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ABSTRACT

Current pose estimation systems show critical weaknesses in occlusion scenarios,
where the simultaneous deterioration of visual appearance cues and biomechani-
cal topology constraints leads to compounded errors. This chain of failures orig-
inates from models’ inability to separate structural coherence preservation from
feature-level corruption recovery. To address this question, we propose CM-PCT,
a Cross-Modal Pose estimation model with Compositional Tokens. Our approach
enhances occlusion robustness through four key technical innovations: (1) a key-
point coordinate completion mechanism for occluded joints, providing more com-
plete data input to the model; (2) position vector embedding to enhance spatial
representation, complementing the contextual information lacking in joint coor-
dinate vectors; (3) SE attention for cross-modal feature fusion, reducing noise
interference between features through channel-wise weight recalibration; and (4)
a group-based loss function for differential optimization of body parts, improving
estimation accuracy of occluded regions through targeted supervision. Compared
to coordinate-driven pose estimators, CM-PCT fundamentally advances occlusion
robustness through its probabilistic completion mechanism and anatomical em-
bedding paradigm, demonstrating clinically significant reductions in joint ambi-
guity while maintaining biomechanical consistency under extreme occlusion. Ex-
tensive experiments on COCO and OCHuman datasets demonstrate our method
achieves state-of-the-art performance, consistently demonstrating superior per-
formance across diverse scenarios including standard benchmarks and occlusion-
challenging environments.

1 INTRODUCTION

Human Pose Estimation aims to localize human joints or infer orientations from visual data, serving
as a cornerstone for applications such as human-computer interaction and augmented reality. Tradi-
tional methods rely primarily on coordinate regression or heatmap-based approaches, treating joints
as independent entities. Although effective in controlled scenarios, these methods often produce
unrealistic predictions under occlusion due to their inability to model dependencies between joints:
coordinate regression lacks spatial contextual modeling, while heatmap-based methods suffer from
quantization errors and struggle to capture structural relationships. Recent studies have attempted to
enhance joint dependency modeling through graph-based structures or implicit feature propagation.
However, these approaches often depend on hand-crafted priors or inadequately model complex
joint interactions, leaving occlusion robustness an unresolved question.

From the perspective of feature extraction architectures, early methods relied on CNNs to capture
local texture features Cao et al. (2017), but struggled with long-range dependencies due to their
locality bias. Subsequent approaches explored RNNs for temporal motion modeling and U-shaped
networks Ronneberger et al. (2015) for multi-scale joint localization. The advent of Transformers
Vaswani et al. (2017) introduced self-attention to explicitly encode geometric relationships between
joints, while generative models Okuyama et al. (2024) improved occlusion reasoning via latent rep-
resentations. These advancements emphasize the importance of structured feature representations:
discretizing joints or regions into semantic tokens preserves independence while enabling explicit
modeling of topological relationships, offering a unified framework for pose estimation in complex
scenarios.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we present an enhanced human pose estimation framework that extends the PCT Geng
et al. (2023) architecture through systematic modifications to its two-stage training paradigm. The
original PCT framework operates in two phases: (1) a tokenizer pre-training stage that learns discrete
pose tokens to encode anatomical substructures, and (2) a pose refinement stage that maps image
features to these pre-trained tokens for occlusion-robust joint localization. While this decomposi-
tion decouples structural reasoning from feature extraction, we identify four critical limitations in
PCT’s approach: (a) The tokenizer lacks explicit spatial encoding to resolve geometric ambiguities
between similar compositional parts, resulting in confusion between visually similar but function-
ally distinct body segments. (b) The binary masking operation (setting occluded points to zero) in
the original implementation disrupts the continuous nature of human pose, creating artificial dis-
continuities that propagate through the network. (c) Unimodal token-image alignment neglects the
complementary benefits of joint coordinate features, limiting the model’s ability to integrate multi-
modal information that could provide redundancy under occlusion. (d) The refinement stage lacks
anatomical constraints Ji et al. (2022) to ensure biomechanical plausibility.

