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Abstract

We study the problem of learning vector-valued linear predictors: these are predic-1

tion rules parameterized by a matrix that maps an 𝑚-dimensional feature vector to2

a 𝑘-dimensional target. We focus on the fundamental case with a convex and Lips-3

chitz loss function, and show several new theoretical results that shed light on the4

complexity of this problem and its connection to related learning models. First, we5

give a tight characterization of the sample complexity of Empirical Risk Minimiza-6

tion (ERM) in this setting, establishing that Ω̃(𝑘/𝜀2) examples are necessary for7

ERM to reach 𝜀 excess (population) risk; this provides for an exponential improve-8

ment over recent results by Magen and Shamir (2023) in terms of the dependence9

on the target dimension 𝑘 , and matches a classical upper bound due to Maurer10

(2016). Second, we present a black-box conversion from general 𝑑-dimensional11

Stochastic Convex Optimization (SCO) to vector-valued linear prediction, showing12

that any SCO problem can be embedded as a prediction problem with 𝑘 = Θ(𝑑)13

outputs. These results portray the setting of vector-valued linear prediction as14

bridging between two extensively studied yet disparate learning models: linear15

models (corresponds to 𝑘 = 1) and general 𝑑-dimensional SCO (with 𝑘 = Θ(𝑑)).16

1 Introduction17

Prediction problems, such as classification and regression, lie at the core of both practical applica-18

tions and theoretical research in machine learning. Within this framework, learning vector-valued19

predictors (VVPs), characterized by functions of the form:20

𝑥 → ℓ(𝑊𝑥) ,
mapping vectors 𝑥 ∈ ℝ𝑚 through a linear transformation parameterized by a matrix 𝑊 ∈ ℝ𝑘×𝑚21

followed by a loss function ℓ : ℝ𝑘 ↦→ ℝ, constitutes a rich learning framework that captures a wide22

range of problems in machine learning, from classical to modern. For instance, the scenario where23

𝑘 = 1 corresponds to the extensively studied domain of generalized linear models (e.g., Bartlett and24

Mendelson, 2002; Shalev-Shwartz and Ben-David, 2014). When 𝑘 > 1, this setting encompasses25

multi-class problems, where 𝑊 acts as a matrix of predictors and ℓ corresponds to a specific loss26

function, such as the cross-entropy loss or the multiclass hinge loss (Crammer and Singer, 2001;27

Mohri et al., 2018).28

Another example of VVPs arises in feed-forward neural networks, where a composition of such29

transformations occurs, each of which corresponds to a layer with a weight matrix 𝑊 and an activation30

function ℓ. Motivated by this connection, a recent line of work studied VVP in the regime where ℓ31

is Lipschitz continuous and 𝑊 is constrained within a unit ball, relative to some matrix norm ∥ · ∥,32

centered around an “initialization”, or reference matrix 𝑊0 (Daniely and Granot, 2019, 2022; Vardi33

et al., 2022; Magen and Shamir, 2023). These studies have yielded a range of sample complexity34

results depending on the particular choice of a matrix norm and properties of the initialization 𝑊0.35
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In this work, we discuss an arguably more basic and fundamental case of the VVP framework:36

where ℓ is a convex (and Lipschitz) loss function and the domain is restricted to a simple unit ball,37

with respect to the Frobenius norm, centered around a given reference matrix 𝑊0. In this scenario,38

recent work by Magen and Shamir (2023) reveals an interesting finding: while learning is possible39

within this framework using a specific algorithm (namely stochastic gradient descent, SGD), there40

exist problem instances where generic empirical risk minimization (ERM) fails. As they mention41

in their work, this finding is analogous to a series of studies within the more general context of42

Stochastic Convex Optimization (SCO), which established that learnability in SCO is algorithmic43

dependent and in general, learning through ERM could fail when the problem dimension is sufficiently44

large (Shalev-Shwartz et al., 2010; Feldman, 2016).45

1.1 Our contributions46

In this work, we present several findings that contribute to a better understanding of the complexity of47

learning vector-valued predictors (VVPs) with convex loss functions and its connection to stochastic48

convex optimization (SCO). Our main contributions of this paper are summarized as follows:49

(i) We characterize the exact sample complexity of ERMs within the framework of convex and50

Lipschitz VVPs, demonstrating a lower bound of Ω̃(𝑘/𝜀2). Together with a classic result of51

Maurer (2016), this implies that the sample complexity of ERM in the VVP setting is Θ̃(𝑘/𝜀2).52

In particular, our lower bound provides for an exponential improvement as compared to the53

lower bound of Magen and Shamir (2023), that scaled poly-logarithmically with the target54

dimension 𝑘 , and further includes the tight dependence on 𝜀.55

(ii) We present a black-box transformation from general SCO to VVP, that converts a given SCO56

instance in 𝑑-dimensions to a convex VVP problem with 𝑘 = Θ(𝑑) outputs. We show that57

using any algorithm for the VVP setting to solve the converted problem instance to within 𝜀58

excess risk using a training sample of size 𝑛, we can directly recover a solution to the original59

SCO problem with excess risk 𝑂 (𝜀 + 1/
√
𝑛).60

Put together, the two results indicate that, in terms of its complexity, VVP bridges between two61

extreme models: generalized linear models, namely the case 𝑘 = 1, and general 𝑑-dimensional62

SCO, that roughly correspond to 𝑘 = Θ(𝑑). First, our sample complexity bounds for ERM can be63

seen as interpolating between the classical Θ(1/𝜀2) sample complexity rate of generalized linear64

models (Bartlett and Mendelson, 2002) and the analogous bound in 𝑑-dimensional SCO, which65

is linear in 𝑑 (Feldman, 2016; Carmon et al., 2023). Second, from a more structural perspective,66

our transformation from SCO to VVP suggests that in the extreme where 𝑘 = Θ(𝑑), vector-valued67

prediction becomes rich enough so as to encompass generic SCO problems.68

The revealed connection between linear models and SCO through the lens of VVP is perhaps69

somewhat surprising, since the two are extensively-studied problems that traditionally differ from70

one another in terms of techniques and results. Further, it partially addresses a common conceptual71

criticism of the SCO as a learning framework: in SCO, there is no apparent concept of “prediction”72

and losses are rather implicitly assigned to model parameters, whereas VVP is naturally a supervised73

learning model that explicitly defines a rule 𝑥 → 𝑊𝑥 from which predictions are generated and losses74

are induced.75

1.2 Additional related work76

Upper bounds for the sample complexity of VVPs. As alluded to in the introduction, closely77

related to our setting is the work of Maurer (2016) that gives an upper bound that scales like 𝑂 (𝑘),78

for convex and Lipschitz predictors with bounded Frobenius norm. In another work, Daniely and79

Granot (2022) achieved an upper bound that is similar to Maurer (2016) for non-convex predictors80

and with bounded difference from a reference matrix 𝑊0. For the specific case of 𝑊0 = 0, Vardi et al.81

(2022) shows an upper bound that scales like 𝑂 (log 𝑘) and Magen and Shamir (2023) proved an82

upper bound independent on 𝑘 .83

Lower bounds for the sample complexity of VVPs. For one-hidden-layer neural networks, which84

is a special case of valued predictors with non-convex loss, Daniely and Granot (2019) provide a85

fat-shattering lower bound for the case where 𝑘 = 𝑚, crucially rely on the inputs have norm that86
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scales with 𝑘 . Then, Vardi et al. (2022) referred to the case 𝑘 ≠ 𝑚 and showed a lower bound of87

