
FITTING STOCHASTIC LATTICE MODELS USING APPROXIMATE
GRADIENTS

Jan Schering1, Sander Keemink2,*, and Johannes Textor1,*

1Institute for Computing and Information Sciences, Radboud University
2Donders Institute for Brain, Cognition and Behavior, Department of AI, Radboud University

*These authors contributed equally.

KEYWORDS

Simulation, Machine Learning, Lattice Models, Opti-
mization, Approximate gradient methods.

ABSTRACT

Stochastic lattice models (sLMs) are computational
tools for simulating spatiotemporal dynamics in
physics, computational biology, chemistry, ecology,
and other fields. Despite their widespread use, it
is challenging to fit sLMs to data, as their likeli-
hood function is commonly intractable and the mod-
els non-differentiable. The adjacent field of agent-
based modelling (ABM), faced with similar challenges,
has recently introduced an approach to approximate
gradients in network-controlled ABMs via reparam-
eterization tricks. This approach enables efficient
gradient-based optimization with automatic differenti-
ation (AD), which allows for a directed local search of
suitable parameters rather than estimation via black-
box sampling. In this study, we investigate the feasi-
bility of using similar reparameterization tricks to fit
sLMs through backpropagation of approximate gradi-
ents. We consider three common scenarios: fitting to
single-state transitions, fitting to trajectories, and iden-
tification of stable lattice configurations. We demon-
strate that all tasks can be solved by AD using three ex-
ample sLMs from sociology, biophysics, and physical
chemistry. Our results show that AD via approximate
gradients is a promising method to fit sLMs to data for
a wide variety of models and tasks.

INTRODUCTION

Stochastic lattice models (sLMs) are computational
tools for simulating spatiotemporal dynamics in both
out-of-equilibrium and stable systems (Haselwandter
and Vvedensky, 2008). They are applied in a wide
range of scientific fields including hydrodynamics
(Chopard and Droz, 2005), molecular morphogene-
sis (Dab et al., 1991; Malevanets and Kapral, 1997),
and cell biology (Szabó and Merks, 2013; Wortel et al.,
2021b). Replicating natural phenomena in silico via
sLMs requires calibrating their parameters to data.

Three problems make this task challenging. First,
sLMs are typically not analytically tractable, preclud-
ing the computation of likelihood functions. Second,
black-box optimization methods developed for deter-
ministic functions (e.g., covariance matrix adaptation
(Hansen et al., 1995)) cannot be easily applied (Beyer
et al., 2002). Finally, sLMs are discrete and hence
non-differentiable, preventing gradient computation.

Motivated by similar challenges, the adjacent field
of agent-based modelling has investigated methods
of constructing differentiable agent-based models
(ABMs) that are amenable to efficient gradient-based
optimization via automatic differentiation (AD) (An-
delfinger, 2023; Chopra et al., 2022). An especially
promising method is the combination of reparameteri-
zation tricks (Kingma and Welling, 2013) with straight-
through estimators (STEs) to attain approximate gradi-
ent estimates from non-differentiable, stochastic mod-
els (Chopra et al., 2022). Reparameterization tricks
enable differentiating through stochastic models with
respect to some parameters of interest. STEs approxi-
mate the derivatives of discrete operations during back-
propagation while upholding discreteness during sim-
ulation (Bengio et al., 2013). Combining the methods
provides a way to estimate the gradient of otherwise
non-differentiable functions.

A potential benefit over the state-of-the-art gradient-
free Bayesian methods used for parameter inference
(Alamoudi et al., 2023; Wang et al., 2022) is that it
allows for a local directed search for suitable param-
eters, rather than estimating entire parameter distri-
butions. The gradient information guides this local
search, whereas gradient-free methods such as ap-
proximate Bayesian computation (ABC) (Sisson et al.,
2018; Mengersen et al., 2013) rely on black-box sam-
pling. Thus, gradient-based optimization could con-
verge faster and result in better estimates, especially
for higher-dimensional models (Andelfinger, 2023).

Current research on gradient-based optimization of
ABMs has largely focused on network-controlled mod-
els (Chopra et al., 2022; Quera-Bofarull et al., 2023b;
Andelfinger, 2023). This class of ABMs is closely re-
lated to sLMs, though some key differences make the
transfer of the method challenging. In ABMs, differ-
entiable neural networks are used to learn the behavior



of an agent within an environment. In sLMs, however,
we calibrate the parameters of both the agent and the
environment itself, requiring approximate end-to-end
differentiability of the model. If successful, transfer-
ring the approach to the domain of sLMs can similarly
improve the efficiency of model calibration to data.

