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Abstract

We study the problem of learning vector-valued linear predictors: these are predic-
tion rules parameterized by a matrix that maps an m-dimensional feature vector to
a k-dimensional target. We focus on the fundamental case with a convex and Lips-
chitz loss function, and show several new theoretical results that shed light on the
complexity of this problem and its connection to related learning models. First, we
give a tight characterization of the sample complexity of Empirical Risk Minimiza-
tion (ERM) in this setting, establishing that Q(k/s”) examples are necessary for
ERM to reach & excess (population) risk; this provides for an exponential improve-
ment over recent results by [Magen and Shamir| (2023) in terms of the dependence
on the target dimension k, and matches a classical upper bound due to Maurer
(2016)). Second, we present a black-box conversion from general d-dimensional
Stochastic Convex Optimization (SCO) to vector-valued linear prediction, showing
that any SCO problem can be embedded as a prediction problem with k = ®(d)
outputs. These results portray the setting of vector-valued linear prediction as
bridging between two extensively studied yet disparate learning models: linear
models (corresponds to k = 1) and general d-dimensional SCO (with k = O(d)).

1 Introduction

Prediction problems, such as classification and regression, lie at the core of both practical applica-
tions and theoretical research in machine learning. Within this framework, learning vector-valued
predictors (VVPs), characterized by functions of the form:

x — {(Wx),

mapping vectors x € R” through a linear transformation parameterized by a matrix W € RK*™
followed by a loss function £ : R¥ — R, constitutes a rich learning framework that captures a wide
range of problems in machine learning, from classical to modern. For instance, the scenario where
k = 1 corresponds to the extensively studied domain of generalized linear models (e.g., Bartlett and
Mendelson, 2002; Shalev-Shwartz and Ben-David, [2014)). When k > 1, this setting encompasses
multi-class problems, where W acts as a matrix of predictors and ¢ corresponds to a specific loss
function, such as the cross-entropy loss or the multiclass hinge loss (Crammer and Singer, 2001}
Mohri et al., 2018]).

Another example of VVPs arises in feed-forward neural networks, where a composition of such
transformations occurs, each of which corresponds to a layer with a weight matrix W and an activation
function £. Motivated by this connection, a recent line of work studied VVP in the regime where £
is Lipschitz continuous and W is constrained within a unit ball, relative to some matrix norm || - ||,
centered around an “initialization”, or reference matrix Wy (Daniely and Granot, [2019} 2022} |Vardi
et al.} [2022; Magen and Shamir, 2023)). These studies have yielded a range of sample complexity
results depending on the particular choice of a matrix norm and properties of the initialization Wj.
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In this work, we discuss an arguably more basic and fundamental case of the VVP framework:
where £ is a convex (and Lipschitz) loss function and the domain is restricted to a simple unit ball,
with respect to the Frobenius norm, centered around a given reference matrix Wy. In this scenario,
recent work by Magen and Shamir| (2023)) reveals an interesting finding: while learning is possible
within this framework using a specific algorithm (namely stochastic gradient descent, SGD), there
exist problem instances where generic empirical risk minimization (ERM) fails. As they mention
in their work, this finding is analogous to a series of studies within the more general context of
Stochastic Convex Optimization (SCO), which established that learnability in SCO is algorithmic
dependent and in general, learning through ERM could fail when the problem dimension is sufficiently
large (Shalev-Shwartz et al.,[2010; [Feldman), [2016).

1.1 Our contributions

In this work, we present several findings that contribute to a better understanding of the complexity of
learning vector-valued predictors (VVPs) with convex loss functions and its connection to stochastic
convex optimization (SCO). Our main contributions of this paper are summarized as follows:

(i) We characterize the exact sample complexity of ERMs within the framework of convex and
Lipschitz VVPs, demonstrating a lower bound of Q(k/&?). Together with a classic result of
Maurer (2016), this implies that the sample complexity of ERM in the VVP setting is @(k/&?).
In particular, our lower bound provides for an exponential improvement as compared to the
lower bound of Magen and Shamir| (2023)), that scaled poly-logarithmically with the target
dimension k, and further includes the tight dependence on &.

(i) We present a black-box transformation from general SCO to VVP, that converts a given SCO
instance in d-dimensions to a convex VVP problem with k = ©(d) outputs. We show that
using any algorithm for the VVP setting to solve the converted problem instance to within &
excess risk using a training sample of size n, we can directly recover a solution to the original
SCO problem with excess risk O (g + 1/v/n).

