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Abstract
001

Large Language Models (LLMs) show great002

promise in software engineering tasks like Fault003

Localization (FL) and Automatic Program Re-004

pair (APR). This study examines how input order005

and context size affect LLM performance in FL,006

a key step for many downstream software engi-007

neering tasks. We test different orders for meth-008

ods using Kendall Tau distances, including "per-009

fect" (where ground truths come first) and "worst"010

(where ground truths come last). Our results show011

a strong bias in order, with Top-1 accuracy falling012

from 57% to 20% when we reverse the code order.013

Breaking down inputs into smaller contexts helps014

reduce this bias, narrowing the performance gap015

between perfect and worst orders from 22% to just016

1%. We also look at ordering methods based on tra-017

ditional FL techniques and metrics. Ordering using018

DepGraph’s ranking achieves 48% Top-1 accuracy,019

which is better than more straightforward ordering020

approaches like CallGraphDFS. These findings un-021

derscore the importance of how we structure inputs,022

manage contexts, and choose ordering methods to023

improve LLM performance in FL and other soft-024

ware engineering tasks.025

1 Introduction026

Software development has significantly trans-027

formed with the emergence of Large Language028

Models (LLMs) like ChatGPT (OpenAI, 2023).029

These tools have revolutionized how develop-030

ers code, debug, and maintain software sys-031

tems (Zhang et al., 2023). LLMs are widely032

adopted for their ability to simplify and acceler-033

ate development workflows, providing insights into034

complex tasks such as code generation and com-035

prehension (Abedu et al., 2024; Lin et al., 2024).036

Recent research has explored the use of LLMs037

in various software engineering tasks, includ-038

ing Fault Localization (FL) (Kang et al., 2024; 039

Yang et al., 2024) and Automatic Program Repair 040

(APR) (Zhang et al., 2024; Xia et al., 2024), which 041

show great potential for automatically resolving 042

real-world issues in large code bases. In particular, 043

FL is a foundational step in the process, where the 044

LLM processes structured lists to locate potential 045

faulty code that requires fixing. Hence, high FL ac- 046

curacy is instrumental to APR and automatic issue 047

resolution. 048

While LLMs have demonstrated strong reason- 049

ing capabilities, prior research from other domains 050

highlights a sensitivity to the order of input infor- 051

mation. Studies have shown that LLMs perform 052

better when information is presented in a sequence 053

aligned with logical steps, with accuracy dropping 054

significantly when the order is randomized (Chen 055

et al., 2024). Additionally, LLMs exhibit a pri- 056

macy effect, often prioritizing earlier information 057

in prompts (Wang et al., 2023). Although these 058

findings are well-documented in reasoning tasks, 059

whether such sensitivities extend to software en- 060

gineering scenarios like FL is unclear. Since FL 061

involves analyzing ordered lists of methods or el- 062

ements, the sequence in which this information 063

is presented may influence the model’s ability to 064

identify faults. 065

This paper investigates how input order and 066

context size affect the performance of large lan- 067

guage models (LLMs) in Fault Localization (FL). 068

We used Defects4J (Just et al., 2014) benchmark, 069

a widely used dataset in software engineering 070

for evaluating FL techniques. First, we evaluate 071

whether the order of methods impacts the LLM’s 072

ability to rank and identify faults by generating var- 073

ious input orders using Kendall Tau distance (Ci- 074

cirello, 2019), including perfect (ground truth meth- 075

ods first) and worst (ground truth methods last) 076

orders. We found that the LLM’s performance is 077

significantly influenced by input order, with Top- 078

1 accuracy dropping from 57% to 20% when the 079
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perfect method list is reversed, indicating a strong080

