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Abstract

Optimal transport is an important tool in machine
learning, allowing to capture geometric properties
of the data through a linear program on transport
polytopes. We present a single-loop optimization
algorithm for minimizing general convex objec-
tives on these domains, utilizing the principles
of Sinkhorn matrix scaling and mirror descent.
The proposed algorithm is robust to noise, and
can be used in an online setting. We provide
theoretical guarantees for convex objectives and
experimental results showcasing it effectiveness
on both synthetic and real-world data.

1. Introduction

Optimal transport is a seminal problem in optimization
(Monge, 1781), and an important topic in analysis (Vil-
lani, 2008). The discrete case is a linear program on the set
of nonnegative matrices with fixed row and column sums
(Kantorovich, 1942). This set forms the transport poly-
tope, whose elements can be interpreted as the law of joint
distributions for (X, Y") with marginal distributions 1, v.

In machine learning, OT has recently gained in importance
following the work of (Cuturi, 2013), presenting an entropic-
regularized method and using the Sinkhorn algorithm to
efficiently optimize it; see (Peyré et al., 2019) and refer-
ences therein for an overview of this topic and its applica-
tions. The method can be used to solve the original OT
problem (Altschuler et al., 2017), by setting a regulariza-
tion parameter that depends on the cost matrix and desired
precision level. We consider here the more general prob-
lem of convex optimization of any convex function on the
transport polytope. This comprises several optimization
problems, included but not limited to both optimal trans-
port and its entropic regularized version. The problem for
a quadratic function has been studied both for the purpose
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of registering point cloud (Grave et al., 2019) (related to
Gromov-Wasserstein problems (Mémoli, 2011; Solomon
et al., 2016)) and for computing euclidean projection on the
Birkhoff polytope (Li et al., 2020). It appears in statisti-
cal inference on random permutations (Birdal & Simsekli,
2019). Inference on random permutations can be obtained
by minimizing various other convex functions (Linderman
et al., 2018). Optimisation on the transport polytope also
arises when trying to both compute and minimize a Wasser-
stein distance or sum of Wasserstein distances of a set of
parametrized distributions. This applies to the computa-
tion of Wasserstein estimators (Ballu et al., 2020; Bassetti
et al., 2000), private learning (Boursier & Perchet, 2019),
Wasserstein barycenters (Rabin et al., 2011; Agueh & Car-
lier, 2011; Cuturi & Doucet, 2014) and generative models.
In the latter case, the distribution generated by a neural
network is compared to the sample distribution with the
1-Wasserstein distance in WGAN (Arjovsky et al., 2017)
and Wasserstein autoencoders (Tolstikhin et al., 2017), or
with a regularized version of the Wasserstein distance with
Sinkhorn divergences (Genevay et al., 2018).

Several algorithms that have been suggested to solve opti-
mal transport use iterated Bregman projections (Benamou
et al., 2015; Dvurechensky et al., 2018). To minimize gen-
eral convex functions on transport polytopes, we extend
the approach to a single loop iterated algorithm. Interpre-
tations of Sinkhorn algorithm as mirror descent in the dual
(Mishchenko, 2019) and the primal (Léger, 2021; Aubin-
Frankowski et al., 2022) have been used to derive conver-
gence rates and to extend Sinkhorn to this more general
problem. These extensions are supported by an analysis,
assuming smoothness and strong convexity of the objective.
Streaming iterations of Sinkhorn have been proposed in
(Mensch & Peyré, 2020), focusing solely on minimizing
a regularized optimal transport problem. General convex
optimization algorithms can theoretically achieve the best
asymptotic rates for optimal transport. A e-close optimal
transport plan can be obtained with accelerated gradient de-
scent schemes (Dvurechensky et al., 2018; Lin et al., 2019;
Guo et al., 2020), or accelerated alternative minimisation
(Guminov et al., 2021). These are only analyzed when given
deterministic gradient updates, and their parameters depend
on an imposed desired level of optimization precision €.

Using the Sinkhorn algorithm to solve OT, as studied in
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(Altschuler et al., 2017) requires to set a regularization pa-
rameter o > 0, as a function of the desired optimization
precision. Indeed, this algorithm is tied to an entropic-
regularized version of this problem, whose solution v}, is
different: there is a regularization bias. We note that this
has some advantages. In particular, the solution is a contin-
uously differentiable function of the problem inputs (Peyré
et al., 2019). This is part of a wide effort to create differ-
entiable versions of discrete operators such as optimizers
(Cuturi & Blondel, 2017; Berthet et al., 2020; Blondel et al.,
2020; Vlastelica et al., 2019; Paulus et al., 2020), to ease
their inclusion in end-to-end differentiable pipelines that
can be trained with first-order methods in applications (Cor-
donnier et al., 2021; Kumar et al., 2021; Carr et al., 2021;
Le Lidec et al., 2021; Baid et al., 2022; Llinares-Lopez
et al., 2021) and other optimization algorithms (Dubois-
Taine et al., 2022). This regularized objective, as well as
alternate regularizations (Blondel et al., 2018) fall within
our framework, and can be optimized using our algorithm.

Our algorithm, which we call Mirror Sinkhorn, is based on
the principles of mirror descent on the transport polytope
(which requires an oracle to solve Bregman-regularized lin-
ear problems on this set), and the Sinkhorn algorithm which
enforces normalization of rows and columns to satisfy the
constraints. The use of multiple Sinkhorn steps for solving a
mirror descent oracle has been proposed in (Alvarez-Melis
et al., 2018), and the convergence of the resulting algorithm
has been further analysed in (Xie et al., 2020) and later in
(Aubin-Frankowski et al., 2022) for smooth and strongly
convex objectives with respect to the entropy. We propose
an analysis for a single step of Sinkhorn normalization be-
tween gradient updates.

Our contributions. The Mirror Sinkhorn algorithm takes
stochastic gradients as input, is adaptive to a change of
objective, and its parameters are independent of the required
precision. In summary, we make the following contributions

* We introduce a single-loop, practically efficient algo-
rithm for optimization on the transport polytope.

* We provide theoretical guarantees for the performance
under various assumptions, including OT (linear).

