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Abstract

Both speech and sensor time series data encode information in both the time- and1

frequency- domains, like spectral powers and waveform shapelets. We show that2

speech foundation models learn representations that are domain-independent and3

achieve state-of-the-art performance on time series tasks from wearable sensors.4

Probes trained on features extracted from HuBERT and wav2vec 2.0 outperform5

those extracted from self-supervised models trained directly on modality specific6

datasets for mood classification, arrhythmia detection, and activity classification7

tasks. We find a particularly strong relevance of the convolutional feature encoders8

from speech models for wearable sensor tasks. The methods proposed here improve9

performance and robustness for data-scarce time series tasks, using simple probing10

methods. This work is a step towards generalized time series models for speech11

and sensor data, a topic for further exploration.12

1 Introduction and Related Work13

Time series models have been trained for applications spanning numerous domains—including health,14

activity recognition, gesture recognition, weather forecasting, and infrastructure modeling. Classical15

time series modeling methods include dynamic time warping, shapelet-based methods, convolution-16

based methods like ROCKET, and numerous other approaches Bagnall et al. [2017], Middlehurst17

et al. [2024]. Recent work has also explored deep learning-based methods and representation learning18

strategies to enable shared learning among tasks Xu et al. [2023, 2024], Abbaspourazad et al. [2023],19

Erturk et al. [2025]. In the realm of physiological and wearable sensor data, most approaches have20

focused on within-domain representation learning where there is a domain match between pre-training21

data and evaluation tasks. Prior works on generalized time series modeling across domains often22

focus on time series data like power consumption, traffic, and weather and often on forecasting tasks23

Woo et al. [2024], Liu et al. [2023], Jin et al. [2023].24

Voice2Series Yang et al. [2021] explored re-programming speech processing models for time series25

tasks using task-specific target data along with a transformer-based speech model, and found strong26

performance across the evaluated UCR datasets—including some sensor-based tasks like ECG27

modeling. Voice2Series trained speech embedding models from scratch, re-trained layers within28

the model for each time series task, and then identified source-to-target label for inference in the29

new domains. While successful, this approach required both re-training and label mapping, as well30

as from-scratch training of speech foundation models. Between domain knowledge transfer has31

been successful in other areas—for instance, the Audio Spectrogram Transformer Gong et al. [2021]32

showed improved performance on speech tasks by training a ViT model on ImageNet data.33

Speech and wearable data streams have related key signal properties: including frequency band34

powers, periodic structures, and shapelets in the time domain (see Figure 1). Many sensor domains35

have limited data availability—learning relevant structure from speech data can have high impact36
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Figure 1: There are important time series characteristics in the time and frequency domain across
modalities like frequency band powers, periodic structures, and shapelets in the time domain

in improving performance on data-scarce time series tasks. Additionally, using a single embedding37

model across time series modalities can improve computational efficiency in multi-modal systems by38

enabling the deployment of a single model with task-specific adapters across modalities.39

Here, we explore the lightweight adaptation of pre-trained state-of-the-art foundation models like40

HuBERT (Large) and wav2vec 2.0 (Large) via probing and LoRA adapters. To our knowledge, we are41

the first to directly use pre-trained speech models as feature extractors in the time series domain. We42

envision this as a step towards more efficient cross-modality adaptation and generalized time series43

models that can leverage data-hungry architectures and learning from large-scale cross-modality44

datasets including speech and audio.45

2 Methods and Results46

We use pre-trained speech models as feature extractors for a variety of time series tasks. We train47

probes using on four tasks using other sensor modalities: activity classification from accelerometer48

data from a range of datasets and device placements, arrhythmia detection from ECG data, and stress49

classification using ECG. For each task, we train linear probes and MLPs. We report performance50

with an MLP probe at the first and last layer in each results table, along with per-layer performance51

across the transformer module for each task for both HuBERT and wav2vec 2.0. We also trained52

LoRA adapters for each transformer layer (results summarized in the Discussion). See the Appendix53

for additional details on each dataset and evaluation scheme.54

Activity Classification We evaluated activity classification on four 3-axis accelerometer data datasets55

spanning three sensor positions and two window sizes. In both evaluations, we included a benchmark56

using a Random Forest and engineered features, as in Yuan et al. [2024]. We included results and57

benchmarks from two window sizes along with performance comparisons from Xu et al. [2024], Yuan58

et al. [2024], Haresamudram et al. [2022]: (1) following Yuan et al. [2024], a leave one subject out59

subject out evaluation scheme with 10 second windows at 100 Hz with the PAMAP2 wrist data Reiss60
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Figure 2: Speech foundation models as feature extractors for other modalities. Time series data is fed
as inputs into audio embedding models, with short segments upsampled. Task specific probes are
trained on the extracted features, and used to generate predictions across time series tasks.
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PAMAP2 Opportunity HHAR Motionsense PAMAP2
(Wrist) (Wrist) (Wrist) (Waist) (Leg)

Yuan et al. [2024] Eval Haresamudram et al. [2022] Eval

F1 (macro avg.)

