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Abstract— Humans have the remarkable ability to construct
consistent mental models of an environment, even under limited
or varying levels of illumination. We wish to endow robots with
this same capability. In this paper, we tackle the challenge of
constructing a photorealistic scene representation under poorly
illuminated conditions and with a moving light source. We ap-
proach the task of modeling illumination as a learning problem,
and utilize the developed illumination model to aid in scene
reconstruction. We introduce an innovative framework that
uses a data-driven approach, Neural Light Simulators (NeLiS),
to model and calibrate the camera-light system. Furthermore,
we present DarkGS, a method that applies NeLiS to create
a relightable 3D Gaussian scene model capable of real-time,
photorealistic rendering from novel viewpoints. Code released
at https://github.com/tyz1030/neuralight.git

I. INTRODUCTION

Robots and autonomous vehicles have been routinely
deployed in poorly illuminated environments for critical
missions and tasks such as exploration, inspection, trans-
portation, search and rescue, etc. (see Fig. 1a). Imaging
systems consisting of one or multiple RGB cameras and
light sources are often equipped on the robot to illuminate
and sense the surrounding environment. The streamed image
sequence can be further used in downstream tasks, e.g.
navigation, mapping, and visualization, to boost the robot
autonomy and human understanding of the environment.

Scene reconstruction, or the capability to create accurate
internal representations of the environment, is vital for robots
operating in unknown environments. Previous vision-only
approaches largely rely on identifying common feature points
over a set of multiple-view images, and then minimizing a
reprojection error [4]. Such procedures like Structure-from-
Motion (SfM) or Simultaneous Localization and Mapping
(SLAM) also estimate the camera poses of the images. Based
on these camera poses, Neural Radiance Field (NeRF) [5]
is capable of achieving photorealistic scene reconstruction
by optimizing a photometric loss between the representation
and the images. However, while achieving huge success in
the graphics community, the transition of objective function
from reprojection error to photometric loss has raised a new
challenge to the robotics community: Can we still build
consistent scene representations with a moving light source
on the robot platform?

Concretely, the problem tackled in this paper is as such:
Given a sequence of images taken in poorly illuminated
environments, with one major light source moving with one
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(a) Robots in the dark with onboard light sources

(b) Our work build 3D Gaussians and relight the
scene in dark

Fig. 1: Robotic imaging systems working in the dark consist
of cameras and light sources: Carla Simulator [1], Team
CoStar in SubT Challenge [2] and HoloOcean underwater
robot simulator [3]. We propose a pipeline that calibrates
the camera-light system which helps photorealistic scene
reconstruction and relighting from images collected in the
dark.

camera as a rigid body, reconstruct the scene by minimizing
photometric loss and achieve photorealistic novel view image
synthesis (Fig. 1b). Our contributions are as follows:

1) A pipeline that consists of light source modeling,
camera-light calibration, building 3D Gaussians and
scene relighting from illumination-inconsistent images.

2) Neural Light Simulators (NeLiS), a data-driven and
physically interpretable illumination model and soft-
ware for light source modeling and calibration.

3) Dark Gaussian Splatting (DarkGS), a variant of the 3D
Gaussian Splatting (3DGS) model that builds photore-
alistic scene representations under poorly illuminated
conditions and relights the scene with global illumina-
tion, based on COLMAP [6] and NeLiS results.

II. RELATED WORK

A. Extroceptive Sensor Calibration on Robots

Autonomous robots are usually equipped with perceptual
sensors such as cameras and LiDARs. Taking camera cali-
bration as an example, a calibration target with AprilTag [7]
or checkerboard pattern is often used. With observations of
the target from different perspectives, the focal length, center
of projection, distortion coefficient, and pose of the camera
can be estimated [8]. Similar target-based approaches have
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Fig. 2: Our proposed workflow: Images for camera-light calibration are first collected at a calibration target. With NeLiS,
we manually initialize the parameters and then optimize the light model. The model can then be used to build DarkGS,
present the scene with learned or relighted illumination.

been used to calibrate LiDARs [9], radars [10] and acoustic
sensors [11] for downstream sensor fusion tasks [12]. Anal-
ogous to sensor calibrations mentioned above, in this paper,
we propose to use a target consisting of AprilTags [7] and
blank space for calibrating the light in a camera-light system,
including estimating the transformation between camera’s
and light’s coordinate system, radiant intensity distribution
(RID) and light fall-off curve of the light source.

