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Figure 1: YoNoSplat, a versatile feedforward model for rapid 3D reconstruction. Given an arbitrary
number of unposed and uncalibrated multi-view images with wide spatial coverage, it predicts 3D
Gaussians and can also utilize ground-truth camera poses or intrinsics when available.

ABSTRACT

Fast and flexible 3D scene reconstruction from unstructured image collections re-
mains a significant challenge. We present YoNoSplat, a feedforward model that
reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary
number of multi-view images. Our model is highly versatile, operating effectively
with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat pre-
dicts local Gaussians and camera poses for each view, which are aggregated into
a global representation using either predicted or provided poses. To overcome
the inherent difficulty of jointly learning 3D Gaussians and camera parameters,
we introduce a novel mixing training strategy. This approach mitigates the entan-
glement between the two tasks by initially using ground-truth poses to aggregate
local Gaussians and gradually transitioning to a mix of predicted and ground-
truth poses, which prevents both training instability and exposure bias. We further
resolve the scale ambiguity problem by a novel pairwise camera-distance nor-
malization scheme and by embedding camera intrinsics into the network. More-
over, YoNoSplat also predicts intrinsic parameters, making it feasible for uncal-
ibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a
scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA
GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in
both pose-free and pose-dependent settings. The code and pretrained models will
be made public.

1 INTRODUCTION

Feedforward Gaussian Splatting (Charatan et all, 2024} [Zhang et all, 2025a) has emerged as a

promising direction for accelerating 3D scene reconstruction, directly predicting 3D Gaussian pa-
rameters (Kerbl et al 2023)) from input images. This approach bypasses the time-consuming per-
scene optimization required by methods like NeRF (Mildenhall et all, [2020) and the original 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023). However, the real-world applicability of existing
feedforward models is often constrained by restrictive assumptions, such as the need for accurate
camera poses (Charatan et al., 2024; [Xu et al., [2025), calibrated intrinsics (Ye et al., 2025} [Zhang
2025b), or a fixed, limited number of input views (Ye et al.| 2025} [Hong et al., 2024a).
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Figure 2: Effect of different global Gaussian aggregation strategies during training. (a) Ag-
gregating global Gaussians with predicted camera poses results in poor rendering quality because
errors in pose estimation and Gaussian learning compound each other. (b) Using ground-truth poses
introduces exposure bias (as indicated by the green arrow: training with ground-truth poses but test-
ing with predicted poses causes misalignment of local Gaussians across different views). (c) Our
mix-forcing training achieves high rendering quality in both pose-free and pose-dependent settings.

In practice, scene reconstruction needs to operate under flexible and unconstrained conditions: cam-
era poses may be unavailable or noisy, camera intrinsics unknown, and the number of images may
vary significantly. Designing a single model that generalizes across these diverse settings — varying
number of views, posed or unposed, calibrated or uncalibrated — remains an open challenge.

In this work, we introduce YoNoSplat, a feedforward model that reconstructs 3D scenes from an
arbitrary number of unposed and uncalibrated images, while also seamlessly integrating ground-
truth camera information when available. Recent pose-free methods (Ye et al., 2025} |Smart et al.,
2024) have shown impressive results on sparse inputs (2-4 views) by predicting Gaussians directly
into a unified canonical space. However, this approach struggles to scale to large numbers of views.
To ensure scalability and versatility, YoNoSplat adopts a different paradigm: it first predicts per-
view local Gaussians and their corresponding camera poses, which are then aggregated into a global
coordinate system.

This local-to-global design, however, introduces a significant training challenge: the joint learning
of camera poses and 3D geometry is highly entangled. Errors in pose estimation can corrupt the
learning signal for the Gaussians, and vice-versa. A naive approach that aggregates Gaussians using
the model’s own predicted poses, known as the self-forcing mechanism (Huang et al [2025)), leads
to unstable training and poor performance (Fig. 2h). Conversely, prior methods such as CoPoN-
eRF Hong et al.|(2024b) adopt a teacher-forcing strategy that relies solely on ground-truth poses for
aggregation, which decouples the tasks but also introduces exposure bias (Ranzato et al [2015). In
this case, the model is never trained on its own imperfect pose predictions, causing performance to
degrade at inference when it must depend on them (Fig. 2p). To resolve this dilemma, we propose
a novel mix-forcing training strategy. Training begins with pure teacher-forcing to establish a stable
geometric foundation. As training progresses, we gradually introduce the model’s predicted poses
into the aggregation step. This curriculum balances stability with robustness, enabling YoNoSplat
to operate effectively with either ground-truth or predicted poses at test time (Fig. [2).

A second fundamental challenge is scale ambiguity, which is particularly pronounced when ground-
truth depth is unavailable. This ambiguity arises from two sources: training data poses are often
defined only up to an arbitrary scale, and jointly estimating intrinsics and extrinsics is an ill-posed
problem without a consistent scale reference. Inspired by NoPoSplat (Ye et al., [2025), which high-
lighted the importance of camera intrinsics for scale recovery, we develop a pipeline that not only
uses intrinsic information but also predicts it, enabling reconstruction from uncalibrated images. To
address the data-level ambiguity, we systematically evaluate several scene-normalization strategies
and find that normalizing by the maximum pairwise camera distance is most effective, as it aligns
with the relative pose supervision used during training (Wang et al.| 2025c).

Extensive experiments show that our model, even without ground-truth camera inputs, outperforms
prior pose-dependent methods, highlighting the strong geometric and appearance priors learned
through our training strategy. The approach generalizes across datasets and varying numbers of
views, and reconstructs a complete 3D scene from 100 images in just 2.69 seconds.
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Our main contributions are as follows:

* We introduce YoNoSplat, the first feedforward model to achieve state-of-the-art performance in
both pose-free and pose-dependent settings for an arbitrary number of views.

* We identify the entanglement of pose and geometry learning as a key challenge and propose a
mix-forcing training strategy that effectively mitigates training instability and exposure bias.

* We resolve the scale ambiguity problem through an intrinsic-prediction-and-conditioning pipeline
and a pairwise distance normalization scheme, enabling reconstruction from uncalibrated images.

