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Abstract

Both speech and sensor time series data encode information in both the time- and
frequency- domains, like spectral powers and waveform shapelets. We show that
speech foundation models learn representations that are domain-independent and
achieve state-of-the-art performance on time series tasks from wearable sensors.
Probes trained on features extracted from HuBERT and wav2vec 2.0 outperform
those extracted from self-supervised models trained directly on modality specific
datasets for mood classification, arrhythmia detection, and activity classification
tasks. We find a particularly strong relevance of the convolutional feature encoders
from speech models for wearable sensor tasks. The methods proposed here improve
performance and robustness for data-scarce time series tasks, using simple probing
methods. This work is a step towards generalized time series models for speech
and sensor data, a topic for further exploration.

1 Introduction and Related Work

Time series models have been trained for applications spanning numerous domains—including health,
activity recognition, gesture recognition, weather forecasting, and infrastructure modeling. Classical
time series modeling methods include dynamic time warping, shapelet-based methods, convolution-
based methods like ROCKET, and numerous other approaches Bagnall et al.| [2017], Middlehurst
et al.|[2024]]. Recent work has also explored deep learning-based methods and representation learning
strategies to enable shared learning among tasks | Xu et al.| [2023} 2024]], Abbaspourazad et al.| [2023]],
Erturk et al.[[2025]]. In the realm of physiological and wearable sensor data, most approaches have
focused on within-domain representation learning where there is a domain match between pre-training
data and evaluation tasks. Prior works on generalized time series modeling across domains often
focus on time series data like power consumption, traffic, and weather and often on forecasting tasks
Woo et al.|[2024]], Liu et al.[[2023]], Jin et al.| [2023]].

Voice2Series|Yang et al.| [2021] explored re-programming speech processing models for time series
tasks using task-specific target data along with a transformer-based speech model, and found strong
performance across the evaluated UCR datasets—including some sensor-based tasks like ECG
modeling. Voice2Series trained speech embedding models from scratch, re-trained layers within
the model for each time series task, and then identified source-to-target label for inference in the
new domains. While successful, this approach required both re-training and label mapping, as well
as from-scratch training of speech foundation models. Between domain knowledge transfer has
been successful in other areas—for instance, the Audio Spectrogram Transformer |Gong et al.|[2021]
showed improved performance on speech tasks by training a ViT model on ImageNet data.

Speech and wearable data streams have related key signal properties: including frequency band
powers, periodic structures, and shapelets in the time domain (see Figure [I)). Many sensor domains
have limited data availability—Ilearning relevant structure from speech data can have high impact
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Figure 1: There are important time series characteristics in the time and frequency domain across
modalities like frequency band powers, periodic structures, and shapelets in the time domain

in improving performance on data-scarce time series tasks. Additionally, using a single embedding
model across time series modalities can improve computational efficiency in multi-modal systems by
enabling the deployment of a single model with task-specific adapters across modalities.

Here, we explore the lightweight adaptation of pre-trained state-of-the-art foundation models like
HuBERT (Large) and wav2vec 2.0 (Large) via probing and LoRA adapters. To our knowledge, we are
the first to directly use pre-trained speech models as feature extractors in the time series domain. We
envision this as a step towards more efficient cross-modality adaptation and generalized time series
models that can leverage data-hungry architectures and learning from large-scale cross-modality
datasets including speech and audio.

2 Methods and Results

We use pre-trained speech models as feature extractors for a variety of time series tasks. We train
probes using on four tasks using other sensor modalities: activity classification from accelerometer
data from a range of datasets and device placements, arrhythmia detection from ECG data, and stress
classification using ECG. For each task, we train linear probes and MLPs. We report performance
with an MLP probe at the first and last layer in each results table, along with per-layer performance
across the transformer module for each task for both HuBERT and wav2vec 2.0. We also trained
LoRA adapters for each transformer layer (results summarized in the Discussion). See the Appendix
for additional details on each dataset and evaluation scheme.

Activity Classification We evaluated activity classification on four 3-axis accelerometer data datasets
spanning three sensor positions and two window sizes. In both evaluations, we included a benchmark
using a Random Forest and engineered features, as in[Yuan et al|[2024]). We included results and
benchmarks from two window sizes along with performance comparisons from [Xu et al.| [2024], Yuan

let al.| [2024]], Haresamudram et al.| [2022]: (1) following|Yuan et al|[2024], a leave one subject out
subject out evaluation scheme with 10 second windows at 100 Hz with the PAMAP2 wrist data [Reiss|
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Figure 2: Speech foundation models as feature extractors for other modalities. Time series data is fed
as inputs into audio embedding models, with short segments upsampled. Task specific probes are
trained on the extracted features, and used to generate predictions across time series tasks.
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PAMAP2  Opportunity HHAR Motionsense ~ PAMAP2
(Wrist) (Wrist) (Wrist) (Waist) (Leg)

Yuan et al.|[2024| Eval  |Haresamudram et al.|[2022] Eval

F1 (macro avg.)