* We show that this algorithm can be adapted to handle
different scenarios such as stochastic gradients, online
settings, and related tensor problems.

Notations. The standard Euclidean product for vectors
and matrices is denoted by (-, -). For a positive integer n,
we denote by 1,, = (1,...,1) the vector of R" with all
ones, and by [n] the set of integers from 1 to n, included.
We denote by A,, the probability simplex, defined as

An:{yeR":VZO, <1n,u>:1}.

For two reals a,b we denote by a A b the minimum of a
and b. We extend this notation to vectors, meaning the
entrywise minimum. The analogue for probability matri-
ces in R™*"™ (resp. probability tensors in R™1X:--X"a)
is defined mutatis mutandis and denoted by A, «,, (resp.
A, x...xmy)- The operator Diag(-) yields a diagonal ma-
trix in R™*"™ from a vector in R™, with diagonal entries
(Diag(x)):; = x;. We note the entrywise product for ma-
trices (A ©® B);; = A;;B;; and the entrywise division
(A @ B);; = A;;/Bi;. The notations exp(A) and log(A)
are used for the entrywise exponential and natural logarithm
functions, i.e. (exp(A));; = e, (log(A))s; = log(Aij).
The transpose of a matrix A is noted AT. We denote by
I Ilco and || - ||1 respectively the entrywise ¢; and £, norms
on vectors and matrices.

2. Problem and methods

For two positive integers m,n > 1,lety € R™ and v € R"
be two probability distributions on [m] and [n] respectively,
represented as vectors, elements of the simplexes A,,, and
A,,. The transport polytope between p and v, denoted by
T (u,v), is a subset of A,,xp,, set of m X n probability
matrices. It contains all probability matrices v whose rows
sum to x4 and columns sum to v. It can be interpreted as
the set of couplings, i.e. joint distributions between two
variables with fixed marginals p and v, defined as

T(pv)={y eRP™: 4l =p, v 1 =v}. (1)

It is the intersection of the simplex A, x,, with affine spaces
given by R(u) = {y € R™*" : ~41,, = u} and C(v) =
{y € R™*" : 471, = v}. We consider in this work the
problem of convex optimisation on the transport polytope:

min , 2)
(pin f() (
where f : A, xn — Ris areal-valued differentiable convex
function that is defined on the set of probability matrices.
The optimal transport problem is the particular case of (2)
where f is linear:

min (C, ). 3
76T(W)< ) ©)

2.1. Mirror descent and Sinkhorn.

A method that can be used to solve constrained convex
optimization problems such as (2) is Mirror Descent (Beck
& Teboulle, 2003). For a convex differentiable function
¥ Apxn — R, we define a Bregman divergence

Dy(z,y) = () —¥(y) — (V(y),z — y).

The function 1 plays the role of a barrier function, it is
such that for every compact K C R, its inverse image
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Y HK) = {x € Apxn : ¥(x) € K} is in the interior
of the polytope of constraints. We recall that 7 (u, v) is
the intersection of the probability simplex A, x,, with the
affine spaces R(u) and C(v). A choice of function v that
guarantees that the iterates are in the interior of the simplex
A, xn 18 the negative entropy, defined by

vy € R, () = —H(y) = (y,log7),

and the resulting Bregman divergence is the relative entropy
Dxr, (A, B) = (A,log(A) —log(B)) + (B — A, Lyyxn)-

Under these conditions, a mirror descent algorithm for (2)
would define its iterates by

Tert = aLg mi)n{m<% Vi) + Dxu (v, )y 4)
T (p,v
with 7, the step-size at time ¢. This update requires solving
an entropic-regularised optimal transport problem at each
iterate

Ye+1 = argmin {(y,Cy) — v H(7)}
T (p,v)

with regularisation parameter o; = 1/7; and cost matrix
Cy = Vf(y) — log(vy:)/n:. However, the oracle for this
problem is not explicit. Solving this step approximately
within a mirror descent loop has been used in Gromov-
Wasserstein (Peyré et al., 2016). State of the art algorithms
to solve this intermediate problem involve accelerated gradi-
ent descent schemes (Dvurechensky et al., 2018; Lin et al.,
2019). A simple and popular algorithm to tackle this inner
problem is the Sinkhorn matrix scaling algorithm (Sinkhorn,
1964; Cuturi, 2013). It consists in projecting alternatively
an initial matrix y; = e~/ on the marginal spaces with
Bregman projections: if ¢ is odd

V41 = argmin {Dkr, (7, 7)}
Yln=p

and if ¢ is even

Vo1 = argmin { Dkr, (7, 74)} -
YT 1lm=v
Each of these iterates only relies on proportionately scaling
the rows and columns of the matrix. An algorithm using sev-
eral steps of the Sinkhorn algorithm to approximate mirror
descent uses nested loops.

2.2. Mirror Sinkhorn.

The algorithm that we propose consists of alternating a step
of entropic mirror descent and a step of Sinkhorn algorithm.
Similarly to mirror descent, it can be written in a proximal
form where the optimisation is performed on each marginal
at a time: if ¢ is even,

Vet1 = al"lg min {n:(y, Vf(7)) + Dk (7,7)}
Yin=H

if ¢ 1s odd,

Ye+1 = atgmin ey V() + Dxi (7, 7) } -
vy 1y,=v

Formally, Mirror Sinkhorn algorithm is defined in the fol-
lowing manner (see Figure 1 for an illustration).

Algorithm 1 Mirror Sinkhorn
Data: Initialise v; = 7, = uv ', define stepsize 7;.
forl1 <t<Tdo
Update v, = v @ exp (—n:V f(7))

if ¢ is even then

| Rows: 741 = Diag (1@ (%411n)) Vit1s
else

| Cols: ye1 =711 Diag (v @ (3141) " 1m)),
end

Update 7, = H%ﬁt + H%’YtJrl

end
e 1T
Output: ¥, = 7>,

Figure 1. An illustration of the Mirror Sinkhorn algorithm: At each
iteration, a gradient step on -y, yields the intermediate y; ; 1, which
is projected by row or column scaling onto either R () or C(v).