2 RELATED WORK

Feedforward 3DGS and NeRF. Original NeRF (Mildenhall et al.,[2020), 3DGS (Kerbl et al.,[2023),
and their variants (Miiller et al., 2022} [Barron et al., 2021} [Ye et al., 2023) require time-consuming
per-scene optimization. To address this inefficiency, numerous feedforward methods (Yu et al.,
20215 [Hong et al., 2024c; |[Zhang et al.| [2025a; |Charatan et al., 2024; |Chen et al.| [2024) have been
proposed. These approaches train neural networks on large-scale datasets to learn geometric and
appearance priors, enabling generalization to novel scenes. However, they typically require precise
camera poses as input and are restricted to a small number of input views (usually 2—4).

Several works relax individual constraints. For instance, Long-LRM (Ziwen et al., 2025)) and Depth-
Splat (Xu et al.| [2025) reconstruct scenes from multiple input images through a feedforward net-
work, but still rely on accurate camera poses. Recent pose-free methods (Ye et al., [2025; [Zhang
et al.l [2025b) can reconstruct Gaussian-based scenes from unposed images and even outperform
pose-dependent counterparts (Charatan et al.l 2024; |Chen et al.l [2024). Yet, they focus primarily
on dual-view inputs; while extendable to more views, they remain limited to scenes with sparse
coverage. These methods require known intrinsics and operate with a fixed number of views.

In contrast, our work addresses all these challenges simultaneously: we predict local 3D Gaussians,
camera intrinsics, and poses feedforward from an arbitrary number of unposed images. The most
similar effort is the concurrent AnySplat (Jiang et al.l [2025). However, AnySplat cannot leverage
available priors such as intrinsics or extrinsics, whereas our method flexibly incorporates them when
present. Furthermore, through a carefully designed training paradigm and pose-normalization strat-
egy, YoNoSplat achieves substantially stronger performance.

Feedforward Point Cloud Prediction. Another line of work closely related to ours is feedfor-
ward point cloud prediction models (Wang et al., [2024; 2025aic). DUSt3R (Wang et al., [2024)
demonstrated that a feedforward model trained on large-scale datasets can accurately predict cam-
era intrinsics and scene geometry without requiring optimization. Subsequent works extended this
idea to a larger number of input views (Wang et al.| [2025a}; [Yang et al., 2025} Wang et al., [2025c)
and to incremental feedforward reconstruction (Wang et al., 2025b). However, these methods cannot
be applied to novel view synthesis due to the discontinuous nature of point clouds. Moreover, they
all require ground-truth depth supervision during training. In contrast, by modeling 3D Gaussians
as the output representation, YoNoSplat supports both novel view synthesis and effectively utilizes
datasets that lack ground-truth depth, such as RealEstate 10K [Zhou et al.|(2018)).

3 METHOD

We introduce YoNoSplat, a method for the feedforward prediction of 3D Gaussians from multiple
images. Our approach supports a wide range of scene scales and can optionally utilize available
ground truth camera poses and intrinsics.

Problem Formulation. Given V unposed images (I¥)Y_; as input, where IV € R3>*>W our

objective is to learn a feedforward network 6 that predicts 3D Gaussians representing the underly-
ing scene. By learning geometric and appearance priors from the training data, our method directly
reconstructs new scenes without the need for time-consuming optimization. YoNoSplat do this
by first predicting per-view local 3D Gaussians that can be transformed into a global scene repre-
sentation using the given or predicted camera poses p¥. Specifically, the camera pose parameters
are defined as p¥ = [R",t"], where R" € R3*3 denotes the rotation matrix, t¥ € R? represents
the translation vector, and [-] indicates the concatenation operation. Furthermore, as described in
Sec. our network also predicts the camera intrinsics k”, thus can also eliminate the requirement
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Figure 3: Overview of YoNoSplat. (a) Features are extracted with a DINOv2 encoder, followed by
local-global attention across images, and finally used to predict camera poses and local 3D Gaus-
sians. (b) The Intrinsic Condition Embedding (ICE) module predicts intrinsic parameters (i.e., focal
length), which are then converted into camera rays and re-encoded as conditioning for Gaussian
prediction, thereby resolving scale ambiguity.

of camera calibration. Formally, we aim to learn the following mapping:

v _

fo : {I")} oy = {U (1, 05,75, 85, ¢5) kY P} - (1)
Here, (uj, 0,75, 85, cj) denote Gaussian parameters (Kerbl et al., 2023), representing the center
position, opacity, rotation, scale, and color, respectively. All parameters are initially predicted in
the local input camera views and can subsequently be transformed into a global representation using
either predicted or given camera poses.

3.1 ANALYSIS OF THE GAUSSIAN OUTPUT SPACE AND TRAINING STRATEGY

Output Space: Local vs. Canonical Prediction. A fundamental design choice for a feedforward
reconstruction model is its output space. Existing methods fall into two main categories. Pose-
free models such as NoPoSplat (Ye et al., 2025) and Flare Zhang et al.| (2025b)) predict Gaussians
directly in a unified canonical space, which naturally aligns the outputs from all views into a shared
coordinate system. In contrast, pose-dependent methods like pixelSplat (Charatan et al., 2024)) and
MVSplat (Chen et al., 2024)) predict Gaussians in a local, per-view space and rely on ground-truth
camera poses to transform them into the global world frame.

While canonical-space prediction is effective for a small number of views, its performance degrades
as the view count increases (see Tab. , an observation consistent with findings in related feed-
forward point-cloud prediction models (Wang et al.l 2025a). To ensure scalability and versatility,
YoNoSplat adopts a local prediction paradigm. We architect our model to predict per-view local
Gaussians alongside their corresponding camera poses. This design enables our primary goal of
pose-free reconstruction by using the predicted poses for aggregation, yet it also retains full compat-
ibility with pose-dependent workflows where ground-truth poses can be supplied. This flexibility is
critical for real-world applications, such as map reconstruction, where alignment with a pre-existing,
accurate pose distribution is required.