In this preliminary work, we provide a clear first
proof-of-concept of calibrating sLMs to data through
AD. We consider a range of model types and typical
calibration tasks and solve them using AD via approx-
imate gradients. Our contributions in this work are
the following, We:

1. identify and specify three common types of sLM
calibration tasks.

2. extend the use of reparameterization tricks from
network-based ABMs to the sLM framework.

3. implement three different sLMs from different do-
mains in a differentiable fashion using PyTorch.

4. show the feasibility of AD via approximate gra-
dients for the identified tasks by performing AD
on models taken from sociology, biophysics, and
physical chemistry.

RELATED WORKS

Historically, derivative-free gradient estimators have
been used to circumvent non-differentiability. The
simplest derivative-free method to estimate gradients
is finite-differencing (Shi et al., 2021). Sumata et al.
(2013) use finite-differencing to calibrate an sLM of
sea ice. However, finite-difference schemes can suffer
from an unboundedly high variance when applied to
stochastic models (Arya et al., 2022).

The currently most prominent class of methods
for parameter estimation of sLMs is likelihood-free
Bayesian inference. At the forefront is the ABC frame-
work (Alamoudi et al., 2023; Wang et al., 2022), which
constructs a distance measure between the summary
statistics of the data and then performs Bayesian infer-
ence via Monte Carlo sampling (Sisson et al., 2018;
Mengersen et al., 2013). ABC is a powerful tool
with several successful applications (Durso-Cain et al.,
2021; Carr et al., 2021; Beaumont et al., 2002).

More recently, Dyer et al. (2022) discusses alterna-
tive neural simulation-based inference methods for the
adjacent field of ABMs. These methods enjoy the ben-
efit of being generally more sample-efficient (Lueck-
mann et al., 2021) but are less amenable to theoretical
study due to their black-box nature. Specifically, the
impact of model misspecification is known and studied
for ABC methods Frazier et al. (2020) but less clear
for neural simulation-based inference. Early studies
suggest a significant deterioration in the performance
of the method under model misspecification (Cannon
et al., 2022). To combat this, Ward et al. (2022); Kelly
et al. (2023) suggest misspecification-robust exten-
sions to neural simulation-based inference.

Enabling the use of AD by approximating the gra-
dient has emerged from the hypothesis that directed

point estimates of the mode may be beneficial com-
pared to estimating full distributions. To this end,
Andelfinger (2023) have investigated the smoothing
of discrete transformations to approximate the gradi-
ent of ABMs. While delivering promising results, the
method scales exponentially due to branching effects.
Further, the efficient handling of stochasticity has not
yet been explored in-depth.

As an alternative, reparameterization of discrete dis-
tributions via Gumbel-softmax approximation (Jang
et al., 2016) in combination with STEs has been pro-
posed and investigated for network-controlled ABMs
(Quera-Bofarull et al., 2023a; Chopra et al., 2022).
Early studies on the robustness of this method in-
dicate that despite the lack of guaranteed unbiased
low-variance gradients (Huijben et al., 2022), it is
practically robust enough to enable accurate inference
(Quera-Bofarull et al., 2023b; Chopra et al., 2022).

In summary, a large body of recent research has
been dedicated to efficient calibration methods for
non-differentiable and analytically intractable mod-
els. Of growing interest are methods that are amenable
to gradient-based optimization via AD. To this end,
the combination of reparameterization tricks and STEs
to attain approximate gradients have shown promising
results for network-controlled ABMs. The applica-
tion of this approach to sLMs has not previously been
investigated but promises similar benefits.

APPROXIMATING THE GRADIENT OF SLMS

AD is a method to find the gradient of a model with
respect to some parameter by exploiting the chain
rule of derivatives. Representing the model as a com-
putational graph, gradient information is propagated
back through the graph in the form of partial deriva-
tives. Non-differentiability arises from certain types
of nodes not having a well-defined partial derivative
and thus blocking the backward flow of the gradi-
ent. sLMs generally consist of four types of nodes:
continuous/discrete deterministic, continuous/discrete
stochastic (Fig. 1).