Ω(𝑘/𝜀2) for the sample complexity of a class of non-convex predictors, where the initialization88

matrix is 𝑊0 = 0 and the ℓ2 norm of the prediction matrix is bounded by a constant. Then, Daniely89

and Granot (2022) refer to the class of predictors with bounded Frobenius norm and showed that this90

class can shatter a training set of Ω(𝑘) examples, assuming that the inputs have norm
√
𝑚 and that91

𝑘 = 𝑂 (2𝑚). In a recent work, Magen and Shamir (2023) generalized this bound to the case where the92

Frobenius norm of the distance from an arbitrary initialization matrix is bounded. In the same work,93

they discussed convex vector valued predictors and showed a lower bound of Ω(log 𝑘) for the sample94

complexity of convex predictors. In this work, we improve their lower bound for convex predictors95

as we achieve an exponential increase in the dependence in 𝑘 .96

Generalized Linear Models. In the landscape of learning theory literature, the Generalized Linear97

Models (GLM) framework stands as one of the most basic and extensively explored settings (e.g.,98

Shalev-Shwartz and Ben-David, 2014), as it captures some fundamental problems like logistic99

regression and support-vector machines. In this setting, due to dimension-independent uniform100

convergence, it is guaranteed that constrained ERM learns with optimal sample complexity of101

𝑂 (1/𝜀2) examples (Bartlett and Mendelson, 2002). A more recent work by Amir et al. (2022) show102

that unregularized gradient methods, such as full-batch Gradient Descent achieve the same sample103

sample complexity when learning GLMs.104

Stochastic Convex optimization. Stochastic convex optimization (SCO) is a fundamental theoreti-105

cal framework widely used for studying common optimization algorithms. This is often justified by106

the simplicity of the framework and the possibility of a rigorous analysis that can hint at the pros and107

cons of various optimization techniques in practical setups arising in machine learning. The works108

of Shalev-Shwartz et al. (2010); Feldman (2016); Carmon et al. (2023) demonstrated that, although109

learnability in this setting is possible (e.g., by Stochastic Gradient Descent) ERM may not learn in this110

setting since uniform convergence does not generally hold. Specifically, Carmon et al. (2023) recently111

established that the sample complexity of ERM in 𝑑-dimensional SCO is Θ(𝑑/𝜀 + 1/𝜀2). We note112

that since our lower bound requires that the number of columns of the vector-valued predictor matrix113

is 𝑚 = Θ(𝑛) and the total number of parameters is Ω(𝑚𝑛), this lower bound does not contradict their114

upper bound. Beyond generic ERM, several specific and natural ERM algorithms, which are also115

frequently used in practice, such as full batch Gradient Descent have been shown to fail in learning116

this setting (Amir et al., 2021; Schliserman et al., 2024; Livni, 2024).117

2 Problem Setup and Basic Definitions118

Notations. For every vector 𝑥 ∈ ℝ𝑑 , we denote its 𝑖th entry by 𝑥 [𝑖] and the vector in ℝ 𝑗−𝑖+1 which119

is achieved by taking the entries with index 𝑖 ≤ 𝑘 ≤ 𝑗 by 𝑥 [𝑖 : 𝑗]. For every 𝑛 ∈ ℕ, we denote120

[𝑛] = {1, . . . , 𝑛}. We denote the Frobenius norm of a matrix 𝑀 by ∥𝑀 ∥𝐹 = (∑𝑖, 𝑗 𝑀
2
𝑖, 𝑗
)1/2, and121

denote a unit ball with respect to ∥·∥𝐹 centered at 𝑊0 by 𝔹𝑘×𝑚
𝑊0

. Moreover, for every dimension 𝑑,122

we denote the 𝑑-dimensional unit ball around the origin by 𝔹𝑑 , the 𝑑-dimensional standard basis by123

{𝑒1, . . . , 𝑒𝑑}.124

Vector-valued prediction. Our main setting of interest in this paper is vector-valued prediction125

with a convex and Lipschitz loss function. Let D be a distribution supported over vectors 𝑥 ∈ ℝ𝑚126

such that ∥𝑥∥ ≤ 1. Given a convex and 𝐺-Lipschitz loss function ℓ defined over the 𝑘-dimensional127

unit ball 𝔹𝑘 ⊆ ℝ𝑘 , and an initialization matrix 𝑊0, the objective is to find a matrix 𝑊 ∈ 𝔹𝑘×𝑚
𝑊0

with128

low population loss, defined as the expected value of the loss function over the distribution D, namely129

𝐿 (𝑊) = 𝔼𝑥∼D [ℓ(𝑊𝑥)] .

To find such a model 𝑊 , the learner uses a set of 𝑛 training examples 𝑆 = {𝑧1, . . . , 𝑧𝑛}, drawn i.i.d.130

from the unknown distribution D. Given the sample 𝑆, the corresponding empirical loss (or risk) of131

𝑊 , denoted 𝐿̂ (𝑊), is defined as its average loss over samples in 𝑆:132

𝐿̂ (𝑊) = 1
𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑊𝑥𝑖).
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A population minimizer in this context is any 𝑊∗ that minimizes the population risk, namely such133

that 𝑊∗ ∈ arg min𝑊∈𝔹𝑘×𝑚
𝑊0

𝐿 (𝑊), and an empirical risk minimizer (ERM) is any 𝑊∗ that minimizes134

the empirical risk, namely such that 𝑊∗ ∈ arg min𝑊∈𝔹𝑘×𝑚
𝑊0

𝐿̂ (𝑊).135

Stochastic Convex Optimization. Another learning model we discuss is Stochastic Convex Opti-136

mization (SCO), which is a more general framework that includes (convex) vector-valued prediction137

as a special case. In this problem, there is a population distribution D over an arbitrary instance set 𝑍138

and a loss function 𝑓 : W × 𝑍 → ℝ which is convex and 𝐺-Lipschitz (for some 𝐺 > 0) with respect139

to its first argument over a domain W. For simplicity, we fix in this paper the domain W to be the140

𝑑-dimensional unit ball around the origin, denoted 𝔹𝑑 . Analogously to vector-valued prediction, the141

population loss with respect to 𝑓 , denoted by 𝐹, is defined as,142

𝐹 (𝑤) = 𝔼𝑧∼D [ 𝑓 (𝑤, 𝑧)] .

and the empirical loss, denoted by 𝐹̂, is defined as,143

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖).

and corresponding minimizers as 𝑤∗ and 𝑤∗, respectively.144

3 Sample Complexity of ERM in Convex Vector-Valued Prediction145

In this section, we present a tight characterization of the sample complexity of ERM in the setting of146

convex vector-valued prediction. This result is stated as follows.147

Theorem 1. Let 𝑘 ,𝑛 ∈ ℕ. There exist 𝑚 = Θ(𝑛), a reference matrix 𝑊0 ∈ ℝ𝑘×𝑚, a convex and148

1-Lipschitz loss function ℓ ∈ ℝ𝑘 → ℝ and a distribution D such that in the VVP parameterized by149