Feat eng. + RF 66.6 ± 9.3 33.4 ± 8.8 61.2 ± 10.2 77.7 ± 3.5 67.0 ± 10.1

Pr
et

ra
in

ac
ce

l

MLP (Yuan’24) 72.5 ± 5.4 57.0 ± 7.8 – – –
SimCLR + Linear (Hare’22) – – 55.9 ± 1.8 83.9 ± 1.8 50.8 ± 3.0
SimCLR + MLP (Hare’22) – – 58.6 ± 2.2 85.6 ± 2.5 60.2 ± 2.3
RelCon + MLP 85.4 ± 3.5 69.1 ± 8.3 57.6 ± 3.2 80.4 ± 0.7 54.0 ± 0.8

Pr
et

ra
in

sp
ee

ch
HuBERT + Linear 71.3 ± 7.4 49.3 ± 8.2 65.6 ± 8.6 80.0 ± 3.7 54.5 ± 4.3
HuBERT + MLP 73.6 ± 7.0 50.3 ± 3.9 69.0 ± 11.1 93.1 ± 2.5 60.5 ± 5.9
wav2vec 2.0 + Linear 67.1 ± 7.0 47.3 ± 3.9 70.2 ± 3.2 89.1 ± 3.4 52.1 ± 4.7
wav2vec 2.0 + MLP 68.5 ± 6.0 50.8 ± 3.4 74.5 ± 3.7 93.4 ± 2.3 54.5 ± 6.2

Table 1: Activity classification results. Probes with pre-trained speech models compared to probes
with pre-trained IMU models from Yuan et al. [2024] "(Yuan’24)" and Haresamudram et al. [2022]
"(Hare’22)" and a baseline Random forest model with engineered features.

and Stricker [2012] (8 classes, n=2,869) and the Opportunity dataset (4 classes, n=3,842) Roggen61

et al. [2010], and (2) following Haresamudram et al. [2022], a 5-fold cross-validation evaluation on 262

second windows of 100 Hz 3-axis accelerometer data: HHAR Reyes-Ortiz et al. [2015] wrist data63

(6 classes, n=3,370), Motionsense waist data (6 classes, n=14,121), Malekzadeh et al. [2018], and64

PAMAP2 leg data (12 classes, n=9,709). The 2 second windows were upsampled by a factor of 2 to65

have sufficient sample lengths to use with the pre-trained speech models. The embeddings extracted66

from 10 second windows were pooled across the time dimension before being passed to the probe, in67

order to reduce dimensionality. Table 1 shows results from five activity classification evaluations:68

two with 10 second windows following the evaluation in Yuan et al. [2024] and three with 2 second69

windows following the evaluation in Haresamudram et al. [2022].70

Arrhythmia Detection (ECG) We conducted binary arrhythmia classification using the MIT-BIH71

dataset Moody [1983], using 10 second windows sampled at 250 Hz. The extracted embeddings were72

pooled across the time dimension before being passed to the probe, in order to reduce dimensionality.73

We compare to previous results on this dataset reported in Xu et al. [2023], including a baseline74

supervised model and self-supervised models trained on ECG data. Results are reported in Table 2.75

Mood Classification (PPG) We conducted four-class mood classification (baseline, stress, amuse-76

ment, and meditation) using PPG data from WESAD Schmidt et al. [2018], in one minute windows77

sample at 64 Hz. Results are reported in Table 2, along with comparative results with identical78

evaluation from Xu et al. [2023] including a baseline supervised model and self-supervised models79

trained on PPG data.80

3 Discussion81

Probes trained on pre-trained speech foundation models had the best or competitive performance82

across tasks when using MLP probes trained on embeddings extracted from early layers. Pre-trained83

