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Abstract

This work addresses the challenge of providing
consistent explanations for predictive models in
the presence of model indeterminacy, which arises
due to the existence of multiple (nearly) equally
well-performing models for a given dataset and
task. Despite their similar performance, such mod-
els often exhibit inconsistent or even contradictory
explanations for their predictions, posing chal-
lenges to end users who rely on them to make
critical decisions. Recognizing this, we introduce
ensemble methods as an approach to enhance the
consistency of the explanations provided in these
scenarios. Leveraging insights from recent work
on neural network loss landscapes and mode con-
nectivity, we devise ensemble strategies to effi-
ciently explore the underspecification set – the set
of models with performance variations resulting
solely from changes in the random seed during
training. Experiments on five benchmark financial
datasets reveal that ensembling can yield signifi-
cant improvements when it comes to explanation
similarity, and demonstrate the potential of exist-
ing ensemble methods to explore the underspeci-
fication set efficiently. Our findings highlight the
importance of considering model indeterminacy
when interpreting explanations and showcase the
effectiveness of ensembles in enhancing the relia-
bility of explanations in machine learning.

1. Introduction
The rapidly increasing adoption of machine learning (ML)
models in a wide range of applications, including health-
care, finance, and criminal justice, underscores the need for
transparency and trust in automated decision-making. How-
ever, ensuring the consistency of explanations offered by
these models has proven to be a complex challenge with far-
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reaching implications, particularly in high-stakes scenarios,
where decisions carry a substantial impact on individuals
and society. This has led to the introduction of various
regulatory principles (AI-Rights, 2022; GDPR, 2018).

A key factor complicating the interpretability of predictive
models is model indeterminacy, which arises from the exis-
tence of multiple (nearly) equally well-performing models
for a given dataset and task. Despite comparable perfor-
mance, these models often provide inconsistent or even
contradictory explanations for their decisions (Figure 1).
Such explanatory multiplicity can severely undermine trans-
parency efforts, erode trust in automated decision systems,
or lead to potentially harmful outcomes in critical applica-
tions such as risk assessment or medical diagnosis.

For instance, in credit lending, a predictive model may be
employed to determine a person’s creditworthiness. In this
context, model indeterminacy can lead to inconsistent ex-
planations for different loan approvals or rejections. An
individual might be denied a loan based on one model’s
decision, while a nearly equally performing model might
provide a different explanation and approve the loan. In addi-
tion, if a model is periodically retrained without accounting
for indeterminacy, it may further exacerbate inconsistencies
and erode trust in the decision-making process.

This prompts us to investigate model indeterminacy in more
depth. Specifically, our work examines the underspecifica-
tion set (Brunet et al., 2022; D’Amour et al., 2022) – the
group of models whose performance variations arise solely
from changes to the random seed used in training. Equally
performing models in this set can each offer markedly differ-
ent explanations for a given input, and prior work has also
indicated a lack of correlation between the prediction of a
model and its explanation (Black et al., 2021; Brunet et al.,
2022). This raises some important questions. Do equally
performing ML models share common patterns in their ex-
planations, or is explanatory multiplicity largely arbitrary?
Do there exist systematic approaches that can be utilized to
align explanations, without compromising performance?

Motivated by these questions, we propose the use of en-
semble methods to mitigate explanatory multiplicity among
equally performing neural networks (Figure 1), and explore
the application of various ensemble methods towards im-
proving the consistency of explanations generated. Focusing
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Figure 1: Illustration of explanatory multiplicity between members of the underspecification set (model variation due only to random
seed). Left: softmax probabilities of neural networks trained on the two moons dataset, with test points depicted in black and white. All
models achieve similar performance on test data. Center: average pairwise angular difference between model explanations in the same
region of input space. Gradients with respect to the input, a proxy for many explanation techniques, are shown for a test point of high
disagreement (i.e. high angular difference) between models. Right: average pairwise angular difference between ensemble explanations.
Ensembles consist of 10 constituent models sampled from the underspecification set. Our findings indicate that ensembling results in
model alignment, promoting agreement between explanations in input space.

on neural networks is particularly relevant to this problem
setup, given their expressivity and ability to fit complex
functions. Neural networks of sufficient size can cover a
large range of predictors, even for relatively small tasks. Our
aim is to devise efficient ensembling strategies that can align
explanations across various diverse modes, while simulta-
neously requiring fewer pre-trained models to do so. Our
methods are informed by previous research on neural net-
work loss landscapes and existing explanation techniques.
More specifically, our overall contributions are as follows:

1. In §3, we propose ensemble strategies that target two
facets of the neural network loss landscape: local per-
turbations on model weights (§3.1); and global connec-
tions between models along paths of near-constant loss
(§3.2). We provide a toy illustration to demonstrate
how explanatory multiplicity can be mitigated through
both types of exploration (§3.3).

2. In §4.1, we perform ablations to understand the impact
of weight perturbations on explanations, finding that it
depends critically on the layer being perturbed.

3. In §4.2, we conduct experiments across five benchmark
financial datasets and three commonly used explana-
tion techniques, demonstrating that ensembles con-
structed through local or global exploration of the loss
landscape can yield significant improvements in terms
of average pairwise top-k1 similarity between explana-
tions. We showcase how a novel combination of both
local and global ensembling can yield performance
improvements up to fivefold over naive ensembling,
given a fixed number of pre-trained models.

While our experiments highlight the potential of ensembles
in alleviating the challenges posed by model indeterminacy,
the problem of providing consistent explanations for ML

1The k features in an explanation with largest absolute value.

models remains an ongoing area of research. This work
seeks to contribute to the development of more trustworthy
and reliable ML systems that can be implemented responsi-
bly in high-stakes, real-world applications, and provides an
empirical analysis of ensemble behavior in such regards.

2. Related Work
2.1. Underspecification and Model Indeterminacy

D’Amour et al. (2022) identified underspecification in ML
pipelines as a key reason for poor deployment behavior,
defining an ML pipeline to be underspecified when it can
return various distinct predictors with equivalently strong
test performance. They identify the resulting instability
as a distinct failure mode from issues arising from struc-
tural mismatches between training and deployment domains.
Similarly, Brunet et al. (2022) investigated the implications
of model indeterminacy on post-hoc explanations of pre-
dictive models, demonstrating that underspecification can
lead to significant explanatory multiplicity, and highlighting
that predictive multiplicity and epistemic uncertainty are not
reliable indicators of explanatory multiplicity. Both works
motivate the need to explicitly account for underspecifica-
tion in ML pipelines intended for real-world deployment.