order bias. Next, we explore segmenting large081

inputs into smaller contexts to address observed082

order biases. We observed that segmenting input083

sequences into smaller contexts reduces this bias;084

for example, the Top-1 gap between Perfect-Order085

and Worst-Order rankings decreased from 22% at a086

segment size of 50 to just 1% at a size of 10. Finally,087

we tested traditional FL and metrics-based order-088

ing methods and found that using FL techniques089

improved results, with DepGraph outperforming090

Ochiai by 16% in Top-1 accuracy, while simpler091

strategies like CallGraph and LOC produced sim-092

ilar outcomes. These results highlight the impor-093

tance of input order, context size, and effective094

ordering methods for enhancing LLM-based fault095

localization.096

In summary, our contributions are as follows:097

• Method order significantly impacts LLM per-098

formance, with Top-1 accuracy dropping from099

57% in Perfect-Order (ground truths first) to100

20% in Worst-Order (ground truths last).101

• We demonstrate that dividing input sequences102

into smaller segments effectively mitigates or-103

der bias, reducing the Top-1 performance gap104

between perfect and worst orders from 22%105

to just 1%.106

• Ordering with different metrics and FL strate-107

gies significantly impacts outcomes. Order-108

ing based on DepGraph achieves 48% Top-1109

accuracy, 13.4% higher than CallGraphBFS.110

However, simpler methods like CallGraphDFS111

reach 70.1% Top-10 accuracy, highlighting112

their practicality in resource-constrained envi-113

ronments.114

2 Background and Related Works115

2.1 Fault Localization116

Fault Localization (FL) (Wong et al., 2016) is117

a critical software engineering task identifying118

specific program parts responsible for a failure.119

It is particularly essential in large and complex120

codebases, where manually finding faults can be121

time-consuming and error-prone. FL saves sig-122

nificant developer effort and serves as a corner-123

stone for many downstream software engineer-124

ing tasks such as Automatic Program Repair125

(APR) (Le Goues et al., 2021), debugging automa-126

tion (Zamfir and Candea, 2010), and performance127

optimization (Woodside et al., 2007). The process 128

begins with some indication of a fault, typically 129

indicated by a failing test, which serves as the start- 130

ing point. The input for FL often consists of a set 131

of methods or code elements executed during the 132

failing test case. FL aims to produce a ranked list 133

of the most likely fault locations, providing devel- 134

opers with a focused starting point for investigation 135

and resolution. Its significance lies in facilitating 136

effective debugging and establishing the ground- 137

work for workflows that automate and optimize the 138

software development lifecycle. 139

2.2 Related Works 140

Spectrum-based and Supervised Fault Local- 141

ization. Traditional methods such as Spectrum- 142

Based Fault Localization (SBFL) use statistical 143

techniques to assess the suspiciousness of indi- 144

vidual code elements. (Abreu et al., 2007). The 145

intuition is that the code elements covered by more 146

failing tests and fewer passing tests are more sus- 147

picious. While simple and lightweight, these tech- 148

niques, such as Ochiai (Abreu et al., 2009), often 149

struggle with achieving high accuracy in complex 150

systems. To improve accuracy, supervised tech- 151

niques like DeepFL (Li et al., 2019) and Grace (Lou 152

et al., 2021) incorporate features such as code com- 153

plexity, historical fault data, and structural relation- 154

ships using machine learning and Graph Neural 155

Networks (GNNs). DepGraph (Rafi et al., 2024) 156

further refines this by leveraging code dependen- 157

cies and changing history for better fault ranking. 158

LLM-Based Fault Localization. Recent advances 159

in Large Language Models (LLMs) have demon- 160

strated significant potential for FL by leveraging 161

their ability to analyze both code and natural lan- 162

guage. Trained on extensive programming datasets, 163

LLMs can understand code structure, interpret test 164

failures, and even suggest fixes (Kang et al., 2024; 165

Wu et al., 2023; Pu et al., 2023). Building on these 166

capabilities, LLM agents extend LLM functionali- 167

ties by incorporating features like memory manage- 168

ment (Zhou et al., 2023) and tool integration (Roy 169

et al., 2024), enabling them to autonomously ex- 170

ecute tasks described in natural language. These 171

agents can also adopt specialized roles, such as 172

developers or testers, to enhance their domain- 173

specific reasoning and improve problem-solving 174

workflows (Hong et al., 2024; White et al., 2024). 175

Several recent works have leveraged LLMs for 176

FL. Wu et al.(Wu et al., 2023) leverage test failure 177

data to identify faulty methods or classes, enabling 178
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Figure 1: An overview of our overall approach

context-aware reasoning directly from the input.179

AutoFL(Kang et al., 2024) enhances LLM capa-180

bilities by integrating tools to fetch and analyze181

covered classes and methods, providing additional182

insights for FL. AgentFL (Qin et al., 2024) takes183

a more specialized approach, using agents with a184

Document-Guided Search method to navigate code-185

bases, locate faults, and prioritize suspicious meth-186

ods. In contrast, Agentless (Xia et al., 2024) simpli-187

fies FL with a three-phase workflow—localization,188

repair, and validation—eliminating the need for189

agents or complex tools. These tasks often involve190

handling large contexts, as LLMs process exten-191

sive lists of methods or code snippets, making the192

structure of input data a critical factor.193

Prior research shows that LLMs are sensitive to194

input order, impacting their reasoning and decision-195

making. For example, studies have shown that196

LLMs perform better when premises are presented197

in a sequence aligned with logical reasoning steps,198

with accuracy dropping substantially when the or-199

der is randomized (Chen et al., 2024). Additionally,200

LLMs exhibit a primacy effect, prioritizing ear-201

lier information in prompts, influencing their out-202

puts (Wang et al., 2023). In fault localization (FL),203

where code is analyzed as ordered lists of meth-204

ods, the presentation order may affect the ranking205

of suspicious methods. This paper explores how206

the sequence of code elements and context window207

size influence LLM performance in fault localiza-208

tion tasks.209

3 Methodology and Experiment Design210

This section describes our overall approach to con-211

ducting experiments, summarized in Figure 1. First,212

we collect coverage information, including details213

about failing tests, stack traces, and the methods214

covered. Next, we generate various input orderings215

using Kendall Tau distance and different metrics.216

We pass this information along with the prompt217

to the LLMs for fault localization. Finally, we218

evaluate the model’s bias by calculating the Top-219

K accuracy across different orderings. Below, we220

discuss more in detail.221

Project #Faults LOC #Tests Fault-triggering Tests

Cli 39 4K 94 66
Codec 18 7K 206 43
Collections 4 65K 1,286 4
Compress 47 9K 73 72
Csv 16 2K 54 24
Gson 18 14K 720 34
JacksonCore 26 22K 206 53
JacksonXml 6 9K 138 12
Jsoup 93 8K 139 144
Lang 64 22K 2,291 121
Math 106 85K 4,378 176
Mockito 38 11K 1,379 118
Time 26 28K 4,041 74

Total 501 490 15,302 901

Table 1: The studied projects from Defects4J.

3.1 Methodology 222

Prompt Design. We use LLMs to rank the most 223

suspicious methods in fault localization tasks by 224

analyzing failing tests, stack traces, and covered 225

methods. We designed the prompts to be simple so 226

we could better study the order bias. Our prompts 227

consist of two primary components: a 1) System 228

Message and a 2) User Message, to guide the LLM 229

in ranking suspicious methods. The system mes- 230

sage establishes the task by instructing the LLM to 231

analyze a failing test, its stack trace, and a list of 232

covered methods during execution. The LLM ranks 233

the top ten methods in descending order based on 234

its analysis of suspicion. To ensure consistency in 235

the generated output, the system message specifies 236

the required output format as a JSON structure, 237

which includes method identifiers and their corre- 238

sponding ranks. 239

The user message provides the input data spe- 240

cific to a failing test, including the failing test code, 241

the minimized stack trace, and the covered meth- 242

ods. Following prior works (Kang et al., 2024; Wu 243

et al., 2023), we retain only the information directly 244

relevant to fault localization for stack traces, dis- 245

carding unrelated lines such as those from external 246

libraries or other modules. This reduction enhances 247

clarity and ensures that the LLM only processes es- 248

sential data to identify the root cause of the failure. 249

Covered methods are presented as an ordered list, 250

serving as the candidate set for ranking. Additional 251

details are provided in the appendix A.4. 252

3.2 Experiment Design 253

Benchmark Dataset. We conducted the experi- 254

ment on 501 faults across 13 projects from the De- 255

fects4J benchmark (V2.0.0) (Just et al., 2014). De- 256

fects4J is a widely used benchmark in the software 257
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Analyze the provided failing test, stack trace, and
covered methods to localize faults and rank the top
10 most suspicious methods.