Arrythmia Detection (ECG) Mood Classification (PPG)
MIT-BIH WESAD

AUC Accuracy AUC Accuracy

NN (Xu’23) 0.93 78.1 0.62 41.4

Pr
e-

tra
in

EC
G

/
PP

G SimCLR (Xu’23) 0.83 69.9 0.62 34.5
REBAR (Xu’23) 0.92 81.5 0.70 41.4

Pr
et

ra
in

sp
ee

ch

HuBERT + Linear 0.89 87.0 0.79 57.3
HuBERT + MLP 0.95 94.0 0.82 77.5
wav2vec 2.0 + Linear 0.96 96.7 0.72 52.8
wav2vec 2.0 + MLP 0.97 96.1 0.80 70.8

Table 2: Arrhythmia detection results and mood classification results. Probes with pre-trained
speech models compared to probes with pre-trained ECG models and pre-trained PPG models from
Xu et al. [2023].
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Figure 3: Performance by transformer layer with MLP probes for each task: activity classification
(results shown with the PAMAP2 leg data), arrhythmia detection, and mood classification. Early
layer performance is better across modalities, particularly for wav2vec 2.0

speech representations outperformed both baselines and self-supervised models trained directly on84

sensor data for most tasks—activity classification with two second windows, mood classification,85

and arrhythmia detection. Probes trained with pre-trained speech representations had competitive86

performance for activity classification with 10 second windows, though lower scores than the RelCon87

model trained on accelerometer data.88

Earlier layer representations from the transformer module were consistently better than later layer89

representations, especially for wav2vec 2.0 (Figure 3). This suggests that the convolutional feature90

extractor layers preceding the transformer module learned by the speech encoders are particularly91

relevant across domains. Figure 4 shows sample convolution filters from HuBERT, which selected92

for visualization because they had high L2 norms and distinct properties. The filters capture periodic93

and spiked shapelets, and include filters like bandpass filters and high-pass filters. Additional work94

will further explore the interpretability of these filters across-domains. LoRA generally improved95

final layer by about 5-20%, though the best performing models tended to come from earlier layers.96

The presented experiments did not include adapter training combined with early layer representation97

extraction, which could potentially further improve performance and will be explored in future work.98

4 Conclusions and Future Work99

The presented analyses suggest that learned tokenization may be particularly impactful in the wearable100

sensor domain. Learning effective tokenizations along with masked representation learning, as in101

HuBERT and wav2vec 2.0, is enabled by large, well-curated speech datasets. Datasets in wearable102

sensor domains tend to be small and are often task-specific. Our results show that cross-domain103

learning, including speech and audio data, improves performance on data scarce tasks with data from104

wearable sensors.105

While speech and the investigated sensor domains (accelerometer data, ECG, and PPG) share enough106

commonalities to enable zero-shot transfer, the investigated sensor data streams were sampled at107

lower frequencies (100 Hz, 250 Hz, and 64 Hz respectively) than speech data. The pre-trained108

foundation models were designed for speech input at 16,000 Hz. Training strategies for foundation109

models that better enable learning over both the low and high frequency space could help improve110

performance across modalities and will also be explored in future work.111

Figure 4: Visualization of selection of convolutional filters from HuBERT, from the first convolutional
layer in the model. The filters capture periodic and spiked shapelets, and include filters like bandpass
filters and high-pass filters.

4



112

References113

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time114

series classification bake off: a review and experimental evaluation of recent algorithmic advances.115

Data mining and knowledge discovery, 31(3):606–660, 2017.116

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and exper-117

imental evaluation of recent time series classification algorithms. Data Mining and Knowledge118

Discovery, 38(4):1958–2031, 2024.119

Maxwell A Xu, Alexander Moreno, Hui Wei, Benjamin M Marlin, and James M Rehg. Re-120

bar: Retrieval-based reconstruction for time-series contrastive learning. arXiv preprint121

arXiv:2311.00519, 2023.122

Maxwell A Xu, Jaya Narain, Gregory Darnell, Haraldur Hallgrimsson, Hyewon Jeong, Darren Forde,123

Richard Fineman, Karthik J Raghuram, James M Rehg, and Shirley Ren. Relcon: Relative con-124

trastive learning for a motion foundation model for wearable data. arXiv preprint arXiv:2411.18822,125

2024.126

Salar Abbaspourazad, Oussama Elachqar, Andrew C Miller, Saba Emrani, Udhyakumar Nallasamy,127

and Ian Shapiro. Large-scale training of foundation models for wearable biosignals. arXiv preprint128

arXiv:2312.05409, 2023.129

Eray Erturk, Fahad Kamran, Salar Abbaspourazad, Sean Jewell, Harsh Sharma, Yujie Li, Sinead130