2.2. Explanation Methods

Various explanation techniques have been proposed to pro-
vide interpretability for ML models, with some of the
most common being Saliency (Simonyan et al., 2013), its
smoothed counterpart SmoothGrad (Smilkov et al., 2017),
as well as local function approximators such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017).
Smoothgrad has been highlighted as particularly faithful to
the model being explained (Agarwal et al., 2022). Recent
efforts have been lent toward understanding the workings
and limitations of these methods. For instance, Krishna et al.
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Figure 2: Weight space visualizations of the methods we explore. Left: the underspecification set of (nearly) equally performing
models, trained with the same hyperparameters but different random initializations. Center: local weight perturbations to each of the
models in the underspecification set, forming regions of alternate predictors of similar performance. The perturbations are themselves
ensembled to form perturbed models. Right: global mode connectivity paths of near-constant loss, connecting different members of the
underspecification set. Vanilla ensembling of models increases explanation consistency but requires an impractically large number of
models. Our methods leverage ensembles formed by local weight perturbations and global mode-connected models to achieve better
explanation consistency with fewer models and computational overhead.

(2022) analyzed the disagreement between different expla-
nation methods for a fixed model, highlighting the challenge
of providing consistent explanations, while Han et al. (2022)
attempted to unify popular post-hoc explanation methods.

2.3. Deep Ensembles

Ensemble methods have traditionally served as potent tools
within ML, providing advantages such as reduced general-
ization error (Allen-Zhu and Li, 2023; Dietterich, 2000), ro-
bustness to adversarial examples (Yang et al., 2021), and un-
certainty estimation (Lakshminarayanan et al., 2017). How-
ever, analysis of ensembles alongside explanatory multiplic-
ity has only been briefly touched. Black et al. (2021) intro-
duced selective ensembles, which abstain from decisions in
regions of predictive uncertainty, in an effort to avoid contra-
dictory predictions and make explanations more consistent,
though with limited analysis on explanations explicitly. Li
et al. (2021) also proposed a cross-model consensus of expla-
nations to identify common features used by various models
for classification, finding correlations between consensus
score and model performance for vision tasks.

2.4. Loss Landscapes and Mode Connectivity

We are interested in leveraging known properties of neu-
ral networks to combat model indeterminacy and expedite
ensembling of the underspecification set. A key aspect in
this regard is understanding where high performing models
are located within the loss landscape. These were tradition-
ally viewed as lying in disjoint local minima, until Garipov
et al. (2018) and Draxler et al. (2019) demonstrated that
these minima could be connected via paths of near constant
loss in weight space, a concept dubbed mode connectivity.
This surprising result opened the door for a body of subse-
quent research, including applications of mode connectivity
in adversarial robustness (Zhao et al., 2020), discovery of
mode connecting volumes (Fort and Jastrzebski, 2019; Ben-

ton et al., 2021), and alignment of models in weight space
through permutation symmetries (Ainsworth et al., 2023;
Singh and Jaggi, 2020; Tatro et al., 2020). Although en-
semble methods feature prominently in this literature, their
application with respect to explanations has received very
little attention. Model indeterminacy and advances in loss
landscape understanding have emerged as recent, yet dis-
tinct developments, with the two existing almost in parallel.
The aim of this work is to serve as a catalyst for their conver-
gence, and bring about a unified exploration of both areas.

3. Ensemble Strategies
Inconsistency between explanations of different ML mod-
els poses a significant challenge, where choices as arbi-
trary as the random seed used during the training phase of
a deployed ML model can drastically affect the explana-
tion provided to a particular individual (Brunet et al., 2022;
D’Amour et al., 2022). Ensembling provides a promising
avenue for aligning explanations across similarly perform-
ing models. However, conventional or vanilla methods may
necessitate a prohibitively large number of models to do so.
In this context, the primary question driving our research is:

Can we maximize the explanation similarity
between two ensembles constructed from n

samples of the underspecification set?

This question underscores our exploration of ensemble meth-
ods towards bridging the gap between computational effi-
ciency and explanation consistency. Once a sufficiently
large underspecification set has been formed for a given
dataset and task, samples of equally performing models are
used to construct ensembles. We proceed to outline our
ensembling strategies (summarized in Figure 2).
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Figure 3: Heatmaps of explanation disagreement (average pairwise angular difference between model gradients) for the described
ensembling techniques, each constructed from four pre-trained models. Left: Baseline disagreements between equally performing models.
Observe high disagreement between gradients (dark arrows) for a given test point. Left Center to Right: the efficacy of vanilla ensembles,
ensembles via weight perturbation, and ensembles via mode connectivity on aligning explanations. For the same number of pre-trained
models, local perturbations or global connections demonstrate potential for superior alignment of gradients between ensembles.

3.1. Ensembles via Weight Perturbation

While we find that standard ensembling is capable of align-
ing the explanations of models from the underspecification
set, this often requires a large collection of pre-trained mod-
els. To reduce the number of models needed, we propose a
computationally cheap method that injects Gaussian noise
ϵ ∼ N (0, σ2) to the weights or biases of a given layer. Fig-
ure 2, Center, depicts this in relation to the other methods.

Constructing an ensemble using this method requires the
weights of n pre-trained models sampled from the under-
specification set, each denoted ωi. The method perturbs
each ωi a total of m times, leading to m variants of each
original model fωi

. We denote the collection of the m vari-
ants as the perturbed model fω̃i . Generating n of these per-
turbed models does not involve the computational expense
of training n × m distinct models from scratch. Instead,
we capitalize on the learned knowledge of the n pre-trained
models, exploring the local regions around their weights.

We draw inspiration from Smoothgrad (Smilkov et al.,
2017), which perturbs the input to stabilize gradient estima-
tion, providing an explanation of a smoothed approximation
to a noisy decision boundary. Our approach, in contrast,
smooths both the explanation and the boundary. Techniques
that perturb model parameters have been explored before,
in adversarial training (Wu et al., 2020), robust explanation
generation (Upadhyay et al., 2021), and more generally in
Bayesian learning (Gal, 2016; MacKay, 1992). Other con-
ceptually similar examples are dropout (Srivastava et al.,
2014), and stochastic weight averaging (Izmailov et al.,
2018). Informed by these works, we introduce weight per-
turbation as a computationally cheap ensembling strategy,
with the specific goal of enhancing explanation similarity.

3.2. Ensembles via Mode Connectivity

Instead of sampling locally around a single model in weight
space, we also consider global explorations between pairs of
models along constant paths of low loss found via mode con-

nectivity (Garipov et al., 2018). Quadratic Bezier curves pro-
vide a convenient parametrization of smooth paths, where
the curve denoted ϕθ(t) with endpoints ω1 and ω2 (sampled
from the underspecification set) is given by

ϕθ(t) = (1− t)2ω1 + 2t(1− t)θ + t2ω2, 0 ≤ t ≤ 1

Once such paths between pairs of models are obtained, en-
sembles can be constructed at little extra cost, most sim-
ply by uniformally sampling the scalar t, returning model
weights along the path (Figure 2, Right). To construct an
ensemble from n pre-trained models, we form connections
between n/2 non-overlapping pairs, before sampling along
these connections and ensembling the sampled weights. We
discuss the curve finding procedure in §4.