B. Light Calibration

Existing methods use various kinds of customized cali-
bration targets: [13][14] propose to use a target of AprilTags
and pins to infer the position of point light source from the
shadows of the pins. Alternatively, [15] [16] propose to use
a Lambertian sphere and estimate the light source parameters
by learning to reconstruct the sphere. [17] shows the most
relevance to our work, which calibrates the pose of a light
source and the metric scale given the RID curve.

C. NeRF and 3D Gaussian Splatting

Based on the success of SfM [4], NeRF learns to represent
scenes using a continuous function, e.g. a multilayer percep-
tron (MLP), and can achieve photorealistic novel-view image
synthesis. Gaussianshader [18] and Relightable 3DG [19]
introduce physical properties into the 3DGS framework but
model illumination as a constant that does not change frame-
by-frame. According to our experiments, none of the above
mentioned methods handles the illumination-inconsistancy
issue on a real-robot imaging system. In our proposed
DarkGS, by modeling the physical property of the scene
and taking advantage of NeLiS, we can not only build a
consistent 3DGS from poorly illuminated images, but also
relight the scene with global illumination.

III. METHODOLOGY

Our proposed workflow for building NeLiS and DarkGS is
shown in Fig. 2. We build NeLiS by calibrating the camera-
light system at a planar calibration target. After obtaining
a calibrated NeLiS, the robot can be deployed in a dark
environment, using the collected images to build a DarkGS,
finetune the model, and relight the scene.

Fig. 3: Our shading model: (Left) In NeLiS, camera poses
are localized by AprilTags on the calibration target.

A. Shading Model for NeLiS

The calibration data is taken by capturing photos at a
calibration target from different views while the light source
moves with the camera as a rigid body. The calibration
target is a white plane with four AprilTags positioned as
four corners of a rectangle (as shown in Fig. 3). We attach
the origin of the world coordinate to the top-left corner of the
calibration target. We assume that the camera is precalibrated
with distortions removed. One of the key problems for NeLiS
to solve is estimating the relative pose of light to the camera
Rc

l ∈ SO(3) and tcl ∈ R3.
Given the true size of the calibration target, we can apply

Perspective-n-Point algorithm (PnP) [20] to extract Rw
c ∈

SO(3) and twc ∈ R3 which transform points from the camera
coordinate to the world coordinate. The position of the light
source is then given by ol = Rw

c t
c
l + twc ∈ R3. Since we

align the z axis of the light coordinate with the centerline of
the light, the direction of the centerline can be denoted by
ωl = Rw

c R
c
l [0, 0, 1]

⊤ ∈ R3. Both ol and ωl are in the world
coordinate frame.

We only use the area bounded by 4 AprilTags as the
Region of Interest (ROI) to do calibrations. We assume that
this area is a Lambertian plane and has the same normal
n ∈ R3 and diffusive albedo c ∈ Rλ anywhere on the
plane (λ = 1 for grayscale images and λ = 3 for RGB).
For each pixel in the ROI, we find the intersection of the
corresponding camera ray and the target plane in the world
coordinate system, denoted by x ∈ R3. To infer the incident
radiance at x, one needs to model the RID, light falloff
function, and ambient light.