To address these challenges, we redesign both stages of PCT with targeted innovations. In the to-
kenizer pre-training stage, we introduce a spatially augmented tokenization module that integrates
hierarchical position encoding into the discrete token learning process. This module jointly opti-
mizes (i) a codebook capturing anatomical substructures and (ii) a continuous spatial prior map,
enabling tokens to encode both structural semantics and geometric distributions. As a preprocess-
ing step, we incorporate a Gaussian-based coordinate completion mechanism that models occluded
joints through conditional probability distributions p(ji|Jvisible) =

∑
k∈Ni

wk ·N (µk,Σk), preserv-
ing skeletal coherence even under severe occlusions. Additionally, we propose a cross-modal fu-
sion gate that dynamically combines RGB appearance features with joint coordinate embeddings
through a Squeeze-and-Excitation(SE)-inspired attention mechanism Hu et al. (2018). This fu-
sion recalibrates feature channels to increase discriminative visual cues while suppressing irrelevant
background noise. During the pose refinement stage, we introduce a body-part-aware segmenta-
tion loss that imposes hierarchical anatomical constraints. Building on pose-guided segmentation
frameworks, this loss partitions the human body into six semantic regions and enforces consistency
between predicted joint locations and their expected anatomical segments through region-wise reg-
ularization. The main contributions of our work are as follows:

• Gaussian-based Keypoint Completion: A probabilistic occlusion handling mechanism
that models invisible joint positions through conditional distributions p(ji|Jvisible) =∑

k∈Ni
wk · N (µk,Σk), where anatomically connected visible keypoints contribute

weighted Gaussian estimations. This approach replaces binary visibility flags with con-
tinuous coordinate representations, enhancing inter-joint dependencies and structural co-
herence under partial observations.

• Geometry-Aware Tokenizer: A two-branch tokenization architecture that jointly learns
discrete pose tokens and continuous position encoding maps, resolving spatial ambiguities
in compositional part representation through explicit geometric priors.

• SE-Driven Multimodal Fusion: A parameter-efficient feature interaction module that uni-
fies SE-based channel attention with coordinate-image feature fusion, enhancing occlusion
reasoning by dynamically modeling structural-visual dependencies with minimal compu-
tational overhead.

• Hierarchical Anatomical Regularization: A body-part stratified loss function incorporat-
ing anatomical grouping constraints (head-torso, upper limbs, lower limbs) with differenti-
ated weighting coefficients, enforcing biomechanically consistent pose estimation through
joint coordinate optimization.

Our framework preserves PCT’s efficiency in handling occlusions while significantly improving
structural coherence and localization precision. Experiments demonstrate state-of-the-art perfor-
mance on occluded scenarios.
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2 RELATED WORK

2.1 HUMAN POSE ESTIMATION

2D human pose estimation research primarily bifurcates into multi-person and single-person estima-
tion methodologies. Current multi-person approaches generally fall into three categories: top-down,
bottom-up, and single-stage detection methods.

In top-down methodologies such as DeepPose, CPN, and AlphaPose Toshev & Szegedy (2014);
Chen et al. (2018); Fang et al. (2017), the pipeline initially detects all individuals in the image
through bounding box localization before conducting isolated pose estimation for each cropped
instance. This sequential strategy ensures dedicated processing per subject but introduces computa-
tional redundancy during person detection. Bottom-up counterparts represented by algorithms like
OpenPose operate inversely: they first detect all body keypoints indiscriminately, then cluster them
into distinct person instances using association mechanisms such as Part Affinity Fields. Single-
stage approaches exemplified by the Hourglass model Newell et al. (2016) integrate detection and
estimation into end-to-end frameworks, eliminating intermediate processing steps. For single-person
pose estimation, methodologies diverge into regression-based and heatmap-based paradigms.

Regression Approaches: Early works directly regress joint coordinates from images through fully-
connected networks. Regression techniques directly predict keypoint coordinates through nonlinear
mappings. While computationally efficient with implementations like DeepPose utilizing cascaded
regression layers, DeepCut Pishchulin et al. (2016) addressing occlusion through integer program-
ming, PIL Nie et al. (2018) enforcing anatomical limb constraints, and MSPN Li et al. (2019) re-
fining through multi-stage processing, these methods exhibit inherent limitations. Despite advance-
ments, regression-based systems plateau in accuracy due to coordinate regression’s ill-posed nature
and inability to model spatial uncertainty.