3.3. Illustration on a Toy Example

In Figure 3, we illustrate the problem of explanatory mul-
tiplicity on the two moons dataset, and visualize the effec-
tiveness of the described ensembling techniques in align-
ing the input gradients (saliency) of models. Observe that
while vanilla ensembles (Left Center) constructed from four
pre-trained models fωi demonstrate reductions in average
pairwise explanation difference compared to single models
(Left), ensembles constructed from four perturbed models
fω̃i

effectively smooth the explanation distribution, achiev-
ing significantly better alignment (Right Center). We note
similar smoothing effects for ensembles constructed via
mode connectivity (Right), again using four pre-trained
models i.e. two mode connected pairs.

The process of averaging the outputs of local weight pertur-
bations can be viewed as a mapping from the underspecifi-
cation set of original models, to a reduced set of perturbed
models, characterized by lower gradient variance. This
shrinking process necessitates fewer perturbed models to
reach convergence in explanation alignment. In contrast,
mode connectivity provides a more extensive traversal of the
underspecification set, charting a broad range along the path
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between two models. The following experiments demon-
strate the efficacy of both exploratory methods in real-world
scenarios. We find that their relative performance often
hinges upon the unique properties of the given dataset, the
explanation technique, and the particular model class used.

4. Experiments
To evaluate the effectiveness of these strategies in maximiz-
ing explanation similarity between ensembles, we conduct
experiments spanning five benchmark financial datasets,
three similarity metrics (each with a focus on distinct aspects
of explanation similarity), and three common explanation
methods. In this section, we outline the technical details
involved. In §4.1, we perform ablations to understand the
impact of local weight perturbations. In §4.2 we, showcase
the merits of both methods in maximizing the expected ex-
planation similarity between any two ensembles constructed
from n samples of the underspecification set, improvements
attained without compromising test accuracy. Our experi-
ments were conducted in Python (Van Rossum and Drake Jr,
1995) on standard consumer-grade CPUs,2 parallelized with
joblib (Joblib Development Team, 2020).

Datasets We use five publicly available financial datasets:
the Home Equity Line of Credit (HELOC) (FICO, 2018)
and German Credit (Dua and Graff, 2017) datasets both mea-
sure forms of credit risk, given input information regarding
a loanee; Adult Income (Dua and Graff, 2017) is used to
predict whether a person’s salary exceeds a threshold of
$50,000; Default Credit (Yeh and Lien, 2009) and Give Me
Some Credit (GMSC) (Freshcorn, 2022) involve predicting
the likelihood of a borrower defaulting on a loan, based
on a variety of financial and personal features. Categorical
features are one-hot encoded, and data is normalized to zero
mean and unit variance, in part to ensure that top-k feature
explanations are meaningful, and not skewed towards fea-
tures with smaller ranges. We fix a split of 80% of each
dataset for training, and 20% to evaluate explanations and
test accuracy. Full details are provided in Appendix A.1.

Model selection Our experiments use PyTorch (Paszke
et al., 2019) to implement feedforward neural networks with
fixed architectures: hidden layers of size 128, 64, and 16
are used, to provide sufficient capacity for the networks to
capture largely diverse, but equally performing functional
solutions. We use ReLU activations for the intermediate
layers and Softmax for the output. Model selection sweeps
are performed with RayTune (Liaw et al., 2018), to identify
the best performing model hyperparameters for a given
dataset. Full details are provided in Appendix A.2.

2Specifically, an 8-core/8-thread Apple M1 Pro chip and a
12-core/24-thread AMD Ryzen 9 5900X processor.

To explore the underspecification set, we train 1000 models
using the optimal hyperparameters found, changing only the
random seed that controls the initialization of each neural
network in weight space. We decide against randomly shuf-
fling the training data between epochs, focusing on the effect
of underspecification solely in terms of the random initial-
ization. We do not employ practices such as weight decay
or dropout, as these techniques could limit the expressivity
of the models and consequently constrain the variability of
explanations, obscuring our ability to test the effectiveness
of ensembling strategies in aligning diverse explanations.

Explanations We experiment with three common expla-
nation methods. Input gradients, or Saliency (Simonyan
et al., 2013), Smoothgrad (Smilkov et al., 2017), and
DeepSHAP (Lundberg and Lee, 2017). Specifically, we
seek to verify if our method offers benefits beyond those
provided by Smoothgrad, given its conceptual similarity to
weight perturbation. Given the widespread use of SHAP,
we experiment on DeepSHAP, which uses a selection of
background samples to approximate the conditional expec-
tations of SHAP, described in Lundberg and Lee (2017). In
the interests of compute, we limit the number of test inputs
being explained with DeepSHAP to 100. We note that the
same train/test samples are used for a given dataset, and that
DeepSHAP values reached convergence, eliminating any
potential source of variation in explanations themselves.

Explanation similarity metrics We are interested in com-
paring the explanations provided by two models for a given
input, and adopt existing top-k metrics to cover distinct
forms of agreement. Each metric takes a pair of top-k fea-
ture sets corresponding to the two explanations.

Sign-Agreement (SA) computes the fraction of top-k features
that appear in both explanations and share the same sign
(Krishna et al., 2022), and can be viewed as the overlap
between two top-k explanations, after accounting for the
direction of features (whether they contributed positively or
negatively to the model’s prediction). We modify two other
metrics taken from (Brunet et al., 2022):

Signed-Set Agreement (SSA) is binary (per-sample), and is 1
when the two model’s top-k feature sets contain the same
features and the features have the same signed value (the
order of the top-k features does not matter). SSA is a stricter
form of SA, and is satisfied if and only if SA evaluates to 1.

Consistent Direction of Contribution (CDC) is also binary
(per-sample) and requires that any feature that appears in the
top-k of one model has the same signed value if it appears
in the other model. CDC estimates the likelihood of a top-k
explanatory feature changing its contribution direction when
switching between pairs of roughly equivalent models. Such
changes can be confusing for end users or practitioners.
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Figure 4: Effect of σ on top-k SA scores (for input gradients and k = 5), and test set accuracy, for an increasing number of perturbations.
Left to Right: HELOC, German Credit, and Adult Income datasets, with noise added to first layer biases, weights, and weights,
respectively. Observe how explanation similarity may increase, even as test accuracy drops (one is not a strong indicator of the other).
Error bars represent the central decile of SA scores over 1000 individuals, and the interquartile ranges of accuracies over perturbed models.

Figure 5: Effect of σ on top-k SA scores (for input gradients and k = 5), and test set accuracy, over different layers perturbed 100 times.
Left to Right: HELOC, Default Credit, and GMSC datasets. Error bars represent the central decile of SA scores over 1000 individuals,
and the interquartile ranges of accuracies over perturbed models.

Mode connectivity implementation We implement mode
connectivity following the method outlined in Garipov et al.
(2018). This process involves training a curve between
two endpoints, which, while beneficial, introduces addi-
tional computational costs. An alternative is to train the two
endpoints from scratch, using identical hyperparameters to
those used for individual models. This approach requires
the same computational effort as independently training two
models, though is often faster due to internal paralleliza-
tion. The loss for each batch is calculated from a uniformly
random point sampled along the curve, and the weights of
the endpoints are then updated via backpropagation. We
confirm that this results in endpoint weights closely aligned
with those trained independently, serving as an effective
approximation of the mode connectivity process, and detail
our approach in Appendix C. Future work should strive to
further explore properties of the loss landscape in order to
expedite mode connectivity, building upon recent advance-
ments in the field (Ainsworth et al., 2023; Gotmare et al.,
2018; Singh and Jaggi, 2020; Tatro et al., 2020).