Continuous deterministic nodes are differentiable,
while the other three types block the backward flow of
the gradient as shown on the left side in Fig. 1. We can
assume sLMs to mostly consist of differentiable nodes
with some key non-differentiable blocking nodes. The
challenge is to enable the backward flow of gradient
information through the blocking nodes.

Dealing with discreteness

sLMs commonly perform some form of discretization
to determine the new state of a given lattice site. The
derivative of every discrete transformation is 0 every-
where except for at the thresholds between categories,
thus no information passes through the derivative.

STEs (Bengio et al., 2013) bypass the ill-defined
partial derivative of discrete transformations by replac-
ing it during the backward pass with an approximate
derivative function (the STE). The simplest STE is the



Figure 1: Gradient flow can be re-enabled with a combi-
nation of reparameterization and STEs.
A We use an STE to estimate the gradient for discrete deter-
ministic nodes. B We apply the reparameterization trick
to differentiate through continuous stochastic nodes. C
Gumbel-softmax reparameterization combined with STEs
estimates gradients for stochastic discrete nodes.

identity function. The viability of identity STEs has
been shown in the context of spiking neuron models
(Tang et al., 2022). Thus, we choose to employ identity
STEs to approximate the gradient for discrete nodes.
The identity STE approach is illustrated in Fig. 1A.

Dealing with stochasticity

Stochastic nodes represent the sampling of variables
from a distribution. In sLMs, the shape of the distri-
butions usually depends on some subset of the model
parameters Θ. However, sampling operations do not
have a well-defined derivative. Hence, we cannot de-
termine the gradient with respect to the parameters
that determine the shape of the distribution.

The reparameterization trick (Kingma and Welling,
2013) removes the dependency of the sampling oper-
ation on the model parameters Θ. To achieve this, an
auxiliary random variable ϵ distributed by some distri-
bution p(ϵ) that does not depend on the model parame-
ters Θ is introduced. Then, we rewrite z = g(Θ, Xt, ϵ)
into a deterministic transformation g of the parameters,
the lattice state, and the auxiliary variable. The result
is equivalent to drawing a sample from the original
distribution, without the sampling depending on Θ.
An illustration of this is shown in Fig. 1B.

The Gumbel-softmax trick

The Gumbel-softmax (GS) trick (Jang et al., 2016)
combines reparameterization with STEs to estimate
the gradient of discrete stochastic nodes. For repa-
rameterization, auxiliary noise variables g1,2,...,n are
sampled from the Gumbel distribution G and added
to the log-probability of each class α1,2,...,n. Then,
softmaxing is applied. The result is a continuous ap-
proximation of the original categorical distribution.
The samples are then further discretized to one-hot
vectors using the arg max function. To enable gradi-
ent flow during the backward pass, an identity STE
replaces the derivative of the arg max function. The

GS gradient estimator approach is illustrated in Fig.
1C.

Implementing the approach in software

Each model was implemented using the PyTorch
library (Stevens et al., 2020) version 2.0.1. Py-
Torch is a modular Python framework that can be
applied to optimize algebraic models by providing
automatic differentiation tools (Paszke et al., 2017).
The code for all experiments and to reproduce figures
is available at https://surfdrive.surf.nl/
files/index.php/s/anTCyB2JV2FVq9X.

DEFINING SLM CALIBRATION TASKS

Calibration of sLMs to data encompasses various fit-
ting tasks, the applicability of which depends on the
type of model, available data, and the target charac-
teristics to emulate. It is thus beneficial if calibration
methods apply to a broad range of common tasks. In
this work, we consider the following three fitting tasks
representing some of the most common applications:

Transition fitting is the task of finding parame-
ters, such that the per-timestep behavior of the model
matches a set of observed transitions. This is applica-
ble whenever significant information can be inferred
from the transitory behavior of the model. An exam-
ple of this is found in epidemiology. Considering the
per-week spread of Covid within a given region, we
can try emulating the spread behavior. It is important
to simulate the transitory behavior with high fidelity
for the model to be useful in studying the spread of the
disease. Considering longer-term trajectories for infec-
tious diseases, on the other hand, does not necessarily
lead to an increase in predictability and can even have
adverse effects (Scarpino and Petri, 2019).