1) RID: RID is commonly modeled as a function of the
angle between the centerline ωl of the light and light ray
ωx = x− ol. Previous work assume that RID is given [16],
[17], [21]. However, this assumption may not hold for in-the-
wild robot deployment. Instead, we remove this dependency
by learning a neural RID from calibration data:

Φθ(x) = MLPθ(cos
−1(

ωx

∥ωx∥2
· ωl)) (1)

here θ denotes the parameters of the MLP.
2) Light Falloff Curve: Inverse square law is widely used

to model light falloff, based on the assumption of a point
light source. However, when objects are closer to the light
source, the inverse square law starts to fail. We choose to
model the light falloff in the form of a Lorentzian function
of the distance ∥ωx∥2, as suggested by [22]:

Ψτ (x) =
1

τ + ∥ωx∥22
(2)

Instead of estimating τ from hand measurement of the light
surface [22], we designate it to be a learnable parameter.

3) Ambient Light: We model ambient light as a learnable
parameter A. The incident radiance at the point x can thereby
be modeled as:

Ix = Ψτ (x)Φθ(x) +A (3)

4) BRDF: We opt for the Lambertian reflection model,
eliminating the need to optimize any parameters in our
bidirectional reflectance distribution function (BRDF). We
use fr(ωx,n) = max(ωx · n, 0) as our BRDF, giving the
rendering equation:

L̂x = Ixfr(ωx,n)c (4)

With captured pixel intensity Lx, we use L1 loss and
formulate the NeLiS optimization problem as:

min
θ,A,τ,Rc

l ,t
c
l ,c

∑
x∈ROI

∥Lx − L̂x∥1 (5)

B. Building DarkGS

Within the framework of 3DGS, we model the scene with
a point cloud of Gaussians G (as shown in Fig. 3 right).
Each Gaussian gi in the point cloud encompasses attributes
including position pi, covariance Σi, opacity αi, albedo ci
and normal ni, that gi = {pi,Σi, αi, ci,ni} ∈ G.

Given pi, the incident radiance Ii can be calculated by
Eq. 3. With N ordered points for pixel (u, v), the rendering
equation then becomes:

L̂u,v =
∑
i∈N

Iifr(ωi,ni)ciαi

i−1∏
j

(1− αj) (6)

1) Scale Recovery: The framework of 3DGS and its
variants are often based on monocular SfM solutions such as
COLMAP [4]. Monocular SfM only gives up-to-scale poses
for building 3D Gaussians. Here, we introduce a scaling
factor s > 0 as a learnable parameter so that we can obtain
the positions with scale p′

i = spi. With captured pixel

Fig. 4: Our experiment setup: The imaging system is installed
on a legged robot platform (Unitree GO1). We use a FLIR
machine vision camera to stream the images in RAW format.

intensity Lu,v , the 3D Gaussian can be built by solving the
follow optimization problem:

min
A,G,s

∑
∥Lu,v − L̂u,v∥1 (7)

2) Training Warm-Up: In some cases, a large discrepancy
between the initial scale and the true scale often leads to
divergence and local minimum at the beginning of optimiza-
tion. We define a warm-up factor that grows with iterations,
so that in the mth iteration, this factor is m

k . Here, we denote
Lie exponential map and Lie logarithm map as follows:

exp(·) : R3 → SO(3), log(·) : SO(3) → R3 (8)

so that in warm-up stage we replace Rc
l and tcl with:

R̂c
l = exp(

m

k
log(Rc

l )), t̂cl =
m

k
tcl (9)

3) Relighting: Once the DarkGS model is built, we can
relight the scene by replacing the components in Eq. 3, i.e.
Ψτ , Φθ and A, by carefully designed values and functions.
For example, replacing the MLP function in Φθ with a con-
stant can create Lambertian illumination without a pattern.

IV. EXPERIMENTS
A. Experiments Setup

Our imaging system consists of a FLIR machine vi-
sion camera (Model Firefly S) and a light source, together
mounted on a rigid structure on top of our legged robot, as
shown in Fig. 4. The baseline between the camera and the
light source is approximately 32 cm, measured by hand. We
experimented with three different light sources: a flashlight,
a diving light, and a flood light.