Training Strategy: Mitigating Pose Entanglement. Jointly predicting 3D Gaussians and camera
parameters is challenging, as errors in one corrupt the other. Using only predicted poses for aggre-
gation (self-forcing Huang et al.| (2025)) tightly couples the tasks, leading to unstable training and
degraded performance (Fig. 2] Tab.[5). Using only ground-truth poses (teacher-forcing (Williams
& Zipser, |1989)) provides a stable signal but causes exposure bias Ranzato et al.| (2015), since the
model never trains on its own imperfect predictions. To resolve this dilemma, we introduce a novel
mix-forcing training strategy that combines the benefits of both approaches. Our training curriculum
begins by exclusively using ground-truth poses (teacher-forcing) to allow the model to learn a stable
geometric foundation. After a predefined number of steps, Zart, the probability of using the model’s
predicted poses for aggregation is linearly increased, eventually reaching a final mixing ratio r at
step tena- This strategy effectively mitigates entanglement by first establishing a strong prior for the
3D structure and then gradually adapting the model to both its own predicted distribution and the
ground-truth pose distribution, thereby preventing training instability and exposure bias.

3.2 MODEL ARCHITECTURE

The overall architecture of YoNoSplat is shown in Fig. 3] We build upon a Vision Transformer
(ViT) backbone (Dosovitskiy et al., [2021)) and employ a local-global attention mechanism as in
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VGGT (Wang et al.,[2025a) for robust multi-view feature fusion, which scales more effectively with
a large number of input frames than the cross-attention used in prior works (Ye et al., 2025)).

Backbone Network. Input images (I?)Y_, are divided into patches and flattened into tokens. These
image tokens are concatenated with a learnable camera intrinsic token and processed by a ViT en-
coder with a DINOV2 architecture (Oquab et al., 2023). The encoded features then pass through a
decoder consisting of N alternating attention blocks (Wang et al., [2025ajc). Each block contains a
per-frame self-attention layer for local feature refinement and a global concatenated self-attention
layer where tokens from all views are combined to facilitate cross-frame information flow.

Gaussian Heads. Following (Ye et al., 2025)), we use two separate heads to predict the Gaussian
centers and all other parameters. Each head consists of M self-attention layers and a final linear
layer. To capture fine-grained detail, we upsample the backbone features by a factor of two before
feeding them to the heads and add a skip connection from the input image to combat information
loss from the ViT’s downsampling.

Pose Head. As discussed in Sec.[3.1] YoNoSplat first predicts local Gaussian parameters and then
uses either the given or predicted camera poses to transform them into a unified global coordinate
system. The camera head consists of an MLP layer, followed by average pooling and another MLP,
to predict a 12D camera vector following (Dong et al.| [2025; |Wang et al.,2025c])). This output vector
includes the camera translation ¥ and a 9D rotation representation (Levinson et al.|[2020), which is
converted into R using SVD orthogonalization. During training, we follow 7 [Wang et al. (2025c)
and supervise the camera pose with a pairwise relative transformation loss (see Sec. [3.4), ensuring
that our model remains invariant to the order of input images.

Intrinsic Head. Predicting camera poses requires cross-frame information and is thus performed
during the decoder stage. In contrast, predicting camera intrinsics can be inferred from individual
images. Therefore, we perform intrinsic prediction during the encoder stage. Additionally, con-
ditioning on camera intrinsics helps resolve the scale ambiguity problem, as detailed in Sec. 3.3
Specifically, we concatenate an intrinsic token with the input image tokens, which are then pro-
cessed by the encoder network, allowing the intrinsic token to aggregate image information. This
token is subsequently passed through an MLP layer to predict the camera intrinsics.

3.3 RESOLVING SCALE AMBIGUITY

Learning to predict Gaussians from video data encounters a scale ambiguity problem, arising from
two main factors: (1) training datasets often provide SfM-derived camera poses that are only defined
up to an arbitrary scale, and (2) jointly learning camera intrinsics and extrinsics is an ill-posed
problem. We address both factors.

Scene Normalization. The ground-truth poses in our training datasets Zhou et al.|(2018); Ling et al.
(2024) are obtained using SfM methods [Schonberger & Frahml (2016)), which are only defined up to
scale. To avoid scale ambiguity that could hinder learning, it is therefore necessary to normalize the
scene during training. Some point-cloud prediction methods Wang et al.| (2024; |2025a) normalize
scenes using ground-truth depth, but this is not feasible for datasets without depth annotations.

To address this, we propose and evaluate three normalization strategies:

1. Max pairwise distance: given camera centers {c;}¥ ;, compute d;; = ||¢; — ¢;|2, and set
s = max; j d;;, then normalize ¢; = ¢; /s.
. . . . _ 1 L i . AL .
2. Mean pairwise distance: use s = 5y—; > iz llei — ¢jl|2 and normalize as ¢&; = ¢;/s.

3. Max translation: set s = max; ||¢;||2 and normalize é; = ¢;/s.

As shown in Tab.[6] max pairwise distance normalization performs best and is critical to the model’s
success. Since we employ relative camera poses, normalizing by the maximum pairwise distance
ensures a consistent scale for camera translations during training.

Intrinsic Condition Embedding (ICE). As demonstrated in (Ye et al., 2025)), camera intrinsic in-
formation is crucial for resolving scale ambiguity. However, prior work required ground-truth intrin-
sics at inference time. To remove this dependency, we introduce our Intrinsic Condition Embedding
(ICE) module (Fig.[3b). Specifically, intrinsic parameters are first predicted after the encoder stage
using the initial intrinsic token, as detailed in Sec[3.2] Subsequently, to implement intrinsic condi-
tioning, the predicted parameters are transformed into camera rays (Ye et al.l 2025)), passed through
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Figure 4: Qualitative comparison on DL3DV (Ling et al., [2024). Here we present our results
in the pose-free, calibration-free setting, which still produce higher-quality novel view renderings

compared to the pose-dependent method DepthSplat (Xu et al., 2025).

a linear layer to obtain embedding features, and then added to the original image features. When
ground-truth intrinsics are available, we use them directly to provide more accurate conditioning
and thus achieve better performance. In their absence, we instead use the predicted intrinsics for
network conditioning. Notably, during training, we condition the network on ground-truth intrinsics
rather than the predicted ones. We also experimented with conditioning the decoder on intrinsics
predicted by the encoder, but this led to training instability and eventual failure.