Trajectory fitting focuses on the longer-term behav-
ior of the model. It involves finding parameters such
that certain summary statistics of trajectories generated
by the model match a set of target statistics. Being able
to perform trajectory fitting is crucial for studying phe-
nomena in non-equilibrium systems. Most commonly,
when modelling real-world phenomena, the main inter-
est lies in the long-term behavior of the system which
transition fitting does not adequately capture. Due to
the stochasticity of the models, reproducing full trajec-
tories is unlikely. The goal, instead, is to match a set of
relevant summary statistics to a given target. Example
applications of this are systems that exhibit Brownian
motion such as stellar bodies (Merritt, 2013) or living
cells (Tsekov and Lensen, 2013) where one may aim
to match summary statistics such as the mean square
displacement (MSD) over time.

Stability fitting is the task of finding parameter con-
figurations for sLMs from which stable patterns arise.
For instance, the formation of such stable patterns from
an unstable initial configuration over time is an impor-
tant aspect of biological morphogenesis. Starting with
Turing (Turing, 1990), several reaction-diffusion mod-
els for the emergence of stable state patterns have been

https://surfdrive.surf.nl/files/index.php/s/anTCyB2JV2FVq9X
https://surfdrive.surf.nl/files/index.php/s/anTCyB2JV2FVq9X


proposed and studied (Ali and Saleem, 2023; Li et al.,
2015; Wang et al., 2011). Independent of the model
choice, these stable patterns have been shown to only
emerge for a small subset of the parameter space which
is hard to identify (Vittadello et al., 2021).

EXPERIMENTS

Transition fitting of a 1-parameter susceptible-
infected sLM

Transition fitting is the task of fitting a model to a
given set of state transitions – hence, we consider
only a single time step of the model. As an example,
we use a simple susceptible-infected (SI) sLM that
simulates the diffusive spread of a news item through
a population. The SI sLM depends on a single “spread
coefficient” that determines the rate at which the news
spread through the population. In this experiment, we
apply AD to recover the spread coefficient from a set
of observed transitions.

Model description We consider a spatial variation
of a Markov-chain model described in Conlisk (1976).
The sLM is defined as a binary 2D square lattice on a
periodic torus. Lattice sites in state 1 are considered
‘aware’ of the news while sites in state 0 are ‘unaware’.
We denote Li,j

t as the state of the lattice site (i, j) at
time t. Further, N i,j

t denotes the number of aware
sites in the Moore neighborhood of Li,j at time t. The
per-timestep transition likelihood can then be written
in a matrix as follows:

p(Li,j
t+1) =

1 0 Li,j
t /Li,j

t+1

1 1− (1− β)N
i,j
t 1

0 (1− β)N
i,j
t 0

(1)

Where p(Li,j
t+1) is a shorthand for the conditional

sampling distribution p(Li,j
t+1|L

i,j
t , N i,j

t , β) and β is
the spread coefficient. The first column of Eq. 1 en-
codes that news items cannot be forgotten once learned.
The second column models the likelihood of a lattice
site turning aware or staying unaware, depending on
the number of aware neighbors. At each time step, a
new value for each lattice site is simultaneously sam-
pled according to Eq. 1.

The differentiation problem in this case is that the
probability in Eq. 1 is discrete and the sampling steps
depends on the model parameter β. Hence, we cannot
differentiate through the model with respect to β. We
apply the GS gradient estimator, as described in Sec.
The Gumbel-softmax trick, to circumvent this issue.

Model training We collect four distinct sets of
training data by running reference simulations with
β = [0.05, 0.2, 0.4, 0.8]. For each target value, N
reference simulations are run and the state transitions
(Xt, Xt+1) are recorded. The simulations are initial-
ized with a single aware site in the center of the lattice
and run for τ steps. For β ≤ 0.4 we use τ = 50 and

N = 100. For β = 0.8, we use τ = 30 and N = 200
as the boundaries of the grid are reached faster.

The loss function being optimized is the pixel-
wise mean-squared error (MSE) between the predicted
states X̂t+1 ∼ pβ̂(Xt) and observations Xt+1. For
gradient optimization, minibatch stochastic gradient
descent (SGD) (Li et al., 2014) is applied to β̂ with a
batch size of 128 and a learning rate of 1e−7.

Training results Fig. 2 shows the results of fitting
the SI sLM to a range of different target values for
β. For each target value, a closely matching estimate
β̂ is successfully recovered. This shows that AD via
approximate gradients can successfully be used to per-
form transition fitting for sLMs.