Put together, the two results indicate that, in terms of its complexity, VVP bridges between two
extreme models: generalized linear models, namely the case k = 1, and general d-dimensional
SCO, that roughly correspond to k = ®(d). First, our sample complexity bounds for ERM can be
seen as interpolating between the classical ®(1/£?) sample complexity rate of generalized linear
models (Bartlett and Mendelson, 2002) and the analogous bound in d-dimensional SCO, which
is linear in d (Feldman| 2016} Carmon et al., [2023)). Second, from a more structural perspective,
our transformation from SCO to VVP suggests that in the extreme where k = ©(d), vector-valued
prediction becomes rich enough so as to encompass generic SCO problems.

The revealed connection between linear models and SCO through the lens of VVP is perhaps
somewhat surprising, since the two are extensively-studied problems that traditionally differ from
one another in terms of techniques and results. Further, it partially addresses a common conceptual
criticism of the SCO as a learning framework: in SCO, there is no apparent concept of “prediction”
and losses are rather implicitly assigned to model parameters, whereas VVP is naturally a supervised
learning model that explicitly defines a rule x — Wx from which predictions are generated and losses
are induced.

1.2 Additional related work

Upper bounds for the sample complexity of VVPs. As alluded to in the introduction, closely
related to our setting is the work of Maurer (2016)) that gives an upper bound that scales like O (k),
for convex and Lipschitz predictors with bounded Frobenius norm. In another work, Daniely and
Granot| (2022)) achieved an upper bound that is similar to|Maurer| (2016) for non-convex predictors
and with bounded difference from a reference matrix Wy. For the specific case of Wy = 0, [Vardi et al.
(2022) shows an upper bound that scales like O(log k) and Magen and Shamir| (2023) proved an
upper bound independent on k.

Lower bounds for the sample complexity of VVPs. For one-hidden-layer neural networks, which
is a special case of valued predictors with non-convex loss, |Daniely and Granot| (2019)) provide a
fat-shattering lower bound for the case where k = m, crucially rely on the inputs have norm that
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scales with k. Then, |Vardi et al.| (2022)) referred to the case k # m and showed a lower bound of
Q(k/&?) for the sample complexity of a class of non-convex predictors, where the initialization
matrix is Wy = 0 and the £, norm of the prediction matrix is bounded by a constant. Then, |Daniely’
and Granot|(2022) refer to the class of predictors with bounded Frobenius norm and showed that this
class can shatter a training set of Q(k) examples, assuming that the inputs have norm +/m and that
k = O(2™). In a recent work, Magen and Shamir| (2023)) generalized this bound to the case where the
Frobenius norm of the distance from an arbitrary initialization matrix is bounded. In the same work,
they discussed convex vector valued predictors and showed a lower bound of Q(log k) for the sample
complexity of convex predictors. In this work, we improve their lower bound for convex predictors
as we achieve an exponential increase in the dependence in k.

Generalized Linear Models. In the landscape of learning theory literature, the Generalized Linear
Models (GLM) framework stands as one of the most basic and extensively explored settings (e.g.,
Shalev-Shwartz and Ben-David, [2014)), as it captures some fundamental problems like logistic
regression and support-vector machines. In this setting, due to dimension-independent uniform
convergence, it is guaranteed that constrained ERM learns with optimal sample complexity of
O(1/£?%) examples (Bartlett and Mendelson, 2002). A more recent work by |Amir et al.| (2022) show
that unregularized gradient methods, such as full-batch Gradient Descent achieve the same sample
sample complexity when learning GLMs.

Stochastic Convex optimization. Stochastic convex optimization (SCO) is a fundamental theoreti-
cal framework widely used for studying common optimization algorithms. This is often justified by
the simplicity of the framework and the possibility of a rigorous analysis that can hint at the pros and
cons of various optimization techniques in practical setups arising in machine learning. The works
of Shalev-Shwartz et al.|(2010); |[Feldman| (2016)); |(Carmon et al.[(2023)) demonstrated that, although
learnability in this setting is possible (e.g., by Stochastic Gradient Descent) ERM may not learn in this
setting since uniform convergence does not generally hold. Specifically, |(Carmon et al.[(2023)) recently
established that the sample complexity of ERM in d-dimensional SCO is ©(d/e + 1/£*). We note
that since our lower bound requires that the number of columns of the vector-valued predictor matrix
is m = O(n) and the total number of parameters is Q(mn), this lower bound does not contradict their
upper bound. Beyond generic ERM, several specific and natural ERM algorithms, which are also
frequently used in practice, such as full batch Gradient Descent have been shown to fail in learning
this setting (Amir et al., 2021; |Schliserman et al.| [2024; |Livni, 2024).

2 Problem Setup and Basic Definitions

Notations. For every vector x € R?, we denote its ith entry by x[i] and the vector in R/~*! which
is achieved by taking the entries with index i < k < j by x[i : j]. For every n € N, we denote
[n] = {1,...,n}. We denote the Frobenius norm of a matrix M by |M||p = (%, ; Ml.z’j)‘/Z, and

denote a unit ball with respect to ||| centered at W, by Bl‘j‘j;m. Moreover, for every dimension d,

we denote the d-dimensional unit ball around the origin by B, the d-dimensional standard basis by
{e1,...,eq}.

