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Abstract
The improvement of LLMs’ instruction-001
following capabilities depends critically on the002
availability of high-quality instruction-response003
pairs. While existing automatic data synthetic004
methods alleviate the burden of manual cura-005
tion, they often rely heavily on either the quality006
of seed data or strong assumptions about the007
structure and content of web documents. To008
tackle these challenges, we propose Web Re-009
construction (WebR), a fully automated frame-010
work for synthesizing high-quality instruction-011
tuning (IT) data directly from raw web doc-012
uments with minimal assumptions. Leverag-013
ing the inherent diversity of raw web con-014
tent, we conceptualize web reconstruction as015
an instruction-tuning data synthesis task via a016
novel dual-perspective paradigm—Web as In-017
struction and Web as Response—where each018
web document is designated as either the input019
or output role to trigger the reconstruction pro-020
cess. Comprehensive experiments show that021
datasets generated by WebR outperform state-022
of-the-art baselines by up to 16.65% across023
four instruction-following benchmarks. No-024
tably, WebR demonstrates superior scalability,025
data efficiency, and compatibility with existing026
datasets, enabling enhanced domain adaptation027
with minimal effort. The data and code will be028
publicly available.029

1 Introduction030

Large language models (LLMs) (Brown et al.,031

2020; Achiam et al., 2023; Dubey et al., 2024) have032

become integral across a myriad of applications,033

demonstrating exceptional performance on diverse034

tasks by effectively following instructions (Ope-035

nAI, 2022; Achiam et al., 2023). Their remarkable036

performance largely stems from supervised fine-037

tuning (SFT) (Wei et al., 2022; Mishra et al., 2022)038

on instruction-response pairs. This process empow-039

ers LLMs to produce customized outputs when pro-040

vided with specific instructions, facilitating their041

adaptation to novel tasks without prior exposure.042
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Figure 1: Our proposed Web Reconstruction method
surpasses previous techniques by being (1) fully auto-
mated, eliminating the need for manual intervention or
seed data; (2) minimally reliant on assumptions about
the structure and content of web documents; and (3)
capable of generating high-quality IT data.

A fundamental challenge in advancing the 043

instruction-following capabilities of LLMs lies in 044

the collection of high-quality instruction-tuning 045

(IT) data. Early approaches primarily rely on hu- 046

man experts to manually generate and curate IT 047

data (Wang et al., 2022; Conover et al., 2023), 048

which is both time-intensive and resource-heavy. 049

To mitigate these limitations, Semi-Automated 050

Synthetic Methods (Wang et al., 2023; Taori et al., 051

2023; Xu et al., 2024a) leverage LLMs to expand 052

small, human-annotated seed datasets using few- 053

shot prompting techniques. While effective, the 054

performance of these methods is highly sensitive 055

to prompt engineering and the careful selection of 056

seed examples (Xu et al., 2024b). More recently, 057

Fully Automated Synthetic Methods, such as We- 058

bInstruct (Yue et al., 2024) and instruction back- 059

translation (Li et al., 2024d), have emerged as scal- 060

able alternatives that eliminate human involvement 061

by synthesizing IT data based on web-scraped doc- 062

uments. These methods, however, often operate 063

under strong assumptions about the structure and 064
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content of raw web data, such as the availability of065

