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Abstract

We study the problem of learning vector-valued linear predictors: these are predic-
tion rules parameterized by a matrix that maps an 𝑚-dimensional feature vector to
a 𝑘-dimensional target. We focus on the fundamental case with a convex and Lips-
chitz loss function, and show several new theoretical results that shed light on the
complexity of this problem and its connection to related learning models. First, we
give a tight characterization of the sample complexity of Empirical Risk Minimiza-
tion (ERM) in this setting, establishing that Ω̃(𝑘/𝜀2) examples are necessary for
ERM to reach 𝜀 excess (population) risk; this provides for an exponential improve-
ment over recent results by Magen and Shamir (2023) in terms of the dependence
on the target dimension 𝑘 , and matches a classical upper bound due to Maurer
(2016). Second, we present a black-box conversion from general 𝑑-dimensional
Stochastic Convex Optimization (SCO) to vector-valued linear prediction, showing
that any SCO problem can be embedded as a prediction problem with 𝑘 = Θ(𝑑)
outputs. These results portray the setting of vector-valued linear prediction as
bridging between two extensively studied yet disparate learning models: linear
models (corresponds to 𝑘 = 1) and general 𝑑-dimensional SCO (with 𝑘 = Θ(𝑑)).

1 Introduction

Prediction problems, such as classification and regression, lie at the core of both practical applica-
tions and theoretical research in machine learning. Within this framework, learning vector-valued
predictors (VVPs), characterized by functions of the form:

𝑥 → ℓ(𝑊𝑥) ,
mapping vectors 𝑥 ∈ ℝ𝑚 through a linear transformation parameterized by a matrix 𝑊 ∈ ℝ𝑘×𝑚

followed by a loss function ℓ : ℝ𝑘 ↦→ ℝ, constitutes a rich learning framework that captures a wide
range of problems in machine learning, from classical to modern. For instance, the scenario where
𝑘 = 1 corresponds to the extensively studied domain of generalized linear models (e.g., Bartlett and
Mendelson, 2002; Shalev-Shwartz and Ben-David, 2014). When 𝑘 > 1, this setting encompasses
multi-class problems, where 𝑊 acts as a matrix of predictors and ℓ corresponds to a specific loss
function, such as the cross-entropy loss or the multiclass hinge loss (Crammer and Singer, 2001;
Mohri et al., 2018).

Another example of VVPs arises in feed-forward neural networks, where a composition of such
transformations occurs, each of which corresponds to a layer with a weight matrix 𝑊 and an activation
function ℓ. Motivated by this connection, a recent line of work studied VVP in the regime where ℓ

is Lipschitz continuous and 𝑊 is constrained within a unit ball, relative to some matrix norm ∥ · ∥,
centered around an “initialization”, or reference matrix 𝑊0 (Daniely and Granot, 2019, 2022; Vardi
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et al., 2022; Magen and Shamir, 2023). These studies have yielded a range of sample complexity
results depending on the particular choice of a matrix norm and properties of the initialization 𝑊0.

In this work, we discuss an arguably more basic and fundamental case of the VVP framework:
where ℓ is a convex (and Lipschitz) loss function and the domain is restricted to a simple unit ball,
with respect to the Frobenius norm, centered around a given reference matrix 𝑊0. In this scenario,
recent work by Magen and Shamir (2023) reveals an interesting finding: while learning is possible
within this framework using a specific algorithm (namely stochastic gradient descent, SGD), there
exist problem instances where generic empirical risk minimization (ERM) fails. As they mention
in their work, this finding is analogous to a series of studies within the more general context of
Stochastic Convex Optimization (SCO), which established that learnability in SCO is algorithmic
dependent and in general, learning through ERM could fail when the problem dimension is sufficiently
large (Shalev-Shwartz et al., 2010; Feldman, 2016).

1.1 Our contributions

In this work, we present several findings that contribute to a better understanding of the complexity of
learning vector-valued predictors (VVPs) with convex loss functions and its connection to stochastic
convex optimization (SCO). Our main contributions of this paper are summarized as follows:

(i) We characterize the exact sample complexity of ERMs within the framework of convex and
Lipschitz VVPs, demonstrating a lower bound of Ω̃(𝑘/𝜀2). Together with a classic result of
Maurer (2016), this implies that the sample complexity of ERM in the VVP setting is Θ̃(𝑘/𝜀2).
In particular, our lower bound provides for an exponential improvement as compared to the
lower bound of Magen and Shamir (2023), that scaled poly-logarithmically with the target
dimension 𝑘 , and further includes the tight dependence on 𝜀.

(ii) We present a black-box transformation from general SCO to VVP, that converts a given SCO
instance in 𝑑-dimensions to a convex VVP problem with 𝑘 = Θ(𝑑) outputs. We show that
using any algorithm for the VVP setting to solve the converted problem instance to within 𝜀
excess risk using a training sample of size 𝑛, we can directly recover a solution to the original
SCO problem with excess risk 𝑂 (𝜀 + 1/

√
𝑛).

Put together, the two results indicate that, in terms of its complexity, VVP bridges between two
extreme models: generalized linear models, namely the case 𝑘 = 1, and general 𝑑-dimensional
SCO, that roughly correspond to 𝑘 = Θ(𝑑). First, our sample complexity bounds for ERM can be
seen as interpolating between the classical Θ(1/𝜀2) sample complexity rate of generalized linear
models (Bartlett and Mendelson, 2002) and the analogous bound in 𝑑-dimensional SCO, which
is linear in 𝑑 (Feldman, 2016; Carmon et al., 2023). Second, from a more structural perspective,
our transformation from SCO to VVP suggests that in the extreme where 𝑘 = Θ(𝑑), vector-valued
prediction becomes rich enough so as to encompass generic SCO problems.

The revealed connection between linear models and SCO through the lens of VVP is perhaps
somewhat surprising, since the two are extensively-studied problems that traditionally differ from
one another in terms of techniques and results. Further, it partially addresses a common conceptual
criticism of SCO as a learning framework: in SCO, there is no apparent concept of “prediction” and
losses are rather implicitly assigned to model parameters, whereas VVP is naturally a supervised
learning model that explicitly defines a rule 𝑥 → 𝑊𝑥 from which predictions are generated and losses
are induced.

1.2 Additional related work

Upper bounds for the sample complexity of VVPs. As alluded to in the introduction, closely
related to our setting is the work of Maurer (2016) that gives an upper bound that scales like 𝑂 (𝑘), for
convex and Lipschitz predictors with bounded Frobenius norm. In another work, Daniely and Granot
(2022) achieved an upper bound that is similar to Maurer (2016) for non-convex predictors and with
bounded difference from a reference matrix 𝑊0. For the specific case of 𝑊0 = 0, Vardi et al. (2022)
shows an upper bound that scales like 𝑂 (log 𝑘) and Magen and Shamir (2023) proved an upper
bound independent on 𝑘 . The works of Lei et al. (2019); Zhang and Zhang (2024) studied VVPs
with arbitrary initialization under an ℓ∞-Lipschitz condition, a stronger assumption compared to our
setting, and showed upper bounds that are logarithmic in 𝑘 . In addition, Zhang and Zhang (2024)
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state a similar upper bound in the ℓ2-Lipschitz case. In a personal communication with the authors of
this paper, it was pointed out that the improved bound, which will appear in an upcoming journal
version of their work, in fact holds under an additional smoothness assumption. This is compatible
with our results, which indicate that some additional assumptions (though not necessarily smoothness)
and potentially new techniques are indeed required to obtain such an improved dependence on 𝑘 in
the standard ℓ2-Lipschitz case. Whether smoothness is particularly necessary for obtaining improved
bounds in the ℓ2- Lipchitz case remains an interesting open problem for further investigation.