Heatmap-based Approaches: Heatmap-based methods Zhang et al. (2020); Nibali et al. (2018)
currently dominate the field due to superior spatial precision, generating per-joint probability dis-
tributions where pixel intensity corresponds to location confidence. This approach preserves spa-
tial relationships and effectively leverages convolutional architectures. Notable implementations
include the Hourglass network with its symmetric encoder-decoder design, Simple Baseline Xiao
et al. (2018) employing efficient deconvolutional upsampling, and HRNet Sun et al. (2019) main-
taining high-resolution feature maps throughout processing. Nevertheless, significant challenges
persist; while achieving state-of-the-art results, heatmap methods remain susceptible to spatial pre-
diction failures under severe occlusions and require computationally expensive post-processing such
as non-differentiable coordinate decoding via argmax operations. These fundamental gaps in han-
dling occlusion and computational inefficiency motivate our cross-modal completion approach for
robust pose estimation.

2.2 ATTENTION AND GATING MECHANISMS

Attention mechanisms Bahdanau et al. (2016); Chen et al. (2018) in deep learning emulate the
information-filtering properties of the human visual system, empowering models to dynamically fo-
cus on critical input features and substantially enhance generalization capabilities. This approach
proves particularly effective for processing long-sequence data—such as text, speech, and image
sequences—by generating position-specific weights across spatiotemporal dimensions, thereby op-
timizing information extraction efficiency. The core operational paradigm relies on the Query-Key-
Value triadic computation: similarity scores between Query and Key vectors generate attention
weights, which then perform weighted aggregation of Value vectors to yield context-aware rep-
resentations.

Beyond natural language processing Bojanowski et al. (2017); Raffel et al. (2020); Radford et al.
(2021), attention mechanisms now serve as fundamental cross-modal fusion tools in multimodal
tasks. In visual question answering, models like ViLBERT Lu et al. (2019) employ cross-modal
attention to semantically align textual queries with relevant image regions; in video captioning, hier-
archical attention mechanisms coordinate spatiotemporal features for precise motion trajectory mod-
eling; in text-guided image synthesis, attention weight allocation enables semantically-controllable
local rendering.
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Figure 1: The overall training pipeline of our model consists of two stages (a, b). In stage (a), the
tokenizer phase, the model jointly trains various module parameters using both keypoint information
and image features. It leverages keypoint completion for prior information, incorporates spatial
features, and ultimately represents the pose as a combination of discrete tokens. In stage (b), the
classifier phase, the model freezes all module parameters trained in the previous stage and matches
image features with corresponding tokens solely based on image information, finally decoding the
final pose.

3 METHOD

In Section 3.1, we outline the architectural blueprint of our neural network alongside its hierarchical
feature extraction modules. Subsequently, Section 3.2 introduces encoder enhancements through
three synergistic innovations: a probabilistic keypoint completion module modeling occluded joints
using Bayesian inference principles; a spatial feature integration strategy designed to mitigate am-
biguity in spatial representations by adaptively fusing coordinate features with iteratively refined
positional information; and a hierarchical attention mechanism adaptively reinforcing biomechan-
ically correlated joint relationships through multi-scale feature recalibration. Section 3.3 proposes
an anatomically-weighted loss function prioritizing biomechanically critical joints over peripheral
ones through learned importance weighting.