4.1. Impact of Weight Perturbation

We begin by performing ablations over the value of σ
used for weight perturbation, sampling 24 models without
replacement from the underspecification set of 1000 pre-
trained models. Each model is perturbed a number of times,
yielding 24 perturbed models (a form of ensemble gener-

ated from just one pre-trained model, described in §3.1). We
measure SA similarity of top-5 gradient features between
all

(
24
2

)
= 276 unique pairs of perturbed models, averaging

over all pairs, i.e. error bars correspond to individuals in
the test set. Test accuracy is computed using all test inputs,
with errors bars corresponding to the perturbed models.

These experiments aim to ascertain the impact of local
weight perturbations on explanation similarity and test ac-
curacy, thereby informing the optimal setup for our method.
Figure 4 indicates that perturbing the weights or biases of
the first layer with Gaussian noise ϵ ∼ N (0, σ2) can lead
to significant increases in explanation similarity (measure
between perturbed models). For instance, over values of
σ where test accuracy remains approximately constant, SA
scores on HELOC increase from around 0.62 to 0.74, by per-
turbing just 20 times the biases of the first layer (in general,
perturbing biases converged faster compared to weights).
These gains correspond to perturbing one model. The cu-
mulative effect of constructing ensembles from multiple
perturbed models, discussed in §4.2, leads to further gains.

We also investigate separately perturbing each layer of the
network (Figure 5), finding that explanation similarity de-
pends critically on the layer being perturbed3. We observe

3For clarity, our naming convention is that Layer 1 refers to
weights/biases between input and first hidden layer, Layer 2 refers
to weights/biases between first and second hidden layers, etc.
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Figure 6: Effectiveness of ensemble strategies in stabilizing explanations (top-5 SSA scores, input gradients, all datasets). Observe the
increases in similarity between ensembles when combining global (mode connectivity) and local (perturbation) explorations. Average and
Majority denote vanilla ensembles. Perturb, Connect, and Combine denote weight perturbation, mode connectivity, and their combination.

that the weights or biases of the first layer tend to be most
sensitive to perturbations, providing potential for improved
explanation similarity. For instance, SA scores do not signif-
icantly increase in Figure 5 when perturbing weights/biases
beyond the first layer. Further investigations, including full
ablations across all datasets, are located in Appendix B.

4.2. Comparison of Ensemble Techniques

We construct ensembles by randomly sampling 50 non-
overlapping sets of models from the underspecification set
(1000 pre-trained models). The size of each set differs per
experiment, with a maximum size of 20 pre-trained models
(covering all models). For a given k value and explanation
technique, we compute similarity scores between all

(
50
2

)
= 1225 unique pairs of ensembles, averaging over all pairs.
Thus, scores represent the range of probability values that
individuals have of satisfying certain criteria. For example,
SSA scores estimate the likelihood that individuals maintain
identical top-k features (ignoring ordering), when switching
between approximately equivalent models.

We also trial the combination of both weight perturbation
(perturb) and mode connectivity (connect), as a novel en-
sembling technique (denoted combine), which uniformally
samples models along each mode connecting path, and per-
turbs each of them. Results across all datasets, explanation
methods, and similarity metrics are in Appendix D.

Vanilla ensembles can eliminate explanatory multiplic-
ity, when sufficiently large Whether the distribution of
model explanations across the underspecification set has
low or high variance, the explanations between vanilla en-
sembles of sufficient size sampled from the set will even-
tually converge. We observe this convergence in Figure 6.
While vanilla ensembles of just 20 pre-trained models can-
not achieve perfect similarity in all cases, as the ensembles
grow in size we see a steady increase in average pairwise
SSA score (the strictest criterion). For GMSC, and vanilla

ensembles (blue and orange), the median probability of an
individual retaining the exact same top-k features when
switching between models increases from 50% to 95%.

Strategic ensembling reduces pre-training requirements
We demonstrate in Figure 6 that our ensemble strategies
consistently expedite the alignment of model explanations
i.e., require fewer pre-trained models to achieve a given
similarity score. The relative performance gains that we
achieve through either local (green) or global (red) explo-
ration often hinge upon the unique characteristics of the
given dataset, explanation technique, or model class used.
We observe that our approach of combining both forms of
exploration achieves superior performance in most cases.
Notably, to increase SSA scores to around 40% in HELOC,
from 0% for single models, vanilla ensembles required 12
pre-trained models (blue and orange). Conversely, the com-
bined exploration of mode connectivity and weight pertur-
bation required just 2 pre-trained models (purple). Similarly,
the number of pre-trained models required to surpass SSA
scores of 60% on Adult Income, can be reduced fivefold
from 20 to just 4. Table 1 showcases further examples in
which our methods comprehensively improve explanation
similarity across SA, SSA and CDC metrics, for ensembles
constructed with four pre-trained models. Note that the
CDC metric typically returned 1 for top-5 explanations, and
is the least strict of the three metrics. We instead consider
top-d, computing CDC over all d features in each dataset.

Ensembling increases test accuracy A well known prop-
erty of ensembles is their ability to reduce generalization
error (Dietterich, 2000; Allen-Zhu and Li, 2023), and we
observe the same results in our experiments. Our value of σ
was chosen to maximize similarity, but with the constraint
that the test accuracy does not drop by more than 1%. In
most cases, our ensembling methods achieved similar test
accuracies to vanilla ensembles, with test accuracy exceed-
ing standard ensembles by up to 1% in some cases.
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Table 1: Results of explanation alignment for Smoothgrad and DeepSHAP, across all datasets and similarity metrics. Ensembles are
constructed from just four pre-trained models. Explanation agreement between single models sampled from the underspecification set are
shown for reference. We report mean values alongside standard deviation. Best values are shown in bold.