Lower bounds for the sample complexity of VVPs. For one-hidden-layer neural networks, which
is a special case of valued predictors with non-convex loss, Daniely and Granot (2019) provide a
fat-shattering lower bound for the case where 𝑘 = 𝑚, crucially rely on the inputs have norm that
scales with 𝑘 . Then, Vardi et al. (2022) referred to the case 𝑘 ≠ 𝑚 and showed a lower bound of
Ω(𝑘/𝜀2) for the sample complexity of a class of non-convex predictors, where the initialization
matrix is 𝑊0 = 0 and the ℓ2 norm of the prediction matrix is bounded by a constant. Then, Daniely
and Granot (2022) refer to the class of predictors with bounded Frobenius norm and showed that this
class can shatter a training set of Ω(𝑘) examples, assuming that the inputs have norm

√
𝑚 and that

𝑘 = 𝑂 (2𝑚). In a recent work, Magen and Shamir (2023) generalized this bound to the case where the
Frobenius norm of the distance from an arbitrary initialization matrix is bounded. In the same work,
they discussed convex vector valued predictors and showed a lower bound of Ω(log 𝑘) for the sample
complexity of convex predictors. In this work, we improve their lower bound for convex predictors
as we achieve an exponential increase in the dependence in 𝑘 .

Generalized Linear Models. In the landscape of learning theory literature, the Generalized Linear
Models (GLM) framework stands as one of the most basic and extensively explored settings (e.g.,
Shalev-Shwartz and Ben-David, 2014), as it captures some fundamental problems like logistic
regression and support-vector machines. In this setting, due to dimension-independent uniform
convergence, it is guaranteed that constrained ERM learns with optimal sample complexity of
𝑂 (1/𝜀2) examples (Bartlett and Mendelson, 2002). A more recent work by Amir et al. (2022) show
that unregularized gradient methods, such as full-batch Gradient Descent achieve the same sample
sample complexity when learning GLMs.

Stochastic Convex optimization. Stochastic convex optimization (SCO) is a fundamental theoreti-
cal framework widely used for studying common optimization algorithms. This is often justified by
the simplicity of the framework and the possibility of a rigorous analysis that can hint at the pros and
cons of various optimization techniques in practical setups arising in machine learning. The works
of Shalev-Shwartz et al. (2010); Feldman (2016); Carmon et al. (2023) demonstrated that, although
learnability in this setting is possible (e.g., by Stochastic Gradient Descent) ERM may not learn in this
setting since uniform convergence does not generally hold. Specifically, Carmon et al. (2023) recently
established that the sample complexity of ERM in 𝑑-dimensional SCO is Θ(𝑑/𝜀 + 1/𝜀2). We note
that since our lower bound requires that the number of columns of the vector-valued predictor matrix
is 𝑚 = Θ(𝑛) and the total number of parameters is Ω(𝑚𝑛), this lower bound does not contradict their
upper bound. Beyond generic ERM, several specific and natural ERM algorithms, which are also
frequently used in practice, such as full batch Gradient Descent have been shown to fail in learning
this setting (Amir et al., 2021; Schliserman et al., 2024; Livni, 2024).

2 Problem Setup and Basic Definitions

Notations. For every vector 𝑥 ∈ ℝ𝑑 , we denote its 𝑖th entry by 𝑥 [𝑖] and the vector in ℝ 𝑗−𝑖+1 which
is achieved by taking the entries with index 𝑖 ≤ 𝑘 ≤ 𝑗 by 𝑥 [𝑖 : 𝑗]. For every 𝑛 ∈ ℕ, we denote
[𝑛] = {1, . . . , 𝑛}. We denote the Frobenius norm of a matrix 𝑀 by ∥𝑀 ∥𝐹 = (∑𝑖, 𝑗 𝑀

2
𝑖, 𝑗
)1/2, and

denote a unit ball with respect to ∥·∥𝐹 centered at 𝑊0 by 𝔹𝑘×𝑚
𝑊0

. Moreover, for every dimension 𝑑,
we denote the 𝑑-dimensional unit ball around the origin by 𝔹𝑑 , the 𝑑-dimensional standard basis by
{𝑒1, . . . , 𝑒𝑑}.

Vector-valued prediction. Our main setting of interest in this paper is vector-valued prediction
with a convex and Lipschitz loss function. Let D be a distribution supported over vectors 𝑥 ∈ ℝ𝑚

such that ∥𝑥∥ ≤ 1. Given a convex and 𝐺-Lipschitz loss function ℓ defined over the 𝑘-dimensional
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unit ball 𝔹𝑘 ⊆ ℝ𝑘 , and an initialization matrix 𝑊0, the objective is to find a matrix 𝑊 ∈ 𝔹𝑘×𝑚
𝑊0

with
low population loss, defined as the expected value of the loss function over the distribution D, namely

𝐿 (𝑊) = 𝔼𝑥∼D [ℓ(𝑊𝑥)] .
To find such a model 𝑊 , the learner uses a set of 𝑛 training examples 𝑆 = {𝑧1, . . . , 𝑧𝑛}, drawn i.i.d.
from the unknown distribution D. Given the sample 𝑆, the corresponding empirical loss (or risk) of
𝑊 , denoted �̂� (𝑊), is defined as its average loss over samples in 𝑆:

�̂� (𝑊) = 1
𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑊𝑥𝑖).

A population minimizer in this context is any 𝑊∗ that minimizes the population risk, namely such
that 𝑊∗ ∈ arg min𝑊∈𝔹𝑘×𝑚

𝑊0
𝐿 (𝑊), and an empirical risk minimizer (ERM) is any 𝑊∗ that minimizes

the empirical risk, namely such that 𝑊∗ ∈ arg min𝑊∈𝔹𝑘×𝑚
𝑊0

�̂� (𝑊).

Stochastic Convex Optimization. Another learning model we discuss is Stochastic Convex Opti-
mization (SCO), which is a more general framework that includes (convex) vector-valued prediction
as a special case. In this problem, there is a population distribution D over an arbitrary instance set 𝑍
and a loss function 𝑓 : W × 𝑍 → ℝ which is convex and 𝐺-Lipschitz (for some 𝐺 > 0) with respect
to its first argument over a domain W. For simplicity, we fix in this paper the domain W to be the
𝑑-dimensional unit ball around the origin, denoted 𝔹𝑑 . Analogously to vector-valued prediction, the
population loss with respect to 𝑓 , denoted by 𝐹, is defined as,

𝐹 (𝑤) = 𝔼𝑧∼D [ 𝑓 (𝑤, 𝑧)] .
and the empirical loss, denoted by �̂�, is defined as,

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖).

and corresponding minimizers as 𝑤∗ and 𝑤∗, respectively.