Each step of the algorithm has a time complexity of O(mn).
Similarly to the Sinkhorn algorithm, this algorithm can be
parallelized (Cuturi, 2013). Importantly, this a single-loop
algorithm, in stark contrast with nested loop algorithms
that rely on iterative algorithms within a loop of gradient
updates. Our algorithms handles the affine constraints given
by R(u) and C(v) by a single and explicit normalization.
This makes the algorithm particularly easy to implement
and efficient. Theoretical results providing convergence
rates under different assumptions are provided in Section 3.
Some settings require minor variations (use of stochastic
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gradients, absence of running averaging). Even though we
describe them in the corresponding sections, we also include
them in the appendix for the sake of completeness.

Regularizing the marginals. One approach to guarantee
that the constraints are satisfied is to add a positive regu-
larization term that is minimized when the constraints are
satisfied. The following proposition states that Algorithm
2.2 has the same iterates whether it is based on the regular-
ized objective or the unregularized objective.

Proposition 2.1. Let f : A,,xn — R be a differentiable
convex function, let R, : A,, — R be a differentiable
convex function such that VR, (1') = 0 if and only if i/ =
wand let R, : A, — R be defined similarly. We define
the following regularized objective

[y e fly) + Ru('}/ln) + Ru(VTlm)-

Let (v )¢>1 be the iterates of Mirror Sinkhorn with objective
[ and let (7,®)¢>1 be the iterates with objective f™S. Then

Vit > 1, 7% =y

Rounding for constraints satisfaction The output of our
algorithm does not necessarily belong to 7 (p,v). This
can easily be remedied by applying an elegant rounding
algorithm by (Altschuler et al., 2017) to obtain a nearby
matrix that belongs to the transport polytope.

Algorithm 2 Rounding algorithm (Altschuler et al., 2017)
Data: Matrix -y, target marginals p, v.

(jfn A ]-m> 7

Normalise rows v/ = Diag
Normalise columns 7" = «/ Diag ((W')Viﬁm A ln),

Output: p(y) =~" + (M) (v=(")"1m)"

One of the appeals of this function is that the ¢! distance
between its input and its output can be controlled by the /*
distance between their marginals

lp(v) =l €2 (Ivln =l + 1y L = vlla)
and that its output is in the transport polytope
Vy € R, p(v) € T (1, v).

This algorithm has complexity O(mn), which implies that
it does not add asymptotic complexity if applied at the end
of Algorithm 2.2. It is also parralelization-friendly.

To keep track of the constraint violation in the theoretical
guarantees, we define ¢(-) : A™*™ — R by

() = lIvtn = plls + Iy L = 1. ®)

We also define for u € A,,,v € A, the constant § appear-
ing in our theoretical guarantees

6 = [[1og ptl|oc + [[log V||oc - ©)

Use for optimal transport problem As described above,
this algorithm can be used to tackle the OT problem. In order
to provide an e-close optimal transport plan, the Sinkhorn
algorithm is initialized using the matrix (e_civj/“)i’j with
a/e being a constant which depends on the choice of y and
v - see (Altschuler et al., 2017). The target error needs to
be known at initialization. In contrast, the Mirror Sinkhorn
algorithm’s initialization and stepsizes do not depend on €.

Another widely used method for improving the computation
of optimal transport problems is to transform the problem
into that of sliced Wasserstein distance, considering av-
erages over lower-rank projections (Bonneel et al., 2015;
Kolouri et al., 2019; Le et al., 2019; Nadjahi et al., 2021;
Niles-Weed & Rigollet, 2022). There are some similarities
with certain aspects of our method, e.g. when the use of
lower-rank estimates of the gradient are used in a stochastic
setting (see discussion in Section 3.2).

3. Theoretical guarantees

We present theoretical guarantees on the performance of the
Mirror Sinkhorn algorithm in several settings. The proposed
algorithm is evaluated under a variety of conditions, with
small adaptations in each case. Proofs are in the Appendix.

3.1. Online setting

The Mirror Sinkhorn algorithm can also be used in an online
setting, where there is not a unique function f but a stream
of functions f; and the performance of the algorithm is eval-
uated as a regret bound (Bubeck et al., 2012). The gradient
can be replaced by g = V fi(7:), to run the algorithm in
this setting. The bounds on the worst-case regret shown in

Algorithm 3 Online Mirror Sinkhorn

Data: Initialise y; = 7, = v ', define stepsize 7;, stream
of loss functions (f;).
for1 <t<Tdo
Update v, 1 = v: ©® exp (—m:V fe (1))
if ¢ is even then
| Rows: v;41 = Diag (1 @ (v+11n)) Vit
else
| Cols: i1 = 7111 Diag (v @ (341) " 1m)),
end
end
Qutput: v

the following illustrate the claim that Mirror Sinkhorn is
adaptive.

Theorem 3.1. For (f;);>1 a sequence of convex functions
that are B-Lipschitz for the norm || - ||1, let 0 be as defined

in Equation (6), n, = %\ﬁ. Then, the iterates (V¢)e>1
of Mirror Sinkhorn as described in Algorithm 3 satisfy the

t
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following regret bound:

d 9B
max (fe(w) — fi(7)) < V8T (2 + log(T)),

VET (v) s— 8

and the constraints satisfy

T
Z e(ve) <

t=1

with c(-) as defined in Equation (5).

| W

VT (2 + log(T)),

Rounding at each t, 4 = p(~y) with Alg. 2, it holds that

r 9B

(fe(3) = fr(v)) < ?\/ﬁ@—i—log(T)).

max
YET (mv) 4 —

3.2. Stochastic setting

The Mirror Sinkhorn algorithm can be used both with deter-
ministic and stochastic gradient updates on the function f.
In the first case, as described in Algorithm 2.2, the updates
are given by V f(;), and in the stochastic case by g; sat-
isfying E [g¢|7:] = V f (). This minor adaptation is fully
described in Algorithm 4 in the appendix for completeness.