Figure 2: Transition fitting the spread coefficient of a
simple SI sLM via AD can recover a close estimate of the
original β for a range of target values.
Each color refers to the results of fitting β to a given target
value (dotted lines) using SGD via approximate gradients.
The dashed lines show the estimate of β throughout the
optimization process.

Standing out from the results is that fitting β con-
verges significantly slower for higher values of β com-
pared to lower values. The reason for this is that for
higher spread coefficients the rate of spread saturates
and trajectories become very similar to another.

Trajectory fitting of a persistent random walk sLM

While transition fitting is a straightforward task that is
simple to define, in many sLM applications we will be
more interested in capturing the longer-term behaviour
of a system. A natural generalization of transition
fitting is to consider longer chains of transitions tra-
jectories. Due to the stochasticity of sLMs, our goal
is not to exactly reproduce a given set of trajectories;
instead, we seek to match some given set of summary
statistics between our model and the data.

As an example, we consider a persistent random
walk sLM. For sufficiently many steps, it is unlikely to
reproduce any given random walk sequence. Instead,
random walk models are typically fitted to summary
statistics such as the MSD over time of a given set of
trajectories. Here, we consider the movement of differ-
ent types of cells that are known to exhibit a persistent
random walk over time. Specifically, we apply AD via



approximate gradients to fit the parameters of a persis-
tent random walk sLM to the MSD collected in Wortel
et al. (2021a) for T cells, B cells, and Neutrophils.

Model description We model the persistent random
walk of an agent on a binary regular square lattice
as two independent random walks along the x and
y axes. At any given time t the agent is defined by
the pixel (i, j) it occupies and the current velocity
vx, vy ∈ {−1, 0, 1}. We define one Monte Carlo step
(MCS) as the combination of taking a step in both x
and y with the respective velocity.

At every MCS, we retain the velocity of the previ-
ous step with a probability 1 − presample. Thus with
a probability of presample, we resample the velocities
according to a distribution:

v =


−1, with p = (1 − pcenter)/2

0, with p = pcenter

1, with p = (1 − pcenter)/2

Both pcenter and presample are logit-transformed dur-
ing fitting for improved numerical stability.

The model contains two discrete sampling opera-
tions depending on the model parameters. First, the bi-
nary decision of resampling or keeping the current ve-
locity depends on presample. Second, sampling a new ve-
locity from the categorical distribution over {−1, 0, 1}
depends on pcenter. To make the model differentiable,
we approximate the gradient of the sampling opera-
tions using the GS gradient estimator as shown in Fig.
1C and described in Sec. The Gumbel-softmax trick.

Model training For each step of gradient descent
(GD), we simulate a batch of 1,500 lattices for 10 steps
to match the number of datapoints. As a loss function,
we calculate the sum of mean squared errors (MSEs)
between the MSD of the simulated batch and the target
MSD for every datapoint and take the sum of the errors.
We apply the Adam optimization scheme (Kingma and
Ba, 2014) with a learning rate of 0.01.

For the cell data we consider a dataset of trajectories
where the MSD is tracked periodically every 24 sec-
onds over a certain time frame of which we consider
the first ten datapoints. In the sLM of the cell data, we
define 1MCS = 24s as well as ∆x =

√
10µm. Limit-

ing the datasets to a comparatively small amount of 10
datapoints pronounces the persistence effects, which
vanish for larger time frames Fürth (1920). In addition
to the experimental data, we synthetically generate
an MSD curve with our model for known parameters
pcenter = 0.2, presample = 0.1 by simulating a batch of
15,000 trajectories over 10MCS each.

Training results Fig. 3A shows the results of recov-
ering the target parameters from synthetically gener-
ated data. Starting from bad initial guesses, the esti-
mated parameters converge to closely match the target
parameters after about 5,000 steps of gradient descent.

Figure 3: AD via approximate gradients can successfully
perform trajectory fitting on a persistent random walk
sLM to cell movement as well as recover parameters.
(A) AD via approximate gradients can recover parameters
by applying the method to synthetic data. (B),(C),(D) We
apply trajectory fitting using the MSD curve of (A) a set of T
cells, (B) a set of B cells (C) a set of Neutrophils over time.

Fig. 3B shows the results of fitting the sLM to a
dataset of T cell movement. Persistent brownian mo-
tion exhibits an initial non-linear ‘onramping’ phase
that transitions into quasi-linear growth over time. The
steepness of the onramping is mainly governed by the
resampling probability presample whereas the transition
time between onramping and linear growth is governed
by the probability of moving pcenter. After 10,000 steps
of Adam optimization, the MSD curve generated by
the optimized model closely matches the MSD curve
of the T cell dataset.

