effectively.

Simple static-based ordering strategies can
match or even outperformance more complex FL-
derived ordering across all Top-K ranks. For in-
stance, CallGraphgrs, which prioritizes methods
closer to failing tests, identifies 175 bugs in Top-
1 (34.9%), slightly outperforming CallGraphpgs
with 173 bugs (34.5%) and achieving a higher Top-
1 accuracy (32.7%) compared to the more complex
Statistical-based ordering. A similar trend is ob-
served across the remaining Top-K ranks, where
CallGraphprs either matches or slightly outper-
forms Statistical-based ordering, with differences
ranging from 0% to 0.02%. Additionally, when
comparing Statistical-based ordering with Metric-
based methods, it shows comparable performance
in Top-1 (A0.2%) and Top-3 (A0.8%), but out-
performs in Top-5 (A0.8%) and Top-10 accuracy
(A1.8%). This suggests that static methods, which
are computationally less demanding, can still be ef-
fective for fault localization. Hence, these findings
emphasize the practicality of simpler static-based
methods as viable alternatives to more complex
FL techniques.

While ordering helps rank faults, LLMs strug-
gle with complex relationships. Simpler static-
based methods, like CallGraphprs, perform
comparably to more complex Statistical-based
ordering like Ochiai in fault localization. Our
findings highlight the practicality of static-
based methods as efficient alternatives to com-
plex FL techniques, particularly in resource-
constrained environments.

5 Discussion & Conclusion

5.1 Discussion of Implications

Implications of Ordering Strategies. Our find-
ings show that the order of inputs significantly im-
pacts the performance of large language models
(LLMs) in FL. This highlights the need for thought-
ful ordering strategies. Metrics-based ordering,
drawn from traditional techniques like DepGraph
and Ochiai, prioritizes suspicious methods and im-

proves accuracy. For instance, DepGraph achieved
the highest Top-1 accuracy, demonstrating the ef-
fectiveness of advanced strategies. In contrast, sim-
pler methods like CallGraph and LOC performed
well across a broader range of cases, making them
suitable for resource-limited situations.

When clear ordering metrics are not available,

randomizing input orders can serve as a fallback
to minimize potential biases introduced by posi-
tional effects. Additionally, refining prompts to
emphasize context rather than sequence and train-
ing LL.Ms on diverse input sequences could fur-
ther reduce order bias and improve their robust-
ness. These insights indicate that aligning ordering
strategies with task requirements and model ca-
pabilities is essential for optimizing workflows in
LLM-based FL.
Effectiveness of Segment-Based Strategies. The
segment-based approach reduces order bias by
keeping the input size small, allowing the model
to reason over information step by step in smaller
contexts. Specifically, we find that a context size
of 10 minimizes bias, as it leads to similar Top-K
results for both the Perfect-Order and Worst-Order
cases, where both share the same code context.
However, as the context window increases, order
bias becomes more influential, affecting the LLM’s
ability to reason over long sequences of code. Fu-
ture research could focus on identifying optimal
segment sizes that adjust based on task complexity
and the amount of available input.

5.2 Conclusion

This work highlights several areas for future re-
search. Order bias may influence the performance
of large language models (LLMs) in tasks beyond
FL, such as program repair, test case prioritiza-
tion, and code refactoring. It would be beneficial
to investigate how order bias affects these tasks
and whether similar solutions can be applied. Ad-
ditionally, specific prompts that incorporate do-
main knowledge, such as code semantics and de-
pendency graphs, could enhance contextual under-
standing and reduce reliance on positional hints.
Lastly, exploring new evaluation metrics that take
into account the significance of input order and con-
text size will help us gain a better understanding of
how LLMs operate in software engineering tasks.
We have made all data and scripts related to this
work publicly available (AnonymousSubmission,
2023).



Limitations

Our experiments are conducted solely on
Java programs using the Defects4] benchmark
(vV2.0.0) (Just et al., 2014). Although this dataset
is well-established and representative of real-world
faults, our findings may not apply to other
programming languages or ecosystems. Future
research could build upon this work to investigate
how language-specific features and differences in
syntax affect LLM performance in FL tasks.

We do not use Mean First Rank (MFR) and
Mean Average Rank (MAR), which are metrics
commonly employed in traditional federated learn-
ing (FL) studies. These metrics assess how early
faulty methods appear in a ranked list. However,
their relevance is limited in LLM-based FL ap-
proaches because LLMs typically rank only a sub-
set of methods, such as the Top-10, rather than
providing a ranking for the entire list of methods
considered. This limitation arises from the chal-
lenge LLMs face in effectively ranking extensive
lists, especially when the number of methods is
very large. While Top-K accuracy offers valuable
insights, it may not fully capture the nuances that
MFR and MAR reveal in traditional FL setups.