This setting is common in stochastic optimization and al-
lows this algorithm to be used in learning tasks where the
function f is a data-dependent loss, and the g, are gradi-
ents of this loss for one data observation (or a mini-batch
thereof). This also illustrates that the algorithm is not sen-
sitive to noisy gradients. The complexity of each step of
the stochastic algorithm can be further reduced subsampling
the gradient. To summarize, this setting can be motivated in
several situations:

¢ Gradient subsampling on a random set of indices .5,

Z (Vf(ve))ijeij -

(i,9)€S

mn
gt = 7ar
S|

¢ Gradient observation with random additive noise
gt =V[f(v)+0oZ;.
such that E [Z,] = 0 and E [|| Z,[|% ] < oc.

 For OT problems, the objective function is f : v —
(v, C), and its gradient V f () given by the cost matrix
C for all . In the 2-Wasserstein distance (Euclidean

cost), it is equivalent to having C;j = —(x;,y;). If
we observe (X;), (Y;) two independent families of
random vectors in R? such that E [X;] = z; € RY,

E[Y;] = y; € R%, we can use

(9)ij = (X4, Y5),

as an example of g; = C; of stochastic observation of
the cost in an optimal transport problem.

All the results presented here can be directly applied to
the deterministic case by setting ¢ = 0. All convergence
bounds are anytime, meaning that the number of iterations
T is not known when choosing the step-size. As a conse-
quence, there is an additional logarithmic term in the rate
of convergence. This term can be removed if the stepsize is
chosen to be constant in ¢, but dependent on 7'

Theorem 3.2. For f convex and B-Lipschitz for the norm
|- 1l1, and

E [llge = VF(v) 2 7e] < 02,

let B, = VB2 + 02, 1 = %ﬁ' Then, taking 1 to be

the output after T steps of the Mirror Sinkhorn as described
in Algorithm 4 and 3r = p(F1), it holds that

E[f(57) — f(v7)] < Bz"\/g(l + log(T)).

With constant stepsize 1y = Bi, / % we have

B (/) — 127 < Boy| 2.

3.3. Optimal Transport

The Mirror Sinkhorn algorithm can be applied to the Op-
timal Transport problem (OT) described in (3), when f is
a linear form. The Sinkhorn algorithm is widely used to
tackle this problem, but suffers from some limitations in
its most common form. First, it requires to have access to
the exact cost matrix at the start of the algorithm. In con-
trast, as shown above, we can apply Mirror Sinkhorn to a
stream of random cost matrices (stochastic gradients of the
linear problem) (see Algorithm 4, 5 for details). Further, the
Sinkhorn algorithm solves an entropic-regularized version
of OT (Cuturi, 2013) and as such suffers from a regular-
ization bias for any fixed o > 0 - which must be set small
enough, as a function of the desired precision € > 0 for
OT (Altschuler et al., 2017). As noted above, this modifi-
cation of the problem can be considered “a feature rather
than a bug”, as for any fixed o > 0, the new solution 7, has
enviable properties, such as differentiability. Such regular-
ized objectives can also be tackled by Mirror Sinkhorn, as
described in Section 3.4

Applying Mirror Sinkhorn either with Vf(y) = C (de-
terministic case) or g; = C} (stochastic case, as in Algo-
rithm 4), with successive random cost matrices C, allows to
solve OT, with theoretical guarantees given in the following
result, a corollary of Theorem 3.2 (see Algorithm 5 in the
appendix for full details).

Theorem 3.3. Let (Cy)>1 be a sequence of random cost
matrices such that E[Cy] = C, for a cost matrix C €
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R™*™ satisfying ||Clloo < 1, and E [||C’t — C’Hgo] < o2

Setting ny = / (1+5T)t in Mirror Sinkhorn as described
in Algorithm 5, for the output Y after T steps and yr =

p(Fr), it holds that

1+ 02)6

(2 + log(T)).

E[(C,3n)] - (C1°) < ¢

Constant stepsize. We also provide the result for constant
stepsize, which is asymptotically the same as the rate for
Sink/Greenkhorn (Lin et al., 2019), with optimized constant.

Theorem 3.4. Let (Cy)i>1 be a sequence of random cost
matrices with E [Cy] = C, for C € R™*" that satsifies
[Clloo €1, and E [||C, — C||%] < 0% Fore > 0, and
ne = ¢ #
of Mirror Sinkhorn as described in Algorithm 5 and yr =
p(Fp), it holds for T > 5(1 + 02)5e~2 that

Then, taking the output %, after T' steps

E[{C,p(3r)] = (C;7") <e.

3.4. Strong Convexity and Smoothness

We consider here the specific case where f is both /-strongly
convex and L-smooth w. r. t. the relative entropy, i.e.

EDkL(Y,7) S F(Y) = fF(0) = (V)7 =)

and

FO&) = f(y) = (Vf(7),7 =) < LDk (v',7)

Under such assumptions, the algorithm converges at a faster
rate, which fits with the results on the convergence of the
Sinkhorn algorithm for an entropy-regularized objective.

Theorem 3.5. For f an f-smooth and L-strongly convex
with respect to the relative entropy, let n, = % Then, taking
Y the output of Mirror Sinkhorn (Algorithm 2.2) after T
steps , it holds for B = ||V f(v*)||co that

(2B + L)?

FOr) = f(v7) +2Be(yr) < g (1 +1og(T)),

with ¢(y) = |71 — pell + 1y " 1o — vl

Note that by definition of the relative entropy as Bregman
divergence of the negative entropy -y — —H (), the latter is
1-strongly convex and 1-smooth with respect to the former.
Thus, any f of the form

f(v) =(C,v) —aH(y)

is L-smooth and /-strongly convex with . = £ = a. Theo-
rem 3.5 therefore applies to entropic-regularized OT.

3.5. Tensor Case

The Mirror Sinkhorn algorithm can be applied to a general-
ization involving probability tensors with multiple marginal
constraints. Let mi,...,mg > 1, be d positive integers.
As noted in the definitions, the set of probability tensors
(nonnegative tensors with entries summing to 1) is denoted
by Ay xeooxmy- For g € A™ .. g € A™4 probabil-
ity vectors, the multiple transport polytope with marginals
1, - - -, lq is the set of tensors defined by

Ty, pa) = {y € RPVXMEVE Si(y) = pn )

where Sy (y) is the sum of y across all dimensions but &:

VI <ip < mr, (SkM)ie = D Virooia-

Jijk=tk

For a convex function f : A, x...xm, — R, the optimiza-
tion problem described in equation (2) generalizes to

min .
’YET(Ml:ond) f(,‘}/)

The Mirror Sinkhorn algorithm can also be adapted to tackle
these problems, choosing at each step the dimension along
which there is the largest constraint variation to normalize
(see Algorithm 6 in the Appendix for a full description).