Vector-valued prediction. Our main setting of interest in this paper is vector-valued prediction
with a convex and Lipschitz loss function. Let D be a distribution supported over vectors x € R™
such that ||x|| < 1. Given a convex and G-Lipschitz loss function ¢ defined over the k-dimensional
unit ball B¥ C R¥, and an initialization matrix Wy, the objective is to find a matrix W € B"‘VXO”’ with

low population loss, defined as the expected value of the loss function over the distribution 9, namely
L(W) = Ex<p[6(Wx)].

To find such a model W, the learner uses a set of n training examples S = {z;, ..., 2, }, drawn i.i.d.
from the unknown distribution ©. Given the sample S, the corresponding empirical loss (or risk) of

W, denoted Z(W), is defined as its average loss over samples in S:

L(W) = % Z L(Wx;).
i=1
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A population minimizer in this context is any W* that minimizes the population risk, namely such
that W* € arg miny, .pion L(W), and an empirical risk minimizer (ERM) is any W, that minimizes
Wo

the empirical risk, namely such that W, € arg minWestxm L(W).
0

Stochastic Convex Optimization. Another learning model we discuss is Stochastic Convex Opti-
mization (SCO), which is a more general framework that includes (convex) vector-valued prediction
as a special case. In this problem, there is a population distribution O over an arbitrary instance set Z
and a loss function f : ‘W X Z — R which is convex and G-Lipschitz (for some G > 0) with respect
to its first argument over a domain ‘W. For simplicity, we fix in this paper the domain ‘W to be the
d-dimensional unit ball around the origin, denoted B¢. Analogously to vector-valued prediction, the
population loss with respect to f, denoted by F, is defined as,

F(w) =Ez~p[f(w,2)].

and the empirical loss, denoted by F, is defined as,
— 1<
Flw) =~ Zl FOw.z0).
i
and corresponding minimizers as w, and w., respectively.

3 Sample Complexity of ERM in Convex Vector-Valued Prediction

In this section, we present a tight characterization of the sample complexity of ERM in the setting of
convex vector-valued prediction. This result is stated as follows.

Theorem 1. Let k,n € N. There exist m = O(n), a reference matrix Wy € R¥>*m 4 convex and
1-Lipschitz loss function £ € R* — R and a distribution D such that in the VVP parameterized by
Wo, D and €, with constant probability over the choice of the training set S ~ D", there exists an

ERM W, with L(W.) — L(W*) = Q(\Jk/n).

We further show that this lower bound is tight up to logarithmic factors, using a vector-contraction
inequality for Rademacher complexity due to Maurer (2016), that implies an O (k/g?) sample
complexity upper bound. We defer details on this standard derivation to Appendix [A] and below
focus on proving the lower bound in Theorem 1]

For the case of k < O(logn), Theorem follows from the well-known lower bound of Q(1/+/n)
for learning scalar-valued predictors with convex and O (1)-Lipschitz losses (for completeness, we
provide a proof in Appendix [A). Thus, henceforth we focus on the case where k > Q(logn). Our
proof approach in this case is to show that, for large enough column dimension m and for a certain
reference matrix Wy, the class of predictors parameterized by matrices in a unit Frobenius-norm ball
centered at Wy can shatter Q(k /&) examples with margin s[] This is formalized in the following.

Lemma 1. Ler 10000 < k € N and 11—2 > & > Vk27KB12. There exists column dimension mgy =

O(k/&?), such that for any m > mo, there exist a matrix Wy € R**™ and a loss function € : RF — R,
such that the class of vector-valued predictors

?'Iz’mw‘) ={x > (Wx) : We REX™ W - Wollp < 1}
can shatter Q(k /&%) examples with margin &.

Lemma [T]implies Theorem [I] via standard arguments; we defer this proof to Appendix [A]and below
focus on proving the lemma, which forms our main contribution in this section.

Before we formally prove Lemmal[I] let us first outline the main steps and challenges in constructing
the lower bound instance. Our general approach is analogous to the arguments of Magen and Shamir
(2023)). They show that for every n € N there exists a data set {x, ..., x,} and labeling y € R", there
exists a matrix W,, with k = Q(2") such that for every i, {(Wyx;) = g if y; = 1 and £{(Wyx;) = —¢

IA class of functions ¥ on an input domain X shatters m points x, ..., x,; € X with margin &, if for all
y € {0, 1}'" we can find f € F such that foralli € [m],itholds f(x;) < —¢ if y; =0 and f(x;) > ¢ if y; = L.
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if y; = 0. Their approach is to use the exponentially-sized set {ei}?"l of standard basis vectors and
associate every possible labeling y € {0, 1}" with a vector ey, in this set and a matrix Wy, with n + 1
columns which its first n columns are the identity matrix and its last column is ey. Then, they used a
convex loss function ¢ constructed such that the predictor $; = Wy x; output the prediction according

to the corresponding label of x; = e;.