𝑊0,D and ℓ, with constant probability over the choice of the training set 𝑆 ∼ D𝑛, there exists an150

ERM 𝑊∗ with 𝐿 (𝑊∗) − 𝐿 (𝑊∗) = Ω̃
(√︁

𝑘/𝑛
)
.151

We further show that this lower bound is tight up to logarithmic factors, using a vector-contraction152

inequality for Rademacher complexity due to Maurer (2016), that implies an 𝑂 (𝑘/𝜀2) sample153

complexity upper bound. We defer details on this standard derivation to Appendix A, and below154

focus on proving the lower bound in Theorem 1.155

For the case of 𝑘 ≤ 𝑂 (log 𝑛), Theorem 1 follows from the well-known lower bound of Ω(1/
√
𝑛)156

for learning scalar-valued predictors with convex and 𝑂 (1)-Lipschitz losses (for completeness, we157

provide a proof in Appendix A). Thus, henceforth we focus on the case where 𝑘 ≥ Ω(log 𝑛). Our158

proof approach in this case is to show that, for large enough column dimension 𝑚 and for a certain159

reference matrix 𝑊0, the class of predictors parameterized by matrices in a unit Frobenius-norm ball160

centered at 𝑊0 can shatter Ω̃(𝑘/𝜀2) examples with margin 𝜀.1 This is formalized in the following.161

Lemma 1. Let 10000 ≤ 𝑘 ∈ ℕ and 1
12 ≥ 𝜀 ≥

√
𝑘2−𝑘/312. There exists column dimension 𝑚0 =162

Θ(𝑘/𝜀2), such that for any 𝑚 ≥ 𝑚0, there exist a matrix 𝑊0 ∈ ℝ𝑘×𝑚 and a loss function ℓ : ℝ𝑘 → ℝ,163

such that the class of vector-valued predictors164

F ℓ,𝑊0
𝑘,𝑚

:=
{
𝑥 → ℓ(𝑊𝑥) : 𝑊 ∈ ℝ𝑘×𝑚, ∥𝑊 −𝑊0∥𝐹 ≤ 1

}
can shatter Ω(𝑘/𝜀2) examples with margin 𝜀.165

Lemma 1 implies Theorem 1 via standard arguments; we defer this proof to Appendix A and below166

focus on proving the lemma, which forms our main contribution in this section.167

Before we formally prove Lemma 1, let us first outline the main steps and challenges in constructing168

the lower bound instance. Our general approach is analogous to the arguments of Magen and Shamir169

(2023). They show that for every 𝑛 ∈ ℕ there exists a data set {𝑥1, . . . , 𝑥𝑛} and labeling 𝑦 ∈ ℝ𝑛, there170

exists a matrix 𝑊𝑦 with 𝑘 = Ω(2𝑛) such that for every 𝑖, ℓ(𝑊𝑦𝑥𝑖) = 𝜀 if 𝑦𝑖 = 1 and ℓ(𝑊𝑦𝑥𝑖) = −𝜀171

1A class of functions F on an input domain X shatters 𝑚 points 𝑥1, ..., 𝑥𝑚 ∈ X with margin 𝜀, if for all
𝑦 ∈ {0, 1}𝑚 we can find 𝑓 ∈ F such that for all 𝑖 ∈ [𝑚], it holds 𝑓 (𝑥𝑖) ≤ −𝜀 if 𝑦𝑖 = 0 and 𝑓 (𝑥𝑖) ≥ 𝜀 if 𝑦𝑖 = 1.
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if 𝑦𝑖 = 0. Their approach is to use the exponentially-sized set {𝑒𝑖}2𝑛
𝑖=1 of standard basis vectors and172

associate every possible labeling 𝑦 ∈ {0, 1}𝑛 with a vector 𝑒𝑦 in this set and a matrix 𝑊𝑦 with 𝑛 + 1173

columns which its first 𝑛 columns are the identity matrix and its last column is 𝑒𝑦 . Then, they used a174

convex loss function ℓ constructed such that the predictor 𝑦̂𝑖 = 𝑊𝑦𝑥𝑖 output the prediction according175

to the corresponding label of 𝑥𝑖 = 𝑒𝑖 .176

Our main challenge, however, is to shatter a training set {𝑥1, . . . , 𝑥𝑛} using matrices {𝑊𝑦}𝑦∈2𝑛 with177

only 𝑘 = Θ(𝑛) rows rather than 𝑘 = 𝑂 (2𝑛) rows, as in the construction above. For this, we employ a178

construction of a set 𝑈 of approximately orthogonal vectors in ℝ𝑂 (𝑘 ) with size which is exponential179

in 𝑘 , adapted from Feldman (2016). (The specific construction appears in Lemma 7 in Appendix A.)180

In our construction of hard instance, for we use this construction twice. First, as the columns of181

the initialization matrix (replacing of the standard basis vectors in Magen and Shamir (2023)) and182

second, by identifying every possible labeling 𝑦 with a vector 𝑢𝑦 in this set (instead of 𝑒𝑦 in Magen183

and Shamir (2023)) and using the matrices 𝑊𝑦 which their last columns are 𝑢𝑦 .184

Finally, for getting the correct dependency with respect to 𝜀, we add Θ(1/𝜀2) columns to the185

prediction matrix, and modify the previous construction such that every possible labeling 𝑦 is186

identified not just with a single vector 𝑢𝑦 , but rather with a sequence of vectors in the set 𝑈 alluded to187

in Lemma 7. This adding of the matrix enables the class F ℓ,𝑊0
𝑘,𝑚

to shatter a larger amount of possible188

labelings.189

The proof of Lemma 1 appears in Appendix A.190

4 Black-box Transformation from SCO to VVP191

In this section we provide our second main result which constitutes a black-box conversion between192

SCO and learning of vector-valued predictors. Namely, we show that there exists a initialization193

matrix 𝑊0 ∈ ℝ𝑘×𝑚, such that any 𝑑-dimensional stochastic optimization problem, with loss function194

𝑓 and distribution D, can be converted to a vector-valued predictions problem over 𝔹𝑘×𝑚
𝑊0

with195

𝑘 = 𝑂 (𝑑).196

4.1 The transformation197

Let us first outline our transformation. Consider any SCO instance in 𝑑-dimensions characterized by198

a distribution D over sample space 𝑍 , and a convex and 1-Lipschitz loss function 𝑓 : 𝔹𝑑 × 𝑍 → ℝ,199

and consider an algorithm A with a guarantee that for every VVP problem, using any training set 𝑆′200

with 𝑛 examples that are sampled i.i.d from the corresponding distribution, denoted as D′, outputs201

a model 𝑊 (𝑆′) which has 𝜀(𝑛)-sub optimal population loss. The conversion uses a training set202

𝑆 = {𝑧1 . . . 𝑧2𝑛} of 2𝑛 examples sampled i.i.d. from D, and takes the following form:203

(i) Construct a VVP instance P as follows:204

• The dimensions of the VVP problem are 𝑚 = 2𝑛 + 1, 𝑘 = 𝑑 + 2.205

• The reference matrix 𝑊0 ∈ ℝ𝑘×𝑚 is as follows,206

𝑊0 = 𝑐

(
𝜙(1) 𝜙(2) . . . 𝜙(2𝑛) 0

0 0 · · · 0 0

)
.