3 Sample Complexity of ERM in Convex Vector-Valued Prediction

In this section, we present a tight characterization of the sample complexity of ERM in the setting of
convex vector-valued prediction. This result is stated as follows.
Theorem 1. Let 𝑘 ,𝑛 ∈ ℕ. There exist 𝑚 = Θ(𝑛), a reference matrix 𝑊0 ∈ ℝ𝑘×𝑚, a convex and
1-Lipschitz loss function ℓ ∈ ℝ𝑘 → ℝ and a distribution D such that in the VVP parameterized by
𝑊0,D and ℓ, with constant probability over the choice of the training set 𝑆 ∼ D𝑛, there exists an
ERM 𝑊∗ with 𝐿 (𝑊∗) − 𝐿 (𝑊∗) = Ω̃

(√︁
𝑘/𝑛

)
.

We further show that this lower bound is tight up to logarithmic factors, using a vector-contraction
inequality for Rademacher complexity due to Maurer (2016), that implies an 𝑂 (𝑘/𝜀2) sample
complexity upper bound. We defer details on this standard derivation to Appendix A, and below
focus on proving the lower bound in Theorem 1.

For the case of 𝑘 ≤ 𝑂 (log 𝑛), Theorem 1 follows from the well-known lower bound of Ω(1/
√
𝑛)

for learning scalar-valued predictors with convex and 𝑂 (1)-Lipschitz losses (for completeness, we
provide a proof in Appendix A). Thus, henceforth we focus on the case where 𝑘 ≥ Ω(log 𝑛). Our
proof approach in this case is to show that, for large enough column dimension 𝑚 and for a certain
reference matrix 𝑊0, the class of predictors parameterized by matrices in a unit Frobenius-norm ball
centered at 𝑊0 can shatter Ω̃(𝑘/𝜀2) examples with margin 𝜀.2 This is formalized in the following.
Lemma 1. Let 10000 ≤ 𝑘 ∈ ℕ and 1

12 ≥ 𝜀 ≥
√
𝑘2−𝑘/312. There exists column dimension 𝑚0 =

Θ(𝑘/𝜀2), such that for any 𝑚 ≥ 𝑚0, there exist a matrix 𝑊0 ∈ ℝ𝑘×𝑚 and a loss function ℓ : ℝ𝑘 → ℝ,
such that the class of vector-valued predictors

F ℓ,𝑊0
𝑘,𝑚

:=
{
𝑥 → ℓ(𝑊𝑥) : 𝑊 ∈ ℝ𝑘×𝑚, ∥𝑊 −𝑊0∥𝐹 ≤ 1

}
can shatter Ω(𝑘/𝜀2) examples with margin 𝜀.

2A class of functions F on an input domain X shatters 𝑚 points 𝑥1, ..., 𝑥𝑚 ∈ X with margin 𝜀, if for all
𝑦 ∈ {0, 1}𝑚 we can find 𝑓 ∈ F such that for all 𝑖 ∈ [𝑚], it holds 𝑓 (𝑥𝑖) ≤ −𝜀 if 𝑦𝑖 = 0 and 𝑓 (𝑥𝑖) ≥ 𝜀 if 𝑦𝑖 = 1.
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Lemma 1 implies Theorem 1 via standard arguments; we defer this proof to Appendix A and below
focus on proving the lemma, which forms our main contribution in this section.

Before we formally prove Lemma 1, let us first outline the main steps and challenges in constructing
the lower bound instance. Our general approach is analogous to the arguments of Magen and Shamir
(2023). They show that for every 𝑛 ∈ ℕ there exists a data set {𝑥1, . . . , 𝑥𝑛} and labeling 𝑦 ∈ ℝ𝑛, there
exists a matrix 𝑊𝑦 with 𝑘 = Ω(2𝑛) such that for every 𝑖, ℓ(𝑊𝑦𝑥𝑖) = 𝜀 if 𝑦𝑖 = 1 and ℓ(𝑊𝑦𝑥𝑖) = −𝜀
if 𝑦𝑖 = 0. Their approach is to use the exponentially-sized set {𝑒𝑖}2𝑛

𝑖=1 of standard basis vectors and
associate every possible labeling 𝑦 ∈ {0, 1}𝑛 with a vector 𝑒𝑦 in this set and a matrix 𝑊𝑦 with 𝑛 + 1
columns which its first 𝑛 columns are the identity matrix and its last column is 𝑒𝑦 . Then, they used a
convex loss function ℓ constructed such that the predictor �̂�𝑖 = 𝑊𝑦𝑥𝑖 output the prediction according
to the corresponding label of 𝑥𝑖 = 𝑒𝑖 .

Our main challenge, however, is to shatter a training set {𝑥1, . . . , 𝑥𝑛} using matrices {𝑊𝑦}𝑦∈2𝑛 with
only 𝑘 = Θ(𝑛) rows rather than 𝑘 = 𝑂 (2𝑛) rows, as in the construction above. For this, we employ a
construction of a set 𝑈 of approximately orthogonal vectors in ℝ𝑂 (𝑘 ) with size which is exponential
in 𝑘 , adapted from Feldman (2016). (The specific construction appears in Lemma 7 in Appendix A.)
In our construction of hard instance, for we use this construction twice. First, as the columns of
the initialization matrix (replacing of the standard basis vectors in Magen and Shamir (2023)) and
second, by identifying every possible labeling 𝑦 with a vector 𝑢𝑦 in this set (instead of 𝑒𝑦 in Magen
and Shamir (2023)) and using the matrices 𝑊𝑦 which their last columns are 𝑢𝑦 .

Finally, for getting the correct dependency with respect to 𝜀, we add Θ(1/𝜀2) columns to the
prediction matrix, and modify the previous construction such that every possible labeling 𝑦 is
identified not just with a single vector 𝑢𝑦 , but rather with a sequence of vectors in the set 𝑈 alluded to
in Lemma 7. This adding of the matrix enables the class F ℓ,𝑊0

𝑘,𝑚
to shatter a larger amount of possible

labelings.

The proof of Lemma 1 appears in Appendix A.

4 Black-box Transformation from SCO to VVP

In this section we provide our second main result which constitutes a black-box conversion between
SCO and learning of vector-valued predictors. Namely, we show that there exists a initialization
matrix 𝑊0 ∈ ℝ𝑘×𝑚, such that any 𝑑-dimensional stochastic optimization problem, with loss function
𝑓 and distribution D, can be converted to a vector-valued predictions problem over 𝔹𝑘×𝑚

𝑊0
with

𝑘 = 𝑂 (𝑑).

4.1 The transformation

Let us first outline our transformation. Consider any SCO instance in 𝑑-dimensions characterized by
a distribution D over sample space 𝑍 , and a convex and 1-Lipschitz loss function 𝑓 : 𝔹𝑑 × 𝑍 → ℝ,
and consider an algorithm A with a guarantee that for every VVP problem, using any training set 𝑆′
with 𝑛 examples that are sampled i.i.d from the corresponding distribution, denoted as D′, outputs
a model 𝑊 (𝑆′) which has 𝜀(𝑛)-sub optimal population loss. The conversion uses a training set
𝑆 = {𝑧1 . . . 𝑧2𝑛} of 2𝑛 examples sampled i.i.d. from D, and takes the following form:

(i) Construct a VVP instance P as follows:
• The dimensions of the VVP problem are 𝑚 = 2𝑛 + 1, 𝑘 = 𝑑 + 2.
• The reference matrix 𝑊0 ∈ ℝ𝑘×𝑚 is as follows,

𝑊0 = 𝑐

(
𝜙(1) 𝜙(2) . . . 𝜙(2𝑛) 0

0 0 · · · 0 0

)
.

where 𝑐 > 0 is a parameter and 𝜙 is a mapping 𝜙 : [2𝑛] → ℝ2 defined below.
• The distribution D′ is the uniform distribution on {𝑥1, . . . , 𝑥2𝑛} where 𝑥𝑖 = 𝑒𝑖 + 𝑒2𝑛+1 for

all 𝑖.
• The loss function ℓ : ℝ𝑘 → ℝ is defined as

ℓ( �̂�) = max
𝑗∈[2𝑛]

{〈
�̂�[1 : 2], 𝜙( 𝑗)

〉
+ 𝑓 ( �̂�[3 : 𝑘], 𝑧 𝑗 )

}
, (1)
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(ii) Sample a training set 𝑆′ with 𝑛 examples drawn i.i.d. from D′, and use A with 𝑆′ to solve P
and obtain a solution matrix 𝑊 (𝑆′) ∈ 𝔹𝑘×𝑚

𝑊0
.