Theorem 3.6. For f : A, x.xm, — R convex and B-
Lipschitz with respect to the norm || - |1, and with § =

Zzzl 1 log || oo 7t = %\/g. Taking 71 the output after
T steps of Algorithm 6, it holds that

) - 167 < 222 2 1om))

and the constraints violations are bounded as follows

d
; 1Sk () — pellr < 2\/5(2 +log(T)) .

4. Experiments
4.1. Optimal transport

We present the performance of Mirror Sinkhorn on a linear
objective, i.e. the optimal transport problem

min (C,~).
’YET(#J’)< ")

We take m, n = 100, random C' € R™*" with independent
off-diagonal coefficients in [0, 1] and zero diagonal, u = v
random, so that the optimizer and the optimal value of the
problem is known, and equal to 0 (with a different C' for
each run).
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Figure 2. Performance of the Mirror Sinkhorn algorithm on the optimal transport problem, i.e. when f is linear. Shown are exact gradient
oracles (black) and stochastic (blue, orange). The experiment is described in Section 4.1. Our proposed algorithm is compared to the
Sinkhorn algorithm (red, green, dotted lines) with several values of regularization parameter. Left: The value of f(~;) as a function of ¢ -
Note f(v*) = 0. Center / Right: The ¢; distance between the two marginals (¢, ¢) of v+ and constraints (u, /) at any step.
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Figure 3. Performance of Mirror Sinkhorn on OT for MNIST data (Altschuler et al., 2017). See Figure 2 and Section 4.1 for details.

We compare the performance of our algorithm to that of
Sinkhorn’s algorithm for different values of regularization
parameter o > 0, running for 7' = 10° steps. The number
of steps is chosen very large to illustrate the convergence
rate, but this is not required to obtain a low optimization
error, as shown in these experiments. We run this experi-
ment both with C; = V f(;) = C (where the gradient is
exact), and C; = C' + 0Z;, where Z; has i.i.d coefficients
(stochastic gradients). These are reported in Figure 2, for 32
runs, with median and 10th-90th percentile. Our conclusion
is that Mirror Sinkhorn is a fast and efficient algorithm to
solve the optimal transport problem. In particular, it does not
suffer from a regularization bias, and (C, ;) converges to
its optimal value. There are two main advantages compared
to using Sinkhorn for the optimal transport are: First, it is
adaptive, there is no need to have a fixed desired precision,
and to derive an corresponding regularization parameter.
Second, it is an online algorithm, that can run on a stream
of stochastic observations of C. This is not possible for
some of the algorithms to either solve OT or its entropic
regularized counterpart, including the Sinkhorn algorithm.

A consequence of the convergence of 7, to v* is the slow
progress for the two marginal constraints: as shown in our re-
sults, the violation in the constraint is polynomially decreas-

ing in ¢, rather than the linear convergence (i.e. exponen-
tially decreasing in t) of the Sinkhorn algorithm (Birkhoff,
1957; Carlier, 2022). This phenomenon is particularly vis-
ible when the entropic regularization parameter o > 0 is
higher: this yields solutions that are further from the bound-
ary. The linear convergence driven by a constant quantify-
ing the distance of v from the boundary of 7 (s, v), which
therefore increases with «v. This is visible in Figure 2, for the
two different values of «, highlighting the inherent trade-off
between regularization bias and constraint violation.

We also include an illustration of our method on two datasets
used in (Altschuler et al., 2017), following their experimen-
tal setup: we use as instances of OT random pairs from
MNIST (10 in total), and simulated SQUARES data con-
sisting of pairs of 20 x 20 images with a light square of
random size on a dark background (also 10 in total). We
report the results of this experiment, and the comparison of
Sinkhorn with our algorithm in various setting, in Figure 3
(for MNIST) and Figure 7 (in Appendix for SQUARES),
we also include for ease of comparison, Mirror Sinkhorn
with the initialization of the Sinkhorn algorithm (in gray).
We note that the well-understood slower convergence of our
algorithm over the marginals is of a much smaller order than
the gain in function objective.
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Figure 4. Performance of the Mirror Sinkhorn algorithm on strongly convex objectives, with exact gradient oracles (black) and stochastic
gradients (blue and orange). The experiment is described in Section 4.2. This is compared with an approximation of mirror descent
(purple) with ks = 10 steps of Sinkhorn projection at each gradient update. Left: The value of f(v:) — f(~") as a function of ¢. Center
/ Right: The ¢, distance between the marginals (p¢, 1¢) of -y and constraints (u, v) before each normalization.

4.2. Strongly convex optimization

We consider minimization of a smooth and strongly convex
objective f over T (u,v) for randomly chosen p, v of re-
spective sizes m, n. We present an experiment on f which
is a sum of several strongly convex objectives minimized
at a common v* € T (u,v) randomly chosen in its inte-
rior (with a different -y for each run). This allows to plot
f(ve) — f(~*) since the latter term is known. We take
m = 50, n = 60 on this illustrative example, and run our
algorithm on T' = 10* gradient update steps (T is very large
for illustration purposes), with a stepsize regime propor-
tional to 1/(¢ 4+ 1). Our algorithm is evaluated both with
exact and stochastic gradient updates. In the latter case, the
stochastic gradients are derived from the exact gradient by
adding independent noise, allowing the impact of gradient
noise to be measured.

The results are represented in Figure 4 for 1024 independent
runs, with median and 10th-90th percentile. They empiri-
cally confirm the speed of convergence of Theorem 3.5. Our
method is compared to an approximation of mirror descent,
using a nested loop for the proximal step. We use a modi-
fied Mirror Sinkhorn algorithm with kg steps of alternating
row/column normalization at each gradient update.