B. Can existing 3DGS methods do the job?
We first investigated whether existing 3DGS methods can

reconstruct the scene using the images we collected with our
robotic setup in the dark. We experimented with: 1) vanilla
3DGS [23] which models the scene with constant radiance
2) RawNeRF [24] which is developed to reconstruct scene
from RAW HDR images 3) Relightable 3DGS [19] which
models the shading and environmental light map.

As shown in Fig. 5, we found that none of the existing
methods is able to build valid scene reconstructions. We see
an excessive amount of artifacts in the center area of the
synthesized image. The key reason is that the capability to
model varying illumination is missing from existing methods.



Fig. 5: None of the existing methods can solve the problem:
Results of Vanilla 3DGS [23], RawNeRF [24] Relightable
3DGS [19] show heavy artifacts and fail to converge.

(a) RID (b) Light Fall-off Curve

Fig. 6: (a) Light sources on real robots have various RID
patterns; (b) Real world measurements of light falloff show
that the inverse square law is insufficient to model any of our
light sources, but Lorentzian functions [22] with learnable
parameter τ fit them well.

C. Why do we need to learn RID?

As shown in Fig. 6a, different light has different RID pat-
terns. Existing methods often model RID as known [17], or
general functions such as the power of cosine functions [16]
or a Gaussian distribution. However, for most light sources,
and all light sources we used in this research, RID is not
given. Modeling them with general functions such as a
Gaussian distribution will not be adaptive and expressive
enough to reflect the true RID of different light patterns
for building a photorealistic renderer. The ablation study
in Fig. 7 (columns 2 and 5) shows that while a Gaussian
distribution fits the RID of flood light well, it performs
much worse on the other two types of light. In comparison,
our MLP-based model fits all 3 kinds of light with the
best performance, showing good adaptivity to different light
patterns.

D. Why do we need to learn light falloff?

For simplicity, previous studies [16], [17], [21] use an
inverse square law to model the light falloff. It is not a good
fit for real-world light systems. We measure the light falloff
of the center point of 3 different light sources as shown in
Fig. 6b. The plot show that when the range is close, light fall-
off does not follow the inverse square law as the point light
source assumption starts to fail. However, with a Lorentzian
model suggested by [22], the light falloff can be better fitted
with our introduced learnable parameter τ . We further show
numerical results in Fig. 7 (columns 2 and 3) that by learning
τ , the rendering performance on testing set of all 3 kinds of
lights gets improved, which implies that our light fall-off
model better approximates the true light falloff.

Fig. 7: Ablation study: We show that our model with an
MLP-based RID, τ and A can effectively improve the ren-
dering performance. MSE of the testing set are highlighted
in yellow. The red dashed box bounds the regions to be
rendered.

Fig. 8: Visulization of results from multiple scenes: We show
that with DarkGS, we can reconstruct the scene with RAW
images from robotic deployments in dark environments and
relight the scene.

We deployed our system in various real-world environ-
ments and the results are shown in Fig. 8. Compared with
ground truth, our model is able to reconstruct the image with
photorealistic quality with learned illumination. Then we
replace the light source in our model with a Lambertian light
to create a global illumination that illuminates the entire field
of view (FOV) of the camera with photorealistic rendering
quality.

V. CONCLUSIONS AND FUTURE WORK

This work aims to solve the problem of building 3D
Gaussians and scene relighting from images taken by a
moving camera-light system. Our proposed pipeline consists
of NeLiS, a camera-light simulation and calibration model,
and DarkGS which build’s photolistic representation for
scenes in the dark. The results show that our proposed
pipeline can build relightable Gaussians from images taken
by the robot platform deployed in the dark Future work
includes modeling shadows and non-Lambertian objects, and
bringing white balance and tone mapping into the loop.
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