Our main challenge, however, is to shatter a training set {x1, . ..,x,} using matrices {Wy },econ with
only k = ®(n) rows rather than k = O(2") rows, as in the construction above. For this, we employ a
construction of a set U of approximately orthogonal vectors in R?(X) with size which is exponential
in k, adapted from [Feldman| (2016). (The specific construction appears in Lemma[7]in Appendix [A])
In our construction of hard instance, for we use this construction twice. First, as the columns of
the initialization matrix (replacing of the standard basis vectors in Magen and Shamir|(2023)) and
second, by identifying every possible labeling y with a vector u, in this set (instead of e, in[Magen
and Shamir| (2023)) and using the matrices Wy, which their last columns are u,.

Finally, for getting the correct dependency with respect to &, we add ®(1/&?) columns to the
prediction matrix, and modify the previous construction such that every possible labeling y is
identified not just with a single vector u,,, but rather with a sequence of vectors in the set U alluded to
in Lemma This adding of the matrix enables the class 7—': ’n‘iv" to shatter a larger amount of possible
labelings.

The proof of Lemma|[I]appears in Appendix [A]

4 Black-box Transformation from SCO to VVP

In this section we provide our second main result which constitutes a black-box conversion between
SCO and learning of vector-valued predictors. Namely, we show that there exists a initialization
matrix Wy € R¥*™ such that any d-dimensional stochastic optimization problem, with loss function
f and distribution D, can be converted to a vector-valued predictions problem over B";fom with

k=0(d).

4.1 The transformation

Let us first outline our transformation. Consider any SCO instance in d-dimensions characterized by
a distribution 9 over sample space Z, and a convex and 1-Lipschitz loss function f : BY x Z — R,
and consider an algorithm A with a guarantee that for every VVP problem, using any training set S’
with n examples that are sampled i.i.d from the corresponding distribution, denoted as D’, outputs
a model W(S”) which has &(n)-sub optimal population loss. The conversion uses a training set
S ={z1...22,} of 2n examples sampled i.i.d. from D, and takes the following form:

(i) Construct a VVP instance # as follows:

* The dimensions of the VVP problem are m =2n+ 1, k = d + 2.
o The reference matrix Wy € R¥*"™ is as follows,

o(D) | 62) | ... | e(2m) | 0
Wo=c .
o [ o] 0 o
where ¢ > 0 is a parameter and ¢ is a mapping ¢ : [2n] — R? defined below.
* The distribution 9’ is the uniform distribution on {xy, ..., x2,} where x; = e; + e+ for
all 7.
* The loss function £ : R¥ — R is defined as
£9) = max {(911:21.6()) + F(513: K1.2)}. M

(i1) Sample a training set §” with n examples drawn i.i.d. from 9’, and use A with S’ to solve P
and obtain a solution matrix W(S’) € [EB’;VT)’".

(iii) Return the vector w(S’) formed by the d last entries of the (2n + 1)th column of W(S”).
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Here, the mapping ¢ is an embedding of the integers 1, . . ., 2n into the unit sphere in two dimensions,
via ¢(j) = (sin (7j/4n) , cos (nj/4n))T. Note that, since the loss function ¢ defined in Eq. is
convex and 2-Lipschitz (as the maximum of convex functions is also a convex function), ¥ is a valid
VVP problem which A can be used to learn.

We show that when running the algorithm A on P, the solution w(S’) emitted by the conversion
satisfies the following.

Theorem 2. Consider any SCO instance in d-dimensions characterized by a distribution D over
sample space Z, and a convex and 1-Lipschitz loss function f : BY x Z — R that further satisfies
| f(w,2)| < b for every w, z. Let P be the corresponding VVP problem as defined by the conversion
above for § > 0 given by Lemma[2land ¢ = 4b /5. Let A be an algorithm with a guarantee that
for every VVP problem, using any training set S’ with n examples that are sampled i.i.d from the
corresponding distribution, outputs a model W (S’) with

E[L(W(S")) = L(WH)] < &(n).

Then, when running the algorithm A on P, the solution w(S’) emitted by the conversion satisfies,

E[F(w(S")) — F(w*)] < 2&(n) + %

The proof of Theorem [2] appears in Appendix [B] Here we review the main ideas that we used for
constructing this conversion.