Test Code:
{test_code}
Stack Trace:
{stack_trace}
Covered Methods:
{covered_methods}

The output should follow the JSON format below:
JSON Format:

{
"methodB": "rank",
"methodA": "rank",
...

}

Figure 2: Prompt for Fault Localization.

engineering community for fault localization (Lou258

et al., 2021; Sohn and Yoo, 2017; Chen et al., 2022;259

Zhang et al., 2017; Rafi et al., 2024). It provides a260

controlled environment for reproducing real-world261

bugs from a variety of projects, which differ in type262

and size. The benchmark includes both faulty and263

fixed project versions, along with associated test264

cases (including failing ones), metadata, and au-265

tomation scripts, which facilitate research in FL,266

testing, and program repair.267

Table 1 gives detailed information on the268

projects and faults we use in our study. We ex-269

cluded a few projects from Defects4J due to compi-270

lation errors that limited test coverage for most271

bugs. In total, we studied 501 faults and over272

1.4K fault-triggering tests (i.e., failing tests that273

cover the fault). Note that since a fault may have274

multiple fault-triggering tests, there are more fault-275

triggering tests than faults.276

Evaluation Metrics. We perform our fault local-277

ization process at the method level in keeping with278

prior work (Li et al., 2019; Lou et al., 2021; Vanc-279

sics et al., 2021; Rafi et al., 2024; Kang et al., 2024).280

Namely, we aim to identify the source code meth-281

ods that cause the fault. We apply the following282

commonly-used metrics for evaluation:283

Accuracy at Top-N. The Top-N metric measures284

the number of faults with at least one faulty pro-285

gram element (in this paper, methods) ranked in286

the top N. The results are a ranked list based on the287

suspiciousness score. Prior research (Parnin and288

Orso, 2011) indicates that developers typically only289

scrutinize a limited number of top-ranked faulty el-290

ements. Therefore, our study focuses on Top-N,291

where N is set to 1, 3, 5, and 10.292

Following prior LLM-based FL studies (Kang 293

et al., 2024; Wu et al., 2023), we did not use metrics 294

like Mean First Rank (MFR) and Mean Average 295

Rank (MAR) to measure how early faulty methods 296

are ranked and their average position (Lou et al., 297

2021; Li et al., 2019). These metrics are unsuitable 298

for LLM-based approaches, which makes it diffi- 299

cult to provide a specific score because LLM is a 300

language model. 301

Implementation and Environment. To collect 302

test coverage data and compute results for base- 303

line techniques, we utilized Gzoltar (Campos et al., 304

2012), an automated tool that executes tests and 305

gathers coverage information. For the LLM-based 306

components, we employed OpenAI’s GPT-4o mini, 307

which currently points to gpt-4o-mini-2024-07-18, 308

which has a context window of 128,000 tokens and 309

can output 16,384 tokens at once (OpenAI, 2024). 310

We used LangChain v0.2 to streamline the process 311

of our experiment (Langchain, 2024). To minimize 312

the variations in the output, we set the temperature 313

parameter to 0. 314

4 Experiment Results 315

4.1 RQ1: Does the order in which the model 316

processes code elements impact its 317

performance? 318

Motivation. LLMs often struggle to reason over 319

long input sequences, known as order bias, where 320

the model prioritizes input tokens at the beginning 321

or end of the sequence (Wang et al., 2023). While 322

order bias has been studied in NLP tasks, such as 323

deductive and mathematical reasoning (Chen et al., 324

2024), its impact on software engineering tasks re- 325

mains under-explored. Order is crucial in software 326

engineering tasks, such as fault localization and 327

program repair, where the model must reason over 328

a long code sequence. Therefore, in this RQ, we 329

investigate how code sequence order affects LLM 330

accuracy in fault localization. 331

Approach. To study how code order sequences 332

affect LLM-based fault localization, we create 333

baselines with varying orderings. The first base- 334

line, Perfect-Order, places faulty methods (ground 335

truths) at the top, followed by non-faulty meth- 336

ods, ordered by their call-graph (see Appendix A.1 337

for details) to minimize arbitrariness. Our intu- 338

ition is that Perfect-Order serves as an idealized 339

benchmark to test the hypothesis that prioritizing 340

faulty methods should yield the highest accuracy 341

if LLMs favor earlier orders due to their sequential 342
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processing nature. We then generate four additional343