3.4 MODEL TRAINING

Our models are trained with a multi-task loss as follows:

L= Eimage + /\intrin['imn‘n + )\pose['pose + /\opacityﬁopacity- 2

Rendering Loss. Following previous works (Chen et al.l 2024} [Ye et all,[2025), the rendering loss
Limage is set as a linear combination of Mean Squared Error (MSE) and LPIPS (Zhang et al., 2018)
loss, which is employed to optimize the Gaussians. During training, we randomly sample 4 target
views and render the corresponding images using their ground truth camera poses, and then the
rendered images are compared against the ground truth image.

Intrinsic Loss. The intrinsic loss Lingin is used to train the intrinsic prediction head, which is the 5
distance between the predicted focal length with the ground truth.

Pose Loss. Following (Wang et al. [2025¢), we supervise the pose prediction head with rela-
tive pose loss. Specifically, for each pair of input views (7, 7) and their predicted pose (P;,D;),
we first calculate their relative pose pi; = D; 1f>j. The loss is then calculated as Lpoe =
Ny Qi (LR(E55) + ALi(i, 7)), where N is the number of input views. Following
let all} 2025} [Wang et al.} [2025¢), the rotation Lg and translation losses £, are calculated as:

Lr(i, §) = arccos((tr ((Riej)TRiej) —1)/2), L(6,§) = Hs(biej — ticy). 3

Here, tr(-) denotes the trace of a matrix, and #;(-) calculate the Huber loss.

Opacity Loss. Since a Gaussian is predicted per pixel, the total number of Gaussians grows rapidly
as the number of views increases. To mitigate this issue, we apply an opacity regularization loss
following (Ziwen et al., 2025) to promote sparsity. Specifically, Lopaciy = 717 Zf\il |o;|, where
M is the total number of Gaussians. We then prune those with o; < 0.005. We observed that this
removes around 20% — 70% of the Gaussians, depending on the number of images and their overlap.

3.5 EVALUATION

For evaluation in the pose-dependent setting, we render the target view using the corresponding
ground-truth camera poses. In contrast, under the pose-free setting, the predicted camera space may
differ from the ground-truth poses obtained via SfM methods. To faithfully assess the quality of
Gaussian reconstruction, we follow prior pose-free approaches (Ye et al.| 2025} Wang et al.| 2021}
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Table 1: Novel view synthesis comparison under various input settings. We report results on
DL3DV |Ling et al.[(2024) with 6, 12, and 24 input views, where p, k, and Opt denote using ground-
truth poses, intrinsics, and post-optimization. Our method consistently outperforms previous SOTA
approaches, including the pose-dependent DepthSplat, even without prior information.

6v | 12v | 24v

Method p k Opt‘

| PSNRT SSIM1 LPIPS) | PSNRT SSIMT LPIPS| | PSNRT SSIM+ LPIPS |
MVSplat v v 22659 0760  0.173 | 21280 0709 0224 | 19975 0662  0.269
DepthSplat v v/ 23418 0797 0136 | 21911 0753  0.179 | 20088  0.690  0.240
Ours v Vv 24717 0817 0139 | 23285 0773  0.177 | 22.664 0758  0.192
NoPoSplat v 22766 0743 0.179 | 19380 0563 0318 | 17.860 0495  0.397
Ours v 24.887 0819 0138 | 23149 0758  0.183 | 22354 0731 0205
AnySplat 19.027 0554 0235 | 18940 0549 0262 | 19703 0596  0.249
Ours 24531 0.804 0142 | 22933 0746  0.187 | 22174 0720  0.209
InstantSplat v | 21.677 0627 0273 | 20792 0580 0316 | 18493 0510 0381
Ours v | 27533 0866  0.106 | 26126 0820  0.133 | 25855 0.814  0.136

Fan et al.| 2024)), which first predict the target camera poses and then render the images using these
predicted poses for evaluation. The prediction of target camera poses follows (Ye et al.,|2025)), which
optimizes the poses through a photometric loss based on the predicted 3D Gaussians.

Optional Post-Optimization. After YoNoSplat predicts 3D Gaussians and pose parameters, we
optionally perform a fast post-optimization. Specifically, we optimize the predicted camera poses
along with the Gaussian centers and colors, while keeping all other parameters fixed (see the ap-
pendix for details). The results in Tab. [T] show that this optional optimization can further improve
performance with a reasonable time cost.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train on RealEstate10K (RE10K) (Zhou et al., [2018) and DL3DV (Liu et al., 2021])
using the official splits. RE10K consists of indoor real-estate videos (67,477 train / 7,289 test).
DL3DV (Ling et al) [2024) contains 10,000 outdoor videos, 140 for testing. For evaluation on
RE10K, we keep test sequences with > 200 frames (1,580 sequences) and use 6 context views due to
the smaller scene scale. On DL3DV, we test with (6, 12, 24) input views and maximum frame gaps
(50,100, 150). For generalization, we evaluate the DL3DV-trained model on ScanNet++ (Yesh-
wanth et al.|[2023) by sampling (32, 64, 128) views per sequence with a fixed target view. Inputs are
selected by farthest point sampling over camera centers; 8 views are randomly held out as validation.

Implementation Details. YoNoSplat is implemented using PyTorch. The encoder employs the
DINOvV2 Large model (Oquab et al., 2023) with 24 attention layers, and the decoder consists of
18 alternating-attention layers. The parameters of the backbone, Gaussian center head, and camera
pose head are initialized from 3 (Wang et al., |2025c), while the remaining layers are initialized
randomly. During training, we randomly select the number of input views between 2 and 32 views
and sample 4 target views. We train models at two different resolutions, 224 x 224 and 280 x 518.
The 224 x 224 model is trained on 16 GH200 GPUs for 150k steps with a batch size of 2 for each,
while the 280 x 518 model is initialized from the pretrained 224 x 224 weights and further trained
on 32 GH200 GPUs for another 150k steps with a batch size of 1.