(iii) Return the vector 𝑤(𝑆′) formed by the 𝑑 last entries of the (2𝑛 + 1)th column of 𝑊 (𝑆′).

Here, the mapping 𝜙 is an embedding of the integers 1, . . . , 2𝑛 into the unit sphere in two dimensions,
via 𝜙( 𝑗) = (sin (𝜋 𝑗/4𝑛) , cos (𝜋 𝑗/4𝑛))𝑇 . Note that, since the loss function ℓ defined in Eq. (1) is
convex and 2-Lipschitz (as the maximum of convex functions is also a convex function), P is a valid
VVP problem which A can be used to learn.

We show that when running the algorithm A on P, the solution 𝑤(𝑆′) emitted by the conversion
satisfies the following.
Theorem 2. Consider any SCO instance in 𝑑-dimensions characterized by a distribution D over
sample space 𝑍 , and a convex and 1-Lipschitz loss function 𝑓 : 𝔹𝑑 × 𝑍 → ℝ that further satisfies
| 𝑓 (𝑤, 𝑧) | ≤ 𝑏 for every 𝑤, 𝑧. Let P be the corresponding VVP problem as defined by the conversion
above for 𝛿 > 0 given by Lemma 2 and 𝑐 = 4𝑏/𝛿. Let A be an algorithm with a guarantee that
for every VVP problem, using any training set 𝑆′ with 𝑛 examples that are sampled i.i.d from the
corresponding distribution, outputs a model 𝑊 (𝑆′) with

𝔼[𝐿 (𝑊 (𝑆′)) − 𝐿 (𝑊∗)] ≤ 𝜀(𝑛).
Then, when running the algorithm A on P, the solution 𝑤(𝑆′) emitted by the conversion satisfies,

𝔼[𝐹 (𝑤(𝑆′)) − 𝐹 (𝑤∗)] ≤ 2𝜀(𝑛) + 10
√
𝑛
.

The proof of Theorem 2 appears in Appendix B. Here we review the main ideas that we used for
constructing this conversion.

First, we aim to represent an arbitrary unknown distribution D using a distribution D′ over the unit
ball 𝔹𝑚 and a finite set of samples 𝑆 = {𝑧1, . . . , 𝑧𝑛} sampled i.i.d. from D. To achieve this, we model
not D directly, but rather its empirical distribution, denoted as D̂, which is the uniform distribution
over 𝑆 and, when taking expectation over 𝑆, approximates D. To implement this, we associate each
example 𝑧𝑖 with a standard basis vector 𝑒𝑖 , and define the distribution D′ as the uniform distribution
over the set {𝑒1, . . . , 𝑒𝑛}.
Second, we show how to utilize a one-parameter loss function ℓ : ℝ𝑘 → ℝ to model the two-
parameter loss function 𝑓 : ℝ𝑑 × 𝑍 → ℝ, where 𝑓 receive a model 𝑤 and an example 𝑧 as an input.
Our aim is, given 𝑤 ∈ ℝ𝑑 which is a proposed solution for the SCO problem, to construct a function
ℓ : ℝ𝑘 → ℝ and a matrix 𝑊 ∈ ℝ𝑘×𝑚 such that 𝑘 = 𝑂 (𝑑) and

∀𝑖 ∈ [𝑛] : ℓ(𝑊𝑥𝑖) ≈ 𝑓 (𝑤, 𝑧𝑖). (2)
To achieve this, we use the embedding 𝜙 that was defined above. This embedding satisfies the
following lemma,
Lemma 2. Let 𝑎 ≥ 2. Let 𝜙 : [𝑎] → ℝ2 be the embedding such that for every 𝑗 ∈ [𝑎], 𝜙( 𝑗) =

(sin (𝜋 𝑗/2𝑎) , cos (𝜋 𝑗/2𝑎))𝑇 . Then, ∥𝜙(𝑖)∥ = 1 and there exist 𝛿 > 0 such that for every 𝑖 ≠ 𝑗 ∈ [𝑎],
it holds that ⟨𝜙(𝑖), 𝜙( 𝑗)⟩ ≤ 1 − 𝛿.

Specifically, using 𝛿 and 𝜙 defined in Lemma 2 for 𝑎 = 𝑛, we set 𝑘 = 𝑑 + 2 and utilize the first two
entries of �̂�𝑖 := 𝑊𝑥𝑖 ∈ ℝ𝑑+2 to encode the corresponding index 𝑖 using 𝜙(𝑖). Then, by incorporating a
max term over all 𝑖 ∈ [𝑛] into ℓ and set 𝑐 = 4𝑏/𝛿 (where 𝑏 is a bound on the values of 𝑓 ), this index
can be decoded and the corresponding loss function 𝑓 (·, 𝑧𝑖) can be applied. Finally, for constructing
the matrix 𝑊 we add another column with index 𝑛 + 1 to the matrix and modify D′ to represent the
uniform distribution over {𝑒𝑖 + 𝑒𝑛+1}𝑛𝑖=1. This change of the distribution makes the last 𝑑 entries
of �̂�𝑖 equal to the last 𝑑 entries of the added column (for every 𝑖). Then, when the latter is used as
placeholder for 𝑤, we get that Eq. (2) holds.

Third, we relate the population loss of the two problems. For this, we employ the technique of double
sampling. Specifically, we use a set 𝑆 = {𝑧1, . . . , 𝑧2𝑛} sampled i.i.d. from D and our conversion
samples only 𝑛 examples from D′. This ensures that at least half of the examples will not appear in the
training set of the prediction problem. By Eq. (2), when taking the expectation over 𝑆, the expected
prediction loss on such samples will be equal to the population loss in the convex optimization
problem. Finally, by bounding the loss ℓ( �̂�𝑖) for examples that appears in the training set of the
prediction problem, we get a population guarantee for the SCO problem.
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A Proofs of Section 3

A.1 Proof of Upper Bound

First, we use the result of Maurer (2016) to show an upper bound for the sample complexity of vector
valued predictors using Rademacher Complexity. The result that we show is,

Theorem 3. Let 𝑘 ,𝑛 ∈ ℕ. For every 𝑚 ∈ 𝑁 , 𝑊0 ∈ ℝ𝑘×𝑚, convex and 𝐺-Lipschitz loss function
ℓ : 𝔹𝑘×𝑚

𝑊0
→ ℝ, distribution D over 𝔹𝑚, it holds that,

𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − 𝐿 (𝑊∗)

]
= 𝑂

(√
𝑘

√
𝑛

)
.