Ethics Statement

We affirm that all authors of this paper comply with
the ACM Code of Ethics and its code of conduct.
Our research aims to investigate the strengths and
limitations of large language models (LLMs) in
fault localization tasks. This research contributes
to a better understanding of their capabilities and
applications in software engineering. Our exper-
iments utilize publicly available datasets, such
as Defects4], ensuring reproducibility and trans-
parency in our methods. While this work does not
present direct ethical risks, it may have implications
for future industrial applications. Adopting LLMs
in software development workflows can influence
decision-making, productivity, and job roles. We
encourage practitioners to use these tools respon-
sibly, maintaining human oversight and fairness
when deploying LLMs in critical environments.
Furthermore, our work acknowledges LLMs’ lim-
itations and aims to inspire further research and
development to improve their performance and fair-
ness in real-world applications.
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A Appendix

A.1 Call Graph in Programming Languages

A call graph is a structure that represents how dif-
ferent parts of a program call each other during
execution. For example, the nodes in the graph
represent functions or methods in the code, and the
edges represent the “calls” or “invocations” where
one function triggers another.

In NLP, ordering is crucial, whether it involves
the order of words in a sentence or the sequence
of steps in a pipeline because the correct sequence
ensures dependencies are preserved and the process
produces meaningful results. Similarly, in software,
the order in which functions are called determines
the program’s flow of execution. For example, a
call graph helps us understand this flow, enabling
us to: (i) Identify which parts of the code depend
on others, helping analyze dependencies or opti-
mize performance, and (ii) focus on functions that
are frequently called, which might indicate critical
components in the program.

Arbitrary ordering can introduce inconsistencies
in analysis. To resolve this, we adopt call graph
ordering, which mirrors the program’s natural exe-
cution order and ensures the ordering respects de-
pendencies while maintaining logical consistency.

A.2 Learning-based fault localization using
DepGraph

DepGraph transforms static and dynamic code in-
formation into a unified graph for fault localization.
It combines the Abstract Syntax Tree (AST) with
interprocedural call graphs to capture method de-
pendencies, effectively eliminating irrelevant nodes
and edges for a more streamlined graph. Dynamic
test coverage connects tests to the methods and
statements they cover, with pruning to retain only
the most relevant connections. Additionally, the
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Techniques ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10
DepGraph 299 382 415 449
Ochiai 101 221 270 341

Table 4: Top-K accuracy of prior FL-based techniques.

code change history, including metrics such as code
churn and modification count, is incorporated as an
attribute of the nodes. This provides historical in-
sights into fault-prone areas. The enhanced graph
is processed by a Gated Graph Neural Network
(GGNN), which effectively ranks faulty methods.
Overall, DepGraph reduces graph size, decreases
GPU memory usage, and shortens training time
while improving fault localization accuracy.

A.3 Top-K performance of traditional
approaches

Table 4 presents the Top-K accuracy of two tra-
ditional fault localization techniques—DepGraph
and Ochiai—evaluated on 501 bugs from the De-
fects4J dataset. DepGraph outperforms Ochiai,
identifying 299 bugs in the Top-1 position com-
pared to Ochiai’s 101. By Top-10, DepGraph de-
tects 449 bugs, significantly higher than Ochiai’s
341.

However, DepGraph’s higher accuracy comes
with significant computational overheads due to
its reliance on complex GNN models and depen-
dency graph analysis, leading to longer training
and testing times. When leveraging LLMs for fault
localization using ordered input derived from these
techniques, DepGraph does not show improvement
over its original performance. In contrast, Ochiai,
despite its simpler approach and lower original
accuracy, achieves notable gains when the meth-
ods are ordered using its suspiciousness scores and
processed through LL.Ms. This demonstrates that
while high-performing methods like DepGraph
reach near-maximum accuracy and benefit less
from LLM-assisted strategies, simpler techniques
like Ochiai can substantially enhance their fault lo-
calization capabilities through optimized ordering
and LLM integration. This trade-off underscores
the balance between computational efficiency and
the effectiveness of ordering strategies in improv-
ing fault localization outcomes.

A.4 Prompt Examples

This section outlines the prompts and examples
used in our experiments, demonstrating how we de-
sign and implement prompts for Fault Localization


https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384

System: You will be given a failing test, stack trace, and the method it covers. By analyzing this information, you have
to rank the methods from most suspicious to least suspicious. You should rank the top 10 most suspicious methods.