Evaluation Metrics. For the novel view synthesis task, we evaluate with the commonly used met-
rics: PSNR, SSIM, and LPIPS. For pose estimation, we report the area under the cumulative angular
pose error curve (AUC) thresholded at 5°, 10°, and 20° (Sarlin et al., 2020; [Edstedt et al., 2024).

Baselines. We compare against SOTA representative sparse-view generalizable methods on novel
view synthesis: 1) Optimization-based: InstantSplat (Fan et al.l [2024); 2) Pose-dependent: MVS-
plat (Chen et al., [2024), DepthSplat (Xu et al., |2025); 3) Pose-free: NoPoSplat (Ye et al., 2025)
and AnySplat (Jiang et al., 2025)). For relative pose estimation, we compare against SOTA methods:
MASt3R (Leroy et al., 2024), VGGT (Wang et al.,|2025a), and 3 (Wang et al.; 2025¢).

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Novel View Synthesis. To evaluate our method on complex real-world scenes, we test it on DL3DV

with varying numbers of input views, scene scales, and input priors. As shown in Table [T} our
model consistently outperforms previous SOTA approaches. Notably, YoNoSplat surpasses leading
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Method p | PSNRT SSIMT LPIPS |

k
DepthSplat v* v | 24.156  0.846 0.145
NoPoSplat vo| 22175 0.750 0.207
v
v

Ours v 25.037 0.848 0.134
Ours 25.395 0.857 0.131
Ours 24.571 0.823 0.144

NoPoSplat DepthSplat
Table 2: NVS comparison on the RE10k Figure 5: Qualitative comparison on
dataset (6 input views) under different prior RealEstate10K [Zhou et al (2018). Our

settings. Our model consistently achieves the pose-free, calibration-free method enables a

best performance. more coherent fusion of multi-view contents.
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Figure 6: Qualitative comparison on ScanNet++. YoNoSplat generalizes well to ScanNet++
and demonstrates more coherent fusion of Gaussians across different views compared to AnySplat.
Moreover, adding more inputs leads to better rendering quality, as more information is provided.

pose-free methods like NoPoSplat and AnySplat by a substantial margin. More strikingly, even
in the most challenging pose-free, intrinsic-free setting, our model outperforms the SOTA pose-
dependent method, DepthSplat, across all view counts. This highlights our model’s ability to learn
powerful priors that compensate for the lack of ground-truth camera information. Qualitatively,
Fig. ] shows that our reconstructions have better cross-view consistency, avoiding the artifacts and
inaccurate geometry seen in baselines. The results in Table [I] also reveal that as the number of
input views and scene scale increase (e.g., 12 and 24 views), providing ground-truth extrinsics can
further improve performance, acknowledging the inherent difficulty of pose estimation in large-scale
environments. Furthermore, a fast, optional post-optimization of the predicted Gaussians and poses
yields additional performance gains. On the indoor RealEstate]10K dataset (Table [2), our 6-view
model continues this trend, outperforming both pose-free and pose-dependent SOTA methods, as
shown qualitatively in Fig.[3]

We recommend that readers watch our supplementary videos for more results.

Cross-Dataset Generalization. To assess generalizability, we train YoNoSplat on the DL3DV
dataset and evaluate it on ScanNet++ without fine-tuning. We compare against AnySplat, which
is trained on ScanNet++. As shown in Tab, 8| our model significantly outperforms this baseline
across all metrics and view counts, despite AnySplat’s training-domain advantage. It is worth not-
ing that our performance consistently improves as more input views are provided, demonstrating
our model’s ability to effectively integrate additional information. The qualitative results in Fig. [f]
corroborate this, showing YoNoSplat produces significantly sharper and more coherent reconstruc-
tions, demonstrating a better fusion of information across different views. In contrast, the renderings
from AnySplat appear blurrier and contain more noticeable artifacts. These findings highlight our
model’s robust ability to generalize to novel datasets not seen during training.

Camera Pose Estimation. As shown in Tab. El, our model with small resolution input (224 x 224)
already achieves the best performance compared to state-of-the-art methods, while our model with
large input resolution (518 x 280) obtains the best performance compared to other state-of-the-art
approaches. Moreover, we evaluate our model trained on DL3DV but tested on RealEstate]10K
(indicated as DL3DV—REI10K in Tab. E), ensuring that none of the methods are trained on the
RealEstate 10K dataset. The results demonstrate that our method generalizes well and outperforms
all baselines, highlighting that training with a rendering loss also benefits pose estimation.
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Table 3: Generalization to ScanNet++. Trained on DL3DV and tested on ScanNet++, our model
outperforms AnySplat, despite AnySplat being trained on ScanNet++. Input images are sampled
from full sequences with a fixed target view, and our performance improves with more input views.

Method | 32v | 64v | 128v
| PSNRT SSIMT LPIPS| | PSNRT SSIM+ LPIPS| | PSNRT SSIM1 LPIPS |
AnySplat 14.054 0.494 0.468 15.982 0.551 0.412 16.988 0.583 0.386

Ours w/o GT k | 16.886 0.600 0.432 17.368 0.608 0.413 17.641 0.617 0.405
Ours w/ GT k 17.935 0.659 0.380 18.833 0.688 0.342 19.284 0.701 0.325

Table 4: Pose estimation comparison. Our method achieves the best pose estimation with a smaller
input resolution (224 x 224) and further improves with a larger resolution (518 x 280). We also report
zero-shot results on RE10k using a model trained exclusively on DL3DV (so that none of the models
are trained on RE10k); our method still outperforms all others.