In the proof we use the standard bound of the generalization error, via the Rademacher complexity of
the class (e.g. Bartlett and Mendelson (2002)), we have that:

𝔼𝑆∼D𝑛

[
sup

𝑊∈𝔹𝑘×𝑚
𝑊0

{
𝐿 (𝑊) − �̂� (𝑊)

}]
≤ 2𝔼𝑆∼D𝑛 [𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚

𝑊0
)],

Where we notate the function class:

ℓ ◦ 𝔹𝑘×𝑚
𝑊0

= {𝑥 → ℓ(𝑊𝑥) : 𝑊 ∈ 𝔹𝑘×𝑚
𝑊0

}.

and 𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) is the Rademacher complexity of the class ℓ ◦ 𝔹𝑘×𝑚
𝑊0

. Namely:

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) := 𝔼𝜎

 sup
ℎ∈ℓ◦𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ(𝑥𝑖)
 , (3)

and 𝜎1, . . . , 𝜎𝑛 are i.i.d. Rademacher random variables. Now we use the contraction lemma for vector
valued predictors given in Maurer (2016).

Lemma 3 (Maurer (2016), Corollary 4). Let 𝑘 ∈ ℕ and X be any set, (𝑥1, ..., 𝑥𝑛) ∈ X𝑛, let F be a
class of functions 𝑓 : X → ℝ𝑚 and let ℎ𝑖 : ℝ𝑘 → ℝ be 𝐺-Lipschitz functions. Then,

𝔼 sup
𝑓 ∈F

∑︁
𝑖

𝜎𝑖ℎ𝑖 ( 𝑓 (𝑥𝑖)) ≤
√

2𝐺𝔼 sup
𝑓 ∈F

∑︁
𝑖, 𝑗

𝜎𝑖 𝑗 𝑓 𝑗 (𝑥𝑖) ,

where 𝜎𝑖 𝑗 is an independent doubly indexed Rademacher sequence and 𝑓 𝑗 (𝑥𝑖) is the 𝑗-th component
of 𝑓 (𝑥𝑖).

We derive the following lemma

Lemma 4. Let 𝑘 ,𝑛 ∈ ℕ. For every 𝑚 ∈ 𝑁 , 𝑊0 ∈ ℝ𝑘×𝑚, convex and 𝐺-Lipschitz loss function
ℓ : 𝔹𝑘×𝑚

𝑊0
→ ℝ, distribution D over 𝔹𝑚, it holds that,

𝔼𝑆∼D𝑛

[
sup

𝑊∈𝔹𝑘×𝑚
𝑊0

{
𝐿 (𝑊) − �̂� (𝑊)

}]
≤ 2

√
2𝐿

√
𝑘

√
𝑛

.
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Proof. Let 𝑆 = {𝑥1, . . . 𝑥𝑛}. First, for F = {𝐴𝑥𝑖 | ∥𝐴∥𝐹 ≤ 1}, denoting the 𝑗-th row of any matrix 𝐴
as 𝐴 𝑗 , and defining ℎ𝑖 (𝑤) = ℓ(𝑊0𝑥𝑖 + 𝑤), by Lemma 3 it holds that,

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) = 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℓ(𝑊𝑥𝑖)


= 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℓ(𝑊𝑥𝑖 −𝑊0𝑥𝑖 +𝑊0𝑥𝑖)


= 𝔼𝜎

 sup
𝑊∈𝔹𝑘×𝑚

𝑊0

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ𝑖 ((𝑊 −𝑊0)𝑥𝑖)


= 𝔼𝜎

[
sup

∥𝐴∥𝐹≤1

1
𝑛

∑︁
𝑥𝑖∈𝑆

𝜎𝑖ℎ𝑖 (𝐴𝑥𝑖)
]

≤
√

2𝐺
𝑛

𝔼𝜎

[
sup

∥𝐴∥𝐹≤1

∑︁
𝑖, 𝑗

𝜎𝑖 𝑗𝐴
𝑇
𝑗 𝑥𝑖

]
≤

[√
2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

∑︁
𝑗

∑︁
𝑖

𝜎𝑖 𝑗𝐴
𝑇
𝑗 𝑥𝑖

]
Now, if 𝐷 is the matrix that its 𝑗 th column is

∑
𝑖 𝜎𝑖 𝑗𝐴

𝑇
𝑗
𝑥𝑖 , we get,

𝑅𝑆 (ℓ ◦ 𝔹𝑘×𝑚
𝑊0

) ≤
√

2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

𝑇𝑟 (𝐴𝐷)

≤
√

2𝐺
𝑛

𝔼𝜎 sup
∥𝐴∥𝐹≤1

∥𝐴∥𝐹𝔼𝜎 ∥𝐷∥𝐹

≤
√

2𝐺
𝑛

𝔼𝜎 ∥𝐷∥𝐹

=

√
2𝐺
𝑛

𝔼𝜎

√︄∑︁
𝑗

∥
∑︁
𝑖

𝜎𝑖 𝑗𝑥𝑖 ∥2

≤
√

2𝐺
𝑛

√︄∑︁
𝑗

∑︁
𝑖

∥𝑥𝑖 ∥2

≤
√

2𝐺
√
𝑘

√
𝑛

.

The lemma follows by combining everything together. ■

For finalizing the proof of Theorem 3 we use the following lemma from Koren et al. (2022).

Lemma 5 (Koren et al. (2022), Lemma 1). Let 𝑊 ⊆ ℝ𝑑 with diameter 𝐷, Z any distribution
over 𝑍 , and 𝑓 : 𝑊 × 𝑍 → ℝ convex and 𝐺-Lipschitz in the first argument. For every sample set
𝑆 = {𝑧1, . . . , 𝑧𝑛} sampled i.i.d from Z, let 𝑤★

𝑆
= arg min �̂� (𝑤) the empirical risk minimizer. Then

𝔼𝑆 [�̂� (𝑤∗) − �̂� (𝑤∗
𝑆)] ≤

4𝐺𝐷
√
𝑛

.

Now, we can derive Theorem 3.
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Proof of Theorem 3. By Lemma 5 and Lemma 4, we know that

𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − 𝐿 (𝑊∗)

]
= 𝔼𝑆∼D𝑛

[
𝐿 (𝑊∗) − �̂� (𝑊∗)

]
+ 𝔼𝑆∼D𝑛

[
�̂� (𝑊∗) − �̂� (𝑊∗)

]
≤ 2

√
2𝐺

√
𝑘

√
𝑛

+ 4𝐺
√
𝑛

≤ 10𝐺
√
𝑘

√
𝑛

.

■

A.2 Proof of Lower Bound

First, we prove the following lemma, which implies the lower bound for the case of 𝑘 = 𝑂 (log 𝑛),
Lemma 6. Let 𝑘 ∈ ℕ and 0 ≤ 𝜀 ≤ 1√

𝑛
. Then exists a dimension 𝑚0 and a matrix 𝑊0 such that for

any 𝑚 ≥ 𝑚0 = Θ

(
1
𝜀2

)
, F ℓ,𝑊0

𝑘,𝑚
can shatter Ω

(
1
𝜀2

)
examples with margin 𝜀.