baselines by adjusting the order using Kendall Tau344

distance (Cicirello, 2019), which measures the cor-345

relation between two lists (i.e., 1 = perfect align-346

ment with the Perfect-Order, -1 = complete mis-347

alignment with the Perfect-Order). From Perfect-348

Order, we derive: ➀ Random-Order (τ = 0; meth-349

ods shuffled randomly), ➁ Worst-Order (τ = −1;350

faulty methods last), ➂ Moderately Perfect-Order351

(τ = 0.5; partial alignment), and ➃ Moderately352

Inverted-Order (τ = −0.5; partial misalignment).353

Comparing these baselines to Perfect-Order allows354

us to assess how deviations from the Perfect-Order355

affect FL results. Finally, we evaluate the model’s356

FL performance by ranking methods based on sus-357

piciousness and measuring Top-K accuracy. For358

instance, a Top-1 score of 50% indicates that 50%359

of 501 faults’ faulty methods were ranked first.360

Results. LLMs exhibit a bias toward the initial361

input order, achieving approximately 38% higher362

Top-1 accuracy for Perfect-Order compared to363

Worst-Order. Figure 3 shows the results of the364

experiments. For Perfect-Order, the model identi-365

fies 57.4% of faults in the Top-1 accuracy, while366

Moderately Perfect-Order reduces the model’s fault367

detection to 26.1% (∆ 31.1%). As Kendall Tau de-368

creases, the accuracy declines further, reaching the369

lowest (19.4%) for Worst-Order, despite the code370

context remaining identical, except for the code371

order. These results highlight key limitations in372

how LLMs process code, suggesting they may rely373

more on surface-level patterns than on a deep374

understanding of code semantics.375

This trend persists across all Top-K metrics. For376

Top-3, the model detects 70.9% of bugs in the377

Perfect-Order, decreasing to 38.6% for Moder-378

ately Perfect-Order, which then stabilizes to 33%379

for both Random-Order and Moderately Inverted-380

Order, then decreasing further to 26.3% with the381

Worst-Order. We see similar trends for Top-5382

and Top-10, with Perfect-Order detecting the most383

faults, with 78% and 86% faults, respectively, com-384

pared to the lowest fault detection of 30.5% and385

35.2% for Worst-Order. These findings suggest386

that LLMs are biased toward methods listed ear-387

lier in the input, indicating a potential order bias388

when analyzing code sequences.389

The low variability in standard deviation390

(STDEV) across multiple runs suggests consis-391

tent order bias. To ensure the reliability of our392

findings on order bias, we conducted the experi-393

ments three times. Across all Top-K results, the394

Figure 3: Top-K fault localization. The x-axis represents
the number of bugs located, and the data points on the
lines indicate the percentage of bugs identified out of the
total (with standard deviation) at each Top-K position
for various Kendall Tau (τ ) values.

STDEV remains stable, ranging from 0.00 to 2.49. 395

For instance, the highest STDEV of 2.49 for Top-3 396

indicates minimal variations, with only two meth- 397

ods changing position across runs. This consistency 398

demonstrates that order bias is not an artifact of 399

randomness but a persistent limitation in how 400

LLMs process code sequences. 401

The LLM’s fault localization performance is
significantly impacted by input order, with Top-
1 accuracy dropping from 57% to 20% when
the method list is reversed, indicating a bias
toward early-presented data.

402

4.2 RQ2: Does limiting context window help 403

reduce the bias towards order? 404

Motivation. In RQ1, we identified order bias in 405

the sequence in which methods are presented in the 406

zero-shot prompt. We hypothesize that a larger con- 407

text window might amplify the bias toward method 408

order, as the LLM processes all methods simulta- 409

neously and may weigh their order more heavily 410

when generating responses. In this RQ, we investi- 411

gate how the context window influences order bias. 412

Specifically, we examine how segmenting the input 413

sequence into smaller independent segments affects 414

LLM’s performance in software engineering tasks, 415

such as fault localization, where both context size 416

and order play a crucial role in reasoning. 417

Approach. We investigate whether a divide-and- 418

conquer approach, where the input sequence is 419

split into smaller contexts and each subset is rea- 420

soned individually, can reduce this bias. We 421

divide an ordered list of N methods, M = 422

{m1,m2, . . . ,mN}, into max(⌈N/S⌉, 1) contigu- 423

ous segments. Each segment Mi ⊆ M (for i = 424
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{1, 2, . . . , J}) contains up to S methods, ensuring425

|Mi| ≤ S. If S > N , the entire list M forms a sin-426

gle segment (J = 1). For this study, we experiment427

with five segment sizes S ∈ {10, 20, 30, 40, 50}.428

In each segment Mi, the model ranks the Top-K429

suspicious methods Ri, and the results Ri are sum-430

marized into Gi. For the subsequent segment Si+1,431

the prompt includes both the Mi+1 and the contex-432

tual information from Gi. This iterative context-433

passing approach allows the model to re-rank meth-434

ods based on combined information from previous435

segments. By incrementally varying the segment436

size (S), we analyze how the context window im-437

pacts order bias in fault localization. Specifically,438

we compare performance across two extreme order-439

ing sequences: Perfect-Order (τ = 1) and Worst-440

Order (τ = −1) (defined in RQ1) to assess whether441

the iterative context-passing effectively mitigates442

order bias, improving reliability across diverse or-443

dering sequences.444

Results. The size of the context window impacts445

fault localization results, with larger context win-446

dows exhibiting a stronger order bias. Table 2447

presents the Top-K scores across different con-448

text segments for Perfect-Order and Worst-Order.449

When the context is provided in larger segments450

(e.g., segment size 50), the model detects 278 bugs451

(55.5%) in Top-1 with the Perfect-Order, while452

the Worst-Order identifies only 170 bugs (33.9%),453

around 22% fewer bugs than the Perfect-Order.454

The large difference in Top-1 shows a significant455

order bias towards the order of the input method456

list. This is also evident in the Top 3, 5, and 10.457

For example, in the Top-10, the Perfect ranking458

reaches 408 (81.4%) compared to 292 (58.3%) for459

the Worst ranking, detecting around 23% more460

bugs.461

As the segment size decreases, the difference462

between the Perfect-Order and Worst-Order be-463

comes smaller across all Top-K. For a segment464

size of 40, the model detects approximately 54% of465

bugs in Top-1 with the Perfect-Order, which is 20%466

more than the 34% bugs detected with the Worst-467

Order ranking. This pattern holds for Top-3, Top-5,468

and Top-10 as well. At a segment size of 30, the469

difference in Top-1 narrows further to 17%, with470

Perfect-Order identifying 51% of bugs compared471

to 34% for Worst-Order. When the segment size472

is reduced to 20, the Perfect-Order detects around473

49% of bugs in Top-1, while Worst-Order detects474

37%, shrinking the difference to 12%. This trend475

continues for Top-3, Top-5, and Top-10, where476

Ordering Seg. Size Top-1 Top-3 Top-5 Top-10

Perfect 10 217 (43.3%) 295 (58.9%) 313 (62.5%) 338 (67.5%)
Worst 10 211 (42.1%) 298 (59.5%) 330 (65.9%) 362 (72.3%)