First, we aim to represent an arbitrary unknown distribution 9 using a distribution 9D’ over the unit
ball B™ and a finite set of samples S = {z1, .. ., 2, } sampled i.i.d. from D. To achieve this, we model
not D directly, but rather its empirical distribution, denoted as @, which is the uniform distribution
over S and, when taking expectation over S, approximates 9. To implement this, we associate each
example z; with a standard basis vector ¢;, and define the distribution 9’ as the uniform distribution
over the set {ey,...,e,}.

Second, we show how to utilize a one-parameter loss function ¢ : R*¥ — R to model the two-
parameter loss function f : R? x Z — R, where f receive a model w and an example z as an input.
Our aim is, given w € R¢ which is a proposed solution for the SCO problem, to construct a function
¢ : RF — R and a matrix W € R¥™ such that k = O(d) and

Vie[n] : ¢(Wx;)= f(w,z). 2)
To achieve this, we use the embedding ¢ that was defined above. This embedding satisfies the
following lemma,

Lemma 2. Let a > 2. Let ¢ : [a] — R? be the embedding such that for every j € [al, ¢(j) =

(sin (7j/2a) ,cos (nj/2a))T. Then, ||¢(i)|| = 1 and there exist 6 > O such that for everyi # j € [a],
it holds that {$(i), p(j)) < 1 -6.

Specifically, using ¢ and ¢ defined in Lemma[2|for a = n, we set k = d + 2 and utilize the first two
entries of §; := Wx; € R%*? to encode the corresponding index i using ¢(i). Then, by incorporating a
max term over all i € [n] into € and set ¢ = 4b /8§ (where b is a bound on the values of f), this index
can be decoded and the corresponding loss function f(-, z;) can be applied. Finally, for constructing
the matrix W we add another column with index n + 1 to the matrix and modify D’ to represent the
uniform distribution over {e; + en+1}:.’=1. This change of the distribution makes the last d entries
of §; equal to the last d entries of the added column (for every 7). Then, when the latter is used as
placeholder for w, we get that Eq. () holds.

Third, we relate the population loss of the two problems. For this, we employ the technique of double
sampling. Specifically, we use a set S = {zy,...,22,} sampled i.i.d. from D and our conversion
samples only n examples from ©’. This ensures that at least half of the examples will not appear in the
training set of the prediction problem. By Eq. (2), when taking the expectation over S, the expected
prediction loss on such samples will be equal to the population loss in the convex optimization
problem. Finally, by bounding the loss €(¥;) for examples that appears in the training set of the
prediction problem, we get a population guarantee for the SCO problem.
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A Proofs of Section 3

A.1 Proof of Upper Bound

First, we use the result of Maurer| (2016) to show an upper bound for the sample complexity of vector
valued predictors using Rademacher Complexity. The result that we show is,

Theorem 3. Let k,n € N. For everym € N, Wy € R**™  convex and G-Lipschitz loss function
l: [EB';VXO’” — R, distribution D over B™, it holds that,

Vi

Vi

Es-on |[L(W,) - LOV)| = 0

In the proof we use the standard bound of the generalization error, via the Rademacher complexity of
the class (e.g. [Bartlett and Mendelson|(2002)), we have that:

[Es~z>n[ sup {L(W)- I:(W)}] < 2Eg.pn[Rs(£ o Blévf)m)]’

kxm
We[EiWU

Where we notate the function class:
Co B = {x > £(Wx) : W € By}

and Rg(€ o B"j‘j;m) is the Rademacher complexity of the class € o B"j‘fom. Namely:

1
Rs(fo [B’;VXO’") =Es| sup - Z oih(x;)|, 3)

k n
hefo[ﬂi“}i)’" Xxi €S

and 0, . .., 0y, are ii.d. Rademacher random variables. Now we use the contraction lemma for vector
valued predictors given inMaurer| (2016)).

Lemma 3. (Corollary 4 in|Maurer|(2016)). Let k € N and X be any set, (x1,...,x,) € X", let F be
a class of functions f : X — R™ and let h; : R* — R be G-Lipschitz functions. Then,

Esup > oyhy (f (xi)) < «EG[E;u;; Dok (),
€ i,j

f€7: i

where o7 is an independent doubly indexed Rademacher sequence and f; (x;) is the j-th component

of f (xi).