Dataset Ensemble Method ——————– Smoothgrad ——————– ——————— DeepSHAP ———————–
Top-5 SA Top-5 SSA Top-d CDC Top-5 SA Top-5 SSA Top-d CDC

HELOC
(23 features)

Single 0.65 ± 0.09 0.06 ± 0.06 0.01 ± 0.01 0.75 ± 0.09 0.18 ± 0.17 0.02 ± 0.02
Vanilla 0.81 ± 0.08 0.25 ± 0.19 0.09 ± 0.09 0.84 ± 0.09 0.39 ± 0.27 0.09 ± 0.09
Perturb 0.87 ± 0.06 0.43 ± 0.23 0.19 ± 0.14 0.86 ± 0.07 0.44 ± 0.23 0.12 ± 0.08
Connect 0.86 ± 0.07 0.39 ± 0.22 0.15 ± 0.13 0.88 ± 0.08 0.51 ± 0.28 0.11 ± 0.10
Combine 0.90 ± 0.06 0.55 ± 0.25 0.26 ± 0.17 0.90 ± 0.07 0.55 ± 0.28 0.14 ± 0.10

German
Credit

(70 features)

Single 0.50 ± 0.08 0.01 ± 0.01 0.00 ± 0.00 0.68 ± 0.11 0.11 ± 0.15 0.00 ± 0.00
Vanilla 0.69 ± 0.08 0.09 ± 0.07 0.00 ± 0.00 0.80 ± 0.09 0.27 ± 0.24 0.00 ± 0.00
Perturb 0.73 ± 0.07 0.12 ± 0.08 0.00 ± 0.00 0.83 ± 0.08 0.32 ± 0.22 0.00 ± 0.00
Connect 0.71 ± 0.12 0.12 ± 0.10 0.00 ± 0.00 0.77 ± 0.10 0.22 ± 0.21 0.00 ± 0.00
Combine 0.76 ± 0.08 0.17 ± 0.12 0.00 ± 0.00 0.81 ± 0.08 0.27 ± 0.21 0.00 ± 0.00

Adult
Income

(6 features)

Single 0.83 ± 0.07 0.29 ± 0.18 0.32 ± 0.15 0.92 ± 0.07 0.63 ± 0.31 0.51 ± 0.17
Vanilla 0.89 ± 0.06 0.48 ± 0.24 0.50 ± 0.19 0.95 ± 0.06 0.75 ± 0.26 0.66 ± 0.20
Perturb 0.90 ± 0.05 0.54 ± 0.24 0.54 ± 0.19 0.95 ± 0.05 0.77 ± 0.23 0.77 ± 0.19
Connect 0.90 ± 0.07 0.53 ± 0.27 0.53 ± 0.22 0.96 ± 0.05 0.79 ± 0.24 0.74 ± 0.20
Combine 0.92 ± 0.06 0.61 ± 0.26 0.58 ± 0.21 0.96 ± 0.04 0.81 ± 0.21 0.78 ± 0.20

Default
Credit

(90 features)

Single 0.49 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.82 ± 0.07 0.29 ± 0.18 0.00 ± 0.00
Vanilla 0.67 ± 0.07 0.04 ± 0.04 0.01 ± 0.02 0.89 ± 0.07 0.54 ± 0.27 0.02 ± 0.04
Perturb 0.72 ± 0.06 0.07 ± 0.07 0.02 ± 0.03 0.90 ± 0.07 0.54 ± 0.27 0.03 ± 0.04
Connect 0.70 ± 0.07 0.07 ± 0.05 0.02 ± 0.03 0.91 ± 0.06 0.58 ± 0.25 0.03 ± 0.03
Combine 0.75 ± 0.05 0.11 ± 0.05 0.03 ± 0.06 0.91 ± 0.06 0.58 ± 0.25 0.03 ± 0.02

GMSC
(10 features)

Single 0.91 ± 0.03 0.57 ± 0.15 0.46 ± 0.23 0.85 ± 0.07 0.39 ± 0.21 0.39 ± 0.19
Vanilla 0.95 ± 0.04 0.75 ± 0.19 0.67 ± 0.25 0.90 ± 0.07 0.60 ± 0.25 0.58 ± 0.22
Perturb 0.95 ± 0.04 0.76 ± 0.19 0.69 ± 0.24 0.90 ± 0.07 0.60 ± 0.25 0.59 ± 0.21
Connect 0.96 ± 0.04 0.82 ± 0.18 0.71 ± 0.25 0.90 ± 0.06 0.58 ± 0.25 0.62 ± 0.20
Combine 0.97 ± 0.04 0.83 ± 0.18 0.72 ± 0.24 0.91 ± 0.06 0.62 ± 0.26 0.66 ± 0.21

5. Limitations & Future Work
Our work, while providing significant insights into the be-
haviour of model explanations, acknowledges certain limi-
tations. Notably, the selection of a single optimal hyperpa-
rameter set for each dataset, despite multiple sets offering
a potential breadth of solutions, is a potential direction for
future work. Comparing explanations across multiple under-
specification sets may present additional challenges but also
provide further insights into the behavior of explanations.

Additionally, the methods we provide traverse the loss land-
scape along two fundamental axes: locally (with perturba-
tions) and globally (between models). There is much to
learn and optimize about these methods. Future work would
include refining the methods of weight perturbation, and ex-
ploring alternate paths for mode connectivity (Gotmare et al.,
2018; Zhao et al., 2020), in order to develop better heuris-
tics for navigating the loss landscape. The ultimate aim is
to devise more effective strategies for ensemble creation
that balance the goals of model performance, explanation
consistency, and computational efficiency.

Finally, although our methods require no extra training com-
pared to standard ensembling, approaches to reduce the total
number of models included in the set should be explored to
cut inference costs. This could involve techniques such as
aligning constituent models in weight space through permu-
tation symmetries (Ainsworth et al., 2023; Singh and Jaggi,
2020; Tatro et al., 2020), or investigating methods that find
a single weight configuration matching the output of en-

sembles, to reap the benefits of ensembling, while reducing
computational costs associated with operating large num-
bers of constituent models. In this case, examining the ef-
fects of distillation (Hinton et al., 2015) and self-distillation
(Furlanello et al., 2018) could provide additional insights.

A more comprehensive discussion on the limitations and
prospective avenues of study, including the exploration of
alternate explanation methods, are detailed in Appendix E.

6. Conclusion
Here, we tackle the challenge of providing consistent ex-
planations for predictive models in the presence of model
indeterminacy from the underspecification set. Motivated
by local and mode-connected loss landscape exploration,
we develop two novel ensembling methods. On five bench-
mark financial datasets, our methods markedly increase
the consistency of model explanations when using a fixed
number of pre-trained models. Moreover, our methods are
computationally more affordable than standard ensembling
techniques with respect to the number of trained model
constituents, while not compromising on test accuracy.

It is important to acknowledge that our work does not explic-
itly consider the broader impacts and desirable properties
of these ensembles in application, such as for fairness or
bias. While our work serves as a foundation for exploring
the impact of ensembling on explanation consistency, we
encourage further research into how our techniques may
interact with other aspects of AI safety.
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Appendix
This appendix is formatted as follows.

1. We discuss the Datasets & Models used in our work in Appendix A.

2. We discuss Weight Perturbation and display full results from ablations in Appendix B.

3. We detail our Mode Connectivity implementation in Appendix C.

4. We display full Comparison of Ensemble Techniques in Appendix D.

5. We discuss Limitations & Future Work in Appendix E.

Where necessary, we discuss potential limitations of our work and future avenues for exploration.

A. Datasets & Models
Five benchmark datasets are employed in our experiments, all of which describe binary classification and are publicly
available. Details are provided in Appendix A.1 and in Table 2. Our experiments are conducted for a fixed architecture,
trained with hyperparameters determined by model selection sweeps. Details are provided in Appendix A.2 and Table 3.