where 𝑐 > 0 is a parameter and 𝜙 is a mapping 𝜙 : [2𝑛] → ℝ2 defined below.207

• The distribution D′ is the uniform distribution on {𝑥1, . . . , 𝑥2𝑛} where 𝑥𝑖 = 𝑒𝑖 + 𝑒2𝑛+1 for208

all 𝑖.209

• The loss function ℓ : ℝ𝑘 → ℝ is defined as210

ℓ( 𝑦̂) = max
𝑗∈[2𝑛]

{〈
𝑦̂[1 : 2], 𝜙( 𝑗)

〉
+ 𝑓 ( 𝑦̂[3 : 𝑘], 𝑧 𝑗 )

}
, (1)

(ii) Sample a training set 𝑆′ with 𝑛 examples drawn i.i.d. from D′, and use A with 𝑆′ to solve P211

and obtain a solution matrix 𝑊 (𝑆′) ∈ 𝔹𝑘×𝑚
𝑊0

.212

(iii) Return the vector 𝑤(𝑆′) formed by the 𝑑 last entries of the (2𝑛 + 1)th column of 𝑊 (𝑆′).213
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Here, the mapping 𝜙 is an embedding of the integers 1, . . . , 2𝑛 into the unit sphere in two dimensions,214

via 𝜙( 𝑗) = (sin (𝜋 𝑗/4𝑛) , cos (𝜋 𝑗/4𝑛))𝑇 . Note that, since the loss function ℓ defined in Eq. (1) is215

convex and 2-Lipschitz (as the maximum of convex functions is also a convex function), P is a valid216

VVP problem which A can be used to learn.217

We show that when running the algorithm A on P, the solution 𝑤(𝑆′) emitted by the conversion218

satisfies the following.219

Theorem 2. Consider any SCO instance in 𝑑-dimensions characterized by a distribution D over
sample space 𝑍 , and a convex and 1-Lipschitz loss function 𝑓 : 𝔹𝑑 × 𝑍 → ℝ that further satisfies
| 𝑓 (𝑤, 𝑧) | ≤ 𝑏 for every 𝑤, 𝑧. Let P be the corresponding VVP problem as defined by the conversion
above for 𝛿 > 0 given by Lemma 2 and 𝑐 = 4𝑏/𝛿. Let A be an algorithm with a guarantee that
for every VVP problem, using any training set 𝑆′ with 𝑛 examples that are sampled i.i.d from the
corresponding distribution, outputs a model 𝑊 (𝑆′) with

𝔼[𝐿 (𝑊 (𝑆′)) − 𝐿 (𝑊∗)] ≤ 𝜀(𝑛).
Then, when running the algorithm A on P, the solution 𝑤(𝑆′) emitted by the conversion satisfies,

𝔼[𝐹 (𝑤(𝑆′)) − 𝐹 (𝑤∗)] ≤ 2𝜀(𝑛) + 10
√
𝑛
.

The proof of Theorem 2 appears in Appendix B. Here we review the main ideas that we used for220

constructing this conversion.221

First, we aim to represent an arbitrary unknown distribution D using a distribution D′ over the unit222

ball 𝔹𝑚 and a finite set of samples 𝑆 = {𝑧1, . . . , 𝑧𝑛} sampled i.i.d. from D. To achieve this, we model223

not D directly, but rather its empirical distribution, denoted as D̂, which is the uniform distribution224

over 𝑆 and, when taking expectation over 𝑆, approximates D. To implement this, we associate each225

example 𝑧𝑖 with a standard basis vector 𝑒𝑖 , and define the distribution D′ as the uniform distribution226

over the set {𝑒1, . . . , 𝑒𝑛}.227

Second, we show how to utilize a one-parameter loss function ℓ : ℝ𝑘 → ℝ to model the two-228

parameter loss function 𝑓 : ℝ𝑑 × 𝑍 → ℝ, where 𝑓 receive a model 𝑤 and an example 𝑧 as an input.229

Our aim is, given 𝑤 ∈ ℝ𝑑 which is a proposed solution for the SCO problem, to construct a function230

ℓ : ℝ𝑘 → ℝ and a matrix 𝑊 ∈ ℝ𝑘×𝑚 such that 𝑘 = 𝑂 (𝑑) and231

∀𝑖 ∈ [𝑛] : ℓ(𝑊𝑥𝑖) ≈ 𝑓 (𝑤, 𝑧𝑖). (2)
To achieve this, we use the embedding 𝜙 that was defined above. This embedding satisfies the232

following lemma,233

Lemma 2. Let 𝑎 ≥ 2. Let 𝜙 : [𝑎] → ℝ2 be the embedding such that for every 𝑗 ∈ [𝑎], 𝜙( 𝑗) =234

(sin (𝜋 𝑗/2𝑎) , cos (𝜋 𝑗/2𝑎))𝑇 . Then, ∥𝜙(𝑖)∥ = 1 and there exist 𝛿 > 0 such that for every 𝑖 ≠ 𝑗 ∈ [𝑎],235

it holds that ⟨𝜙(𝑖), 𝜙( 𝑗)⟩ ≤ 1 − 𝛿.236

Specifically, using 𝛿 and 𝜙 defined in Lemma 2 for 𝑎 = 𝑛, we set 𝑘 = 𝑑 + 2 and utilize the first two237

entries of 𝑦̂𝑖 := 𝑊𝑥𝑖 ∈ ℝ𝑑+2 to encode the corresponding index 𝑖 using 𝜙(𝑖). Then, by incorporating a238

max term over all 𝑖 ∈ [𝑛] into ℓ and set 𝑐 = 4𝑏/𝛿 (where 𝑏 is a bound on the values of 𝑓 ), this index239

can be decoded and the corresponding loss function 𝑓 (·, 𝑧𝑖) can be applied. Finally, for constructing240

the matrix 𝑊 we add another column with index 𝑛 + 1 to the matrix and modify D′ to represent the241

uniform distribution over {𝑒𝑖 + 𝑒𝑛+1}𝑛𝑖=1. This change of the distribution makes the last 𝑑 entries242

of 𝑦̂𝑖 equal to the last 𝑑 entries of the added column (for every 𝑖). Then, when the latter is used as243

placeholder for 𝑤, we get that Eq. (2) holds.244

Third, we relate the population loss of the two problems. For this, we employ the technique of double245

sampling. Specifically, we use a set 𝑆 = {𝑧1, . . . , 𝑧2𝑛} sampled i.i.d. from D and our conversion246

samples only 𝑛 examples from D′. This ensures that at least half of the examples will not appear in the247

training set of the prediction problem. By Eq. (2), when taking the expectation over 𝑆, the expected248

prediction loss on such samples will be equal to the population loss in the convex optimization249

problem. Finally, by bounding the loss ℓ( 𝑦̂𝑖) for examples that appears in the training set of the250

prediction problem, we get a population guarantee for the SCO problem.251
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A Proofs of Section 3290

A.1 Proof of Upper Bound291

First, we use the result of Maurer (2016) to show an upper bound for the sample complexity of vector292

valued predictors using Rademacher Complexity. The result that we show is,293

Theorem 3. Let 𝑘 ,𝑛 ∈ ℕ. For every 𝑚 ∈ 𝑁 , 𝑊0 ∈ ℝ𝑘×𝑚, convex and 𝐺-Lipschitz loss function294

ℓ : 𝔹𝑘×𝑚
𝑊0

→ ℝ, distribution D over 𝔹𝑚, it holds that,295

𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − 𝐿 (𝑊∗)

]
= 𝑂

(√
𝑘

√
𝑛

)
.