explicit question-answer pairs or minimal irrelevant066

content. Consequently, they can only handle a lim-067

ited scope of web documents, resulting in potential068

biases that hinder the quality and generalizability069

of the generated IT data.070

As illustrated in Figure 1, we propose Web Re-071

construction (WebR), a fully automated frame-072

work that transcends these limitations by rethinking073

how web data can be transformed into high-quality074

IT datasets. To overcome the reliance on strong075

assumptions of web data, we conceptualize web076

reconstruction as an instruction-tuning data syn-077

thesis task, where raw noisy web documents are078

reconstructed into human-preferred, response-like079

outputs. This shift enables WebR to thoroughly080

exploit the inherent diversity of raw web docu-081

ments. Central to WebR is a novel dual-perspective082

paradigm—Web as Instruction and Web as Re-083

sponse—which designates each web document as084

either the input or output role to trigger the recon-085

struction process. (1) Web as Instruction pairs the086

raw web with a synthesized rewrite request to serve087

as a complete instruction, enabling the generation088

of reorganized and coherent responses. Web rewrit-089

ing inherently encompasses diverse NLP tasks such090

as reading comprehension and information extrac-091

tion, thus compelling LLMs to engage in reasoning092

and execute intricate instructions during training.093

(2) Web as Response, drawing inspiration from in-094

struction backtranslation (Li et al., 2024d), first095

produces a latent instruction by treating the raw096

web content as the response. Subsequently, a con-097

textually appropriate web is reconstructed via two098

stages: LLM’s initial rollout and further refine-099

ment. This strategy significantly boosts the LLM’s100

ability to acquire knowledge and perform complex101

question-answering tasks.102

We apply WebR to the Llama3-70B-Instruct and103

GPT-4o-mini models, creating two 100k-sample IT104

datasets: WebR-Basic and WebR-Pro. To validate105

their effectiveness, we train various LLMs, includ-106

ing Llama3-8B-base and Qwen2.5-1.5/3/7/14B-107

base, and evaluate them on four widely used bench-108

marks. WebR-Basic consistently outperformed109

public IT dataset baselines on all benchmarks,110

achieving a remarkable 16.65% average improve-111

ment. Moreover, WebR-Pro demonstrated supe-112

rior performance compared to a mixture of prior113

IT datasets generated using GPT-4o-mini, even114

with the same data quantity. Interestingly, merg-115

ing WebR with existing IT datasets yielded further116

performance gains, highlighting its compatibility 117

and effectiveness. Detailed analyses reveal three 118

key insights: (1) the effectiveness of WebR scales 119

with the size of the base LLM; (2) WebR exhibits 120

superior data efficiency, with performance improv- 121

ing linearly relative to the logarithmic growth of 122

training data; and (3) WebR facilitates effective 123

domain adaptation through the simple inclusion of 124

domain-specific web documents. 125

2 Related Work 126

The synthesis of high-quality instruction-tuning 127

(IT) data (Zhou et al., 2023a; Jiang et al., 2023; 128

Xu et al., 2024a) is crucial for improving LLMs’ 129

instruction-following capabilities. Previous studies 130

can be broadly classified into three main categories. 131

Human-Crafted Method primarily involves em- 132

ploying professionals to create instructions, as seen 133

in datasets like SUPER-NI (Wang et al., 2022) 134

and DOLLY (Conover et al., 2023). While these 135

datasets offer high-quality content, their size is 136

constrained by the significant costs associated 137

with manual creation. Alternatively, approaches 138

like ShareGPT (Chiang et al., 2023) and Wild- 139

Chat (Zhao et al., 2024) leverage user interaction 140

logs with LLMs to collect human-generated instruc- 141

tions. However, this method risks incorporating 142

toxic or undesirable content (Zhao et al., 2024). 143

Semi-Automated Synthetic Method uses LLMs 144

to generate synthetic IT datasets by starting with a 145

small set of human-annotated seed data and expand- 146

ing them through few-shot prompting. Notable 147

methods include Self-Instruct (Wang et al., 2023), 148

Alpaca (Taori et al., 2023), and Evol-Instruct (Xu 149

et al., 2024a). While these techniques enable large- 150

scale data generation, the diversity of the synthe- 151

sized data is often constrained by the quality and 152

variety of seed examples (Li et al., 2024a). 153

Fully Automated Synthetic Method utilizes 154

LLMs to synthesize IT data from scratch, draw- 155

ing from web-scraped documents. For instance, 156

WebInstruct (Yue et al., 2024) extracts question- 157

answer (QA) pairs from web documents to con- 158

struct instruction-response datasets. Nevertheless, 159

this approach depends on the explicit presence of 160

QA pairs within the raw web corpus, which is not 161

always guaranteed. Similarly, backtranslation (Li 162

et al., 2024d; Nguyen et al., 2024) treats web doc- 163

uments as natural responses and employs LLMs 164

to infer the corresponding latent user instructions. 165
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The Research Subgroup comprises members from across the Cannabis and Hemp CBD sector in the UK. The 
Group exists to commission and carry out research and publish research submissions to further the overall 
aims of the Council. The main focus of the Research Subgroup is to carry out a Health economic analysis…

Raw Web
GitHub

Rewrite Instruction

Rollout Response

{Raw Web}

Create a concise (200-word) version of the text, starting with an 
overview followed by key objectives. Use clear headings (‘#’) for 
each section to ensure readability and use a professional tone.

# Research Subgroup Overview
The Research Subgroup is composed of members representing 
various stakeholders in the UK Cannabis and Hemp CBD sector. 
Its primary aim is to commission and execute research that 
supports the overarching goals of the Council. 

## Key Objectives
The subgroup will focus on the following areas:
1. **Health Economic Analysis**: Conducting cost-benefit 

analysis and long-term economic evaluation to assess the 
economic impacts of cannabis-related healthcare.

2. **Patient and Prescriber Engagement**: Raising awareness 
among patients and healthcare providers about conditions 
beyond pain and anxiety.

…

① Web as Instruction

Refined Response
The Research Subgroup in the 
UK Cannabis and Hemp CBD 
sector focuses on several key 
objectives and areas:

1. **Health Economics**:
   - **Cost-Benefit Analysis**: 
Performing comprehensive 
evaluations to assess the 
financial impacts of medical 
cannabis.
   - **Long-Term Economic 
Evaluation**: Assessing the 
long-term impacts of 
medical cannabis on overall 
healthcare expenditures.
2. **Patient Engagement**:
…

Instruction Corresponding to the Web

What are the main objectives and areas of focus for the Research 
Subgroup in the UK Cannabis and Hemp CBD sector?

② Web as Response

Rollout Response
The Research Subgroup in the 
UK Cannabis and Hemp CBD 
sector focuses on several key 
objectives and areas:

1. **Health Economics**:
   - **Cost-Benefit Analysis**: 
Performing comprehensive 
evaluations to assess the 
financial impacts of medical 
cannabis.
2. **Patient Engagement**:
…

Raw Web & Instruction provided

LLM

Figure 2: Overview of the proposed Web Reconstruction (WebR) framework. Leveraging an off-the-shelf LLM,
WebR transforms raw web documents into high-quality instruction-response pairs. It strategically assigns each
document as either an instruction or a response to trigger the process of web reconstruction.