We derive the following lemma

Lemma 4. Let k,n € N. For every m € N, Wy € R>*m  convex and G-Lipschitz loss function
l: [EB';VXO’” — R, distribution D over B™, it holds that,

2V2LVk

[ESNDn[ sup {L(W)—i(W)}]S NG

kxm
We[EBWO



sos  Proof. Let S = {x1,...x,}. First, for ¥ = {Ax; | ||Al|r < 1}, denoting the j-th row of any matrix A
310 as Aj, and defining h; (w) = €(Wox; + w), by Lemmait holds that,

1
Rs(f [¢] B%m) = IE sup ; Z O'if(Wxi)

kxm
WEBW() xi €S

1
=E,| sup E ait(Wx; — Wox; + Wox;)
WEBC\Z)M n x,—eS

1
=Es| sup - Z aihi (W = Wo)x;)
weslym S

1
=Es | sup - Z oihi (Ax;)
»”A”FSI nx,'ES

\/—
< o | sup 0'le P X
lAllF<1 5 Z
< E, sup 0'le - X
Al <1 Z Z
11 Now, if D is the matrix that its jth column is }; o jAij,-, we get,
2G
Rs(LoBy™) < \/_—[EU sup Tr(AD)
n

[[AllF<1
V2G
ST[E(T sup ||AllFE&|IDIF

lAllF<1
V2G
< —[EUIIDIIF

VG, DY il
J i
METE
Joi

<x/§G«/%
SN

312 The lemma follows by combining everything together. [

313 For finalizing the proof of Theorem [3| we use the following lemma from |[Koren et al.| (2022).

314 Lemma 5. (Lemma 1 of |Koren et al.|(2022)) Let W C R4 with diameter D, Z any distribution
315 over Z, and f : W X Z — R convex and G-Lipschitz in the first argument. For every sample set
st S ={z1,...,2n} sSampled i.i.d from Z, let w = argmin F(w) the empirical risk minimizer. Then

Es[F(w) — F(w))] < 220

5

317 Now, we can derive Theorem [3
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328

329
330
331

332
333

334
335

336

337

338
339
340
341

342

343

344

Proof of Theorem 3| By Lemma5|and Lemma ] we know that
Es-pe [L(W.) - L(W)
= Es-on | L(W.) = L(W.) | + Espn | L(W.) - L(W")
. 2V26Vk 4G

L<—+—
Vi Vn
. 106k
NI
|
A.2  Proof of Lower Bound
First, we prove the following lemma, which implies the lower bound for the case of k = O(logn),
Lemma 6. Let k e Nand 0 < ¢ < Ln Then exists a dimension my and a matrix Wy such that for

anym > my =0 (é), 7:;’”‘;% can shatter Q (ﬁ) examples with margin €.

1
Proof. Let m = ﬁ and Wy = Ox,,. Now, for every possible labeling for S, y € {+&}+?, we define
the matrix Wy, to be the matrix which its first row is u, and the rest of the rows are 0. Note that

IWy, — Wollr = 1. Moreover, we define ¢ : R*¥ — R as £($) = e;$. This function is convex and
1-Lipschitz. For every i € [ﬁ] we define x; = ¢;. Itis left to show that the set S = {x; ..., x 5 } can
be shattered. It holds since for every y,
t(Wyx;) = etWyx; = ye; = y;.
]

Lemma 7. Let d > 100. There exists a set Uy C RY, with |Uq| = 2412 sych that all u € Uy are of
unit length ||u|| = 1, and for all u,v € Ug,u # v, it holds that {u,v) < %

Proof of Lemma Let r = 215, For every l <i<randl < j<dletthe u{ the random variable
which is \/LE with probability % and _\/LE with probability % Then, for every 1 <i < r, we define the

vector u; = (u}, -+ ,uf) and look at the set U = {uy, ua, ...u; }. We now show that U satisfies the
required property with positive probability. By Hoeffding’s inequality, it holds that,
2(4)’

Pr((u,-,uk)zz)Se a2 =e %,

Then, by union bound on the (5) pairs of vectors in U,

1 a 1
Pr(3i, k {u;,ur) > 5) < e ¥ (r) <e ¥ -p? <1.

|
Proof of Lemma |1, We denote J = 12/£2. We use the set U := Ui 13 of (k/13)-dimensional
nearly-orthogonal vectors, given in Lemmawith |U| = 2K/156_and use an arbitrary enumeration
of thisset U = {ui,...,ujy|}. Foreveryu € U C IR%, we define the vector u’ € R¥ which is for
1<i< 1%, i[i] = u[i] and other entries equal zero. Let m = (% + ﬁ)] and Wy € R¥*™ be the
following matrix (note that by the lower bound for &, it holds that ’% < 275% ):

un U mJg

T

000/ 0 |0

W0=8

. 12k . J _ 1
Now, for every i € [F] and j € [ﬁ] we define x; ; = Ok (1) + . We show that the
1

set S = {x; ;i€ [2],j €[]} can be shattered by 7.