3.1 PCT NETWORK ARCHITECTURE

PCT (Pose as Compositional Tokens) adopts a two-stage framework to model joint dependencies
through structured token representations, enhancing robustness in occluded scenarios. Its core inno-
vation lies in decomposing poses into compositional discrete tokens and mapping images to poses
via a classification-based pipeline. The structure is detailed as follows:

3.1.1 OVERVIEW OF TWO-STAGE FRAMEWORK

The PCT model comprises representation learning and pose estimation stages: Stage I (Represen-
tation Learning): This stage constructs structured pose representations via a compositional encoder
fe(·), which maps raw pose coordinates G ∈ RB×K×D (K joints, D dimensions) into M = 16
token features {ti}Mi=1, each encoding interdependent joint substructures. These tokens are dis-
cretized via nearest-neighbor search in a shared codebook C ∈ R1024×H Vaswani et al. (2017), and
a decoder fd(·) reconstructs the pose Ĝ from the quantized tokens {cq(ti)}. Two enhancements are
integrated: 1) random joint masking to enforce structural completeness, and 2) fusion of joint-local
image features with positional encodings to improve discriminability. The framework achieves sub-
pixel reconstruction accuracy while compactly encoding pose variations. However, a limitation lies

4
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in its lack of explicit spatial modeling and attention-based feature refinement, potentially hindering
robustness to complex spatial occlusions or dynamic interactions. Moreover, as PCT directly in-
fers missing keypoints without leveraging prior structural constraints or consistency checks, it may
struggle to recover anatomically plausible poses when confronted with large-scale missing data or
ambiguous configurations.

Stage II (Pose Estimation): Pose estimation is cast as a classification task. Image features from
a backbone network are fed to a classification head to predict M token categories. The decoder
directly generates pose coordinates without post-processing.

This decoupled design models joint dependencies while simplifying the inference pipeline.

3.1.2 COMPOSITIONAL ENCODING AND QUANTIZATION

Encoder Design:Pose coordinates G are first projected to higher dimensions via linear layers, then
processed by MLP-Mixer Tolstikhin et al. (2021) blocks to fuse global joint dependencies, yielding
M token features T = (t1, t2, . . . , tM ) = fe(G), where ti ∈ RH . MLP-Mixer alternates channel-
wise and spatial MLP operations to efficiently model interactions.

Codebook Quantization:A shared codebook C = [c1, . . . , cV ]
T ∈ RV×N quantizes each ti to its

nearest entry:

q(ti) = argmin
j
∥ti − cj∥2 (1)

Quantized tokens {cq(t1), . . . , cq(tM )} are decoded by fd to reconstruct poses Ĝ =
fd(cq(t1), . . . , cq(tM )). The decoder uses a shallow MLP-Mixer to invert the encoding process.

3.2 TECHNICAL MODIFICATIONS TO POSE ENCODING

Gaussian-based Keypoint Completion: Standard PCT models employ a masking operation
Jmasked = J ⊙ V to occlude invisible keypoints. While this mitigates spatial uncertainty inter-
ference, it results in inefficient utilization of critical information. Our method proposes a Gaussian
distribution-based keypoint compensation mechanism, leveraging the distribution characteristics of
keypoint coordinates from large-scale datasets to fit a multivariate Gaussian model N (µpop,Σpop).
Through normalization design that eliminates scale/translation variations across individual poses
(preventing domain shift in distribution parameter estimation), we infer global Gaussian parameters
µb, σb from visible keypoint distributions, subsequently achieving conditional completion of invisi-
ble points and denormalization reconstruction. This outputs a complete pose hypothesis distribution
P̂ ∼ N (µcond,Σcond).

The specific workflow proceeds as follows: First, visible keypoint screening:

J vis
b = {Jb,k | Vb,k = 1} (2)

The coordinate tensor J ∈ RB×K×2 and visibility mask V ∈ {0, 1}B×K ensure parameters origi-
nate from actual observations. Statistical computation:

µb =
1

|J vis
b |

∑
j∈J vis

b

j (3)

σb =

√√√√ 1

|J vis
b |

∑
j∈J vis

b

∥j− µb∥2 + ϵ (4)

where j ∈ R2 denotes the 2D coordinate vector of a visible keypoint, ϵ = 10−6 prevents numerical
singularity.