However, web documents often contain irrelevant166

content or unsuitable expressions, making them167

suboptimal as response candidates.168

3 Web Reconstruction169

Prior fully automated synthetic methods often170

rely on strong assumptions about the structure171

and content of raw web documents—such as the172

presence of explicit question-answer pairs, min-173

imal irrelevant content, or appropriate expres-174

sions—necessitating complex preprocessing steps175

like retrieval and filtering. In contrast, we intro-176

duce the Web Reconstruction (WebR) framework,177

which leverages a powerful, off-the-shelf LLM to178

overcome these limitations by directly reconstruct-179

ing unstructured and noisy web content into high-180

quality, response-like outputs. As shown in Figure181

2, WebR comprises two core strategies: (1) Web as182

Instruction, where raw web content is concatenated183

with a synthesized rewrite request to serve as a184

complete instruction, guiding the generation of a re-185

organized, coherent response; (2) Web as Response,186

where a latent instruction is inferred by treating raw187

web content as a response, enabling reconstruction188

through the LLM’s initial rollout and subsequent189

refinement. By adopting this dual-branch approach,190

WebR efficiently generates high-quality instruction- 191

response pairs, ensuring contextually appropriate 192

outputs while eliminating the need for extensive 193

preprocessing. 194

3.1 Web as Instruction 195

Raw web documents often contain disorganized 196

or irrelevant information that hinders direct usabil- 197

ity. Even when dealing with well-structured con- 198

tent, further refinement is often required to meet 199

human-preferred formats and stylistic conventions. 200

A natural approach to reconstructing web content 201

is to rewrite it according to specific requirements, 202

such as style, format, structure, etc. To ensure di- 203

verse and realistic rewriting scenarios, we leverage 204

a powerful LLM to generate a detailed rewrite re- 205

quest tailored to the original document’s content 206

(See prompt in Figure 8). The request, along with 207

the raw web content, are concatenated to form a 208

comprehensive instruction. In addition to whole- 209

document transformations, we further enhance task 210

diversity by randomly (50% probability) generat- 211

ing rewrite requests that target specific sections of 212

the web content rather than the entire document, as 213

shown in Figure 9. This simulates real-world text 214

manipulation scenarios where users may need to 215
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extract and modify only certain portions of a text.216