Method DL3DV RealEstate 10K
54 10°1T 20°1T  5°1  10°1  20°1
MAS3R 518288 0.778 0.883 0.941 0.609 0.776 0.878
NoPoSplatass x 256 0.538 0.735 0.853 0.443 0.627 0.755
VGGT 518%280 0.700 0.848 0.924 0.566 0.753 0.867
T3 518%280 0.795 0.897 0.949 0.705 0.841 0916
Ourssog x224 0.833 0917 0958 0.722 0.852 0.923
Oursszy x224 (DL3DV—RE10K) - 0.74 0.859 0.924
Ourssisx 250 0.844 0.922 0961 0.813 0.904 0.951
Ourssisx250 (DL3DV—RE10K) - 0.78 0.884 0.939

Table 5: Mix-forcing achieves the best balance Table 6: Pose normalization. Max pairwise dis-
of pose-free and pose-dependent performance.  tance normalization leads to best performance.

Method Pose-dependent Pose-free Norm. PSNR 1 SSIM1 LPIPS |
PSNR SSIM LPIPS PSNR SSIM LPIPS max; ; di 25.212 0.848 0.133
Mix-forcing 25212 0.848 0.133 25587 0.854 0.130 mean;; di;  24.950  0.845 0.135
Self-forcing 24150 0.815 0.150 24.652 0.831 0.145 max; d; 22.739 0.756 0.184
Teacher-forcing 25228 0.850 0.131 25300 0.851 0.131 No Norm. 22.662 0.757 0.185

4.3 ABLATION STUDIES

For this ablation, we train the model with only 6 input views for faster training, without compromis-
ing generalizability. As a result, the performance is slightly better compared with Tab. [5]

Effectiveness of the Mix-Forcing Strategy. We compare mix-forcing with pure teacher-forcing
(ground-truth poses) and self-forcing (predicted poses). As shown in Table 5] self-forcing performs
worst in both settings, confirming that entangled pose—geometry learning causes instability. Teacher-
forcing excels with ground-truth poses but drops under pose-free evaluation due to exposure bias.
Mix-forcing balances these trade-offs, achieving the best pose-free results while remaining compet-
itive in the pose-dependent case, yielding a more robust and versatile model.

Importance of Scene Normalization. As discussed in Sec.|3.3] scene normalization is essential for
training on datasets with poses that are only defined up-to-scale. Tab. [6] demonstrates this empiri-
cally. Without any normalization, the model’s performance is severely degraded. We compare our
chosen strategy, normalizing by the maximum pairwise distance between camera centers, against
two alternatives: normalizing by the mean pairwise distance and by the maximum camera transla-
tion from the origin. The results clearly indicate that max pairwise distance normalization yields
the best performance. This is because it provides a consistent and robust scale reference for camera
translations that aligns directly with the relative pose supervision loss used during training.

5 CONCLUSION

In this work, we introduced YoNoSplat, a versatile feedforward model for high-quality 3D Gaussian
reconstruction from an arbitrary number of images, uniquely capable of operating in both pose-
free/pose-dependent and calibrated/uncalibrated settings. We address two key challenges: the en-
tanglement of geometry and pose learning, and scale ambiguity. Our novel mix-forcing training
strategy resolves the former by balancing training stability and mitigating exposure bias. For the
latter, we combine a robust max pairwise distance normalization with an Intrinsic Condition Em-
bedding (ICE) module that enables reconstruction from uncalibrated inputs. These contributions
significantly advance the flexibility and robustness of feedforward 3D reconstruction.
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A MORE IMPLEMENTATION DETAILS

Training. During the training process, we first randomly sample a clip from the training videos,
the context image are sampled with farthest point sampling based on camera centers from training
video clips to ensure sufficient input coverage. The target images are randomly sampled from the
whole video clip. We employ the AdamW optimizer (Loshchilov & Hutter, 2018)), setting the initial
learning rate for the backbone to 2 x 10~° and other parameters to 2 x 10~*. The weight of intrinsic
1088 Aintrin, pOse 10ss Apose, and opacity loss are set to 0.5, 0.1, and 0.01 respectively. For the mix-
forcing training, we set tstqrt = 80k, teng = 100k, and mixing ratio » = 0.1. Moreover, during
the training process, we skip the batches if the pose loss is larger than 1 to avoid abnormal input
sequences affect the training stability.

Evaluation. For comparison with baseline methods on novel view synthesis, we use the 224 x 224
version of our model to ensure a fair comparison, as it best aligns with the experimental settings of
the other baselines. Different prior methods adopt different input resolutions (e.g., MVSplat (Chen
et al.,|2024)) and NoPoSplat/Chen et al.[(2024) use 256 x 256, while DepthSplat (Xu et al., 2025) uses
256 x 448). Due to computational constraints and to avoid noise from in-house reproduction, it is not
feasible to retrain all baselines and our model at a unified resolution. However, we have taken care
to ensure that the comparisons remain fair and meaningful: 1) Our model has the smallest receptive
size among all compared methods. Since all methods first center-crop and then resize, square crops
result in minimal receptive coverage. We use this model for novel view synthesis comparisons to
maintain fairness. 2) Because our model has the smallest receptive size, we can center-crop and
resize the rendered outputs of other methods, ensuring that all comparisons are performed on the
same image content.

Optional Post-Optimization. This fast optimization step refines the predicted camera poses, Gaus-
sian centers, and colors for 200 iterations. We use learning rates of 0.005 for pose parameters, 0.0016
for Gaussian means, and 0.0025 for colors. The total optimization time varies with the number of
input views: 17.7s for 6 views, 51.1s for 12 views, and 165s for 24 views.

B MORE EXPERIMENTAL ANALYSIS

B.1 ON THE UTILITY OF GROUND-TRUTH POSE PRIORS

A noteworthy and somewhat counter-intuitive result emerges from our experiments, as shown in
Tables [T[jand 2] In settings with a small number of input views (e.g., 6 views), our model operat-
ing in the fully pose-free setting outperforms its pose-dependent counterpart, which is supplied with
ground-truth camera poses. We hypothesize that this is due to the inherent noise and potential incon-
sistencies within the “ground-truth” poses themselves, which are typically derived from Structure-
from-Motion (SfM) pipelines. For sparse-view reconstructions, minor inaccuracies in StM poses can
lead to subtle misalignments when aggregating local Gaussians. In contrast, our pose-free model is
optimized end-to-end to produce a set of camera poses and a 3D representation that are maximally
photometrically consistent with each other. This internal self-consistency can lead to higher-quality
renderings than forcing the model to align with a slightly imperfect ground-truth coordinate system.
Moreover, the slight misalignment of the target pose also contributes to this.