1
—eks,
V2Ot

10
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346
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349
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351

352
353

355

356

357

358

359

360
361
362
363
364

365
366
367

For this, we use the set U := U 1k, of llz—f-dimensional nearly-orthogonal vectors, given in Lemma
: 3
. N k . . . N N .
with |U| = 275 and use an arbitrary enumeration of this set U = {iiy, ... uIUI}' For the rest of the

kJ . 12k L
proof, we refer to every vector z € {0, 1} 15 as a sequence of i vectors in {0, 1} 55, z(D, .., z(72),

where for every r € 1J_2 z(’) =z[(r - 1)(1 Y+ 1: 12k’] Now since we refer to every possible

labeling for S, y € {0, 1} ¥ asa sequence of 5 5 vectors, y“), oyt 12), it is possible to identify such
labeling y with a sequence (My(l) /G (%)) S U12. For every such y, we define the following
y

matrix:
ol o | | |
Wy, =¢ 0

Uy | Uy

By the definition of J, it holds that ||Wy||r < 1. Now, for every i € U, we define the vector i € R¥
which is zero in its first 1—"3 entries and for the rest of the entries, 1—’; +1 < i < k, it holds that,

ili]l =afi - %]. We turn to define the loss function £ : R¥ — R. For this, we define the following
set

A= {Z c{0, 1} ¥, 2e{0,}¥,r e [1—3]‘],,, 1l | vicb<L 20 o 20 :8}.

The the loss function ¢ is defined as following,

€(9) =2V8  max g max{i ily} +max{i

T .
T =C, s ,u - 78
(2.zr.p)ea { V8 V8 ° V3 ”‘fsk“’-‘)y}}
The function is 1-Lipschitz and convex as a maximum over linear 1-Lipschitz functions. For every
y € {0, 1}% we define Wj, = Wy + Wy, Let x; ; € S. Then,

—&u'

1
3 (- 1)+l \/5

’ ~
Wixij = —=Ely (),

1
V2
and
K(W;xi,j) =

=2V8

max =€ max{i AW x; i} +max{
(2,z,7,p)EA \/g ’ \/g’ z WyXi,j

V8 3
~ 88(2’;’1}?’)’()6‘4 \/§ T % _ZMZ (,>}+maX{T T r+‘2"(n G- 1)+z} -Te

=2¢ (2’21’1:?;()% {3,max{l,2 Ay} +max{l, 2u 12k (e l)uﬁ(j_1)+i}}—78.

,lek(p I)W xl]}}

T

If y; ; = y[i] = 1, the maximum of the first term is attained at z = y*/) and the maximum of the
sum of the terms is attained at Z such that for every b, 2(#) = y(/). Moreover, since y/)[i] = 1,
it holds that 2(%) [i] = 1 for every b, and particularly, for p = j, r = i, 2(p) [7] = 1, thus, since
p = j,r =i gives the maximal inner product and the condition of the max holds, the maximum of the
second term is attained at p = j,r =i, and,

’ _ AT A T
f(Wyxi’f)‘z‘S(z,;,’lf‘,f)e {3 max{1,2max a i } + max{l,2maxu_ 128 (o) W 1)+z}}_7‘9

=26, mas (3.2 + 2 el =76
=8ec—-Te

=E£.

If y; ; = y)[i] = 0, and there exists r such that y/)[r] = 1, the maximum of the first term is
attained at z = y/) and the maximum of the sum of the terms is attained at Z such that for every b,
2(0) = y() Moreover, since y/)[i] = 0, it holds that (?) [i] = 0 for every b, thus, for every r, p

11



368

369

370
371

372

373
374

375

376

377
378

379

380

381
382

383

384
385

386

387
388

such that 2(P)[r] = 1, it holds that r + 12k(p— 1) #i+ 12"(] 1) andu B DU (o) S %
Then,

/ _ AT A T _
E(Wyxi ;) =2¢ (2,zr,rrlfi;;()eA {3 max{1,2max a f ;) } + max{l,2maxu_ 128 (o) W (- 1)ﬂ}} Te

=26 max {3,207 a0 +1} -7
(2,z,r,p)€A

=6c-T¢
=—¢.
Ify, ;= y)[r] = 0 for every r, for every % such that for every b, 2(?) = y(/) it holds that 2 = {0}%.
Then, the set where the maximum is applied is empty and
((Wix; ;) =2&-3~Te =~&.
We showed that S can be shattered by T: ’rZVO, which implies the lemma. [
Proof of Theorem[I} We first prove the theorem for the case of k = Q(log n). Let & which satisfy
the condition of Lemma E} Let mg, Wy and ¢ be as defined in Lemmam By Lemmam there exists
a constant C and a set of examples S = {xl}; such that for every labeling y € {0, 1} =2, there
exists a matrix Wy, with [|[W, — Wy||r < 1 such that for every i € [?], t(Wyx;) = eif y; = 1 and
Ck
t(Wyx;) = —g if y; = 0. Now, let y* = {0} > and W* be the corresponding W+ and let D’ be
the uniform distribution over S. We prove that for every data set S’ such that |S’| < 2C k sampled
i.i.d from D’, there exists an ERM W, with L(VT/*) — L(W*) > g, this will prove Theoreml Let
Ck
8" ={x; ... xig, } be such a data set. Let yS € {0, 1} <2 be a labeling as following
S _ 0 x;€8
YTl oxes,

and Ws := W,s be the corresponding matrix. First, by the definition of Wys it follows that Wy is a
ERM since it holds that
1’| S|