The curated instructions are then processed by the217

LLM to produce reconstructed web content. No-218

tably, the complexity of rewrite requests naturally219

encompasses various NLP tasks, such as summa-220

rization, information extraction, and semantic un-221

derstanding. Addressing these tasks requires LLM222

to demonstrate advanced reasoning and compre-223

hension abilities, thereby enhancing its proficiency224

in instruction-following, contextual understanding,225

and reasoning (as verified in Table 3).226

3.2 Web as Response227

Inspired by instruction backtranslation (Li et al.,228

2024d), we propose an alternative approach to re-229

construct web content by treating the web as a230

response. Specifically, we utilize a LLM to predict231

a latent instruction for which the raw web content232

would serve as an ideal response, as illustrated in233

Figure 10. To further enhance diversity, specific234

segments of web content are treated as responses235

(with a 50% probability), as depicted in Figure 11.236

Unlike traditional back-translation methods, which237

directly treat latent instructions and raw web con-238

tent as instruction-response pairs, our approach239

introduces a two-stage refinement process. First,240

we generate an initial response by rolling out an241

LLM prediction for the latent instruction. Next, we242

refine this response using both the raw web con-243

tent and the latent instruction to produce a more244

accurate and comprehensive output, as shown in245

Figure 12. The initial rollout ensures that the re-246

sponse exhibits human-like fluency and natural lan-247

guage style, while the subsequent refinement step248

integrates critical information from the raw web,249

ensuring that the final response is both precise and250

thorough. This dual-stage process significantly en-251

hances the LLM’s performance in knowledge ac-252

quisition and question-answering tasks, as demon-253

strated by the improvements reported in Table 3.254

The generated instruction as well as the refined255

response are finally paired as IT data.256

3.3 Dataset Construction Details257

Following existing work (Li et al., 2024d; Yue258

et al., 2024), we construct our dataset by sampling259

raw web documents from three diverse and rep-260

resentative domains: 70% from the English sub-261

set of Common Crawl (Computer, 2023) (general262

domain), 15% from OpenWebMath (Paster et al.,263

2024) (math domain), and 15% from GitHub (Com-264

puter, 2023) (code domain). To enable large-scale265

creation of diverse synthetic data for various scenar- 266

ios, we adopt a persona-driven instruction synthesis 267

strategy inspired by Ge et al. (2024). Initially, an 268

LLM generates personas for the raw web docu- 269

ments (see template in Figure 7), which guide the 270

subsequent instruction synthesis for our proposed 271

Web Reconstruction process. The ratio of Web as 272

Instruction to Web as Response is set to 2:1, follow- 273

ing insights from the ablation study presented in 274

Table 3. To enhance diversity and eliminate redun- 275

dancy, we apply MinHash (Broder, 1997) dedupli- 276

cation based on n-gram features of instructions. We 277

configure the signature size to 128 and the similar- 278

ity threshold to 0.7. The final synthesized dataset 279

comprises 100,000 instruction-response pairs. 280

To evaluate the effectiveness of WebR in gen- 281

erating high-quality IT datasets, we use WebR 282

to construct datasets with two LLMs: the 283

open-source Llama3-70B-Instruct (Dubey et al., 284

2024) (temperature=0.6, top-p=0.9) and the pro- 285

prietary GPT-4o-mini (Achiam et al., 2023) (tem- 286

perature=0.7, top-p=1.0). The resulting datasets, 287

WebR-Basic (from Llama3) and WebR-Pro (from 288

GPT-4o-mini), differ in their generative capabil- 289

ities and quality. A comparative analysis of the 290

average token lengths is presented in Appendix C, 291

while a detailed cost analysis of WebR is provided 292

in Appendix D. Notably, the overall expenditure 293

for calling GPT-4o-mini API is $38.57. 294

3.4 Dataset Analysis 295

Coverage. We evaluate the coverage of WebR in 296

the embedding space using a comparative analy- 297

sis with existing datasets. Specifically, we lever- 298

age the all-mpnet-base-v2 embedding model1 299

to compute the input embeddings of instructions 300

and utilize t-SNE (Van der Maaten and Hinton, 301

2008) to project these embeddings into a two- 302

dimensional space for visualization. To provide 303

meaningful baselines, we include human-curated 304

ShareGPT (Chiang et al., 2023), semi-automated 305

synthetic UltraChat (Ding et al., 2023), and Al- 306

paca (Taori et al., 2023). As shown in Figure 3, 307

the t-SNE visualization reveals that WebR-Basic 308

comprehensively spans the primary regions cov- 309

ered by ShareGPT, UltraChat, and Alpaca. This 310

observation highlights that WebR-Basic effectively 311

captures a diverse range of topics, aligning well 312

with both human-curated and synthetic datasets. 313

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Figure 3: This figure compares the t-SNE plot of WebR-
Basic with those of ShareGPT, UltraChat, and Alpaca,
each of which is sampled with 10,000 instructions.

Figure 4: Statistics of instruction quality and difficulty.

Quality and Difficulty. Following Magpie (Xu314

et al., 2024b), we use the Qwen2.5-72B-Instruct315

model to evaluate the quality and difficulty of316

each instruction, categorizing them into five levels.317

As depicted in Figure 4, synthetic data generally318

demonstrates higher quality and greater difficulty319

compared to human-crafted instructions. In partic-320

ular, WebR-Basic and WebR-Pro exhibit superior321

distributions in both quality and difficulty metrics,322

surpassing UltraChat in these aspects.323

4 Experimental Setup324

4.1 Baselines325

We compare the family of IT datasets generated326

by WebR with ten state-of-the-art (SOTA) open-327

source IT datasets, categorized as follows: (1)328

Human-crafted data: ShareGPT (Chiang et al., 329

2023) and WildChat (Zhao et al., 2024) are ex- 330

emplary human-written datasets containing 112K 331

and 652K high-quality multi-round conversations 332

between humans and GPT, respectively. (2) Semi- 333

automated synthetic data: Alpaca (Taori et al., 334

2023), Evol-Instruct (Xu et al., 2024a), and Ul- 335

traChat (Ding et al., 2023) represent widely-used 336

synthetic datasets generated with semi-automated 337

techniques. (3) Mixed data: Tulu V2 Mix (Ivison 338

et al., 2023) and OpenHermes 2.5 (Teknium, 2023) 339

are crowd-sourced datasets that aggregate diverse 340

open-source IT datasets, featuring 326K and 1M 341

conversations, respectively. (4) Fully automated 342

synthetic data: WebInstruct (Yue et al., 2024) con- 343

sists of QA pairs extracted from web corpora, from 344

which we sample 100k examples for our experi- 345

ments. Additionally, we reproduce Back Transla- 346

tion (Li et al., 2024d) using the same source web 347

data as our WebR, based on Llama3-70B-Instruct. 348

Furthermore, Magpie (Xu et al., 2024b) synthe- 349

sizes IT data by prompting Llama3-70B-Instruct 350

with its chat template, from which we similarly 351

sample 100k examples. 352

4.2 Models and Training Settings 353

For instruction tuning (IT), we train Llama3- 354

8B-base (Dubey et al., 2024) and Qwen2.5- 355

1.5/3/7/14B-base (Qwen Team, 2024) on various 356

IT datasets. We adhere to the official instruction 357

templates provided by each model. To ensure a 358

fair comparison, we use consistent training hyper- 359

parameters across different baseline datasets. The 360

comprehensive implementation details are listed in 361

Appendix A. 362

4.3 Evaluation Benchmarks and Metrics 363

We evaluate the performance of the fine-tuned mod- 364

els using four widely adopted instruction-following 365

benchmarks: AlpacaEval 2 (Li et al., 2023), Arena- 366

Hard (Li et al., 2024c), MT-Bench (Zheng et al., 367

2023), and IFEval (Zhou et al., 2023b). For Al- 368

pacaEval 2, we report the length-controlled win 369

rate (LC), which ensures robustness against ver- 370

bosity. For Arena-Hard, we report the win rate 371

(WR) against the baseline model. For MT-Bench, 372

we provide the average score, using GPT-4-turbo 373

as the evaluation judge. For IFEval, we report two 374

metrics: prompt-level strict accuracy (Pr. (S)) and 375

instruction-level strict accuracy (Ins. (S)). More 376

evaluation details are listed in Appendix B. 377
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Human Response Alpaca Arena MT IFEvalIT Data #Data Effort Generator Eval 2 Hard Bench Pr. (S) Ins. (S) Avg.

ShareGPT 112k High ChatGPT 9.89 6.49 6.34 38.52 42.26 22.70
WildChat 652k High GPT-3.5 & 4 14.62 8.73 6.60 39.53 45.66 23.03
Tulu V2 Mix 326k Mid Mix 9.91 5.41 5.76 37.69 41.05 19.96
OpenHermes 2.5 1M Mid Mix 12.89 8.20 6.51 38.82 43.52 21.99
Alpaca 52k Low Davinci-003 4.21 1.24 3.75 20.21 23.56 10.59
Evol Instruct 143k Low ChatGPT 7.19 5.58 5.77 39.00 44.25 20.36
UltraChat 208k Low ChatGPT 8.29 4.06 5.88 29.66 33.06 16.19
WebInstruct 100k No Qwen-72B 3.03 1.62 5.03 18.85 20.42 9.79
Back Translation 100k No Llama3-70B 5.24 2.81 3.74 26.85 29.61 13.65
Magpie 100k No Llama3-70B 23.62 13.98 6.26 33.83 43.07 24.15
WebR-Basic 100k No Llama3-70B 25.33 16.50 6.95 41.40 50.69 28.17