Williamson, Nicholas J Foti, and Joseph Futoma. Beyond sensor data: Foundation models of131

behavioral data from wearables improve health predictions. arXiv preprint arXiv:2507.00191,132

2025.133

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.134

Unified training of universal time series forecasting transformers. 2024.135

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.136

itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint137

arXiv:2310.06625, 2023.138

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-139

uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming140

large language models. arXiv preprint arXiv:2310.01728, 2023.141

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic142

models for time series classification. In International conference on machine learning, pages143

11808–11819. PMLR, 2021.144

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint145

arXiv:2104.01778, 2021.146

Hang Yuan, Shing Chan, Andrew P Creagh, Catherine Tong, Aidan Acquah, David A Clifton, and147

Aiden Doherty. Self-supervised learning for human activity recognition using 700,000 person-days148

of wearable data. NPJ digital medicine, 7(1):91, 2024.149

Harish Haresamudram, Irfan Essa, and Thomas Plötz. Assessing the state of self-supervised human150

activity recognition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable151

and Ubiquitous Technologies, 6(3):1–47, 2022.152

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In153

2012 16th international symposium on wearable computers, pages 108–109. IEEE, 2012.154

Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard Tröster,155

Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, et al. Collecting complex activity156

datasets in highly rich networked sensor environments. In 2010 Seventh international conference157

on networked sensing systems (INSS), pages 233–240. IEEE, 2010.158

5



Jorge Reyes-Ortiz, Davide Anguita, Luca Oneto, and Xavier Parra. Smartphone-based recognition of159

human activities and postural transitions. UCI Machine Learning Repository, 2015.160

Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi. Protecting161

sensory data against sensitive inferences. In Proceedings of the 1st Workshop on Privacy by Design162

in Distributed Systems, W-P2DS’18, pages 2:1–2:6, New York, NY, USA, 2018. ACM. ISBN163

978-1-4503-5654-1. doi: 10.1145/3195258.3195260. URL http://doi.acm.org/10.1145/164

3195258.3195260.165

George Moody. A new method for detecting atrial fibrillation using rr intervals. Proc. Comput.166

Cardiol., 10:227–230, 1983.167

Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven.168

Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings169

of the 20th ACM international conference on multimodal interaction, pages 400–408, 2018.170

5 Appendix171

PAMAP2 (Wrist) We extracted 10 second segments at 100 Hz from PAMAP2 Reiss and Stricker172

[2012], and used a leave one subject out evaluation scheme following the procedure in Yuan et al.173

[2024]. The evaluation included eight classes: lying, sitting, standing, walking, ascending stairs,174

descending stairs, vacuum cleaning, and ironing. The experiments included n=2,860 samples from175

eight participants.176

Opportunity (Wrist) We extracted 10 second segments at 100 Hz from Roggen et al. [2010], and177

used a leave one subject out evaluation scheme following the procedure in Yuan et al. [2024]. The178

evaluation included four classes: sitting, standing, walking, lying down. The experiments included179

n=3,842 samples from four participants.180

HHAR (Wrist) We extracted 2 second segments at 100 Hz from Reyes-Ortiz et al. [2015], and181

used a 5-fold cross validation evaluation scheme using the procedure in Haresamudram et al. [2022].182

The evaluation included six classes: stairs down, stairs up, walk, bike, stand, sit. The experiments183

included n=3,370 samples.184

Motionsense (Waist) We extracted 2 second segments at 100 Hz from Malekzadeh et al. [2018], and185

used a 5-fold cross validation evaluation scheme using the procedure in Haresamudram et al. [2022].186

The evaluation included six classes: stairs down, stairs up, walk, jog, stand, sit. The experiments187

included n=14,121 samples.188

PAMAP2 (Leg) We extracted 2 second segments at 100 Hz from Reiss and Stricker [2012], and used189

a 5-fold cross validation evaluation scheme using the procedure in Haresamudram et al. [2022]. The190

evaluation included twelve classes: rope jumping, lying, sitting, standing, walking, running, cycling,191

Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing. The experiments192

included n=9,709 samples.193

MIT-BIH We extracted 10 second segments at 250 Hz from Moody [1983]. We followed the pre-194

processing and evaluation process as described in Xu et al. [2023] to allow for comparison with prior195

results from self-supervised models trained in-domain.196

WESAD We extracted 60 second segments at 64 Hz from Schmidt et al. [2018]. We followed the197

pre-processing and evaluation process as described in Xu et al. [2023] to allow for comparison with198

prior results from self-supervised models trained in-domain.199
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