Proof. Let 𝑚 = 1
𝜀2 and 𝑊0 = 0𝑘×𝑚. Now, for every possible labeling for S, 𝑦 ∈ {±𝜀}

1
𝜀2 , we define

the matrix 𝑊𝑦 to be the matrix which its first row is 𝑢𝑦 and the rest of the rows are 0. Note that
∥𝑊𝑦 −𝑊0∥𝐹 = 1. Moreover, we define ℓ : ℝ𝑘 → ℝ as ℓ( �̂�) = 𝑒1 �̂�. This function is convex and
1-Lipschitz. For every 𝑖 ∈

[ 1
𝜀2

]
we define 𝑥𝑖 = 𝑒𝑖 . It is left to show that the set 𝑆 = {𝑥1 . . . , 𝑥 1

𝜀2
} can

be shattered. It holds since for every 𝑦,

ℓ(𝑊𝑦𝑥𝑖) = 𝑒1𝑊𝑦𝑥𝑖 = 𝑦𝑒𝑖 = 𝑦𝑖 .

■

Lemma 7. Let 𝑑 ≥ 100. There exists a set 𝑈𝑑 ⊆ ℝ𝑑 , with |𝑈𝑑 | ≥ 2𝑑/12, such that all 𝑢 ∈ 𝑈𝑑 are of
unit length ∥𝑢∥ = 1, and for all 𝑢, 𝑣 ∈ 𝑈𝑑 , 𝑢 ≠ 𝑣, it holds that ⟨𝑢, 𝑣⟩ ≤ 1

2 .

Proof of Lemma 7. Let 𝑟 = 2 𝑑
12 . For every 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑑 let the 𝑢

𝑗

𝑖
the random variable

which is 1√
𝑑

with probability 1
2 and − 1√

𝑑
with probability 1

2 . Then, for every 1 ≤ 𝑖 ≤ 𝑟 , we define the

vector 𝑢𝑖 = (𝑢1
𝑖
, · · · , 𝑢𝑑

𝑖
) and look at the set 𝑈 = {𝑢1, 𝑢2, ...𝑢𝑟 }. We now show that U satisfies the

required property with positive probability. By Hoeffding’s inequality, it holds that,

𝑃𝑟 (⟨𝑢𝑖 , 𝑢𝑘⟩ ≥
1
2
) ≤ 𝑒

−2( 1
2 )2

𝑑· 4
𝑑2 = 𝑒−

𝑑
8 .

Then, by union bound on the
(𝑟
2
)

pairs of vectors in 𝑈,

𝑃𝑟 (∃𝑖, 𝑘 ⟨𝑢𝑖 , 𝑢𝑘⟩ ≥
1
2
) ≤ 𝑒−

𝑑
8 ·

(
𝑟

2

)
< 𝑒−

𝑑
8 · 1

2
𝑟2 ≤ 1.

■

Proof of Lemma 1. We denote 𝐽 = 12/𝜀2. We use the set 𝑈 := 𝑈𝑘/13 of (𝑘/13)-dimensional
nearly-orthogonal vectors, given in Lemma 7 with |𝑈 | = 2𝑘/156, and use an arbitrary enumeration
of this set 𝑈 = {𝑢1, . . . , 𝑢 |𝑈 | }. For every 𝑢 ∈ 𝑈 ⊆ ℝ

𝑘
13 , we define the vector 𝑢′ ∈ ℝ𝑘 which is for

1 ≤ 𝑖 ≤ 𝑘
13 , �̃�[𝑖] = 𝑢[𝑖] and other entries equal zero. Let 𝑚 = ( 𝑘

13 + 1
12 )𝐽 and 𝑊0 ∈ ℝ𝑘×𝑚 be the

following matrix (note that by the lower bound for 𝜀, it holds that 𝑘𝐽
13 ≤ 2 𝑘

156 ):

𝑊0 = 𝜀
©«
𝑢1 𝑢2 . . . 𝑢 𝑚𝐽

7
0

0 0 0 0 0
ª®¬.

Now, for every 𝑖 ∈ [ 12𝑘
13 ] and 𝑗 ∈

[
𝐽
12

]
we define 𝑥𝑖, 𝑗 =

1√
2
𝑒 12𝑘

13 ( 𝑗−1)+𝑖 + 1√
2
𝑒 𝑘𝐽

13 + 𝑗 . We show that the

set 𝑆 = {𝑥𝑖, 𝑗 : 𝑖 ∈ [ 12𝑘
13 ], 𝑗 ∈

[
𝐽
12

]
} can be shattered by F ℓ,𝑊0

𝑘,𝑚
.

11



For this, we use the set �̂� := 𝑈 12𝑘
13

, of 12𝑘
13 -dimensional nearly-orthogonal vectors, given in Lemma 7

with |�̂� | = 2 𝑘
13 and use an arbitrary enumeration of this set �̂� = {�̂�1, . . . �̂� |�̂� | }. For the rest of the

proof, we refer to every vector 𝑧 ∈ {0, 1} 𝑘𝐽
13 as a sequence of 𝐽

12 vectors in {0, 1} 12𝑘
13 , 𝑧 (1) , . . . , 𝑧 (

𝐽
12 ) ,

where for every 𝑟 ∈ 𝐽
12 , 𝑧 (𝑟 ) = 𝑧[(𝑟 − 1) ( 12𝑘

13 ) + 1 : 12𝑘𝑟
13 ]. Now, since we refer to every possible

labeling for S, 𝑦 ∈ {0, 1} 𝑘𝐽
13 as a sequence of 𝐽

12 vectors, 𝑦 (1) , . . . , 𝑦 (
𝐽
12 ) , it is possible to identify such

labeling 𝑦 with a sequence (�̂�𝑦 (1) , �̂�𝑦 (2) . . . �̂�
𝑦
( 𝐽

12 ) ) ∈ �̂�
𝐽
12 . For every such 𝑦, we define the following

matrix:

𝑊𝑦 = 𝜀
©«

0 0
0 �̂�𝑦 (1) �̂�𝑦 (2) . . . �̂�

𝑦
( 𝐽

12 )

ª®¬.
By the definition of 𝐽, it holds that ∥𝑊𝑦 ∥𝐹 ≤ 1. Now, for every �̂� ∈ �̂�, we define the vector �̃� ∈ ℝ𝑘

which is zero in its first 𝑘
13 entries and for the rest of the entries, 𝑘

13 + 1 ≤ 𝑖 ≤ 𝑘 , it holds that,
�̃�[𝑖] = �̂�[𝑖 − 𝑘

13 ]. We turn to define the loss function ℓ : ℝ𝑘 → ℝ. For this, we define the following
set

𝐴 =

{
𝑧 ∈ {0, 1} 12𝑘

13 , 𝑧 ∈ {0, 1} 𝑘𝐽
13 , 𝑟 ∈ [12𝑘

13
], 𝑝 ∈ [ 𝐽

12
]

��� ∀1 ≤ 𝑏 ≤ 𝐽

12
: 𝑧 (𝑏) = 𝑧, 𝑧 (𝑝) (𝑟) = 𝜀

}
.

The the loss function ℓ is defined as following,

ℓ( �̂�) = 2
√

8 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
𝜀,max{ 𝜀

√
8
, �̃�𝑇𝑧 �̂�} + max{ 𝜀

√
8
, 𝑢

′𝑇
𝑟+ 12𝑘

13 (𝑝−1) �̂�}
}
− 7𝜀.