A.1. Datasets

The HELOC (Home Equity Line of Credit) dataset (FICO, 2018) classifies credit risk and can
be obtained from (upon request) and is described in detail at: https://community.fico.com/s/

explainable-machine-learning-challenge. We drop duplicate inputs, and inputs where all feature values
are missing (negative), and replace remaining missing values in the dataset with median values.

The German Credit dataset (Dua and Graff, 2017) classifies credit risk and can be obtained from and is described at:
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data). The documentation for this
dataset also details a cost matrix, where false positive predictions induce a higher cost than false negative predictions, but
we ignore this in model training. Note that this dataset includes mostly categorical features.

The Adult Income dataset (Dua and Graff, 2017) classifies whether an individual’s salary exceeds $50,000, and is obtained
from and described at: https://archive.ics.uci.edu/ml/datasets/adult. We drop categorical features for this
dataset, resulting in 6 features total, to include an assessment of a case where top-5 would encompass most features (n.b., we
still see disagreement in this case- either the signs of the 5 features disagreed, or the least important 6th feature disagreed).

The Default Credit dataset (Yeh and Lien, 2009) classifies default risk on customer payments and is obtained from and
described at: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients. This dataset,
and German Credit, stress-test increased dimensions (number of features).

The GMSC (Give Me Some Credit) dataset (Freshcorn, 2022) classifies the probability of default within
the next two years, and is obtained from and described at: https://www.kaggle.com/datasets/brycecf/

give-me-some-credit-dataset. We pre-process a large random sample of this dataset, ensuring a 50-50 split between
class 0 (no default) and class 1 (default). Summary of these datasets is in Table 2.

Table 2: Summary of the datasets used in our experiments.

Name No. Inputs Input Dim. Categorical Continuous No. Train No. Test

HELOC 9871 23 0 23 7896* 1975*

German Credit 999 70* 17 3 799 200

Adult Income 32561 6 0 6 26048 6513

Default Credit 30000 90* 9 14 24000 6000

GMSC 11426 10 0 10 9140 2286
*Denotes values post-processing (one-hot encoding inputs, dropping inputs).
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Table 3: Hyperparameters used to train our models, and model performance.

Name Epochs Learning Rate Batch Size Train Acc. (%) Test Acc. (%)

HELOC 20 0.0004 32 77.97 ± 0.31 72.90 ± 0.45

German Credit 100 0.004 32 92.81 ± 1.98 73.47 ± 1.47

Adult Income 40 0.004 128 83.50 ± 0.15 82.12 ± 0.16

Default Credit 10 0.0001 128 82.32 ± 0.05 82.67 ± 0.09

GMSC 20 0.0004 32 75.17 ± 0.34 73.96 ± 0.34

A.2. Models

We use PyTorch (Paszke et al., 2019) to implement feedforward neural networks with fixed architectures: hidden layers of
size 128, 64, and 16. We use ReLU activations for the intermediate layers and Softmax for the output. Model selection
sweeps are performed with RayTune (Liaw et al., 2018), to identify the best performing model hyperparameters for a given
dataset (shown in Table 3). We performed iterative searches across learning rates from 10−6 to 10−1, batch sizes 16 to 128,
and epochs typically between 5 and 100 (larger values only where necessary). We employ a filtering process to discard
models that perform >1% below the mean accuracy, though recognize the importance of seed-induced variability in the
context of these systems. We initially tested both filtering and not filtering, finding the overall results to be largely similar.

B. Weight Perturbation
We present here full ablations across all datasets, to identify the optimal layer to perturb and the corresponding standard
deviation σ and number of perturbations, depicted in Figures 7 and 8. As previously noted, the effects of random noise
perturbations depend critically on the layer being perturbed. In most cases (bar German Credit or Adult Income), perturbing
layers deeper than the first resulted in no increases in explanation similarity, and optimal gains were found by perturbing
either the weights or biases of the first layer (i.e. connections between the input and the first hidden layer of size 128).

In our ensemble experiments, we perturb first layer biases with σ = 0.05, 0.5, for GMSC and Default Credit, respectively.
We perturb first layer weights with σ = 0.2, 0.2, 0.3 for HELOC, German Credit and Adult Income, respectively. We use 50
perturbations in all cases, besides HELOC where we use 100 perturbations. We also trialled perturbing layers cumulatively,
or perturbing layers with noise proportional to the loss gradient of each weight, though could not identify superior results.

Figure 7: Effect of σ on top-k SA scores (input gradients, k = 5) and test accuracy on HELOC and German Credit datasets. Left and
Center: perturbing the first layer weights, and the first layer biases, respectively. Right: perturbing layers individually 100 times each.
Error bars represent the central decile of SA scores over 1000 individuals, and the interquartile range of accuracies over perturbed models.
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Figure 8: Effect of σ on top-k SA scores (input gradients, k = 5) and test accuracy on Adult Income, Default Credit and GMSC. Left
and Center: perturbing first layer weights, and first layer biases, respectively. Right: perturbing layers individually 100 times each. Error
bars represent the central decile of SA scores over 1000 individuals, and the interquartile range of accuracies over perturbed models.

C. Mode Connectivity
This section details our mode connectivity implementation. Given two models from the underspecification set, one can
connect the two models in weight space via paths or near constant loss. We use the publicly available code from Garipov
et al. (2018) to do so. This takes two models as a fixed startpoint and endpoint for the curve. A linear path between the
startpoint and endpoint is initialized, and a fixed number of bends lying along this path are backpropagated in order to
minimize training loss of points sampled uniformally randomly along the curve.

While this method yielded similar improvements, it introduces additional training costs, since one must effectively train
new models (the bends along the curve). An alternate approach, described in the main text, is to initialize the curve with
untrained start and end points, and train the curve from scratch. We trialled this as an effective approximation to mode
connecting process. Specifically, the startpoint of one curve is initialized with the same random seed as used to train a given

Figure 9: Mode connectivity approximation for Default Credit. Curve startpoints are similarly positioned in weight space to the original
models, after training curves from scratch. Left: ℓ2 distance in weight space between model pairs in the underspecification set. Center:
ℓ2 distance in weight space between curve startpoint pairs. There is similar distance between pairs of curve startpoints after training
curves, compared to between standard model pairs. Right: ℓ2 distance between trained curve startpoints and trained models is low.
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model from the underspecification set (endpoint is initialized randomly). The curve is then trained with the exact same
hyperparameters as the original model was trained with. The only difference is that loss is sampled along the curve, rather
than just at the startpoint. We demonstrate in Figure 9 how this resulted in the startpoint of the curve being trained to a
similar position in weight space as the original model (i.e. ℓ2 distances are low on the right hand graph, while distances
between pairs of curve startpoints after training is similar to distances between pairs of models after training).