To eliminate scale and translation differences across pose instances, standardized transformation
is performed:

Ĵb,k =
Jb,k − µb

σb
(5)
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establishing a geometrically invariant space. Invisible point estimation requires visible point cardi-
nality computation nvis

b =
∑K

k=1 Vb,k—-this counting operation bears dual statistical significance:
1) Serves as distribution reliability indicator (nvis

b ≥ 3 enables minimal planar constraints); 2) De-
termines compensation strategy confidence level (high nvis

b employs precise local statistics, low nvis
b

activates conservative global priors). Conditional completion follows:

Ĵb,k ←

{
1

nvis
b

∑
m:Vb,m=1 Ĵb,m if Vb,k = 0 ∧ nvis

b ≥ 3

Ĵb,k otherwise
(6)

Under the distribution consistency hypothesis expressed by the conditional probability p(Jocc |
Jvis) ∼ N (µ̂b, Σ̂b), the denormalization reconstruction is performed:

Jest
b,k = Ĵb,k · σb + µb (7)

outputs complete coordinate tensor Jest ∈ RB×K×2. This approach achieves probabilis-
tic completeness through explicit modeling of pose distribution parameters, dynamically adapts
to visible point counts (employing covariance-weighted precision modeling when nvis

b ≥ 10,
isotropic Gaussian conservative compensation when 3 ≤ nvis

b < 10), geometrically decouples
translation(µb)/scale(σb)/rotation attributes, and enhances occlusion robustness with O(BK) com-
putational complexity.

Position-Aware Coordinate Embedding: Although raw coordinates capture geometric relation-
ships, they lack explicit anatomical localization cues critical for distinguishing symmetric joints and
similar local structures. We address this limitation by augmenting PCT with positional awareness
through learnable anatomical priors.

We enhance joint coordinate embedding by incorporating anatomical priors through learnable po-
sitional encoding vectors P ∈ RK×d. The input features G ∈ RB×K×3 are constructed by con-
catenating the estimated keypoint coordinates Jest ∈ RB×K×2 (from the probabilistic completion
module) with the visibility mask V ∈ {0, 1}B×K along the last dimension. The modified joint
representation for the j-th joint is formulated as follows:

Ej = Linear (Gj) +Pj (8)

Pj = P
(tri)
j +P

(learn)
j (9)

For each joint j ∈ {1, ...,K}, the embedding Ej ∈ Rd is computed through two complemen-
tary components: 1) The coordinate vector Gj ∈ RD (Where D = 3 for 2D poses: each joint
is represented as (x, y, v), with v ∈ [0, 1] denoting visibility.) undergoes linear projection via
Linear(·) : RD → Rd to capture geometric patterns; 2) A learnable positional encoding vector
Pj ∈ Rd is added to inject anatomical priors about the joint’s typical spatial location (e.g., wrist vs.
ankle).

The hybrid encoding Pj merges a fixed anatomical prior P
(tri)
j with a trainable offset P(learn)

j .

Initialized from N (0, 0.022), P(learn)
j is updated via gradient descent to adaptively refine joint po-

sitioning. This dual-stream mechanism preserves biomechanical constraints while learning dataset-
specific spatial variations.

Squeeze-Excitation Guided Feature Fusion: Standard PCT fusion equally weights feature chan-
nels, overlooking critical motion cues. We introduce channel-wise attention that dynamically recal-
ibrates features, emphasizing discriminative patterns while suppressing redundancies.

We bring in chandunel-wise attention to the feature fusion process. After projecting joint em-
beddings through linear layers, we first refine the image feature maps F ∈ RB×C×H×W using a
Squeeze-and-Excitation (SE) block before concatenation:

F′ = F⊙ sigmoid (W2 · GELU(W1 · GAP(F))) (10)

6
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where GAP(·) denotes the global average pooling, W1 ∈ RC/r×C and W2 ∈ RC×C/r form the
attention bottleneck, with r = 16 as the reduction ratio. The refined features are then processed as:

We first reshape the feature maps F processed by Swin-Transformer to spatial dimensions Fsp ∈
RB×K×H×W , then applying squeeze-and-excitation attention, and finally flattening and projecting
the attended features. This is mathematically represented as:

F′ = SE(Fsp) (11)

Fproj = We · vec(F′) (12)

The final stage concatenates this representation with embedding features:

Ffused = [Eembed∥Fproj] ∈ RB×K×(d+d′) (13)

where Eembed ∈ RB×K×d is the aggregated joint embedding tensor, formed by stacking individual
joint embeddings, while d′ denotes the projected joint feature dimension.