The function is 1-Lipschitz and convex as a maximum over linear 1-Lipschitz functions. For every
𝑦 ∈ {0, 1} 𝑘𝐽

13 we define 𝑊 ′
𝑦 = 𝑊0 +𝑊𝑦 . Let 𝑥𝑖, 𝑗 ∈ 𝑆. Then,

𝑊 ′
𝑦𝑥𝑖, 𝑗 =

1
√

2
𝜀𝑢′12𝑘

13 ( 𝑗−1)+𝑖 +
1
√

2
𝜀�̃�𝑦 ( 𝑗) ,

and

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) =

= 2
√

8 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
𝜀,max{ 𝜀

√
8
, �̃�𝑇𝑧𝑊

′
𝑦𝑥𝑖, 𝑗 } + max{ 𝜀

√
8
, 𝑢

′𝑇
𝑟+ 12𝑘

13 (𝑝−1)𝑊
′
𝑦𝑥𝑖, 𝑗 }

}
− 7𝜀

= 2
√

8𝜀 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3
√

8
,max{ 1

√
8
,

1
√

2
�̂�𝑇𝑧 �̂�𝑦 ( 𝑗) } + max{ 1

√
8
,

1
√

2
𝑢𝑇
𝑟+ 12𝑘

13 (𝑝−1)𝑢 12𝑘
13 ( 𝑗−1)+𝑖}

}
− 7𝜀

= 2𝜀 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2�̂�𝑇𝑧 �̂�𝑦 ( 𝑗) } + max{1, 2𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀.

If 𝑦𝑖, 𝑗 = 𝑦 ( 𝑗 ) [𝑖] = 1, the maximum of the first term is attained at 𝑧 = 𝑦 ( 𝑗 ) and the maximum of the
sum of the terms is attained at 𝑧 such that for every 𝑏, 𝑧 (𝑏) = 𝑦 ( 𝑗 ) . Moreover, since 𝑦 ( 𝑗 ) [𝑖] = 1,
it holds that 𝑧 (𝑏) [𝑖] = 1 for every 𝑏, and particularly, for 𝑝 = 𝑗 , 𝑟 = 𝑖, 𝑧 (𝑝) [𝑟] = 1, thus, since
𝑝 = 𝑗 , 𝑟 = 𝑖 gives the maximal inner product and the condition of the max holds, the maximum of the
second term is attained at 𝑝 = 𝑗 , 𝑟 = 𝑖, and,

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) = 2𝜀 max

( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2 max �̂�𝑇𝑧 �̂�𝑦 ( 𝑗) } + max{1, 2 max 𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀

= 2𝜀 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3, 2�̂�𝑇

𝑦 ( 𝑗) �̂�𝑦 ( 𝑗) + 2𝑢𝑇
𝑖+ 12𝑘

13 ( 𝑗−1)𝑢 12𝑘
13 ( 𝑗−1)+𝑖

}
− 7𝜀

= 8𝜀 − 7𝜀
= 𝜀.

If 𝑦𝑖, 𝑗 = 𝑦 ( 𝑗 ) [𝑖] = 0, and there exists 𝑟 such that 𝑦 ( 𝑗 ) [𝑟] = 1, the maximum of the first term is
attained at 𝑧 = 𝑦 ( 𝑗 ) and the maximum of the sum of the terms is attained at 𝑧 such that for every 𝑏,
𝑧 (𝑏) = 𝑦 ( 𝑗 ) . Moreover, since 𝑦 ( 𝑗 ) [𝑖] = 0, it holds that 𝑧 (𝑏) [𝑖] = 0 for every 𝑏, thus, for every 𝑟, 𝑝

12



such that 𝑧 (𝑝) [𝑟] = 1, it holds that 𝑟 + 12𝑘
13 (𝑝 − 1) ≠ 𝑖 + 12𝑘

13 ( 𝑗 − 1) and 𝑢𝑇
𝑟+ 12𝑘

13 (𝑝−1)
𝑢 12𝑘

13 ( 𝑗−1)+𝑖 ≤ 1
2 .

Then,

ℓ(𝑊 ′
𝑦𝑥𝑖, 𝑗 ) = 2𝜀 max

( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3,max{1, 2 max �̂�𝑇𝑧 �̂�𝑦 ( 𝑗) } + max{1, 2 max 𝑢𝑇

𝑟+ 12𝑘
13 (𝑝−1)𝑢 12𝑘

13 ( 𝑗−1)+𝑖}
}
− 7𝜀

= 2𝜀 max
( �̂�,𝑧,𝑟 , 𝑝) ∈𝐴

{
3, 2�̂�𝑇

𝑦 ( 𝑗) �̂�𝑦 ( 𝑗) + 1
}
− 7𝜀

= 6𝜀 − 7𝜀
= −𝜀.

If 𝑦𝑟 , 𝑗 = 𝑦 ( 𝑗 ) [𝑟] = 0 for every 𝑟 , for every 𝑧 such that for every 𝑏, 𝑧 (𝑏) = 𝑦 ( 𝑗 ) it holds that 𝑧 = {0} 𝑘𝐽
13 .

Then, the set where the maximum is applied is empty and
ℓ(𝑊 ′

𝑦𝑥𝑖, 𝑗 ) = 2𝜀 · 3 − 7𝜀 = −𝜀.

We showed that 𝑆 can be shattered by F ℓ,𝑊0
𝑘,𝑚

, which implies the lemma. ■

Proof of Theorem 1. We first prove the theorem for the case of 𝑘 = Ω(log 𝑛). Let 𝜀 which satisfy
the condition of Lemma 1. Let 𝑚0, 𝑊0 and ℓ be as defined in Lemma 1. By Lemma 1, there exists

a constant 𝐶 and a set of examples 𝑆 = {𝑥𝑖}
𝐶𝑘

𝜀2
𝑖=1 such that for every labeling 𝑦 ∈ {0, 1}

𝐶𝑘

𝜀2 , there
exists a matrix 𝑊𝑦 with ∥𝑊𝑦 −𝑊0∥𝐹 ≤ 1 such that for every 𝑖 ∈ [𝐶𝑘

𝜀2 ], ℓ(𝑊𝑦𝑥𝑖) = 𝜀 if 𝑦𝑖 = 1 and

ℓ(𝑊𝑦𝑥𝑖) = −𝜀 if 𝑦𝑖 = 0. Now, let 𝑦∗ = {0}
𝐶𝑘

𝜀2 and 𝑊∗ be the corresponding 𝑊𝑦∗ and let 𝐷′ be
the uniform distribution over 𝑆. We prove that for every data set 𝑆′ such that |𝑆′ | ≤ 𝐶𝑘

2𝜀2 sampled
i.i.d from 𝐷′, there exists an ERM 𝑊∗ with 𝐿 (𝑊∗) − 𝐿 (𝑊∗) ≥ 𝜀, this will prove Theorem 1. Let
𝑆′ = {𝑥𝑖1 . . . 𝑥𝑖|𝑆′ | } be such a data set. Let 𝑦𝑆 ∈ {0, 1}

𝐶𝑘

𝜀2 be a labeling as following

𝑦𝑆 =

{
0 𝑥𝑖 ∈ 𝑆
1 𝑥𝑖 ∉ 𝑆,

and 𝑊𝑆 := 𝑊𝑦𝑆 be the corresponding matrix. First, by the definition of 𝑊𝑦𝑆 it follows that 𝑊𝑆 is a
ERM since it holds that

�̂� (𝑊𝑆) =
1
|𝑆′ |

|𝑆′ |∑︁
𝑗=1

ℓ(𝑊𝑆𝑥𝑖 𝑗 ) =
1
|𝑆 |

|𝑆′ |∑︁
𝑗=1

−𝜀 = −𝜀.