IT Mix 100k Mid GPT-4o-mini 30.19 27.81 7.30 43.07 47.13 31.10
WebR-Pro 100k No GPT-4o-mini 34.17 30.92 7.50 43.55 51.77 33.58

(IT + WebR-Pro) Mix 100k Mid GPT-4o-mini 35.00 34.23 7.50 48.06 53.23 35.60
(IT + WebR-Pro) Merge 200k Mid GPT-4o-mini 35.40 35.12 7.59 49.72 53.97 36.36

Table 1: Instruction-following performance comparison of various instruction-tuning (IT) data, based on Llama3-8B.

IT Data MMLU ARC WinoGrande MATH GSM8K HumanEval Avg.

WildChat 58.46 72.62 49.43 19.34 60.25 42.55 50.44
OpenHermes 2.5 60.08 75.65 51.22 24.18 64.70 44.43 53.38
Magpie 58.58 71.53 51.93 16.12 57.39 40.85 49.40
WebR-Basic 60.85 76.27 52.91 20.28 55.57 40.10 51.00
IT Mix 57.44 73.56 50.36 22.00 61.87 45.12 51.73
WebR-Pro 61.15 74.92 53.20 24.94 60.69 48.73 53.94
(IT + WebR-Pro) Mix 60.69 77.63 50.67 26.34 64.90 50.61 55.14
(IT + WebR-Pro) Merge 61.02 76.27 52.72 28.36 66.41 50.61 55.90

Table 2: Performance comparison of downstream tasks (Knowledge, Reasoning, Math, Code) based on Llama3-8B.

5 Experimental Results378

5.1 Main Results379

WebR Outperforms Prior Baselines. Table 1380

highlights the performance of Llama3-8B-base fine-381

tuned with datasets generated by WebR, compared382

to those fine-tuned with baseline datasets. A gen-383

eral trend emerges: IT datasets requiring higher384

human effort tend to exhibit better performance385

than those with lower or no human effort. Never-386

theless, our WebR-Basic, which entirely eliminates387

human effort in dataset creation, significantly and388

consistently surpasses the SOTA Magpie dataset389

across all four benchmarks with a 16.65% average390

improvement. To ensure a fair and more challeng-391

ing comparison, we deduplicated and randomly392

sampled 100k instructions from baseline datasets393

of varying human effort levels (high, mid, and low)394

and generated responses using GPT-4o-mini, nam-395

ing this synthesized strong baseline "IT Mix." Even396

under the same response generator, WebR-Pro con-397

sistently outperforms IT Mix, achieving an aver-398

age improvement of 7.97%. These results validate399

that datasets generated by WebR possess superior400

quality, enabling significantly enhanced instruction- 401

following performance. 402

WebR Further Enhances Prior Baselines. To 403

explore the potential synergy between WebR and 404

existing datasets, we merged IT Mix and WebR- 405

Pro using two strategies: (1) random sampling of 406

50k data points from each dataset and (2) direct 407

concatenation. As shown in Table 1, both merged 408

datasets deliver further performance improvements 409

over their individual components, establishing new 410

SOTA results. This can be attributed to the com- 411

plementary strengths of the datasets: IT Mix offers 412

broader data coverage, while WebR-Pro provides 413

higher quality and more challenging instructions, 414

as evidenced in Figure 3 and Figure 4. 415

Performance on Downstream Benchmarks. 416

We evaluate the impact of various instruction- 417

tuning datasets on downstream task performance 418

across multiple domains2: (1) Knowledge: 419

MMLU (Hendrycks et al., 2021a); (2) Reasoning: 420

ARC (Clark et al., 2018) and WinoGrande (Sak- 421

2Evaluation settings are aligned with https:
//opencompass.org.cn.
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Alpaca MT IFEvalSetting Eval 2 Bench Pr. (S) Avg. MMLU ARC MATH HumanEval Avg.

WebR-Pro 34.17 7.50 43.55 28.41 61.15 74.92 24.94 48.73 52.43

-w/o Persona 33.30 6.93 44.69 28.31 60.98 74.58 24.03 48.50 52.02
-w/o Part 33.89 7.53 42.60 28.01 61.05 72.53 22.73 48.41 51.18
-w/o Refinement 31.61 7.42 44.73 27.92 59.83 74.92 24.36 48.61 51.93
-w/o MinHash 32.43 7.29 43.02 27.58 60.69 74.92 24.82 47.15 51.90

Ratio of Web as Instruction to Web as Response (2 : 1 in WebR)
1 : 0 29.15 7.10 39.56 25.27 58.79 74.58 25.74 50.00 52.28
1 : 1 33.16 7.39 43.26 27.94 60.60 73.22 25.18 48.78 51.95
1 : 2 32.99 7.33 42.85 27.72 57.76 72.61 25.26 50.00 51.41
0 : 1 33.41 6.68 42.54 27.54 52.68 72.90 23.30 46.95 48.96

Table 3: Ablation study based on Llama3-8B.