However, this trend reverses as the number of input views and the scene scale increase (see Tab. EI)
For larger view counts (e.g., 12 and 24), the pose-dependent setting regains its advantage. This
occurs because pose estimation becomes more challenging as the scene scale increases, whereas
StM-based ground-truth poses provide a strong geometric prior. This analysis highlights the ro-
bustness of our model: it can learn priors strong enough to compensate for noisy ground-truth data
in sparse-view scenarios, while also effectively leveraging ground-truth pose information when the
scene scale is large.

B.2 ABLATION ON OUTPUT GAUSSIAN SPACE
As discussed in Sec. [3.1] a fundamental design choice is the output representation space. We com-

pare our approach of predicting Gaussians in a local, per-view space against the alternative of pre-
dicting them directly into a unified canonical space. Tab.[/|shows that the local prediction strategy
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Table 7: Comparison of Gaussian representations. Local Gaussian performs better on the 6-view
setting.

Representation \ PSNR1 SSIM1 LPIPS |

Local Gaussian 25.587 0.854 0.130
Canonical Gaussian | 24.104 0.819 0.172

(a) Number of Gaussians vs Views (b) Memory vs Views
25] —— No Prune —e— No Prune
AnySplat 20 AnySplat
—&- Ours —*- Ours

= = N
o (5] o

Number of Gaussians (x1M)

(6]

20 40 60 80 100 120 20 40 60 80 100 120
Number of Views Number of Views

Figure 7: Scalability with respect to the number of input views. (a) Average number of Gaussians
and (b) memory usage on the ScanNet++ evaluation set when varying the number of input views.
“No Prune” denotes vanilla per-pixel Gaussian prediction without any pruning, “AnySplat” [Jiang
et al.[(2025) uses voxel-based pruning, and Qurs uses opacity-based pruning.

significantly outperforms the canonical one on all metrics. This result empirically validates our hy-
pothesis that predicting in a local space is more scalable and robust, especially as the number of
views increases, as it avoids the difficulty of forcing a single network to align features from multiple
views into one arbitrary coordinate frame.

B.3 IMPACT OF INTRINSIC CONDITION EMBEDDING (ICE)

Table 8: Effect of ICE Module. Using the intrinsics predicted by our model leads to better perfor-
mance compared to training without intrinsic conditioning.

| PSNRT SSIM?1 LPIPS |

GT Intrinsic 25.587 0.854 0.130
Pred Intrinsic | 24.711 0.825 0.141
No Intrinsic 24.481 0.813 0.149

Table @evaluates three inference scenarios: (1) ground-truth intrinsics, (2) predicted intrinsics, and
(3) no intrinsic conditioning. Removing intrinsics causes a clear performance drop, confirming their
importance for resolving scale ambiguity. Using predicted intrinsics significantly outperforms the
no-intrinsic baseline and comes close to ground-truth, demonstrating that ICE enables high-quality
reconstruction even from uncalibrated inputs.

B.4 SCALABILITY IN GAUSSIAN NUMBER AND MEMORY

To compare the efficiency of our opacity-based pruning with vanilla per-pixel Gaussian prediction
and AnySplat, we evaluate all methods on the ScanNet++ dataset while varying the number of in-
put views. For each setting, we report the average number of Gaussians and the corresponding
memory consumption over all scenes in the evaluation set. As shown in Fig. [7] the “No Prune”
baseline exhibits a rapid growth in both Gaussian count and memory as the number of views in-
creases. AnySplat mitigates this growth using voxel-based pruning, but still requires a large number
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Table 9: Sparse-view novel view synthesis on RealEstate10K using only 2 or 3 input views.
Our method matches or surpasses prior approaches with 2 views and achieves a clear margin over
NoPoSplat when 3 views are available.

2 view 3 view
Method PSNRT SSIM{ LPIPS| PSNRf SSIM{ LPIPS|

pixelNeRF  19.824  0.626 0.485 - - -
pixelSplat ~ 23.848  0.806 0.185 - - -
MVSplat 23977  0.811 0.176 - - -
NoPoSplat  25.033  0.838 0.160  26.619 0.872 0.127
Ours 24917  0.834 0.154  27.528 0.892 0.106

—e— Pose-Free
25.63 Pose-Dependent

25.59

12523 2521

25.01 25.06
25.00

24.8
24.82

000 005 010 015 020 025 030 035 040
Mixing Ratio r

Figure 8: Effect of the mixing ratio 7. PSNR on the RealEstate10K dataset with 6 input views
under pose-free and pose-dependent settings as a function of the training hyperparameter ». We
choose r = 0.1 as it provides a good trade-off, improving pose-free performance while keeping
pose-dependent performance nearly unchanged.

of Gaussians. In contrast, our opacity-based pruning strategy significantly reduces the number of
Gaussians and memory usage across all view counts, achieving better scalability than both baselines
while preserving reconstruction quality.

B.5 SPARSE-VIEW NOVEL VIEW SYNTHESIS

To assess robustness under extremely sparse observations, we evaluate YoNoSplat on RealEstate1 0K
using only 2 or 3 input views. As reported in Tab.[9] our model remains strong in this sparse-view
setting. With only 2 views, YoNoSplat attains comparable PSNR/SSIM to the previous state of
the art, NoPoSplat, while achieving a lower LPIPS (0.154 vs. 0.160), indicating better perceptual
quality. When 3 views are available, YoNoSplat clearly outperforms NoPoSplat across all metrics.