Fig. 3C,D show similar results for the experiments
using B cell data and Neutrophil data, respectively.
In each case, the data follows the persistent random
walk pattern of non-linear onramping transitioning into
quasi-linear growth of the MSD. We start from bad
initial guesses for the parameters, which produce MSD
curves that match neither the persistence pattern nor
the average displacement over time of the data. After
10,000 steps of Adam optimization in both cases, we
attain parameter estimates that produce MSD curves
closely matching those of the target data.

The results show that starting from bad initial pa-
rameters, we can successfully make use of AD via
approximate gradients to estimate a set of parame-
ters pcenter, presample for which the MSD curve closely
matches that of the target data. Hence, the results sug-
gest that AD via approximate gradients can be used
for trajectory fitting sLMs to data.

Stability fitting of a reaction-diffusion sLM for pat-
tern generation

Finally, we investigate applying stability fitting to a
reaction-diffusion sLM that produces stable patterns
for certain regions of the parameter space. Being able



to apply AD for this type of fitting would provide an
efficient way of locating the subspaces that generate
Turing patterns. Further, the training process can pro-
vide insights into the model, highlighting the impact
of the different parameters on pattern formation.

Model description We consider the “Malevanets-
Kapral” reaction-diffusion sLM introduced in Male-
vanets and Kapral (1997). It is a spatial reformulation
of the Fitzhugh-Nagumo equations (FitzHugh, 1961),
which simulates the reaction-diffusion of two chemi-
cal species over time. For an in-depth description of
the model we refer to Malevanets and Kapral (1997).
Generally, the Malevanets-Kapral sLM models per-
chemical concentration of two chemical species A, B
in space as a 2-layer square lattice L = (A,B). Ai,j

represents the concentration of species A at the lattice
site (i, j), whereas Bi,j denotes the concentration of
species B at the same lattice site. Every site has a
maximum capacity of N molecules per species. At
every time step, the model simulates:

1. Independent diffusion of A and B, governed by
the diffusion coefficients DA, DB

2. The reaction of A and B with each other, using
mass-action kinetics with reaction rates k1, k2, k3

The non-differentiability of this model stems from
two sources. First, at every lattice site a reaction hap-
pens with a probability depending on the reaction rate
of the corresponding reaction channel. We approxi-
mate the gradient by applying reparameterization in
combination with a STE. Second, diffusion involves
random direction sampling followed by translating
the grid in the chosen direction. To approximate the
gradient of the categorical sampling, we apply a GS
gradient estimator.

Additionally, a parameter γ scales the rate of the
reaction process to the diffusion process. In our exper-
iments, we fixed γ = 0.005. By iteratively applying
the two steps to the lattice, the reaction-diffusion pro-
cess of the two chemicals is simulated. For a subset of
parameters, this interaction generates stable patterns,
such as shown in Fig. 4. Here, we test:

E1 : Joint optimization of the model parameters
Θ = (DA, DB , k1, k2, k3)

E2 : Optimization of the reaction rates k1, k2, k3 for
fixed diffusion coefficients

E3 : Optimization of the diffusion coefficients
DA, DB for fixed reaction rates

We investigate whether reaction or diffusion rates
are more difficult to estimate, and whether joint opti-
mization of both is feasible.

Model training Pattern formation performance is
challenging to accurately capture in a loss function
(Vittadello et al., 2021). Inspired by the training strat-
egy used by Mordvintsev et al. (2020) for optimiz-
ing continuous “Neural Cellular Automata” models

towards generating stable patterns, we use pattern
maintenance as an alternative measure that is easily
quantifiable. Thus for each gradient step, the evolu-
tion of a given stable pattern Xref is simulated for τ
timesteps to produce Xref+τ . The pixel-wise MSE of
(Xref , Xref+τ ) then serves as a surrogate loss func-
tion. To validate how well this generalizes to pattern
formation, we perform pattern formation tests during
optimization using the current parameters. In each test,
we simulate a system starting from a uniform, unstable
state and observe if stable patterns emerge.