Feat eng. + RF 66.6+9.3 334+88 61.2+102 77.7+35 67.0+10.1
- MLP (Yuan’24) 725+54 57.0+7.8 - - -
=i SimCLR + Linear (Hare’22) - - 559+1.8 83.9+1.8 50.8 £3.0
8 § SimCLR + MLP (Hare’22) - - 58.6+2.2 85.6+2.5 60.2+23
A RelCon + MLP 854+35 69.1+83 57.6+3.2 80.4+0.7 54.0+0.8
- HuBERT + Linear 713+74 493+82 65.6 + 8.6 80.0 £3.7 545+43
B 5  HuBERT + MLP 73.6+7.0 503+39 69.0+11.1 93.1+£25 60.5+5.9
IS Sg wav2vec 2.0 + Linear 67.1+£7.0 47.3+39 70.2+3.2 89.1+£34 52.1+4.7
A @ wav2vec 2.0 + MLP 68.5+6.0 50.8+34 74.5+3.7 934+23 545+6.2

Table 1: Activity classification results. Probes with pre-trained speech models compared to probes
with pre-trained IMU models from Yuan et al.|[2024] "(Yuan’24)" and |Haresamudram et al.|[2022]
"(Hare’22)" and a baseline Random forest model with engineered features.

and Stricker| [2012] (8 classes, n=2,869) and the Opportunity dataset (4 classes, n=3,842) Roggen
et al.| [2010]], and (2) following |[Haresamudram et al.|[2022], a 5-fold cross-validation evaluation on 2
second windows of 100 Hz 3-axis accelerometer data: HHAR |Reyes-Ortiz et al.[[2015]] wrist data
(6 classes, n=3,370), Motionsense waist data (6 classes, n=14,121), Malekzadeh et al.|[2018]], and
PAMAP? leg data (12 classes, n=9,709). The 2 second windows were upsampled by a factor of 2 to
have sufficient sample lengths to use with the pre-trained speech models. The embeddings extracted
from 10 second windows were pooled across the time dimension before being passed to the probe, in
order to reduce dimensionality. Table|I|shows results from five activity classification evaluations:
two with 10 second windows following the evaluation in|Yuan et al.|[2024]] and three with 2 second
windows following the evaluation in /Haresamudram et al.| [2022].

Arrhythmia Detection (ECG) We conducted binary arrhythmia classification using the MIT-BIH
datasetMoody|[[1983]], using 10 second windows sampled at 250 Hz. The extracted embeddings were
pooled across the time dimension before being passed to the probe, in order to reduce dimensionality.
We compare to previous results on this dataset reported in | Xu et al.| [2023]], including a baseline
supervised model and self-supervised models trained on ECG data. Results are reported in Table

Mood Classification (PPG) We conducted four-class mood classification (baseline, stress, amuse-
ment, and meditation) using PPG data from WESAD |Schmidt et al.|[2018]], in one minute windows
sample at 64 Hz. Results are reported in Table 2] along with comparative results with identical
evaluation from |Xu et al.|[2023]] including a baseline supervised model and self-supervised models
trained on PPG data.

3 Discussion

Probes trained on pre-trained speech foundation models had the best or competitive performance
across tasks when using MLP probes trained on embeddings extracted from early layers. Pre-trained

Arrythmia Detection (ECG) Mood Classification (PPG)

MIT-BIH WESAD
AUC Accuracy AUC Accuracy

NN (Xu’23) 0.93 78.1 0.62 41.4

. g8 SimCLR (Xu’23) 0.83 69.9 0.62 34.5

£'EQ 5 REBAR (Xu'23) 0.92 81.5 0.70 414
- HuBERT + Linear  0.89 87.0 0.79 57.3
5 HuBERT + MLP 0.95 94.0 0.82 71.5
g2 wav2vec 2.0 + Linear 0.96 96.7 0.72 52.8
A= wav2vec 2.0 + MLP  0.97 96.1 0.80 70.8

Table 2: Arrhythmia detection results and mood classification results. Probes with pre-trained
speech models compared to probes with pre-trained ECG models and pre-trained PPG models from
Xu et al.|[2023]].
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Figure 3: Performance by transformer layer with MLP probes for each task: activity classification
(results shown with the PAMAP2 leg data), arrhythmia detection, and mood classification. Early
layer performance is better across modalities, particularly for wav2vec 2.0

speech representations outperformed both baselines and self-supervised models trained directly on
sensor data for most tasks—activity classification with two second windows, mood classification,
and arrhythmia detection. Probes trained with pre-trained speech representations had competitive
performance for activity classification with 10 second windows, though lower scores than the RelCon
model trained on accelerometer data.