Base LLM IT Data AlpacaEval 2 Arena-Hard MT-Bench IFEval/Pr. (S) IFEval/Ins. (S)

Qwen2.5-1.5B IT Mix 10.98 15.10 6.03 29.57 33.27
WebR-Pro 11.00 (+0.02) 14.03 (-1.07) 5.92 (-0.11) 29.57 (+0.00) 32.16 (-1.11)

Qwen2.5-3B IT Mix 22.36 26.54 6.95 43.07 44.73
WebR-Pro 22.29 (-0.07) 28.13 (+1.59) 7.03 (+0.08) 42.38 (-0.69) 44.71 (-0.02)

Qwen2.5-7B IT Mix 32.59 45.10 7.45 49.35 52.68
WebR-Pro 34.90 (+2.31) 45.66 (+0.56) 7.62 (+0.17) 50.55 (+1.20) 53.35 (+0.67)

Qwen2.5-14B IT Mix 42.07 59.00 8.10 58.04 60.63
WebR-Pro 46.19 (+4.12) 62.13 (+2.13) 8.39 (+0.29) 60.23 (+2.19) 64.88 (+4.25)

Table 4: Performance comparison across varied scales of base LLMs.

aguchi et al., 2019); (3) Math: MATH (Hendrycks422

et al., 2021b) and GSM8K (Cobbe et al., 2021);423

(4) Code: HumanEval (Chen et al., 2021). As424

shown in Table 2, models fine-tuned on the WebR425

datasets outperform those trained on other base-426

lines, demonstrating their effectiveness in improv-427

ing generalization across diverse downstream tasks,428

especially in challenging benchmarks like ARC429

and WinoGrande. Furthermore, the combination of430

WebR-Pro and IT Mix further validates the comple-431

mentary strengths of WebR data in aligning models432

with complex task requirements.433

5.2 Ablation Study434

Table 3 compares the LLM performance using dif-435

ferent settings to construct WebR-Pro.436

• w/o Persona: removing the author’s per-437

sona information during instruction genera-438

tion leads to performance declines across al-439

most all benchmarks.440

• w/o Part: creating instructions solely from441

the entire web content, rather than using spe-442

cific parts, causes notable performance degra-443

dation, particularly on IFEval and reasoning-444

intensive tasks like ARC and MATH.445

• w/o Refinement: skipping the refinement446

step for Web as Response—by directly447

adopting the rollout response as the fi- 448

nal output—results in a substantial drop in 449

instruction-following performance. 450

• w/o MinHash: eliminating MinHash-based 451

deduplication decreases performance across 452

all benchmarks, highlighting the importance 453

of maintaining dataset diversity. 454

• Ratio of Web as Instruction to Web as Re- 455

sponse: varying the ratio of Web as Instruc- 456

tion to Web as Response data synthesis reveals 457

that each component contributes uniquely 458

to model capabilities. Specifically, Web as In- 459

struction enhances reasoning and understand- 460

ing tasks (e.g., ARC and MATH), while Web 461

as Response primarily improves instruction- 462

following and question-answering tasks (e.g., 463

IFEval and AlpacaEval 2). The optimal bal- 464

ance is achieved at a ratio of 2:1, which deliv- 465

ers the best overall performance. 466

6 Analysis 467

6.1 Impact of Base LLM Scale 468

Table 4 highlights the impact of base LLM scale 469

on the performance of our proposed WebR method. 470

While WebR-Pro slightly underperforms IT Mix 471

at the 1.5B model scale, its advantages become 472
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Data Proportion AlpacaEval 2 MATH HumanEval MedQA FinBen Avg.

IT Mix 30.19 22.00 45.12 38.88 29.20 33.08

WebR-Pro (4.7 gen : 1 math : 1 code) 34.17 24.94 48.73 47.31 29.56 36.94
- 1 gen 34.40 22.52 44.78 44.94 28.97 35.12
- 1 gen : 1 math 34.25 28.09 48.23 46.59 29.77 37.39
- 1 gen : 1 math : 1 code 34.59 27.10 51.39 46.83 29.34 37.85
- 1 gen : 1 math : 1 code : 1 med 32.75 26.22 49.68 49.98 29.01 37.53
- 1 gen : 1 math : 1 code : 1 med : 1 fin 33.03 25.38 48.17 45.64 30.22 36.49

Table 5: Domain adaptation based on Llama3-8B, with the domain improvements marked in green.

Figure 5: The impact of training data scale on the aver-
age instruction-following performance.