Each experiment is performed on 64 × 64 square
lattices on a periodic torus. For optimization, stan-
dard gradient descent is applied with a learning rate of
0.05. Each simulation is run for τ = 500 steps with
a reaction timescale γ = 0.005 and maximum capac-
ity N = 50. For experiment 2, we fixed k1 = 0.98,
k2 = 0.1 and k3 = 0.2, based on results reported in
Malevanets and Kapral (1997). Similarly, for experi-
ment 3 we fixed DA = 0.1 and DB = 0.4.

Training results For experiment E1, 6,000 steps of
gradient descent are shown in Fig. 4A. For the initial
parameters, no patterns are formed. After 3,000 steps,
the test sample shows an overall higher concentration
of species A with a small pattern in the spatial distribu-
tion. Finally, the test sample after 6,000 steps shows
clear patterns in the spatial distribution of species A.
Thus, the gradient-based fitting method has success-
fully identified a set of morphogenetic parameters.

Figure 4: Morphogenetic parameter configurations of the
Malevanets-Kapral model are found through gradient-
based stability fitting using AD.
A Joint fitting of the reaction rates and diffusion coefficients.
B Fitting of the diffusion coefficients for fixed reaction rates.
C Fitting of the reaction rates for fixed diffusion coefficients.
Top Row Samples of the pattern formation test. Depicted:
concentration of species A after simulation. Bottm Row
Parameter trace of the fitting process.

The results of experiment E2 are summarized in Fig.
4B. Compared to E1, the initial parameter configura-
tion does not produce a white noise pattern. Instead,
the concentration of species A appears to have con-
verged to maximum capacity for all lattice sites. This



state is stable, but no patterns are formed. After 4,000
steps the test sample shows a clear stable pattern in the
spatial distribution of species A.

The diffusion coefficients in E2 start with DA >
DB . After 500 gradient steps this relation is reversed
and after 4000 steps DB is roughly twice as large
as DA. Malevanets and Kapral (1997) note in their
analysis of the system that the ratio DB/DA needs to
exceed a critical value for labyrinthine stable patterns
to form, which is mirrored by the parameter trace.

Finally, the results of experiment E3 are shown in
Fig. 4C. Fitting the reaction rates takes significantly
fewer gradient steps than the diffusion coefficients.
After only 50 steps of gradient descent, the test sam-
ple shows the first patterns, albeit not appearing fully
stable. Then after 500 steps, clear stable patterns are
formed. Comparing the results of experiments E2 and
E3, fitting the reaction rates appears to be significantly
easier compared to fitting the diffusion coefficients.

Overall, the results of the experiments show that it
is possible to apply AD via approximate gradients to
identify regions within the parameter space of growth
sLMs that generate stable patterns. This was shown
for two types of parameters; diffusion coefficients and
reaction rates. While the results suggest that fitting
diffusion coefficients is more challenging, the method
was successful in both cases.

DISCUSSION

In this study, we investigated an alternative approach
for gradient-based optimization of sLMs, using AD
via approximate gradients. To this end, three common
types of fitting tasks pertaining to sLM were identified.
For each type, a series of experiments was performed
to investigate the viability of the proposed method.

Taken together, our experimental results show pre-
liminary evidence that AD via approximate gradients
is a viable and versatile strategy to fit sLM parameters
to data. As a proof of concept, we apply AD via ap-
proximate gradients to three simple models taken from
different domains of research that require different
fitting tasks. Further, we provide an easy-to-use code-
base that can be referenced for further experiments.

While gradient descent is often effective, it also
introduces new hyperparameters. The learning rate,
for example, can have a significant impact on conver-
gence (Jacobs, 1988). More sophisticated gradient
descent algorithms introduce additional hyperparam-
eters (Kingma and Ba, 2014). For large neural net-
works with millions of parameters, these additional
hyperparameters are a small price to pay for efficient
optimization. sLMs, however, usually have relatively
few parameters, and the number of hyperparameters
could easily be larger. In this scenario, we have simply
replaced the original estimation problem with another
one of possibly the same complexity. Further chal-
lenges of gradient-based optimization methods to con-
sider are convergence to local optima and the problem
of defining the right cost function.

In future research, we aim to apply the method to
more complex sLMs such as the Cellular Potts Model
for cells and tissues (Graner and Glazier, 1992). For
these more complex models, the performance of the
method should be compared to parameter calibration
via gradient-free calibration methods such as ABC.
While these methods are not directly comparable in
that they do not solve the same task (posterior infer-
ence compared to mode estimation), we could use for
example the wall clock time of the methods to establish
a comparison of efficacy for calibration.
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