In the proof we use the standard bound of the generalization error, via the Rademacher complexity of296

the class (e.g. Bartlett and Mendelson (2002)), we have that:297

𝔼𝑆∼D𝑛

[
sup

𝑊∈𝔹𝑘×𝑚
𝑊0

{
𝐿 (𝑊) − 𝐿̂ (𝑊)

}]
≤ 2𝔼𝑆∼D𝑛 [𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚

𝑊0
)],

Where we notate the function class:298

ℓ ◦ 𝔹𝑘×𝑚
𝑊0

= {𝑥 → ℓ(𝑊𝑥) : 𝑊 ∈ 𝔹𝑘×𝑚
𝑊0

}.

and 𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) is the Rademacher complexity of the class ℓ ◦ 𝔹𝑘×𝑚
𝑊0

. Namely:299

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) := 𝔼𝜎

 sup
ℎ∈ℓ◦𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ(𝑥𝑖)
 , (3)

and 𝜎1, . . . , 𝜎𝑛 are i.i.d. Rademacher random variables. Now we use the contraction lemma for vector300

valued predictors given in Maurer (2016).301

Lemma 3. (Corollary 4 in Maurer (2016)). Let 𝑘 ∈ ℕ and X be any set, (𝑥1, ..., 𝑥𝑛) ∈ X𝑛, let F be302

a class of functions 𝑓 : X → ℝ𝑚 and let ℎ𝑖 : ℝ𝑘 → ℝ be 𝐺-Lipschitz functions. Then,303

𝔼 sup
𝑓 ∈F

∑︁
𝑖

𝜎𝑖ℎ𝑖 ( 𝑓 (𝑥𝑖)) ≤
√

2𝐺𝔼 sup
𝑓 ∈F

∑︁
𝑖, 𝑗

𝜎𝑖 𝑗 𝑓 𝑗 (𝑥𝑖) ,

where 𝜎𝑖 𝑗 is an independent doubly indexed Rademacher sequence and 𝑓 𝑗 (𝑥𝑖) is the 𝑗-th component304

of 𝑓 (𝑥𝑖).305

We derive the following lemma306

Lemma 4. Let 𝑘 ,𝑛 ∈ ℕ. For every 𝑚 ∈ 𝑁 , 𝑊0 ∈ ℝ𝑘×𝑚, convex and 𝐺-Lipschitz loss function307

ℓ : 𝔹𝑘×𝑚
𝑊0

→ ℝ, distribution D over 𝔹𝑚, it holds that,308

𝔼𝑆∼D𝑛

[
sup

𝑊∈𝔹𝑘×𝑚
𝑊0

{
𝐿 (𝑊) − 𝐿̂ (𝑊)

}]
≤ 2

√
2𝐿

√
𝑘

√
𝑛

.
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Proof. Let 𝑆 = {𝑥1, . . . 𝑥𝑛}. First, for F = {𝐴𝑥𝑖 | ∥𝐴∥𝐹 ≤ 1}, denoting the 𝑗-th row of any matrix 𝐴309

as 𝐴 𝑗 , and defining ℎ𝑖 (𝑤) = ℓ(𝑊0𝑥𝑖 + 𝑤), by Lemma 3 it holds that,310

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) = 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℓ(𝑊𝑥𝑖)


= 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℓ(𝑊𝑥𝑖 −𝑊0𝑥𝑖 +𝑊0𝑥𝑖)


= 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ𝑖 ((𝑊 −𝑊0)𝑥𝑖)


= 𝔼𝜎

[
sup

∥𝐴∥𝐹≤1

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ𝑖 (𝐴𝑥𝑖)
]

≤
√

2𝐺
𝑛

𝔼𝜎

[
sup

∥𝐴∥𝐹≤1

∑︁
𝑖, 𝑗

𝜎𝑖 𝑗𝐴
𝑇
𝑗 𝑥𝑖

]
≤

[√
2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

∑︁
𝑗

∑︁
𝑖

𝜎𝑖 𝑗𝐴
𝑇
𝑗 𝑥𝑖

]
Now, if 𝐷 is the matrix that its 𝑗 th column is

∑
𝑖 𝜎𝑖 𝑗𝐴

𝑇
𝑗
𝑥𝑖 , we get,311

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) ≤
√

2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

𝑇𝑟 (𝐴𝐷)

≤
√

2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

∥𝐴∥𝐹𝔼𝜎 ∥𝐷∥𝐹

≤
√

2𝐺
𝑛

𝔼𝜎 ∥𝐷∥𝐹

=

√
2𝐺
𝑛

𝔼𝜎

√︄∑︁
𝑗

∥
∑︁
𝑖

𝜎𝑖 𝑗𝑥𝑖 ∥2

≤
√

2𝐺
𝑛

√︄∑︁
𝑗

∑︁
𝑖

∥𝑥𝑖 ∥2

≤
√

2𝐺
√
𝑘

√
𝑛

.

The lemma follows by combining everything together. ■312

For finalizing the proof of Theorem 3 we use the following lemma from Koren et al. (2022).313

Lemma 5. (Lemma 1 of Koren et al. (2022)) Let 𝑊 ⊆ ℝ𝑑 with diameter 𝐷, Z any distribution314

over 𝑍 , and 𝑓 : 𝑊 × 𝑍 → ℝ convex and 𝐺-Lipschitz in the first argument. For every sample set315

𝑆 = {𝑧1, . . . , 𝑧𝑛} sampled i.i.d from Z, let 𝑤★
𝑆
= arg min 𝐹̂ (𝑤) the empirical risk minimizer. Then316

𝔼𝑆 [𝐹̂ (𝑤∗) − 𝐹̂ (𝑤∗
𝑆)] ≤

4𝐺𝐷
√
𝑛

.

Now, we can derive Theorem 3.317

9



Proof of Theorem 3. By Lemma 5 and Lemma 4, we know that318

𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − 𝐿 (𝑊∗)

]
= 𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − 𝐿̂ (𝑊∗)

]
+ 𝔼𝑆∼D𝑛

[
𝐿̂ (𝑊∗) − 𝐿̂ (𝑊∗)

]
≤ 2

√
2𝐺

√
𝑘

√
𝑛

+ 4𝐺
√
𝑛

≤ 10𝐺
√
𝑘

√
𝑛

.