Future work can consider optimizing the mode connectivity process, to find paths with reduced computational cost. Multiple
prior work have indicated that linear mode connectivity, i.e. straight-line paths between models of near constant loss, can
be achieved via permutation of the weights used (Ainsworth et al., 2023; Singh and Jaggi, 2020; Tatro et al., 2020). It is
worth noting that the focus of our investigation was to analyze how local, global, or their combined explorations of the loss
landscape could promote explanation alignment after ensembling. The exact mechanisms used to explore the loss landscape,
and their computational efficiencies, should build on related advancements, and is a ripe area for future work.

D. Comparison of Ensemble Techniques
This Appendix displays full results, similar to those in Figure 6, but across all similarity metrics and explanation methods.
Recall that for the CDC metric, we aim to stress test our ensembling techniques by assessing top-d similarity, where d is the
dimensionality of the data, i.e. a score of 1 is returned only if the signs of all features match between two ensembles. For a
given number of pre-trained models, 50 ensembles are constructed, and for each test point, average similarities are computed
across all

(
50
2

)
= 1225 unique pairs. The median similarity is plotted (error bars indicate the central decile of individuals).

Figure 10: Effectiveness of ensemble strategies in stabilizing explanations across all datasets (top-5 SA, top-5 SSA, and top-d CDC
scores for input gradients). Average and Majority denote vanilla ensembles, while Perturb, Connect, and Combine denote weight
perturbation, mode connectivity, and their combination respectively.
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Effects of ensembling on Saliency Figure 10 details full results for input gradients i.e. Saliency. The central row is
depicted in the main text (Figure 6). Observe similar trends between SA scores (top row) and SSA scores (central row), as
the latter is a stricter (binary) version of the former. Top-d CDC comparisons demonstrate similar trends. For instance, to
exceed 80% similarity on the GMSC dataset, standard ensembling (blue and orange) requires around 20 pre-trained models,
while the combined exploration of mode connectivity alongside local perturbations (purple) requires 4 pre-trained models.

Effects of ensembling on Smoothgrad Figure 11 details full results for Smoothgrad, where we use 50 perturbations on
the input with σ = 0.1. Note that this explanation technique generally improves explanation similarity slightly for standard
ensembles (blue and orange), e.g., for 20 pre-trained models, median SSA scores on Adult Income increase from 60% in
Figure 10 to 70% in Figure 11. However, our findings suggest that Smoothgrad does not provide significant smoothing
benefits for explanation alignment beyond our ensemble techniques. Specifically, for the same comparison of median
SSA scores on Adult Income, when considering 20 pre-trained models, both Smoothgrad and saliency techniques achieve
approximately 90% explanation alignment using the combined approach, while local perturbations or mode connectivity
yield around 80% alignment. Furthermore, while Smoothgrad provides an explanation for a smoothed approximation of a
potentially noisy decision boundary, ensemble approaches smooth both the explanation and the model’s decision region.

Effects of ensembling on DeepSHAP Figure 12 details full results for DeepSHAP, an approximation to SHAP that
leverages knowledge from the neural network directly. Note first that results may be slightly noisier, given the computational
restriction of using this method (the first 100 test points in each datasets are evaluated, rather than the first 1000 as in other
methods). In spite of this, the various ensembling techniques proposed, for a given number of pre-trained models, tend

Figure 11: Effectiveness of ensemble strategies in stabilizing explanations across all datasets (top-5 SA, top-5 SSA, and top-d CDC scores
for Smoothgrad). Average and Majority denote vanilla ensembles, while Perturb, Connect, and Combine denote weight perturbation,
mode connectivity, and their combination respectively.
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Figure 12: Effectiveness of ensemble strategies in stabilizing explanations across all datasets (top-5 SA, top-5 SSA, and top-d CDC
scores for DeepSHAP). Average and Majority denote vanilla ensembles, while Perturb, Connect, and Combine denote weight perturbation,
mode connectivity, and their combination respectively.

to yield benefits similar to previously e.g. HELOC trends are largely similar after accounting for noise fluctuations. SA
and SSA scores for DeepSHAP tended to have higher baseline similarity scores (i.e. between single models) compared to
Saliency and Smoothgrad. We see notable improvements for the mode connected/combined explorations for Adult Income,
Default Credit and GMSC. However, we also observe the one instance where mode connectivity was inferior to standard
ensembling, in German Credit. While this was overcome through the combined technique of sampling along connected
modes and further perturbing each of the samples (purple), and secondly that local weight perturbation alone improved
performance, this emphasizes the unpredictable nature of particular explanation techniques, and warrants future research.
A sufficiently large number of pre-trained models may eliminate explanation multiplicity, and so the focus of future work
should be on exploiting further the properties of the loss landscape to optimize the search for ensemble members.

E. Limitations & Future Work
This work presents a novel approach to enhancing the consistency of model explanations by leveraging ensembling methods
based on loss landscape exploration. While we observe promising results, we acknowledge that several interesting avenues
for future work emerge from our study.

Underspecification set In this work, we define the underspecification set as the collection of optimal models trained with
a fixed set of hyperparameters, with the only source of variation due to the random seed using in training. By focusing on
the underspecification set, we aim to shed light on the intrinsic inconsistency of model explanations arising purely from
indeterminacy within a specific model configuration, rather than across different configurations.
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However, we acknowledge that in real-world scenarios, an exact underspecification set may not always be found. Often,
there are multiple sets of near-optimal hyperparameters, each potentially giving rise to a different underspecification set.
The focus on one such set in our study is intentional, as it provides a clearer landscape for assessing the effectiveness of
ensemble techniques in handling model indeterminacy. It is important to contextualize that addressing the complexities
within the underspecification set is a necessary first step. Without a sound understanding of the explanatory behavior within
a specific model configuration, attempting to reconcile explanations across broader ranges – such as the entire Rashomon
set encompassing different model classes and hyperparameters – would be overly ambitious. Thus, our focus on the
underspecification set offers an essential foundation for further research in the quest for more consistent model explanations.

Looking forward, an interesting direction for future work is the exploration of multiple underspecification sets concurrently.
Comparing and consolidating explanations across multiple underspecification sets may present additional challenges but also
provide further insights into the behavior of model explanations. This exploration would segue naturally into investigating
the Rashomon set, to capture the variation across all possible well-performing models.

Alternate explanation methods We have chosen to use gradient-based methods for generating explanations in this study
due to their simplicity, computational efficiency, and intuitive appeal. The gradient of a model with respect to its inputs can
provide valuable insights about how the model responds to changes in those inputs. In essence, it can inform us about the
local sensitivity of the model’s predictions and thus can be interpreted as a form of local explanation method. Moreover,
gradients can be seen as a natural proxy for counterfactual explanations (CEs), another popular category of explanation
methods. CEs identify the minimal changes required in the input features to achieve a different prediction. Because gradients
indicate the direction of the greatest change in model output, they can be seen as a first approximation to CE directions.

However, it is worth noting that CEs, while providing a powerful intuitive appeal, come with their own set of challenges.
They often require more computation than gradient-based methods, and they can be sensitive to the specific definition of
“minimal change”, which can depend on domain-specific factors. While we have focused on gradient-based explanations
for their straightforwardness and direct relation to counterfactual reasoning, the field is open for further investigation and
exploration of alternative methods for enhancing the consistency of model explanations.