increasingly pronounced as the model size grows.473

For instance, WebR-Pro achieves an average per-474

formance improvement of 2.86% over IT Mix with475

Qwen2.5-7B and an even more substantial improve-476

ment of 5.55% with Qwen2.5-14B. These results477

suggest that the advanced synthesis paradigm of478

WebR better aligns with larger models’ capacity479

to capture complex patterns and utilize reasoning-480

intensive data. In contrast, smaller models with lim-481

ited capacity may struggle to fully exploit WebR’s482

potential.483

6.2 Impact of Training Data Scale484

Figure 5 illustrates the impact of training data scale485

on model performance. The results clearly under-486

score the superior data efficiency of WebR-Pro487

compared to IT Mix: (1) With only 10k training488

samples, WebR-Pro achieves a striking 40.26%489

performance improvement over IT Mix, highlight-490

ing its exceptional capability to elicit latent poten-491

tial from LLMs even with limited data. (2) WebR-492

Pro exhibits a more consistent and pronounced lin-493

ear performance increase with respect to the log-494

arithmic growth in training data, consistently out-495

performing IT Mix across all data scales. These496

results strongly validate the efficacy of WebR in497

efficiently leveraging training data to unlock and498

enhance the capabilities of LLMs.499

6.3 Domain Adaptation 500

We explore the potential of our proposed WebR 501

framework for domain adaptation by incrementally 502

incorporating domain-specific web documents into 503

the training data. Starting with general-domain 504

content, we progressively add domain-specific ma- 505

terials from math, code, medicine, and finance, as- 506

sessing performance across relevant benchmarks. 507

For the medical and financial domains, we utilize 508

raw web documents from IndustryCorpus2 (Shi 509

et al., 2024), and evaluate using MedQA (Jin et al., 510

2021) and FinBen (Xie et al., 2024) benchmarks. 511

As shown in Table 5, WebR demonstrates strong 512

adaptability across domains. Compared to the 513

IT Mix baseline, incorporating domain-specific 514

data consistently improves performance, with math 515

and code data yielding significant gains in MATH 516

(28.09) and HumanEval (51.39), and medical and fi- 517

nancial domains showing strong results on MedQA 518

(49.98) and FinBen (30.22). These results highlight 519

WebR’s ability to incorporate specialized knowl- 520

edge while maintaining competitive general- 521

domain performance. Furthermore, the process 522

of collecting domain-specific web documents is 523

straightforward, underscoring WebR’s practicality. 524

7 Conclusion 525

In this paper, we present Web Reconstruction 526

(WebR), a fully automated framework for synthe- 527

sizing high-quality instruction-tuning (IT) datasets. 528

Harnessing the richness of raw web content, we 529

conceptualize web reconstruction as an instruction- 530

tuning data synthesis task via a novel dual- 531

perspective paradigm—Web as Instruction and Web 532

as Response—where each web document is desig- 533

nated as either the input or output role to trigger 534

the reconstruction process. Extensive experiments 535

show that WebR-generated datasets consistently 536

outperform state-of-the-art baselines across four 537

instruction-following benchmarks and six diverse 538

downstream tasks. 539
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Limitations540

While WebR can already obtain satisfactory per-541

formance, there are several areas for improvement542

and future exploration. Firstly, the current imple-543

mentation of WebR focuses on single-turn data544

synthesis. Expanding this framework to support545

multi-turn conversations could further enhance its546

applicability to complex, interactive tasks. Second,547

due to constraints in time and computational re-548

sources, the size of the constructed WebR-Basic549

and WebR-Pro datasets is currently limited to 100k550

samples. However, given the vast availability of551

web documents—numbering in the trillions—the552

WebR framework has significant potential for scal-553

ing to create large-scale IT datasets, which could554

further boost performance. Finally, WebR does555

not incorporate advanced data selection techniques,556

such as Instruction Following Difficulty (IFD) (Li557

et al., 2024b), as part of its post-processing pipeline.558

Incorporating such techniques in future work could559

refine data quality and further enhance the capabil-560

ities of LLMs.561

Ethics Statement562

This study adheres strictly to the ethical principles563

established by the research community. The uti-564

lized IT datasets are reported to be safe and free of565

content that may contain discrimination, personally566

identifiable information, or any other undesirable567

behaviors. We have meticulously designed and568

curated our instructions for LLMs to ensure that569

all tasks are restricted to web reconstruction. This570

approach minimizes the risk of generating content571

that could raise ethical concerns.572
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A Implementation Details828

Our implementation is based on the alignment-829

handbook repo3. The training procedure was exe-830

cuted on 4 NVIDIA A800 GPUs, each equipped831

with 80GB of memory. The duration required to832

train a single instance of the model, specifically833

the Llama3-8B-base, was approximately 9 hours.834

The specific hyperparameters used during training835

are detailed in Table 6. Notably, all models were836

trained using the same set of hyperparameters, ex-837

cept for the maximum sequence length, which was838

set to 2048 for the 14B LLMs to mitigate computa-839

tional bottlenecks.840

Hyperparameter Value

Batch size 128
Learning rate 2e-5
Epoches 4
Max length 4096 (2048 for 14B LLMs)
Optimizer AdamW
Scheduler cosine
Weight decay 0
Warmup ratio 0.1

Table 6: Training hyperparameters for Llama3-8B-base
and Qwen2.5-1.5/3/7/14B-base.

B Evaluation Details841

Table 7 lists the evaluation details for AlpacaEval842

2 (Li et al., 2023), Arena-Hard (Li et al., 2024c),843

MT-Bench (Zheng et al., 2023), and IFEval (Zhou844

et al., 2023b). AlpacaEval 2 comprises 805 ques-845

tions from 5 datasets, and MT-Bench spans 8846

categories with a total of 80 questions. Arena-847

Hard is an enhanced version of MT-Bench, fea-848

turing 500 well-defined technical problem-solving849

queries. IFEval consists of 541 samples, each con-850

taining 1 to 3 verifiable constraints. Evaluation851

metrics are reported in accordance with each bench-852

mark’s protocol.853

C Dataset Analysis854

Statistics including token lengths of instructions855

and responses are illustrated in Figure 6. To-856

kens are counted using the tiktoken library4. For857

WebR-Basic, the average token lengths of instruc-858

tions and responses are 441.41 and 381.28, respec-859

3https://github.com/huggingface/
alignment-handbook

4https://github.com/openai/tiktoken

Figure 6: Lengths of instructions and responses in
WebR-Basic and WebR-Pro.

tively. For WebR, the average token lengths of 860

instructions and responses are 439.88 and 457.34, 861

respectively. 862

D Cost Analysis 863

Here we analyze the cost-effectiveness of our pro- 864

posed Web Reconstruction framework. For context, 865

we estimated the budget for data synthesis using 866

the GPT-4o-mini API, based on the Batch API’s 867

pricing of $0.075 per 1M input tokens and $0.3 868

per 1M output tokens. Table 8 lists the breakdown 869

of the estimated costs for each step, which demon- 870

strates that the overall expenditure ($38.57) is both 871

reasonable and manageable. 872

Additionally, our main experiment in Ta- 873

ble 1 demonstrates that the open-source 874

Llama3-70B-Instruct model can achieve 875

satisfactory performance for our proposed Web Re- 876

construction, significantly outperforming previous 877

IT datasets. Notably, Llama3-70B-Instruct can 878

be deployed on only 2 NVIDIA-3090 GPUs, with 879
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Benchmark # Exs. Baseline Model Judge Model Scoring Type Metric