■319

A.2 Proof of Lower Bound320

First, we prove the following lemma, which implies the lower bound for the case of 𝑘 = 𝑂 (log 𝑛),321

Lemma 6. Let 𝑘 ∈ ℕ and 0 ≤ 𝜀 ≤ 1√
𝑛

. Then exists a dimension 𝑚0 and a matrix 𝑊0 such that for322

any 𝑚 ≥ 𝑚0 = Θ

(
1
𝜀2

)
, F ℓ,𝑊0

𝑘,𝑚
can shatter Ω

(
1
𝜀2

)
examples with margin 𝜀.323

Proof. Let 𝑚 = 1
𝜀2 and 𝑊0 = 0𝑘×𝑚. Now, for every possible labeling for S, 𝑦 ∈ {±𝜀}

1
𝜀2 , we define324

the matrix 𝑊𝑦 to be the matrix which its first row is 𝑢𝑦 and the rest of the rows are 0. Note that325

∥𝑊𝑦 −𝑊0∥𝐹 = 1. Moreover, we define ℓ : ℝ𝑘 → ℝ as ℓ( 𝑦̂) = 𝑒1 𝑦̂. This function is convex and326

1-Lipschitz. For every 𝑖 ∈
[

1
𝜀2

]
we define 𝑥𝑖 = 𝑒𝑖 . It is left to show that the set 𝑆 = {𝑥1 . . . , 𝑥 1

𝜀2
} can327

be shattered. It holds since for every 𝑦,328

ℓ(𝑊𝑦𝑥𝑖) = 𝑒1𝑊𝑦𝑥𝑖 = 𝑦𝑒𝑖 = 𝑦𝑖 .

■329

Lemma 7. Let 𝑑 ≥ 100. There exists a set 𝑈𝑑 ⊆ ℝ𝑑 , with |𝑈𝑑 | ≥ 2𝑑/12, such that all 𝑢 ∈ 𝑈𝑑 are of330

unit length ∥𝑢∥ = 1, and for all 𝑢, 𝑣 ∈ 𝑈𝑑 , 𝑢 ≠ 𝑣, it holds that ⟨𝑢, 𝑣⟩ ≤ 1
2 .331

Proof of Lemma 7. Let 𝑟 = 2 𝑑
12 . For every 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑑 let the 𝑢

𝑗

𝑖
the random variable332

which is 1√
𝑑

with probability 1
2 and − 1√

𝑑
with probability 1

2 . Then, for every 1 ≤ 𝑖 ≤ 𝑟 , we define the333

vector 𝑢𝑖 = (𝑢1
𝑖
, · · · , 𝑢𝑑

𝑖
) and look at the set 𝑈 = {𝑢1, 𝑢2, ...𝑢𝑟 }. We now show that U satisfies the334

required property with positive probability. By Hoeffding’s inequality, it holds that,335

𝑃𝑟 (⟨𝑢𝑖 , 𝑢𝑘⟩ ≥
1
2
) ≤ 𝑒

−2( 1
2 )2

𝑑· 4
𝑑2 = 𝑒−

𝑑
8 .

Then, by union bound on the
(𝑟
2
)

pairs of vectors in 𝑈,336

𝑃𝑟 (∃𝑖, 𝑘 ⟨𝑢𝑖 , 𝑢𝑘⟩ ≥
1
2
) ≤ 𝑒−

𝑑
8 ·

(
𝑟

2

)
< 𝑒−

𝑑
8 · 1

2
𝑟2 ≤ 1.

■337

Proof of Lemma 1. We denote 𝐽 = 12/𝜀2. We use the set 𝑈 := 𝑈𝑘/13 of (𝑘/13)-dimensional338

nearly-orthogonal vectors, given in Lemma 7 with |𝑈 | = 2𝑘/156, and use an arbitrary enumeration339

of this set 𝑈 = {𝑢1, . . . , 𝑢 |𝑈 | }. For every 𝑢 ∈ 𝑈 ⊆ ℝ
𝑘
13 , we define the vector 𝑢′ ∈ ℝ𝑘 which is for340

1 ≤ 𝑖 ≤ 𝑘
13 , 𝑢̃[𝑖] = 𝑢[𝑖] and other entries equal zero. Let 𝑚 = ( 𝑘

13 + 1
12 )𝐽 and 𝑊0 ∈ ℝ𝑘×𝑚 be the341

following matrix (note that by the lower bound for 𝜀, it holds that 𝑘𝐽
13 ≤ 2 𝑘

156 ):342

𝑊0 = 𝜀
©­«
𝑢1 𝑢2 . . . 𝑢 𝑚𝐽

7
0

0 0 0 0 0
ª®¬.

Now, for every 𝑖 ∈ [ 12𝑘
13 ] and 𝑗 ∈

[
𝐽
12

]
we define 𝑥𝑖, 𝑗 =

1√
2
𝑒 12𝑘

13 ( 𝑗−1)+𝑖 + 1√
2
𝑒 𝑘𝐽

13 + 𝑗 . We show that the343

set 𝑆 = {𝑥𝑖, 𝑗 : 𝑖 ∈ [ 12𝑘
13 ], 𝑗 ∈

[
𝐽
12

]
} can be shattered by F ℓ,𝑊0

𝑘,𝑚
.344
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For this, we use the set 𝑈̂ := 𝑈 12𝑘
13

, of 12𝑘
13 -dimensional nearly-orthogonal vectors, given in Lemma 7345

with |𝑈̂ | = 2 𝑘
13 and use an arbitrary enumeration of this set 𝑈̂ = {𝑢̂1, . . . 𝑢̂ |𝑈̂ | }. For the rest of the346

proof, we refer to every vector 𝑧 ∈ {0, 1} 𝑘𝐽
13 as a sequence of 𝐽

12 vectors in {0, 1} 12𝑘
13 , 𝑧 (1) , . . . , 𝑧 (

𝐽
12 ) ,347

where for every 𝑟 ∈ 𝐽
12 , 𝑧 (𝑟 ) = 𝑧[(𝑟 − 1) ( 12𝑘

13 ) + 1 : 12𝑘𝑟
13 ]. Now, since we refer to every possible348

labeling for S, 𝑦 ∈ {0, 1} 𝑘𝐽
13 as a sequence of 𝐽

12 vectors, 𝑦 (1) , . . . , 𝑦 (
𝐽
12 ) , it is possible to identify such349

labeling 𝑦 with a sequence (𝑢̂𝑦 (1) , 𝑢̂𝑦 (2) . . . 𝑢̂
𝑦
( 𝐽

12 ) ) ∈ 𝑈̂
𝐽
12 . For every such 𝑦, we define the following350

matrix:351

𝑊𝑦 = 𝜀
©­«

0 0
0 𝑢̂𝑦 (1) 𝑢̂𝑦 (2) . . . 𝑢̂

𝑦
( 𝐽

12 )

ª®¬.
By the definition of 𝐽, it holds that ∥𝑊𝑦 ∥𝐹 ≤ 1. Now, for every 𝑢̂ ∈ 𝑈̂, we define the vector 𝑢̃ ∈ ℝ𝑘352

which is zero in its first 𝑘
13 entries and for the rest of the entries, 𝑘

13 + 1 ≤ 𝑖 ≤ 𝑘 , it holds that,353

𝑢̃[𝑖] = 𝑢̂[𝑖 − 𝑘
13 ]. We turn to define the loss function ℓ : ℝ𝑘 → ℝ. For this, we define the following354

set355

𝐴 =

{
𝑧 ∈ {0, 1} 12𝑘

13 , 𝑧 ∈ {0, 1} 𝑘𝐽
13 , 𝑟 ∈ [12𝑘

13
], 𝑝 ∈ [ 𝐽

12
]

��� ∀1 ≤ 𝑏 ≤ 𝐽

12
: 𝑧 (𝑏) = 𝑧, 𝑧 (𝑝) (𝑟) = 𝜀

}
.