We acknowledge that there is a wide array of explanation methods available, each with its unique advantages and limitations,
and many of which could be considered in the context of our framework. Future work could explore other types of
explanations, including counterfactual methods, or prototype-based methods, among others. Each of these could provide
different perspectives on the consistency of model explanations and their susceptibility to model indeterminacy.

Weight perturbations and mode connectivity We employ two strategies for navigating the loss landscape: local
exploration via weight perturbations and global exploration via mode connectivity. Weight perturbations could be perceived
as the ‘safer’ strategy, presenting a lower risk profile (dependent on the standard deviation of perturbations) but potentially
hitting a performance ceiling based on dataset and model class (Section 4.1 and Appendix B). The performance of this
method can be further optimized by considering a selection process for the perturbations, possibly based on training accuracy,
or by adjusting the sampling strategy for the perturbation magnitude, taking into account the hyperspherical distribution of
samples in high-dimensional weight space. On the other hand, mode connectivity may be perceived as ‘riskier’ due to its
broader scope but could yield benefits that go beyond the reach of simple local exploration, allowing us to explore more
distant regions of the loss landscape, connecting different locally optimal solutions.

Looking ahead, there is much to learn and optimize about these methods. Future work would include both refining the
methods of weight perturbation, and exploring alternate paths for mode connectivity (Ainsworth et al., 2023; Gotmare et al.,
2018; Singh and Jaggi, 2020; Tatro et al., 2020; Zhao et al., 2020), in order to develop better heuristics for navigating the
loss landscape. The ultimate aim is to devise more effective strategies for ensemble creation that balance the goals of model
performance, explanation consistency, and computational efficiency.

Improving inference efficiency Although our methods require no extra training compared to standard ensembling,
approaches to reduce the total number of models included in the set should be explored to cut inference costs.4 For
instance, using ensembles with 10 pre-trained models each perturbed 50 times totals 500 models. While our methods offer
computational efficiency compared to standard ensembling techniques with respect to the number of pre-trained models
required, the practicality of this approach might still be challenging for larger scale applications. Future work could focus on

4Note additionally that our implementations may not be fully optimized with respect to parallelization, etc.
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finding efficient ways to reduce the total number of models in the ensemble. This could involve techniques such as weight
permutations to align models and subsequently averaging the weights, or investigating methods to find a single weight
configuration that matches the output of ensembles, which we detail in the following two paragraphs.

Permutation symmetries The initial investigations provided in this work could greatly benefit from the exploration of
permutation symmetries. This emerging direction in research promises a more efficient traversal of the underspecification
set (Ainsworth et al., 2023; Singh and Jaggi, 2020; Tatro et al., 2020). The strategy involves aligning constituent models
in weight space through permutation symmetries, thereby reducing the complexity of exploring numerous paths in the
loss landscape. Through this approach, we hope to optimize the exploration process, enabling faster and more effective
generation of ensembles. Not only would this strategy potentially reduce computational demands, it may also lead to
uncovering more consistent explanations across ensembles, and aid in enhancing our understanding of model indeterminacy.

Consolidating ensemble models The concept of consolidating ensembles into a single point in weight space stands as
another promising direction for future work. The intention behind this proposed direction is to reap the benefits of ensemble
modeling (explanation alignment, improved predictive performance, robustness against overfitting or dataset shift, etc.),
while reducing the computational cost associated with operating large numbers of constituent models. Methods such as
weight averaging (Izmailov et al., 2018) or model fusion (Singh and Jaggi, 2020) could potentially achieve this goal.

Furthermore, examining the effects of distillation and self-distillation could provide additional insights into model indeter-
minacy and the consistency of model explanations. Distillation techniques aim to compress the knowledge of an ensemble
into a single, often simpler, model. Analyzing the impact of these techniques on the consistency and quality of explanations
is an exciting prospect for future investigations. A connection to Bayesian methods might also be made, which inherently
capture model uncertainty and can provide a measure of variability in single modes. However, these methods often face
challenges related to computational efficiency and robustness to dataset shift. By contrast, ensemble methods can potentially
offer a more widely accepted and practical alternative. The balance between ensemble techniques and Bayesian methods
and their respective impacts on explanation consistency is worth considering.

Broader impact The presented ensembling strategies for improving explanation consistency, while not explicitly designed
to address issues of fairness or bias in AI models, have the potential for significant societal impact. It is expected that
the insights gained from our methods will be beneficial for practitioners seeking to construct ML models that provide
reliable explanations, which is especially crucial in fields where decision-making based on model outputs has high-stakes
consequences, such as healthcare, finance, and criminal justice.

While the methods we showcase make strides in explanation consistency, they do not explicitly handle the problem of
fairness and bias in AI. Model explanations that are consistent across different models might still be biased or unfair if the
underlying models or data exhibit these issues. Thus, it’s important to supplement our techniques with methods explicitly
designed to test for and mitigate bias and unfairness in AI models.

Moreover, our approach does not guarantee perfect explanation consistency; there may be cases where explanations between
models or different runs might still vary to a certain degree. This could have implications in scenarios where consistent
explanations are particularly important, such as in the application of machine learning models in legal or healthcare contexts.

Given these broader impacts, it’s crucial for practitioners applying our methods to be aware of these considerations. We
recommend combining our ensembling techniques with existing and future fairness-aware methods and robust validation
procedures to ensure comprehensive analysis of explanations. As this field evolves, we encourage future research on how to
effectively integrate consideration of explanation consistency, fairness, and bias in AI model development and evaluation.

Closing remarks In conclusion, our work provides a foundation to pave the way for future research directions towards
leveraging neural network research to improve our knowledge of explanations amidst model indeterminacy. Although
ensemble methods feature prominently in the neural network analysis literature, their application with respect to model
explanations has received very little attention. As stated, advances in loss landscape understanding and implications of
model indeterminacy have emerged as recent, yet distinct developments, with the two fields existing almost in parallel. We
emphasize once more that the aim of this work is to serve as a catalyst for their convergence, and bring about a unified
exploration of both areas. Through initial alignment of these directions, we have shed light on the interplay between model
indeterminacy and the consistency of model explanations.
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Moving forward, a rich and promising set of research directions awaits. Further exploration of the loss landscape, particularly
in the pursuit of expedited mode connectivity, or distillation techniques, stands as an intriguing prospect. These directions
would build on recent advancements in the field and potentially lead to more efficient ensemble construction. Additionally,
the application of permutation symmetries to align model weights prior to averaging is another promising direction. Each of
these techniques may not only improve computational efficiency but also enhance our understanding of the loss landscape
and its relationship with model explanations. Such strategies are, in essence, leveraging the mathematical structure inherent
in neural networks to expedite the exploration of the underspecification set and promote explanation consistency.

We believe that the pursuit of these directions will continue to push the frontiers of our understanding of neural networks,
contributing positively to the development of reliable, trustworthy, and interpretable artificial intelligence systems.
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