Perfect 20 247 (49.3%) 311 (62.1%) 343 (68.5%) 374 (74.7%)
Worst 20 186 (37.1%) 265 (52.9%) 288 (57.5%) 335 (66.9%)

Perfect 30 261 (52.1%) 326 (65.1%) 347 (69.3%) 382 (76.2%)
Worst 30 175 (34.9%) 236 (47.1%) 266 (53.1%) 309 (61.7%)

Perfect 40 270 (53.9%) 328 (65.5%) 347 (69.3%) 390 (77.8%)
Worst 40 171 (34.1%) 223 (44.5%) 249 (49.7%) 284 (56.7%)

Perfect 50 278 (55.5%) 338 (67.5%) 368 (73.5%) 408 (81.4%)
Worst 50 170 (33.9%) 224 (44.7%) 248 (49.5%) 292 (58.3%)

Table 2: A comparison of fault localization performance
across techniques and segments. The table shows bugs
detected in the Top-1, Top-3, Top-5, and Top-10 posi-
tions using Perfect-Order and Worst-Order orders across
various segments.

the performance gap between the two rankings be- 477

comes progressively smaller. 478

At the smallest segment size of 10, there is nearly 479

no difference in Top-1 (only a 1% gap between 480

Perfect-Order and Worst-Order). Interestingly, for 481

Top-3, Top-5, and Top-10, the model performs 482

slightly better using the Worst-Order compared to 483

the Perfect-Order. These findings suggest that as 484

segment sizes decrease, the order bias toward the 485

input order diminishes. 486

As the context window size decreases, the order
bias diminishes significantly, with the Top-1
gap between Perfect-Order and Worst-Order
rankings reducing from around 22% at a seg-
ment size of 50 to just 1% at a size of 10. Larger
context windows tend to increase bias, whereas
smaller context windows help reduce it.

487

4.3 RQ3: How do different ordering strategies 488

influence fault localization performance? 489

Motivation. We find that LLMs may have order 490

biases toward Perfect-Order when investigating 491

a list of methods for FL. However, in practice, 492

such ground truth ordering is unknown. Hence, in 493

this RQ, we investigate whether ordering methods 494

based on the static or dynamic nature of the code 495

or using existing FL techniques can help LLMs 496

achieve better FL results. 497

Approach. We explore four types of ordering: (1) 498

Statistical-based and (2) Learning-based, which 499

are directly derived from FL techniques, and (3) 500

Metric-based and (4) Structure-based, which are 501

grounded in static code features and not specifi- 502

cally tied to FL. The first two approaches lever- 503

age dynamic execution data or advanced models 504

trained on FL tasks, making them more targeted 505

for identifying faults. In contrast, the latter two 506
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approaches are agnostic to FL techniques. Hence,507

they may lack the specificity needed for accurately508

identifying faults, as they do not directly utilize FL509

data. By integrating ordering strategies with the510

rich contextual information in the prompt template511

(see Figure 2), including test code, stack traces, and512

coverage data, we aim to strengthen LLMs’ reason-513

ing about the most relevant areas of the program,514

ultimately improving fault localization.515

For Metric-based ordering, we use Lines of Code516

(LOC), ranking methods in descending order of517

their lines of code. Longer methods are often518

more complex and fault-prone (Herraiz and Hassan,519

2010), making LOC a simple yet effective heuris-520

tic for prioritization. For Structure-based ordering,521

we consider the structure of the call graph asso-522

ciated with each failing test. Specifically, we use523

Call GraphDFS, which prioritizes deeper methods524

by traversing the call graph using depth-first search525

(DFS), and Call GraphBFS, which highlights imme-526

diate dependencies by traversing the call graph us-527

ing breadth-first search (BFS). By explicitly encod-528

ing dependency relationships, we evaluate whether529

these structural insights can help LLMs reason530

about fault propagation within the program and531

improve fault localization.532

Statistical-based ordering relies on dynamic ex-533

ecution data. For this, we use Ochiai, which pri-534

oritize methods most likely to contain faults, of-535

fering insights beyond static metrics or structural536

heuristics. Ochiai is a lightweight unsupervised537

Spectrum-Based Fault Localization (SBFL) tech-538

nique (Sasaki et al., 2020) based on the intuition539

that methods covered by more failing tests and540

fewer passing tests are considered more suspicious541

(e.g., faulty). Its suspiciousness score is computed542

as:543

Ochiai(aef , anf , aep) =
aef√

(aef + anf )× (aef + aep)
544

Here, aef , anf , and aep denote the number of545

failed and passed test cases that execute or do not546

execute a code statement. Scores range from 0 to547

1, with higher values indicating higher fault like-548

lihood. We order methods by aggregating their549

statement-level scores.550

Finally, for Learning-based ordering, we use551

DepGraph, which is the state-of-the-art supervised552

FL technique based on graph neural network (Rafi553

et al., 2024) that transforms the rich static and dy-554

namic code information into a graph structure. It555

Technique Top-1 Top-3 Top-5 Top-10

Learning-based
DepGraph 242.0 (48.3%) 338.0 (67.5%) 386.0 (77.0%) 419.0 (83.6%)

Structure-based
CallGraphBFS 175.0 (34.9%) 252.0 (50.3%) 294.0 (58.7%) 343.0 (68.5%)
CallGraphDFS 173.0 (34.5%) 253.0 (50.5%) 305.0 (60.9%) 351.0 (70.1%)

Statistical-based
Ochiai 164.0 (32.7%) 252.0 (50.3%) 293.0 (58.5%) 342.0 (68.3%)

Metric-based
LOC 163.0 (32.5%) 256.0 (51.1%) 289.0 (57.7%) 351.0 (70.1%)

Table 3: Comparison of fault localization performance
using different ordering strategies with the percentage
of bugs found across 501 total faults.