The the loss function ℓ is defined as following,356

ℓ( 𝑦̂) = 2
√

8 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
𝜀,max{ 𝜀

√
8
, 𝑢̃𝑇𝑧 𝑦̂} + max{ 𝜀

√
8
, 𝑢

′𝑇
𝑟+ 12𝑘

13 (𝑝−1) 𝑦̂}
}
− 7𝜀.

The function is 1-Lipschitz and convex as a maximum over linear 1-Lipschitz functions. For every357

𝑦 ∈ {0, 1} 𝑘𝐽
13 we define 𝑊 ′

𝑦 = 𝑊0 +𝑊𝑦 . Let 𝑥𝑖, 𝑗 ∈ 𝑆. Then,358

𝑊 ′
𝑦𝑥𝑖, 𝑗 =

1
√

2
𝜀𝑢′12𝑘

13 ( 𝑗−1)+𝑖 +
1
√

2
𝜀𝑢̃𝑦 ( 𝑗) ,

and359

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) =

= 2
√

8 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
𝜀,max{ 𝜀

√
8
, 𝑢̃𝑇𝑧𝑊

′
𝑦𝑥𝑖, 𝑗 } + max{ 𝜀

√
8
, 𝑢

′𝑇
𝑟+ 12𝑘

13 (𝑝−1)𝑊
′
𝑦𝑥𝑖, 𝑗 }

}
− 7𝜀

= 2
√

8𝜀 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
,max{ 1

√
8
,

1
√

2
𝑢̂𝑇𝑧 𝑢̂𝑦 ( 𝑗) } + max{ 1

√
8
,

1
√

2
𝑢𝑇
𝑟+ 12𝑘

13 (𝑝−1)𝑢 12𝑘
13 ( 𝑗−1)+𝑖}

}
− 7𝜀

= 2𝜀 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2𝑢̂𝑇𝑧 𝑢̂𝑦 ( 𝑗) } + max{1, 2𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀.

If 𝑦𝑖, 𝑗 = 𝑦 ( 𝑗 ) [𝑖] = 1, the maximum of the first term is attained at 𝑧 = 𝑦 ( 𝑗 ) and the maximum of the360

sum of the terms is attained at 𝑧 such that for every 𝑏, 𝑧 (𝑏) = 𝑦 ( 𝑗 ) . Moreover, since 𝑦 ( 𝑗 ) [𝑖] = 1,361

it holds that 𝑧 (𝑏) [𝑖] = 1 for every 𝑏, and particularly, for 𝑝 = 𝑗 , 𝑟 = 𝑖, 𝑧 (𝑝) [𝑟] = 1, thus, since362

𝑝 = 𝑗 , 𝑟 = 𝑖 gives the maximal inner product and the condition of the max holds, the maximum of the363

second term is attained at 𝑝 = 𝑗 , 𝑟 = 𝑖, and,364

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) = 2𝜀 max

( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2 max 𝑢̂𝑇𝑧 𝑢̂𝑦 ( 𝑗) } + max{1, 2 max 𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀

= 2𝜀 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3, 2𝑢̂𝑇

𝑦 ( 𝑗) 𝑢̂𝑦 ( 𝑗) + 2𝑢𝑇
𝑖+ 12𝑘

13 ( 𝑗−1)𝑢 12𝑘
13 ( 𝑗−1)+𝑖

}
− 7𝜀

= 8𝜀 − 7𝜀
= 𝜀.

If 𝑦𝑖, 𝑗 = 𝑦 ( 𝑗 ) [𝑖] = 0, and there exists 𝑟 such that 𝑦 ( 𝑗 ) [𝑟] = 1, the maximum of the first term is365

attained at 𝑧 = 𝑦 ( 𝑗 ) and the maximum of the sum of the terms is attained at 𝑧 such that for every 𝑏,366

𝑧 (𝑏) = 𝑦 ( 𝑗 ) . Moreover, since 𝑦 ( 𝑗 ) [𝑖] = 0, it holds that 𝑧 (𝑏) [𝑖] = 0 for every 𝑏, thus, for every 𝑟, 𝑝367
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such that 𝑧 (𝑝) [𝑟] = 1, it holds that 𝑟 + 12𝑘
13 (𝑝 − 1) ≠ 𝑖 + 12𝑘

13 ( 𝑗 − 1) and 𝑢𝑇
𝑟+ 12𝑘

13 (𝑝−1)
𝑢 12𝑘

13 ( 𝑗−1)+𝑖 ≤ 1
2 .368

Then,369

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) = 2𝜀 max

( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2 max 𝑢̂𝑇𝑧 𝑢̂𝑦 ( 𝑗) } + max{1, 2 max 𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀

= 2𝜀 max
( 𝑧̂,𝑧,𝑟 , 𝑝) ∈𝐴

{
3, 2𝑢̂𝑇

𝑦 ( 𝑗) 𝑢̂𝑦 ( 𝑗) + 1
}
− 7𝜀

= 6𝜀 − 7𝜀
= −𝜀.

If 𝑦𝑟 , 𝑗 = 𝑦 ( 𝑗 ) [𝑟] = 0 for every 𝑟 , for every 𝑧 such that for every 𝑏, 𝑧 (𝑏) = 𝑦 ( 𝑗 ) it holds that 𝑧 = {0} 𝑘𝐽
13 .370

Then, the set where the maximum is applied is empty and371

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) = 2𝜀 · 3 − 7𝜀 = −𝜀.

We showed that 𝑆 can be shattered by F ℓ,𝑊0
𝑘,𝑚

, which implies the lemma. ■372

Proof of Theorem 1. We first prove the theorem for the case of 𝑘 = Ω(log 𝑛). Let 𝜀 which satisfy373

the condition of Lemma 1. Let 𝑚0, 𝑊0 and ℓ be as defined in Lemma 1. By Lemma 1, there exists374

a constant 𝐶 and a set of examples 𝑆 = {𝑥𝑖}
𝐶𝑘

𝜀2
𝑖=1 such that for every labeling 𝑦 ∈ {0, 1}

𝐶𝑘

𝜀2 , there375

exists a matrix 𝑊𝑦 with ∥𝑊𝑦 −𝑊0∥𝐹 ≤ 1 such that for every 𝑖 ∈ [𝐶𝑘

𝜀2 ], ℓ(𝑊𝑦𝑥𝑖) = 𝜀 if 𝑦𝑖 = 1 and376

ℓ(𝑊𝑦𝑥𝑖) = −𝜀 if 𝑦𝑖 = 0. Now, let 𝑦∗ = {0}
𝐶𝑘

𝜀2 and 𝑊∗ be the corresponding 𝑊𝑦∗ and let 𝐷′ be377

the uniform distribution over 𝑆. We prove that for every data set 𝑆′ such that |𝑆′ | ≤ 𝐶𝑘

2𝜀2 sampled378

i.i.d from 𝐷′, there exists an ERM 𝑊∗ with 𝐿 (𝑊∗) − 𝐿 (𝑊∗) ≥ 𝜀, this will prove Theorem 1. Let379

𝑆′ = {𝑥𝑖1 . . . 𝑥𝑖|𝑆′ | } be such a data set. Let 𝑦𝑆 ∈ {0, 1}
𝐶𝑘

𝜀2 be a labeling as following380

𝑦𝑆 =

{
0 𝑥𝑖 ∈ 𝑆
1 𝑥𝑖 ∉ 𝑆,

and 𝑊𝑆 := 𝑊𝑦𝑆 be the corresponding matrix. First, by the definition of 𝑊𝑦𝑆 it follows that 𝑊𝑆 is a381

ERM since it holds that382

𝐿̂ (𝑊𝑆) =
1
|𝑆′ |

|𝑆′ |∑︁
𝑗=1

ℓ(𝑊𝑆𝑥𝑖 𝑗 ) =
1
|𝑆 |

|𝑆′ |∑︁
𝑗=1

−𝜀 = −𝜀.