Here we take ks = 10, and observe that surprisingly, the
convergence is of similar order as that of Mirror Sinkhorn
(which can be interpreted as having kg = 1). Compared
to the algorithm that we propose, using a nested-loop algo-
rithm doing several steps of normalization to mimick mirror
descent yields a significant slowdown, with a multiplicative
factor on the number of algorithmic steps. Comparing the
results of our algorithm with this approach by comparing
instead at each gradient update, using multiple normaliza-
tion steps did not yield significant improvement over our
approach, even with higher value for kg.

4.3. Point cloud registration - single cell data

We consider the problem of point cloud registration, i.e.
mapping unmatched data sources, each composed of n data
points X and Y, potentially in different dimensions dx
and dy, based on common geometry, related to Gromov-
Wasserstein and similar problems (Mémoli, 2011; Djuric
et al., 2012; Peyré et al., 2016; Solomon et al., 2016). In the
case where dx = dy, this problem can be formulated as
Wasserstein-Procrustes (Grave et al., 2019) where a convex
relaxation for the problem of assigning the n points of X to
those of Y by finding a permutation of rows and columns
that matches two Gram matrices K x and Ky of X and Y.
This relaxation can be generalized to any setting where two
such matrices (similarity, or distances) can be formulated.
It is written as

min

Kxv—~Kyl?,
VeT(W)II x7 — 7Ky |3

for u, v uniform on [n]. This quadratic problem can be
regularized by adding a —\||7||3 penalty. For A > 0 small
enough, the objective function remains convex on 7, .. It
is in general possible to consider this problem to any two
matrices Kx and Ky that represent pairwise correlation
or distance between two sets of points, even if they are in
different spaces, as in the Gromov-Wasserstein problem.
We apply our algorithm to this functional, on single-cell
measurement data. In this experiment, X represents genetic
expression and Y chromatin accessibility. The SNARE-seq
data (Chen et al., 2019) consists of 1047 vectors in dimen-
sion 10 and 19 respectively. The ground-truth matching is
known, allowing for interpretability of the result. Following
the process in (Demetci et al., 2020), a k-NN connectiv-
ity graph is constructed from the correlations between data
points. The matrix of pairwise shortest path distances on
this graph between each pair of nodes is then used for Kx
and Ky . Normalization and maximal capping is applied.

We minimize this functional by taking A = 3, with a k-
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NN graph taken for £k = 5. We recall that in this case,
n = 1,047. We are applying a step-size regime propor-
tional to 1/(t + 1), for T = 10° steps. We analyze the
relevance of this optimization problem to the motivating
task of identifying the matching: we predict a binary matrix
by thresholding 7 at ¢/n for a small constant ¢, and com-
pare it to the ground truth permutation matrix. This allows
to count the number of predicted, and of correct matches
by comparing to the known correspondence. The results
for the objective value and the corresponding prediction
accuracy are reported in Figure 5, and the distance between
the marginals presented in Figure 6 in Appendix B.

Wass. Procrustes objective

1072
<107
=
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steps
Accuracy
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Figure 5. Performance of the Mirror Sinkhorn algorithm (black) on
the Wasserstein Procrustes objective, for the experiment described
in Section 4.3. This is compared with an approximation of mirror
descent (blue) with ks = 10 steps of Sinkhorn projection at each
gradient update. Top: The value of f(~:) as a function of ¢.
Bottom: For the predicted assignment matrix, thresholded version
of ¢, the number (compared to n = 1, 047) of predicted positives
(solid line) and of true positives (dashed line) for both algorithms.

5. Concluding remarks

We introduce an algorithm for convex optimization prob-
lems on transport polytopes, providing theoretical guaran-
tees and empirical evidence for its performance on a wide
range of problems.

Several questions are left open and could be interesting
directions for future research. In the case of the optimal
transport problem, there are natural connections between
our approach and annealing strategy for Sinkhorn (see, e.g.
Peyré et al., 2019, Remark 4.9). This is related to the ques-
tion of taking several steps of Sinkhorn to approximate
mirror descent in our comparisons, rather than kg = 1, for
nonlinear convex objectives. We did not find in our exper-
imental results any significant improvement when taking
ks > 1, but a significant computational overhead (due to
the nested loops).

Other algorithmic approaches for OT and its entropic-
regularized version have focused on optimization in the dual,
as well as multimarginal, unbalanced, opr partial versions.
They have a different perspective (and no online aspect) and
are focused on the linear objective (Dvurechensky et al.,
2018; Dvurechenskii et al., 2018; Lin et al., 2019; Le et al.,
2022), and our results, in particular Theorem 3.4, can be
seen in this larger context.

As noted above, our analysis of the tensor setting is im-
portant, as it allows to treat the problem of multi-marginal
optimal transport (MOT) - for linear objective functions f,
and more generally for us, of any convex objective on this
set. One of the main applications of the MOT setting is that
of Wasserstein barycenters, and our work allows us to cover
both these problems and generalizations (Pass, 2015; Lin
et al., 2022; Bigot et al., 2019).

Our results apply mostly on smooth (i.e. with Lipschitz gra-
dients) convex functions, with additional results for strongly
convex functions. Since results exist in the online learning
literature on learning with Lipschitz losses (Hazan et al.,
2007), it would also be a possible direction for research. An-
other interesting direction would be in nonconvex optimiza-
tion, and the possiblity of approximating stationary points,
on which there is an existing literature for mirror descent
(Zhang & He, 2018). Finally, since our approach focuses
on finite-dimensional iterates, semi-discrete approaches are
not directly extendable to our setting. An extension in this
direction, as considered by (Genevay et al., 2016), would
also be possible.
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Appendix
A. Main proofs

Proof of Proposition 2.1. We first note

(VI 4)ig = (TF0)is + (VRu(r1a)): + (TR (7 1))

(N

Lett > 1 be even, suppose that the iterate 7, © obtained when replacing f by f™¢ in the Algorithm 2.2 is identical to ;.

Then

(%-ﬁ-l);;g = (%-&-1)1’]’ exp (_nt(VRu('Ytln))i - nt(VRV('VtTlm))j) ,
= (Vg1)ij exp (= (VRL(7e1n))i)

since 7, 1,,, = v. The normalization of rows discards the gradient of the regularizer:
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The reasoning is the same for ¢ odd, and the initialization is true v; = pv " = 7. So v, = 7, forall t > 1.