trains a graph neural network to rank faulty meth- 556

ods by analyzing structural code dependencies and 557

code change history (see Appendix A.2). 558

Results. The choice of ordering strategy is critical 559

in LLM’s ability to localize faults, with FL-derived 560

ordering using DepGraph detecting almost 13.4% 561

more faults in Top-1 compared to the next highest 562

Top-1, achieved by Call GraphBFS. Table 3 high- 563

lights the model’s effectiveness across different or- 564

dering strategies. DepGraph identifies 13.4% more 565

faults in the Top-1 rank. We see similar trends 566

among other Top-K, where DepGraph identifies 567

16% more faults in Top-3, 16.1% in Top-5, and 568

13.5% in Top-10. This performance difference is 569

expected, as DepGraph excels at ranking faulty 570

methods higher on the list through its advanced 571

fault localization capabilities. The additional faults 572

localized by DepGraph across all Top-K ranks re- 573

inforce our earlier observation that improved order- 574

ing strategies enable the model to prioritize the 575

most suspicious methods earlier. 576

Despite the importance of order bias, actual FL 577

methods like DepGraph provide significantly bet- 578

ter fault localization than techniques that do not use 579

LLMs. For instance, DepGraph’s Top-K results are 580

higher: 299 (Top-1), 382 (Top-3), 415 (Top-5), and 581

449 (Top-10) compared to the results from LLM- 582

based methods (see Appendix A.3). The results 583

suggest that while LLMs can help with tasks such 584

as ranking faulty methods, domain-specific meth- 585

ods (like DepGraph) are still superior for accurate 586

results. 587

Interestingly, Ochiai reveals an interesting trend: 588

leveraging simple statistical metrics can enable 589

LLMs to improve fault localization by better pri- 590

oritizing fault-prone methods. This finding indi- 591

cates that while Ochiai, a simpler Statistical-based 592

method, does not match the accuracy of DepGraph, 593

it can still effectively assist in fault localization, 594

particularly when computational efficiency or sim- 595
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plicity is a priority. Ochiai offers LLMs a simpler596

way to rank methods based on test outcomes, which597

aligns well with their ability to process observable598

patterns. In contrast, DepGraph relies on complex599

code structures like dependencies and execution600

traces, which require a deeper understanding that601

LLMs may not possess, making it harder for them602

to reason effectively.603

Simple static-based ordering strategies can604

match or even outperformance more complex FL-605

derived ordering across all Top-K ranks. For in-606

stance, CallGraphBFS, which prioritizes methods607

closer to failing tests, identifies 175 bugs in Top-608

1 (34.9%), slightly outperforming CallGraphDFS609

with 173 bugs (34.5%) and achieving a higher Top-610

1 accuracy (32.7%) compared to the more complex611

Statistical-based ordering. A similar trend is ob-612

served across the remaining Top-K ranks, where613

CallGraphDFS either matches or slightly outper-614

forms Statistical-based ordering, with differences615

ranging from 0% to 0.02%. Additionally, when616

comparing Statistical-based ordering with Metric-617

based methods, it shows comparable performance618

in Top-1 (∆0.2%) and Top-3 (∆0.8%), but out-619

performs in Top-5 (∆0.8%) and Top-10 accuracy620

(∆1.8%). This suggests that static methods, which621

are computationally less demanding, can still be ef-622

fective for fault localization. Hence, these findings623

emphasize the practicality of simpler static-based624

methods as viable alternatives to more complex625

FL techniques.626

While ordering helps rank faults, LLMs strug-
gle with complex relationships. Simpler static-
based methods, like CallGraphBFS, perform
comparably to more complex Statistical-based
ordering like Ochiai in fault localization. Our
findings highlight the practicality of static-
based methods as efficient alternatives to com-
plex FL techniques, particularly in resource-
constrained environments.