Earlier layer representations from the transformer module were consistently better than later layer
representations, especially for wav2vec 2.0 (Figure [3). This suggests that the convolutional feature
extractor layers preceding the transformer module learned by the speech encoders are particularly
relevant across domains. Figure ] shows sample convolution filters from HuBERT, which selected
for visualization because they had high L2 norms and distinct properties. The filters capture periodic
and spiked shapelets, and include filters like bandpass filters and high-pass filters. Additional work
will further explore the interpretability of these filters across-domains. LoRA generally improved
final layer by about 5-20%, though the best performing models tended to come from earlier layers.
The presented experiments did not include adapter training combined with early layer representation
extraction, which could potentially further improve performance and will be explored in future work.

4 Conclusions and Future Work

The presented analyses suggest that learned tokenization may be particularly impactful in the wearable
sensor domain. Learning effective tokenizations along with masked representation learning, as in
HuBERT and wav2vec 2.0, is enabled by large, well-curated speech datasets. Datasets in wearable
sensor domains tend to be small and are often task-specific. Our results show that cross-domain
learning, including speech and audio data, improves performance on data scarce tasks with data from
wearable sensors.

While speech and the investigated sensor domains (accelerometer data, ECG, and PPG) share enough
commonalities to enable zero-shot transfer, the investigated sensor data streams were sampled at
lower frequencies (100 Hz, 250 Hz, and 64 Hz respectively) than speech data. The pre-trained
foundation models were designed for speech input at 16,000 Hz. Training strategies for foundation
models that better enable learning over both the low and high frequency space could help improve
performance across modalities and will also be explored in future work.

Time Domain Frequency Domain (Magnitude) Time Domain Frequency Domain (Magnitude) Time Domain Frequency Domain (Magnitude)

01 go4
502
2

-01 00

0 0 2000 4000 6000 8000
Frequency (Hz) H

$os0

5025

0.00

0 2000 4000 6000 8000 i o 2 a4 6 8 0 2000 4000 6000 8000
Frequency (Hz) Kernel Index Frequency (Hz)

Amplitude

0

a6 2 a4 6
Kernel Index Kernel Index

Figure 4: Visualization of selection of convolutional filters from HuBERT, from the first convolutional
layer in the model. The filters capture periodic and spiked shapelets, and include filters like bandpass
filters and high-pass filters.
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S Appendix

PAMAP2 (Wrist) We extracted 10 second segments at 100 Hz from PAMAP2 Reiss and Stricker
[2012], and used a leave one subject out evaluation scheme following the procedure in|Yuan et al.
[2024]. The evaluation included eight classes: lying, sitting, standing, walking, ascending stairs,
descending stairs, vacuum cleaning, and ironing. The experiments included n=2,860 samples from
eight participants.

Opportunity (Wrist) We extracted 10 second segments at 100 Hz from Roggen et al.|[2010], and
used a leave one subject out evaluation scheme following the procedure in|Yuan et al.[[2024]. The
evaluation included four classes: sitting, standing, walking, lying down. The experiments included
n=3,842 samples from four participants.

HHAR (Wrist) We extracted 2 second segments at 100 Hz from Reyes-Ortiz et al.| [2015], and
used a 5-fold cross validation evaluation scheme using the procedure in|Haresamudram et al.|[2022].
The evaluation included six classes: stairs down, stairs up, walk, bike, stand, sit. The experiments
included n=3,370 samples.

Motionsense (Waist) We extracted 2 second segments at 100 Hz from [Malekzadeh et al.| [2018]], and
used a 5-fold cross validation evaluation scheme using the procedure in|Haresamudram et al.|[2022].
The evaluation included six classes: stairs down, stairs up, walk, jog, stand, sit. The experiments
included n=14,121 samples.

PAMAP2 (Leg) We extracted 2 second segments at 100 Hz from Reiss and Stricker] [2012]], and used
a 5-fold cross validation evaluation scheme using the procedure in Haresamudram et al.|[2022]]. The
evaluation included twelve classes: rope jumping, lying, sitting, standing, walking, running, cycling,
Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing. The experiments
included n=9,709 samples.

MIT-BIH We extracted 10 second segments at 250 Hz from Moody|[[1983]]. We followed the pre-
processing and evaluation process as described in | Xu et al.| [[2023]] to allow for comparison with prior
results from self-supervised models trained in-domain.

WESAD We extracted 60 second segments at 64 Hz from [Schmidt et al.|[2018]]. We followed the
pre-processing and evaluation process as described in|Xu et al.[[2023]] to allow for comparison with
prior results from self-supervised models trained in-domain.
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