Moreover, since at least |𝑆 |
2 of the examples in 𝑆 are not in 𝑆′, it also holds that

𝐿 (𝑊𝑆) − 𝐿 (𝑊∗) = 1
|𝑆 |

|𝑆 |∑︁
𝑖=1

ℓ(𝑊𝑆𝑥𝑖) − ℓ(𝑊∗𝑥𝑖)

=
1
|𝑆 |

|𝑆 |∑︁
𝑖=1

ℓ(𝑊𝑆𝑥𝑖) + 𝜀

≥ 1
|𝑆 |

∑︁
𝑖∉𝑆′

ℓ(𝑊𝑆𝑥𝑖) + 𝜀

≥ 1
2
· 2𝜀

= 𝜀.

The proof for the case of 𝑘 = 𝑂 (log 𝑛) is analogous and can be implied by using Lemma 6 instead of
Lemma 1. ■

B Proofs of Section 4

Proof of Lemma 2. Let 𝜙 : [𝑎] → ℝ2, 𝜙(𝑖) =
(
sin

(
𝜋𝑖
2𝑎

)
, cos

(
𝜋𝑖
2𝑎

) )𝑇 and 𝛿 = 1− cos
(
𝜋

2𝑎
)
. We notice

that 0 < 𝛿 < 1. Then, as a result, for every 𝑖 it holds that

∥𝜙(𝑖)∥ =

√︄
sin

(
𝜋𝑖

2𝑎

)2
+ cos

(
𝜋𝑖

2𝑎

)2
= 1,

13



and if 𝑖 ≠ 𝑗 ,

⟨𝜙(𝑖), 𝜙( 𝑗)⟩ = sin
(
𝜋𝑖

2𝑎

)
sin

(
𝜋 𝑗

2𝑎

)
+ cos

(
𝜋𝑖

2𝑎

)
cos

(
𝜋 𝑗

2𝑎

)
= cos

(
𝜋(𝑖 − 𝑗)

2𝑎

)
≤ cos

( 𝜋

2𝑎

)
(cos is monotonic decreasing in [0, 𝜋/2])

= 1 − 𝛿.

■

Proof of Theorem 2. First, defining 𝑊 := 𝑊 (𝑆′) and denoting the columns of any matrix 𝑀 ∈ ℝ𝑘×𝑚

as 𝑀1, . . . 𝑀𝑚. By the definitions of 𝑤(𝑆′), ℓ and 𝑊0, it holds that

𝐿 (𝑊) = 1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨𝑊𝑖 [1 : 2], 𝜙( 𝑗)⟩ + 𝑓 (𝑤(𝑆′), 𝑧 𝑗 )

)
≥ 1

2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊𝑖 [1 : 2], 𝜙(𝑖)⟩ + 𝑓 (𝑤(𝑆′), 𝑧𝑖).

Now, we define the following matrix,

�̃� =

(
𝑊0 0

0 𝑤∗

)
.

By Lemma 2, for every 𝑖 ≠ 𝑗 ∈ [2𝑛],
(⟨𝑐𝜙(𝑖), 𝜙(𝑖)⟩ + 𝑓 (𝑤∗, 𝑧𝑖)) −

(
⟨𝑐𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
= 𝑐⟨𝜙(𝑖), 𝜙(𝑖)⟩ − 𝑐⟨𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧 𝑗 )
≥ 𝑐𝛿 − 2𝑏
> 0.

As a result,

𝐿 (𝑊∗) ≤ 𝐿 (�̃�)

=
1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨�̃�𝑖 [1 : 2], 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
=

1
2𝑛

2𝑛∑︁
𝑖=1

max
𝑗∈[2𝑛]

(
⟨𝑐𝜙(𝑖), 𝜙( 𝑗)⟩ + 𝑓 (𝑤∗, 𝑧 𝑗 )

)
=

1
2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊0𝑖 [1 : 2], 𝜙(𝑖)⟩ + 𝑓 (𝑤∗, 𝑧𝑖).

Now, combining with the Cauchy-Schwartz and Jensen inequalities we get that,

𝐿 (𝑊) − 𝐿 (𝑊∗) ≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) +
1
2𝑛

2𝑛∑︁
𝑖=1

⟨𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2], 𝜙(𝑖)⟩

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −
1
2𝑛

2𝑛∑︁
𝑖=1

∥𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2] ∥

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −

√√√
1
2𝑛

2𝑛∑︁
𝑖=1

∥𝑊𝑖 [1 : 2] −𝑊0𝑖 [1 : 2] ∥2

≥ 1
2𝑛

2𝑛∑︁
𝑖=1

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) −
1

√
2𝑛

,
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where in the last inequality we used the fact that 1
2𝑛

∑2𝑛
𝑖=1 ∥𝑊𝑖 [1 : 2]−𝑊0𝑖 [1 : 2] ∥2 ≤ ∥𝑊−𝑊0∥2

𝐹
≤ 1.

Then, we denote 𝐼 = {𝑖1, . . . , 𝑖𝑝} the set of indices 𝑖 ∈ [2𝑛] that sampled from D′ as the data set of
the VVP problem. Since 𝑝 ≤ 𝑛, we can add 𝑛 − 𝑝 additional items from [2𝑛] \ 𝐼 to 𝐼 to create a set
𝐼 = {𝑖1, . . . 𝑖𝑛}. Fixing 𝑆′ and taking expectation on 𝑆 = {𝑧1, . . . , 𝑧2𝑛} (note that 𝑤(𝑆′) and samples
𝑧𝑖 are independent if 𝑖 ∉ 𝐼 ), we get

𝔼𝑆′ [𝐿 (𝑊 − 𝐿 (𝑊∗)] + 1
√

2𝑛

≥ 𝔼{𝑧𝑖 :𝑖∈𝐼 }
1
2𝑛

∑︁
𝑖∈𝐼

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖) + 𝔼{𝑧𝑖 :𝑖∈𝑆}
1
2𝑛

∑︁
𝑖∉𝐼 ′

𝑓 (𝑤(𝑆′), 𝑧𝑖) − 𝑓 (𝑤∗, 𝑧𝑖)

≥ 𝔼𝑧𝑖1 ,...,𝑧𝑖𝑛


1
2𝑛

𝑛∑︁
𝑗=1

𝑓 (𝑤(𝑆′), 𝑧𝑖 𝑗 ) − 𝑓 (𝑤∗, 𝑧𝑖 𝑗 )
 + 𝔼𝑧𝑖1 ,...,𝑧𝑖𝑝

[
1
2
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
.

Now, taking expectation over 𝑆′, we get by Lemma 1 of Koren et al. (2022) (see Lemma 5 in
Appendix A),

𝔼 [𝐿 (𝑊) − 𝐿 (𝑊∗)] + 1
√

2𝑛

≥ 𝔼


1
2𝑛

𝑛∑︁
𝑗=1

𝑓 (𝑤(𝑆′), 𝑧𝑖 𝑗 ) − 𝑓 (𝑤∗, 𝑧𝑖 𝑗 )
 + 𝔼

[
1
2
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
≥ − 2

√
𝑛
+ 1

2
𝔼

[
𝐹 (𝑤(𝑆′)) − 1

2
𝐹 (𝑤∗)

]
. (Lemma 5)

The theorem follows by the guarantee on A and arranging the inequality. ■
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