627

5 Discussion & Conclusion628

5.1 Discussion of Implications629

Implications of Ordering Strategies. Our find-630

ings show that the order of inputs significantly im-631

pacts the performance of large language models632

(LLMs) in FL. This highlights the need for thought-633

ful ordering strategies. Metrics-based ordering,634

drawn from traditional techniques like DepGraph635

and Ochiai, prioritizes suspicious methods and im-636

proves accuracy. For instance, DepGraph achieved 637

the highest Top-1 accuracy, demonstrating the ef- 638

fectiveness of advanced strategies. In contrast, sim- 639

pler methods like CallGraph and LOC performed 640

well across a broader range of cases, making them 641

suitable for resource-limited situations. 642

When clear ordering metrics are not available, 643

randomizing input orders can serve as a fallback 644

to minimize potential biases introduced by posi- 645

tional effects. Additionally, refining prompts to 646

emphasize context rather than sequence and train- 647

ing LLMs on diverse input sequences could fur- 648

ther reduce order bias and improve their robust- 649

ness. These insights indicate that aligning ordering 650

strategies with task requirements and model ca- 651

pabilities is essential for optimizing workflows in 652

LLM-based FL. 653

Effectiveness of Segment-Based Strategies. The 654

segment-based approach reduces order bias by 655

keeping the input size small, allowing the model 656

to reason over information step by step in smaller 657

contexts. Specifically, we find that a context size 658

of 10 minimizes bias, as it leads to similar Top-K 659

results for both the Perfect-Order and Worst-Order 660

cases, where both share the same code context. 661

However, as the context window increases, order 662

bias becomes more influential, affecting the LLM’s 663

ability to reason over long sequences of code. Fu- 664

ture research could focus on identifying optimal 665

segment sizes that adjust based on task complexity 666

and the amount of available input. 667

5.2 Conclusion 668

This work highlights several areas for future re- 669

search. Order bias may influence the performance 670

of large language models (LLMs) in tasks beyond 671

FL, such as program repair, test case prioritiza- 672

tion, and code refactoring. It would be beneficial 673

to investigate how order bias affects these tasks 674

and whether similar solutions can be applied. Ad- 675

ditionally, specific prompts that incorporate do- 676

main knowledge, such as code semantics and de- 677

pendency graphs, could enhance contextual under- 678

standing and reduce reliance on positional hints. 679

Lastly, exploring new evaluation metrics that take 680

into account the significance of input order and con- 681

text size will help us gain a better understanding of 682

how LLMs operate in software engineering tasks. 683

We have made all data and scripts related to this 684

work publicly available (AnonymousSubmission, 685

2023). 686

8



Limitations687

Our experiments are conducted solely on688

Java programs using the Defects4J benchmark689

(V2.0.0) (Just et al., 2014). Although this dataset690

is well-established and representative of real-world691

faults, our findings may not apply to other692

programming languages or ecosystems. Future693

research could build upon this work to investigate694

how language-specific features and differences in695

syntax affect LLM performance in FL tasks.696

We do not use Mean First Rank (MFR) and697

Mean Average Rank (MAR), which are metrics698

commonly employed in traditional federated learn-699

ing (FL) studies. These metrics assess how early700

faulty methods appear in a ranked list. However,701

their relevance is limited in LLM-based FL ap-702

proaches because LLMs typically rank only a sub-703

set of methods, such as the Top-10, rather than704

providing a ranking for the entire list of methods705

considered. This limitation arises from the chal-706

lenge LLMs face in effectively ranking extensive707

lists, especially when the number of methods is708

very large. While Top-K accuracy offers valuable709

insights, it may not fully capture the nuances that710

MFR and MAR reveal in traditional FL setups.711

Ethics Statement712

We affirm that all authors of this paper comply with713

the ACM Code of Ethics and its code of conduct.714

Our research aims to investigate the strengths and715

limitations of large language models (LLMs) in716

fault localization tasks. This research contributes717

to a better understanding of their capabilities and718

applications in software engineering. Our exper-719

iments utilize publicly available datasets, such720

as Defects4J, ensuring reproducibility and trans-721

parency in our methods. While this work does not722

present direct ethical risks, it may have implications723

for future industrial applications. Adopting LLMs724

in software development workflows can influence725

decision-making, productivity, and job roles. We726

encourage practitioners to use these tools respon-727

sibly, maintaining human oversight and fairness728

when deploying LLMs in critical environments.729

Furthermore, our work acknowledges LLMs’ lim-730

itations and aims to inspire further research and731

development to improve their performance and fair-732

ness in real-world applications.733
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A Appendix908

909

A.1 Call Graph in Programming Languages910

A call graph is a structure that represents how dif-911

ferent parts of a program call each other during912

execution. For example, the nodes in the graph913

represent functions or methods in the code, and the914

edges represent the “calls” or “invocations” where915

one function triggers another.916

In NLP, ordering is crucial, whether it involves917

the order of words in a sentence or the sequence918

of steps in a pipeline because the correct sequence919

ensures dependencies are preserved and the process920

produces meaningful results. Similarly, in software,921

the order in which functions are called determines922

the program’s flow of execution. For example, a923

call graph helps us understand this flow, enabling924

us to: (i) Identify which parts of the code depend925

on others, helping analyze dependencies or opti-926

mize performance, and (ii) focus on functions that927

are frequently called, which might indicate critical928

components in the program.929

Arbitrary ordering can introduce inconsistencies930

in analysis. To resolve this, we adopt call graph931

ordering, which mirrors the program’s natural exe-932

cution order and ensures the ordering respects de-933

pendencies while maintaining logical consistency.934

A.2 Learning-based fault localization using935

DepGraph936

DepGraph transforms static and dynamic code in-937

formation into a unified graph for fault localization.938

It combines the Abstract Syntax Tree (AST) with939

interprocedural call graphs to capture method de-940

pendencies, effectively eliminating irrelevant nodes941

and edges for a more streamlined graph. Dynamic942

test coverage connects tests to the methods and943

statements they cover, with pruning to retain only944

the most relevant connections. Additionally, the945

Techniques Top-1 Top-3 Top-5 Top-10

DepGraph 299 382 415 449
Ochiai 101 221 270 341

Table 4: Top-K accuracy of prior FL-based techniques.

code change history, including metrics such as code 946

churn and modification count, is incorporated as an 947

attribute of the nodes. This provides historical in- 948

sights into fault-prone areas. The enhanced graph 949

is processed by a Gated Graph Neural Network 950

(GGNN), which effectively ranks faulty methods. 951

Overall, DepGraph reduces graph size, decreases 952

GPU memory usage, and shortens training time 953

while improving fault localization accuracy. 954

A.3 Top-K performance of traditional 955

approaches 956

Table 4 presents the Top-K accuracy of two tra- 957

ditional fault localization techniques—DepGraph 958

and Ochiai—evaluated on 501 bugs from the De- 959

fects4J dataset. DepGraph outperforms Ochiai, 960

identifying 299 bugs in the Top-1 position com- 961

pared to Ochiai’s 101. By Top-10, DepGraph de- 962

tects 449 bugs, significantly higher than Ochiai’s 963

341. 964

However, DepGraph’s higher accuracy comes 965

with significant computational overheads due to 966

its reliance on complex GNN models and depen- 967

dency graph analysis, leading to longer training 968

and testing times. When leveraging LLMs for fault 969

localization using ordered input derived from these 970

techniques, DepGraph does not show improvement 971

over its original performance. In contrast, Ochiai, 972

despite its simpler approach and lower original 973

accuracy, achieves notable gains when the meth- 974

ods are ordered using its suspiciousness scores and 975

processed through LLMs. This demonstrates that 976

while high-performing methods like DepGraph 977

reach near-maximum accuracy and benefit less 978

from LLM-assisted strategies, simpler techniques 979

like Ochiai can substantially enhance their fault lo- 980

calization capabilities through optimized ordering 981

and LLM integration. This trade-off underscores 982

the balance between computational efficiency and 983

the effectiveness of ordering strategies in improv- 984

ing fault localization outcomes. 985

A.4 Prompt Examples 986

This section outlines the prompts and examples 987

used in our experiments, demonstrating how we de- 988

sign and implement prompts for Fault Localization 989
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System: You will be given a failing test, stack trace, and the method it covers. By analyzing this information, you have
to rank the methods from most suspicious to least suspicious. You should rank the top 10 most suspicious methods.