Theorem A.1. If f is B-Lipschitz for the norm || -
the algorithm 2.2, then the output 7y after T' steps verifies

$)- 16 < 2[R v sy,

() < 3\ L2+ low(r))

c(yr) = IFrln = pll + 1F2) " 1m = w1

and the constraints are close to be verified
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With constant step-size 0y = % \/g we have
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Proof. With Lemma A.3 and Pinsker’s inequality:
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We use the fact that f is Lipschitz and convex:

FOve) = FOY) SVFOe)s verr =) + Bllvegr — %l (22)
then

Dxr(v* %) = Dxu(v s ver) = 0e(F(ve) = F(r) + 2011 — ellf = meBllver — el (23)
Given that v* = arg min, ¢ 7, ) f(7).

Jve) = F(0") = flve) = fp(ve)) (24)
> =Bl — p(ve) (25)
> —2Bc(7t) (26)
> =2B|ve41 — el 27

by Lemma A.4 and Lemma A.5. So for B’ > 2B

0 < m(f(m) = F(v") + B'e(w)) < Dru(v*,m) — Dk (v, Y1) + (B + B el — wells — 2l — wllf. (28)

Moreover
0 <nr(f(ye) = F(Y) + B'e(w)) < me(f(ve) = F(0) + B'e(n)), (29)
)
B B/ 2
0 <nr(f(ve) = F(v") + B'e(w)) < Dxr(v", 7)) — Dxr.(v" i41) + %ni (30)
Thus with B’ = 2B,
. . ) 9B%n;
0 <nu(f(ve) = f(¥") + Be(w)) < Dxu(v™v) — Dxn(v", ve+1) + T (31
We average over 1 <t <7,
L 1 92T 2
Z(f(%) = f(v") + Be(m)) < TT7TDKL(’Y*7%) + 82116“;7;7%' (32)

t=1

IA Nl =

We remark Dk, (7*,71) < 0. We use the convexity of ¢ and f to extend the bound to the final iterate of the algorithm

4 9B? Zf:l 77t2

FO7r) = F7°) + 2Bel(y) < o+ 22k (3)
We replace n; = 51/ 3
)~ 1) + 2Be(7r) < S 3 (5 + 1+ 10w(D)). a4
We also infer from (30), with B’ = 5B:
3Bnre(ve) < Dxu(v"s ) — Dru(Y", ve1) + 23277?~ (35)
We conclude by summing as well. O

1, let § = ||1og pl|oo + || log v||oo and let the stepsize be m, = % % in

Theorem A.2. If f is B-Lipschitz for the norm || - ;

the algorithm 2.2, then the output 7y after T' steps verifies

9B |9
Fo(i7)) = F(07) < 71/ 75 (2 + Log(T)). (36)
With constant step-size ny = % \/g we have
17B |6
fo(r) — f(v") < < VT (37)

14
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Proof. The proof follows from (34)

fGr) = f(7") +2Bc(yr) < B\/E(fi + log(T)),

and
fGr) = f(v") +2Bc(r) = f(p(y7)) — fF(7F)
by Lemma A.5 and the fact that f is B-Lipschitz.

Lemma A.3. The iterates of algorithm 2.2 verify
Dxr(v"ve) — Dxu(Y*, Ye41) = Drr(ve+1,7) + 0V F(08), Yerr —7")s
Proof. We assume t is odd, and write for any v € A, xn:

Dxr,(7, ) — DxiL(v, Yer1) = (7,108 (Vi41 @ 7)) »

= (7:10g (Ye+1 @ Yiq1)) + (73108 (Vi1 @ 7)) -

= (7,10g (V641 @ Ve41)) — eV F (72), ),

we remark that

<’Y ,log (”Yt+1 D Vi1 > Z Z%J log (Zk(ul )

'7t+1)zk

_ <fy 1n, log (1 @ (7411n))) »
= (p,10g (1@ (Y 411n))) »

and similarly
(1w log (1@ (Vi4110))) = (veg11n,1og (1 @ (Vi411n)))

= ZZ Ve )is log (Zk('VtJrl)lk)

= <7t+1, 1og (Ve41 @ V141)) -

Thus for v = ~v* in (41):

Dxr.(v", %) — Dxu(v"s ye+1) = <’yt+1,10g (%+1 © 7£+1)> — eV f (), 7

Now we consider v = 441 in (41):

Dir(Ves1,7) = (141,108 (ve1 @ 7111) ) — 1V f (32), ve41)

which allows to conclude

Dxr(v"sve) — Dxu(Y*, Y1) = Dru(ve+1,7) + 1AV F(7e)s Yerr —7%)-

The reasoning is identical for ¢ even.
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Algorithm 4 Stochastic Mirror Sinkhorn

Data: Initialise v; = 7, = uv ', define stepsize 7;.
for1 <t <Tdo
Sample g; such that E [g¢|v:] = Vf(12),

Update v}, = v: © exp (=1:g¢) ,

if t is even then

‘ Rows: 741 = Diag (N © (’Yéﬂln)) Vit1s
else

| Cols: yi1 =711 Diag (v @ (341) " 1m)),
end

Update ¥,y 1 = 777 + 71741

end
_ T
Output: ¥, = = >,

Lemma A.4. The iterates of algorithm 2.2 verify

Dxr(Vea1,7t) = 2l vesr — ’)’tH% > 2max{e(ve), c(Ve41) }-

Proof. The first inequality comes from Pinsker, the second from Jensen on the function || - ||1:

Iyesr = el > max{|lyes1ln = vlall, 1(en) T lm = (76) "Ll }-

We assume ¢ is odd, then
Ver1ln — Yelnllt = [[ves11ln — pllt = c(veg1)

and

)T

[(Ve1) "L = (v) "Ll = [lv = (72) T L1 = ().

The proof is symmetrical for ¢ even.

Proposition A.5. (Altschuler et al., 2017) For all v € R*"

lo(y) =l < 2e(v) =2 (|71 — plls + 7 1 = v|h),

moreover p(y) € T (u,v) and the runtime of the algorithm is O(mn).