The output must be in the following JSON format:
JSON Format:

"methodB”: "rank",
"methodA”: "rank",

Human: Here are the coverage information:

Test Name: org.apache.commons.lang.text.StrBuilderTest.testLang412Right

Test Body:
public void testLang412Right() {
StrBuilder sb = new StrBuilder();
sb.appendFixedWidthPadRight (null, 1@, '*');
assertEquals( "Failed appendFixedWidthPadRight correctly”, "*xx*xxxx*x" sb.toString());

StackTrace:

java.lang.NullPointerException

at org.apache.commons.lang.text.StrBuilder.appendFixedWidthPadRight(StrBuilder. java:1230)
at org.apache.commons.lang.text.StrBuilderTest.testLang412Right(StrBuilderTest. java:1755)

Covered Methods:
Method Signature:
org.apache.commons.lang.text.StrBuilder:getNullText()Ljava/lang/String;
Method Body:
public String getNullText() {

return nullText;

3

Method Signature:
org.apache.commons.lang.text.StrBuilder:appendFixedWidthPadRight(Ljava/lang/Object;IC);
Method Body:
public StrBuilder appendFixedWidthPadRight(Object obj, int width, char padChar) {

if (width > @) {

ensureCapacity(size + width);

String str = (obj == null ? getNullText() : obj.toString());

int strLen = str.length();

Figure 4: Prompt example for Fault Localization.
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Based on the provided information, we can analyze the methods involved in the failing test and the stack trace to
determine their suspiciousness. The test is failing due to a ‘NullPointerException® in the ‘appendFixedWidthPadRight*
method when it tries to call ‘str.length()‘ on a ‘null‘ value. This indicates that the handling of ‘null‘ values in the method
is likely problematic.

Here’s the ranking of the methods from most suspicious to least suspicious:

1. **appendFixedWidthPadRight** - This method is directly involved in the failure, as it attempts to call ‘length()‘ on a
potentially ‘null® string.

2. **getNullText** - This method returns ‘nullText‘, which is used in ‘appendFixedWidthPadRight* to handle ‘null‘
objects. If ‘nullText® is ‘null®, it will lead to a ‘NullPointerException®.

Here is the JSON output for the ranking:

TTTjson

{
"appendFixedWidthPadRight (Ljava/lang/Object;IC);": 1,
"getNullText()Ljava/lang/String;": 2
...... // Remaining methods with rank

Figure 5: Output example from prompts.

(FL) tasks. The examples include the base prompt,  on their level of suspiciousness. In the next prompt,
the output format, and the segmentation mechanism  additional covered methods and the ranked output
used in our methodology. For improved clarity, we  from the previous segment are introduced. This
have omitted certain information from the prompt  iterative process enables the model to update and
examples. refine its rankings as it evaluates new information.

Prompt Design. The base prompt instructs the ~ The segmentation mechanism ensures we pass the
LLM to analyze failing tests, stack traces, and the ~ previous context while maintaining continuity be-
covered methods to rank the top ten most suspi-  tween prompts. The output for this prompt is also a
cious methods. As illustrated in Figure 4, the sys- ~ JSON structure of ranked methods similar to what
tem message outlines the task, while the user mes-  is shown in Figure 5.

sage provides specific coverage details, including

the test name, test body, stack trace, and the cov-

ered methods. The prompt clearly specifies that the

output should be in JSON format to ensure consis-

tency and clarity in the ranking of the methods.

Output Example Figure 5 illustrates the output
generated from the base prompt. The language
model ranks methods based on their level of sus-
piciousness, which is determined by analyzing
the stack trace and coverage data. In this exam-
ple, the method appendFixedWidthPadRight is
ranked highest because it is directly involved in
the failure. It is followed by getNullText, con-
tributing to the error by returning null. The JSON
output lists the method signatures and their ranks,
ensuring the results are well-structured and easy to
interpret.

Segmentation for Iterative Reasoning. To
manage large input contexts, we utilized a
segmentation-based approach. In Figure 6, we illus-
trate how segmentation is implemented. Initially,
the large language model (LLM) is provided with a
set of covered methods, and they are ranked based
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System: You are provided with the remaining covered methods identified by the failing tests and the stack trace.
Previously, you ranked the following methods from most suspicious to least suspicious:

Rank: 1
Method Signature:
org.apache.commons. lang. text.StrBuilder:appendFixedWidthPadRight(Ljava/lang/Object;IC);
Method Body:
public StrBuilder appendFixedWidthPadRight(Object obj, int width, char padChar) {
if (width > @) {

Rank: 2

Method Signature:
org.apache.commons.lang.text.StrBuilder:getNullText()Ljava/lang/String;
Method Body:

public String getNullText() {

Now, analyze the additional coverage information. Based on this new data, update the ranking of the top 10 most
suspicious methods. You may adjust the existing ranking if necessary or retain it if no changes are warranted. Ensure
that your final ranking reflects the latest observations.

The output must be in the following JSON format:
JSON Format:

{

"methodB”: "rank",
"methodA”: "rank”,

Human: Here are the remaining coverage information:

Test Name: org.apache.commons.lang.text.StrBuilderTest.testlLang412Right

Test Body:
public void testlLang412Right() {

StackTrace:
java.lang.NullPointerException

Covered Methods:

Method Signature:

org.apache.commons.lang. text.StrBuilder:<init>(I)V;
Method Body:

public StrBuilder(int initialCapacity) {

........ // The remaining coverage info

Figure 6: Prompt example for segmentation experiments.
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