The output must be in the following JSON format:
JSON Format:

{
"methodB": "rank",
"methodA": "rank",
...

}

Human: Here are the coverage information:

Test Name: org.apache.commons.lang.text.StrBuilderTest.testLang412Right

Test Body:
public void testLang412Right() {

StrBuilder sb = new StrBuilder();
sb.appendFixedWidthPadRight(null, 10, '*');
assertEquals( "Failed appendFixedWidthPadRight correctly", "**********", sb.toString());

StackTrace:
java.lang.NullPointerException
at org.apache.commons.lang.text.StrBuilder.appendFixedWidthPadRight(StrBuilder.java:1230)
at org.apache.commons.lang.text.StrBuilderTest.testLang412Right(StrBuilderTest.java:1755)

Covered Methods:
Method Signature:
org.apache.commons.lang.text.StrBuilder:getNullText()Ljava/lang/String;
Method Body:
public String getNullText() {

return nullText;
}

Method Signature:
org.apache.commons.lang.text.StrBuilder:appendFixedWidthPadRight(Ljava/lang/Object;IC);
Method Body:
public StrBuilder appendFixedWidthPadRight(Object obj, int width, char padChar) {

if (width > 0) {
ensureCapacity(size + width);
String str = (obj == null ? getNullText() : obj.toString());
int strLen = str.length();
......

}
........ // The remaining coverage info

Figure 4: Prompt example for Fault Localization.
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Based on the provided information, we can analyze the methods involved in the failing test and the stack trace to
determine their suspiciousness. The test is failing due to a ‘NullPointerException‘ in the ‘appendFixedWidthPadRight‘
method when it tries to call ‘str.length()‘ on a ‘null‘ value. This indicates that the handling of ‘null‘ values in the method
is likely problematic.

Here’s the ranking of the methods from most suspicious to least suspicious:
1. **appendFixedWidthPadRight** - This method is directly involved in the failure, as it attempts to call ‘length()‘ on a
potentially ‘null‘ string.
2. **getNullText** - This method returns ‘nullText‘, which is used in ‘appendFixedWidthPadRight‘ to handle ‘null‘
objects. If ‘nullText‘ is ‘null‘, it will lead to a ‘NullPointerException‘.
.........
.........

Here is the JSON output for the ranking:

```json
{

"appendFixedWidthPadRight(Ljava/lang/Object;IC);": 1,
"getNullText()Ljava/lang/String;": 2
...... // Remaining methods with rank

}
```

Figure 5: Output example from prompts.

(FL) tasks. The examples include the base prompt,990

the output format, and the segmentation mechanism991

used in our methodology. For improved clarity, we992

have omitted certain information from the prompt993

examples.994

Prompt Design. The base prompt instructs the995

LLM to analyze failing tests, stack traces, and the996

covered methods to rank the top ten most suspi-997

cious methods. As illustrated in Figure 4, the sys-998

tem message outlines the task, while the user mes-999

sage provides specific coverage details, including1000

the test name, test body, stack trace, and the cov-1001

ered methods. The prompt clearly specifies that the1002

output should be in JSON format to ensure consis-1003

tency and clarity in the ranking of the methods.1004

Output Example Figure 5 illustrates the output1005

generated from the base prompt. The language1006

model ranks methods based on their level of sus-1007

piciousness, which is determined by analyzing1008

the stack trace and coverage data. In this exam-1009

ple, the method appendFixedWidthPadRight is1010

ranked highest because it is directly involved in1011

the failure. It is followed by getNullText, con-1012

tributing to the error by returning null. The JSON1013

output lists the method signatures and their ranks,1014

ensuring the results are well-structured and easy to1015

interpret.1016

Segmentation for Iterative Reasoning. To1017

manage large input contexts, we utilized a1018

segmentation-based approach. In Figure 6, we illus-1019

trate how segmentation is implemented. Initially,1020

the large language model (LLM) is provided with a1021

set of covered methods, and they are ranked based1022

on their level of suspiciousness. In the next prompt, 1023

additional covered methods and the ranked output 1024

from the previous segment are introduced. This 1025

iterative process enables the model to update and 1026

refine its rankings as it evaluates new information. 1027

The segmentation mechanism ensures we pass the 1028

previous context while maintaining continuity be- 1029

tween prompts. The output for this prompt is also a 1030

JSON structure of ranked methods similar to what 1031

is shown in Figure 5. 1032
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System: You are provided with the remaining covered methods identified by the failing tests and the stack trace.
Previously, you ranked the following methods from most suspicious to least suspicious:

Rank: 1
Method Signature:
org.apache.commons.lang.text.StrBuilder:appendFixedWidthPadRight(Ljava/lang/Object;IC);
Method Body:
public StrBuilder appendFixedWidthPadRight(Object obj, int width, char padChar) {

if (width > 0) {
......
......

}
Rank: 2
Method Signature:
org.apache.commons.lang.text.StrBuilder:getNullText()Ljava/lang/String;
Method Body:
public String getNullText() {

.....
}

Now, analyze the additional coverage information. Based on this new data, update the ranking of the top 10 most
suspicious methods. You may adjust the existing ranking if necessary or retain it if no changes are warranted. Ensure
that your final ranking reflects the latest observations.

The output must be in the following JSON format:
JSON Format:

{
"methodB": "rank",
"methodA": "rank",
...

}

Human: Here are the remaining coverage information:

Test Name: org.apache.commons.lang.text.StrBuilderTest.testLang412Right

Test Body:
public void testLang412Right() {

......
}

StackTrace:
java.lang.NullPointerException
....

Covered Methods:
Method Signature:
org.apache.commons.lang.text.StrBuilder:<init>(I)V;
Method Body:
public StrBuilder(int initialCapacity) {

....
}
........ // The remaining coverage info

Figure 6: Prompt example for segmentation experiments.
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