Moreover, since at least |𝑆 |
2 of the examples in 𝑆 are not in 𝑆′, it also holds that383

𝐿 (𝑊𝑆) − 𝐿 (𝑊∗) = 1
|𝑆 |

|𝑆 |∑︁
𝑖=1

ℓ(𝑊𝑆𝑥𝑖) − ℓ(𝑊∗𝑥𝑖)

=
1
|𝑆 |

|𝑆 |∑︁
𝑖=1

ℓ(𝑊𝑆𝑥𝑖) + 𝜀

≥ 1
|𝑆 |

∑︁
𝑖∉𝑆′

ℓ(𝑊𝑆𝑥𝑖) + 𝜀

≥ 1
2
· 2𝜀

= 𝜀.

The proof for the case of 𝑘 = 𝑂 (log 𝑛) is analogous and can be implied by using Lemma 6 instead of384

Lemma 1. ■385

B Proofs of Section 4386

Proof of Lemma 2. Let 𝜙 : [𝑎] → ℝ2, 𝜙(𝑖) =
(
sin

(
𝜋𝑖
2𝑎

)
, cos

(
𝜋𝑖
2𝑎

) )𝑇 and 𝛿 = 1− cos
(
𝜋

2𝑎
)
. We notice387

that 0 < 𝛿 < 1. Then, as a result, for every 𝑖 it holds that388

∥𝜙(𝑖)∥ =

√︄
sin

(
𝜋𝑖

2𝑎

)2
+ cos

(
𝜋𝑖

2𝑎

)2
= 1,
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and if 𝑖 ≠ 𝑗 ,389

⟨𝜙(𝑖), 𝜙( 𝑗)⟩ = sin
(
𝜋𝑖

2𝑎

)
sin

(
𝜋 𝑗

2𝑎

)
+ cos

(
𝜋𝑖

2𝑎

)
cos

(
𝜋 𝑗

2𝑎

)
= cos

(
𝜋(𝑖 − 𝑗)

2𝑎

)
≤ cos

( 𝜋

2𝑎

)
(cos is monotonic decreasing in [0, 𝜋/2])

= 1 − 𝛿.

■390

Proof of Theorem 2. First, defining 𝑊 := 𝑊 (𝑆′) and denoting the columns of any matrix 𝑀 ∈ ℝ𝑘×𝑚391

as 𝑀1, . . . 𝑀𝑚. By the definitions of 𝑤(𝑆′), ℓ and 𝑊0, it holds that392

𝐿 (𝑊) = 1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨𝑊𝑖 [1 : 2], 𝜙( 𝑗)⟩ + 𝑓 (𝑤(𝑆′), 𝑧 𝑗 )

)
≥ 1

2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊𝑖 [1 : 2], 𝜙(𝑖)⟩ + 𝑓 (𝑤(𝑆′), 𝑧𝑖).

Now, we define the following matrix,393

𝑊̃ =

(
𝑊0 0

0 𝑤∗

)
.

By Lemma 2, for every 𝑖 ≠ 𝑗 ∈ [2𝑛],394

(⟨𝑐𝜙(𝑖), 𝜙(𝑖)⟩ + 𝑓 (𝑤∗, 𝑧𝑖)) −
(
⟨𝑐𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
= 𝑐⟨𝜙(𝑖), 𝜙(𝑖)⟩ − 𝑐⟨𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧 𝑗 )
≥ 𝑐𝛿 − 2𝑏
> 0.

As a result,395

𝐿 (𝑊∗) ≤ 𝐿 (𝑊̃)

=
1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨𝑊̃𝑖 [1 : 2], 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
=

1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨𝑐𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
=

1
2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊0𝑖 [1 : 2], 𝜙(𝑖)⟩ + 𝑓 (𝑤∗, 𝑧𝑖).

Now, combining with the Cauchy-Schwartz and Jensen inequalities we get that,396

𝐿 (𝑊) − 𝐿 (𝑊∗) ≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) +
1
2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2], 𝜙(𝑖)⟩

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −
1
2𝑛

2𝑛∑︁
𝑖=1

∥𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2] ∥

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −

√√√
1
2𝑛

2𝑛∑︁
𝑖=1

∥𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2] ∥2

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −
1

√
2𝑛

,
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where in the last inequality we used the fact that 1
2𝑛

∑2𝑛
𝑖=1 ∥𝑊𝑖 [1 : 2]−𝑊0𝑖 [1 : 2] ∥2 ≤ ∥𝑊−𝑊0∥2

𝐹
≤ 1.397

Then, we denote 𝐼 = {𝑖1, . . . , 𝑖𝑝} the set of indices 𝑖 ∈ [2𝑛] that sampled from D′ as the data set of398

the VVP problem. Since 𝑝 ≤ 𝑛, we can add 𝑛 − 𝑝 additional items from [2𝑛] \ 𝐼 to 𝐼 to create a set399

𝐼 = {𝑖1, . . . 𝑖𝑛}. Fixing 𝑆′ and taking expectation on 𝑆 = {𝑧1, . . . , 𝑧2𝑛} (note that 𝑤(𝑆′) and samples400

𝑧𝑖 are independent if 𝑖 ∉ 𝐼 ), we get401

𝔼𝑆′ [𝐿 (𝑊 − 𝐿 (𝑊∗)] + 1
√

2𝑛

≥ 𝔼{𝑧𝑖 :𝑖∈𝐼 }
1
2𝑛

∑︁
𝑖∈𝐼

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) + 𝔼{𝑧𝑖 :𝑖∈𝑆}
1
2𝑛

∑︁
𝑖∉𝐼 ′

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖)

≥ 𝔼𝑧𝑖1 ,...,𝑧𝑖𝑛


1
2𝑛

𝑛∑︁
𝑗=1

𝑓 (𝑤(𝑆′), 𝑧𝑖 𝑗 ) − 𝑓 (𝑤∗, 𝑧𝑖 𝑗 )
 + 𝔼𝑧𝑖1 ,...,𝑧𝑖𝑝

[
1
2
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
.

Now, taking expectation over 𝑆′, we get by Lemma 1 of Koren et al. (2022) (see Lemma 5 in402

Appendix A),403

𝔼 [𝐿 (𝑊) − 𝐿 (𝑊∗)] + 1
√

2𝑛

≥ 𝔼


1
2𝑛

𝑛∑︁
𝑗=1

𝑓 (𝑤(𝑆′), 𝑧𝑖 𝑗 ) − 𝑓 (𝑤∗, 𝑧𝑖 𝑗 )
 + 𝔼

[
1
2
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
≥ − 2

√
𝑛
+ 1

2
𝔼

[
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
. (Lemma 5)

The theorem follows by the guarantee on A and arranging the inequality. ■404
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