- 1
L(Ws) = m ZK(WS)C,J |S| Z —-&=—-

Moreover, since at Jeast 131 of the examples in S are not in S’, it also holds that
1 8
L(Ws) =L(W") = = Z E(Wsx;) — L(W*x;)

IS\

I Zf(wsx,)+g

Z t(Wsx;) + &

=151 &

1
2528

=€&.

The proof for the case of k = O(logn) is analogous and can be implied by using Lemmal6]instead of
Lemmalll |

B Proofs of Section d

ProofofLemma Let ¢ : [a] — R%, ¢(i) = (sin (%), cos (%))T and 6 = 1 —cos (5). We notice
that 0 < 6 < 1. Then, as a result, for every i it holds that

. N E) 2 i \?
||¢(l)||=\/51n(z) +cos(z) =1,

12




389

390

391
392

393

394

395

396

and ifi # j,
(d(i), d(j)) = sin ;;) sin ( ) + cos (;” ) cos (;Jl)

|
o[ 52)
(

n
2a

I/\

0s (cos is monotonic decreasing in [0, 7/2])

Proof of Theorem First, defining W := W(S’) and denoting the columns of any matrix M € R*>*™
as My, ... M,,. By the definitions of w(S"), £ and Wy, it holds that

2n
LOW) = 52 D max ((Wil1: 20, 6()) + FOu(8).2))
i=1

2n
> % DUWil1: 2], 630)) + F(w(S'), 20).
i=1

Now, we define the following matrix,

By Lemma[2] for every i # j € [2n],

({cop (D), (D)) + fF(W", 20)) = ({cp (D), B())) + f (W, 2)))
=c(g(i), ¢(0)) — c{p (D), p()) + fF (W', zi) — f(W", 25)
>cd—2b
> 0.

As a result,

L(W*) < L(W)
1 2n

= — max ((Wil1:2],6()) + f(w*,2)))

2” ]6[2
1
Iz ; Jmax, ((co@. 9()) + F(w".2))

2n
= % Z(Wo,-[l 2], 6(0) + f(w*, z2).
i=1

Now, combining with the Cauchy-Schwartz and Jensen inequalities we get that,

2n 2n
LOW) = LOW") = - Z FOu(8)20) = FOwsz) + 5 Z<Wl- [1:2] = Wo, [1:2].6())

IV

o Zf(W(S)zz)—f(w*,z, Zuwu 2] - W, [1: 21|

IV

Zf(W(S)Zz)—f(w*,zl J Zuwn — W, [1: 212

\%

1 ) |
n ;f(w(s ), 2i) = f(Wer 2i) — =

13



397 where in the last inequality we used the fact that ﬁ D2 Wil 2] =W, [1: 2] < IW-Woll2 < 1.

se¢  Then, we denote I = {i,...,i,} the set of indices i € [2n] that sampled from D’ as the data set of
399 the VVP problem. Since p < n, we can add n — p additional items from [2n] \ I to I to create a set
400 I ={iy,...i,}. Fixing S’ and taking expectation on S = {z1, ..., 22, } (note that w(S”) and samples

a0t z; are independent if i ¢ 1), we get

Es [L(W - L(W")] + ——

V2n
1 1
2 [E{zi:iei}ﬂ Z Fw(S),zi) = f(wa, i) + [E{ZiZiES}Z Z;J Fw(8),zi) = f(we, 2i)
iel igl’

1 v , 1 1
> IEZ,'I,...,Z,'H E ;f(W(S )’ Zij) - f(W*, Zij) + IEZ[I,...,Z[I, [EF(W(S )) - EF(W*) .

a2 Now, taking expectation over S’, we get by Lemma 1 of [Koren et al.| (2022) (see Lemma [5] in
403 Appendix[A]),

L
E[L(W) - L(W)]+ NCr

>F % jz_;f(w(S'),Zi_,) —fwi,zi;) | +E %F(W(SI)) - %F(W*)

2 1 1
> —% + E[E [F(W(S’)) - EF(W*)} . (Lemmal[3)
404 The theorem follows by the guarantee on A and arranging the inequality. [
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