B.6 ABLATION ON THE MIX RATIO

We evaluate novel view synthesis performance (PSNR) under both pose-free and pose-dependent
settings across different values of the mixing ratio . Results in Fig. [§] show that larger values of
r (e.g., r = 0.2) further improve pose-free performance but substantially degrade pose-dependent
performance. We therefore choose » = 0.1, which provides a good trade-off: pose-dependent perfor-
mance remains nearly identical to that of » = 0, while pose-free performance improves noticeably.
Overall, pose-free performance consistently increases for moderate values of r (r < 0.3), whereas
pose-dependent performance is stable around » = 0.1 and gradually decreases as r increases.
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'

GT W/O Prune W/ Prune i GT W/O Prune W/ Prune
(a) Thin Structure (b) Specular/transparent Surfaces

Input GT W/O Prune W/ Prune W/O Prune W/ Prune Input
(c) Wide Baselines

Figure 9: Effect of Gaussian pruning under challenging conditions. We compare models without
pruning and with pruning applied on (a) thin structures, (b) specular and transparent surfaces, and
(c) wide-baseline views. In all cases, pruning does not introduce visible degradation, and the results
remain visually consistent with the ground truth.

Table 10: Effect of noise in camera intrinsics on novel view synthesis. We perturb the intrinsic
parameters by different relative noise levels and report performance with and without intrinsic con-
ditioning.

Metric No GT Intrinsic 0% 5% 10% 15% 20%

PSNR 1 24.711 25.587 24913 23.681 22.646 21.942
SSIM 1 0.825 0.854 0.834 0786 0.742  0.712
LPIPS | 0.141 0.130  0.138  0.157 0.179  0.199

B.7 ANALYSIS OF GAUSSIAN PRUNING

We analyze the impact of our Gaussian pruning strategy on reconstruction quality across challeng-
ing visual conditions, including thin structures, specular or transparent surfaces, and wide-baseline
viewpoints. These scenarios are known to be sensitive to over-pruning, as removing geometrically
important but weakly activated Gaussians may potentially degrade fine details or appearance con-
sistency. Fig.[9]shows qualitative comparisons between novel views without pruning and those with
pruning applied, along with the ground truth. We observe that the rendering quality remains visually
indistinguishable after pruning in all tested cases. In particular, fine geometric structures (e.g., lamp
stands), reflective or transparent objects (e.g., glassware), and scenes with extremely wide cam-
era baselines are preserved without noticeable artifacts or loss of details. Quantitatively, we prune
Gaussians whose opacity satisfies o; < 0.005. After pruning, the average PSNR drop over the entire
evaluation set is less than 0.01 dB compared to the unpruned model. This confirms that the removed
Gaussians contribute negligibly to the final rendering and that our pruning strategy does not sacrifice
reconstruction accuracy, even under difficult imaging conditions. Overall, this study demonstrates
that our Gaussian pruning method is both safe and effective: it significantly reduces the Gaussian
number while preserving high-fidelity reconstruction quality.

B.8 EFFECT OF INTRINSIC NOISE ON CONDITIONING

We first investigate how noisy camera intrinsics affect the benefit of our intrinsic conditioning. As
shown in Tab. small perturbations (e.g., 5% noise) are handled well: the model with noisy in-
trinsics still outperforms the No GT Intrinsic baseline across all metrics, and remains close to the
clean-0% setting. When the noise level becomes larger (> 10%), performance naturally degrades,
since incorrect physical cues misguide the reconstruction. Nevertheless, these noise levels are sub-
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32 Views 64 Views 128 Views 32 Views 64 Views 128 Views

Ours w/o p AnySplat

Ours w/ p

Ground Truth

Figure 10: More qualitative comparison on ScanNet++. YoNoSplat demonstrates strong general-
ization to the unseen ScanNet++ dataset, producing more coherent reconstructions than AnySplat by
better fusing multi-view Gaussians. The quality improves as more input views are provided (left to
right). Notably, while our model performs well without priors (Ours w/o p.), providing ground-truth
intrinsics (Ours w/ p.) further enhances generalization and fusion, leading to the highest fidelity
results.

stantially higher than those produced by standard calibration pipelines, where intrinsic errors are
typically much smaller. Therefore, our conditioning remains robust in realistic scenarios.

C LIMITATIONS

Our method leverages a feedforward approach to reconstruct wide-coverage scenes from an arbitrary
number of unposed images. However, the maximum number of input views is constrained by GPU
memory. Therefore, an interesting future direction is to explore incremental feedforward reconstruc-
tion (Wang et all, 2025b). Moreover, as shown in Tab. [I] pose optimization can still substantially
improve the performance of our Gaussians, indicating that the current feedforward model has signif-
icant potential for further enhancement. We also observe that drastic illumination changes between
views (e.g., day vs. night) can break photometric consistency, leading to geometric inaccuracies and
floating artifacts. Future work could address this issue by explicitly training on datasets with diverse
illumination conditions.

D MORE VISUAL COMPARISONS

Here, we provide more qualitative comparisons on the ScanNet++ (Yeshwanth et al) [2023),
RealEstate 10K (Zhou et al., 2018), and DL3DV (Ling et al [2024) datasets. As shown in Fig.
Fig.[T1] and Fig.[I2] our pose-free method con51stently outperforms the previous SOTA pose- free
method, NoPoSplat 2025). Moreover, we can even achieve superior novel view ren-
dering quality compared to SOTA pose-required methods (Chen et al, 2024} Xu et al, 2025)) and

optimization-based methods 2024).
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E USE OF LARGE LANGUAGE MODELS

We use LLMs solely for improving grammar, wording, and overall readability of the manuscript.
The model is not used for ideation, experimental design, implementation, or analysis. All technical
content, methodology, and results are original and developed entirely by the authors.
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Input Views Ours NoPoSplat DepthSplat

Figure 11: Qualitative comparison on RealEstate10K (Zhou et al.,2018). Our method achieves
high-quality novel view synthesis compared with the previous SOTA pose-required method

20235) and pose-free method 2025).
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GT Ours AnySplat NoPoSplat MVSplat InstantSplat DepthSplat

Figure 12: Qualitative comparison on DL3DV (
state-of-the-art optimization-based (Fan et al, [20

Ling et al.,[2024). We compare our method with
24), pose-required (Chen et all, 2024} [Xu et al]

[2025), and pose-free (Ye et al. [2025; Jiang et al., [2025) methods. Here, the results of our method

are obtained under the pose-free, intrinsic-free setting. The results demonstrate that our method
generates novel view images of higher quality than these methods.
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