Proposition A.6. Let ¢ > 0. If f is (-strongly convex with regards to the relative entropy, for any v € R'*",

fO) = F(77) 2 Dk (7", 7) = 2[f (V) lecc()-

This is also true for £ = 0. If f is L-smooth with regards to the relative entropy, then for any v € R'*",

F() = f(v") < LDkr(v", ) + 21 F(7) loc(7)-

Proof. By strong convexity
) = F(y") 2 Dk (v, 7) +(V (V) v =)
Since * is the minimum of f on 7 (u, v),

(V) 7") = (V) (),

SO
fO) = f(v) 2 Dk (v, 7) = 1fF (V) e Iy = p(M) 11
and we conclude with Lemma A.5.

By smoothness,
f() = f(y") < LDxL(v",7) +(Vf(Y), v —7")
SO
FO) = f(v") S LDxn (v 7) + 1 (7)ol = p(M) 11

and we also conclude with Lemma A.5.
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A.1. Online Optimisation
Proof of Theorem 3.1. We follow the proof of Theorem A.1 up to (31)

. . 932 2
0 < ne(fe(ye) — fr +2Be(y)) < Drr. (V"5 v) — Dxn(Y", Y1) + 8nt .

Then we sum over 1 < ¢ < 7T'. Idem for the constraints.

A.2. Stochastic Case

Proof of Theorem 3.2. We follow the proof of Theorem A.1 up to (31), where everything is true in expectations,

. . 93317?
0 <E[n(f(v)—f+2Bc(n))] <E[Dxr(v*,7) — DxL(Y", veq1)] + s

Then we note

Flp(ve)) = f(v") < fy) — f +2Be(),

we sum over 1 < ¢ < T and conclude with Jensen’s inequality.

A.3. Optimal Transport

(66)

(67)

(68)

Algorithm 5 Mirror Sinkhorn for Optimal Transport

Data: Initialise v; = 7, = uv ', define stepsize 7;, streaming stochastic cost matrices C.
for1 <t<Tdo
Update v, ; = v © exp (—1:Cy) ,
if ¢ is even then
‘ Rows: 7441 = Diag (N © (’Yéﬂln)) Vit1s
else
| Cols: ye41 = 7111 Diag (v @ (vi41) " 1))
end

Update ¥,y 1 = 777 + 71041

end
_ T
Output: 7, = % Dim1

Theorem A.7. Let (C});>1 be a sequence of random cost matrices such that E [Cy] = C for a given cost matrix C € R™*™

that verifies ||C||oo < 1, and E [||Cy — C||%,] < o®. Let the stepsize be n, = (1+5T)t in the algorithm 5, then the output
N after T steps verifies:
- . (1+02)6
E[(C.7r)] —(Cy") <2 ?(1 + log(T)), (69)
and the constraints are close to be verified
_ )
E [e(7)] </ 7(2 +10g(T)), (70)
with
c(¥r) = 17rln =l + 1 (Tr) " Lm = vl1- (71)
Proof. This follows directly from Theorem A.1. O
Proof of Theorem 3.3. This follows from Theorem A.7 with the same proof as Theorem A.2. O
Proof of Theorem 3.4. This follows directly from the proofs of Theorem A.7 and of Theorem A.2. O

17
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A.4. Strong Convexity
Proof of Theorem 3.5. By smoothness,

Fvea1) = fe) SAVFOe), ver — ) + LDxn (Vg1 )

by strong convexity,
fOw) = F(7) < (VF(n)sve =) — €D (7" 7e)

adding the two with Lemma A.3,

(1 —€ne) Dxr. (7" 7)) — DL (", e41) = (1= Lnt)DKL(%Hm) + 77t(f(7t+1) = f()).

We reason as in the proof of Theorem A.1, assuming 7; < 1/L:

() = F07) + Belaen)) < (1= D 0" 20) = Dia 0" ) + g
Letn = % then
FO) — F0°) + Blee) <t~ DDxa (' 30) — Dku (3" o) + D
A sum up to 7" provides
S i) — F3%) 4 Bl — ) + D" 1) < i e

t=1 t=1

Finally we use Jensen and Lemma A.5 with B’ = 2B.

A.5. Tensor Problem

(72)

(73)

(74)

(75)

(76)

(77

Algorithm 6 Tensor Mirror Sinkhorn

Data: Initialise (71)s,...0, = (71)i1...ia = Hi, - - - iy define stepsize 7;.
for1 <t<Tdo

Update v, = 7 @ exp (—n:V f (7)) ,

for1 <k <ddo

Sum across all dimensions but k:
(Se(r))ie = D (Vi) jneia-
Jijk=tx
Constraint distance ¢, = Dxr, (1k, Sk(V41))

end
Find furthest dimension K = arg max, cx,

Normalize along dimension K:

(.uK)iK /
(o1 inria = e DI (1 i
[ ld (SK(’Y£+1))lK t+1/t d

end
— 1 T
Output: Y = 7> .1 7

Proof of Theorem 3.6. The proof of Lemma A.3 is still valid for the tensor case. Lemma A.4 is modified with cyclical

Bregman projections on the marginal spaces:

T T
Z Dxr(pr(eys Sy (ve)) <0+ 2 Z NV (i) llo

t=1 t=1

18
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with k(t) the dimension chosen at iteration ¢. Then, since the choice of dimension to normalise is greedy,

T T
t_zl e Dt (e, k(7)) < 642 ; 1|V £ (7)o (79)
and we conclude with Jensen’s inequality. .

B. Complementary experimental results
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Figure 6. Performance of the Mirror Sinkhorn algorithm (black) on the Wasserstein Procrustes objective, for the experiment described in
Section 4.3. This is compared with an approximation of mirror descent (blue) with ks = 10 steps of Sinkhorn projection at each gradient
update. Left: The value of f(7:) as a function of ¢. Centers: The ¢; distance between the two marginals (u¢, v¢) of +; and constraints
(w4, v) at any given time. Right: For the predicted assignment matrix, thresholded version of ~y¢, the number (compared to n = 1, 047) of
predicted positives (solid line) and of true positives (dashed line) for both algorithms.
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Figure 7. Performance of Mirror Sinkhorn on OT for SQUARES data (Altschuler et al., 2017). See Figure 2 and Section 4.1 for details.
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