AlpacaEval 2 805 GPT-4 Turbo GPT-4 Turbo Pairwise comparison Length-controlled win rate
Arena-Hard 500 GPT-4-0314 GPT-4 Turbo Pairwise comparison Win rate
MT-Bench 80 - GPT-4/GPT-4 Turbo Single-answer grading Rating of 1-10
IFEval 541 - - Rule-based verification Accuracy

Table 7: Evaluation details for AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024c), MT-Bench (Zheng
et al., 2023), and IFEval (Zhou et al., 2023b). The baseline model refers to the model compared against.

Avg. Input Avg. Output# of Samples Token Length Token Length Cost ($)

Generate author’s persona 100,000 523 32 4.88
Web as Instruction (instruction) 66,667 711 123 6.02
Web as Instruction (rollout response) 66,667 611 392 10.90
Web as Response (instruction) 33,333 645 91 2.52
Web as Response (rollout response) 33,333 91 522 5.45
Web as Response (refined response) 33,333 1,155 591 8.80

Total - - - 38.57

Table 8: Estimated budget for data synthesis using the GPT-4o-mini API.

the option to further reduce hardware requirements880

through low-bit quantization5. This provides an881

economical alternative for our proposed WebR. In882

conclusion, our framework demonstrates robust-883

ness in leveraging diverse LLMs for data synthesis,884

confirming its adaptability and effectiveness.885

E Prompt Template886

Figure 7 shows the prompt template for generating887

the author persona according to the web content.888

Figure 8 shows the prompt template for generating889

the rewrite request based on the whole web content.890

Figure 9 shows the prompt template for generating891

the rewrite request based on a specific part of the892

web content. Figure 10 shows the prompt template893

for generating the latent instruction corresponding894

to the whole web content. Figure 11 shows the895

prompt template for generating the latent instruc-896

tion corresponding to a specific part of the web897

content. Figure 12 shows the prompt template for898

generating a refined response based on the raw web899

and the instruction.900

5https://github.com/ollama/ollama
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[Text]
{web}

[Instruction]
The text above is from an English webpage. According to the text, please infer the author's profile (within 30 
words).

Prompt Template for Author Persona

Figure 7: Prompt template for generating author persona.

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
The text above is from an English webpage. Imagine that you are a user of an AI assistant, please provide a rewrite 
request specifically designed based on the text content, to create a new version of the text. You can ask for the 
rewrite to follow constraints including word/sentence/paragraph length, style, format, structure, etc. You should 
also follow the below rules:

- The rewrite request should strictly follow the profile of the author.
- The rewrite request should be based on the above text, rather than an isolated instruction.
- The constraints should be detailed and specific.
- Output only the request.
- Do **not** directly use the keyword 'rewrite' and 'new version' in the generated request.
- Make sure the generated request is within {len_limit} words.

Prompt Template for Web as Instruction (all)

Figure 8: Prompt template for Web as Instruction (generating the rewrite request based on the whole web content).

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
The text above is from an English webpage. Imagine that you are a user of an AI assistant, please provide a rewrite 
request specifically designed based on the text content, to create a new version of the text focusing on a specific 
part of information, rather than global information, in the given text above. You can ask for the rewrite to follow 
constraints including word/sentence/paragraph length, style, format, structure, etc. You should also follow the 
below rules:

- The rewrite request should strictly follow the profile of the author.
- The rewrite request should be based on the above text, rather than an isolated instruction.
- The constraints should be detailed and specific.
- Output only the request.
- Do **not** directly use the keyword 'rewrite', 'new version', and 'specific part information' in the generated 

request.
- Make sure the generated request is within {len_limit} words.

Prompt Template for Web as Instruction (part)

Figure 9: Prompt template for Web as Instruction (generating the rewrite request based on the specific part of the
web content).
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[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
Imagine that you are a user of an AI assistant, please provide the most likely request to which the text above 
would be a great answer. You should also follow the below rules:

- The request should strictly follow the profile of the author.
- Ensure your request is detailed, specific (including the style, format, and structure of the text), clear, and 

concise.
- Output only the request.
- Make sure the generated request is within {len_limit} words.

Prompt Template for Web as Response (all)

Figure 10: Prompt template for Web as Response (generating the latent instruction based on the whole web content).

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
Imagine that you are a user of an AI assistant, please provide the most likely request to which **a specific part of 
the text above** would be a great answer. You should also follow the below rules:

- The request should strictly follow the profile of the author.
- Ensure your request is detailed, specific (including the style, format, and structure of the text), clear, and 

concise.
- Output only the request.
- Make sure the generated request is within {len_limit} words.

Prompt Template for Web as Response (part)

Figure 11: Prompt template for Web as Response (generating the latent instruction based on the specific part of the
web content).

Based on the Provided Information, please improve the Answer to the Question, so that the improved answer is of 
high quality and factually correct. Only output the improved answer.

[Provided Information]
{web}

[Question]
{request}

[Answer]
{answer}

Prompt Template for Web as Response (Answer Refinement)

Figure 12: Prompt template for Web as Response (answer refinement).
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