Our innovations in Keypoint Completion, Position-Aware Coordinate Embedding, and Feature
Fusion advance pose representation through three principal contributions: 1) Keypoint Comple-
tion employs probabilistic modeling with Gaussian distributions to generate anatomically plausible
predictions for occluded joints, enforcing biomechanical constraints that maintain skeletal coher-
ence under severe occlusions; 2) Learnable anatomical priors explicitly resolve spatial ambiguities
in symmetric joint localization, particularly enhancing left-right limb differentiation under partial
observations; 3) A channel-wise attention mechanism dynamically prioritizes discriminative motion
patterns while suppressing noise-corrupted features through global context modeling. These inno-
vations collectively establish a more robust framework for handling complex spatial interactions and
transient occlusions compared to conventional coordinate-based approaches.

3.3 STRUCTURAL HIERARCHY LOSS

Biomechanical Prior Guided Loss: We propose a biomechanically informed loss function that
adaptively weights joint prediction errors based on anatomical significance. The hybrid loss com-
bines our original PCT reconstruction loss Lpct with a novel loss of biomechanical structure Lreg
through learnable weight coefficients (α, γ):

Lbpg = αLpct + γLreg (14)

Lpct = smoothL1(Ĝ,G) + β

M∑
i=1

∥ti − sg[cq(ti)]∥
2
2 (15)

where Lreg imposes hierarchical anatomical constraints through region-specific error weighting, for-
mulated as:

Lreg =
∑
j∈Sht

ωht∥p̂j − pj∥2 +
∑

j∈Sarm

ωarm∥p̂j − pj∥2

+
∑
j∈Sleg

ωleg∥p̂j − pj∥2
(16)

where Sht ⊂ {1, ...,K} denotes head-torso joint indices (e.g., head, neck, spine), Sarm and Sleg
represent upper / lower extremity joints respectively, with anatomically calibrated weights ωht, ωarm,
ωleg reflecting biomechanical significance levels.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We first evaluate our model on standard pose estimation benchmarks: the COCO dataset
Lin et al. (2015). The COCO dataset contains over 160,000 images and 250,000 human instances,

7
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Table 1: Performance comparison on COCO val set. The best results are shown in bold, and the
second-best results are underlined. We conducted our experiments using a single NVIDIA RTX
3090 GPU with a batch size of 32. All our experiments were performed on the standard COCO
dataset, and the reported accuracies represent the best performance achieved across comprehensive
experiments.

Method Backbone Input size GFLOPs ↓ Speed (fps) ↑ COCO val2017 ↑
AP AP50 AP75

SimBa. ResNet-152 384 × 288 28.7 76.3 74.3 89.6 81.1
PRTR HRNet-W32 384 × 288 21.6 87.0 73.1 89.4 79.8

TransPose HRNet-W48 256 × 192 21.8 56.7 75.8 90.1 82.1
TokenPose HRNet-W48 256 × 192 22.1 52.9 75.8 90.3 82.5

HRNet HRNet-W48 384 × 288 35.5 75.5 76.3 90.8 82.9
DARK HRNet-W48 384 × 288 35.5 62.1 76.8 90.6 83.2
SimCC HRNet-W48 384 × 288 32.9 71.4 76.9 90.9 83.2

HRFormer HRFormer-B 384 × 288 29.1 25.2 77.2 91.0 83.6
ViTPose ViT-Base 256 × 192 17.9 113.5 75.8 90.7 83.2
SimBa. Swin-Base 256 × 256 16.6 74.4 76.6 91.4 84.3

Our approach Swin-Base 256 × 256 30.4 148.26 77.3 90.9 84.3

Table 2: Comparative analysis of model performance

(a) Performance comparison on OCHuman dataset

Model OCHuman (mAP)

HRFormer-s 60.3
PVTv2 58.5
SWIN-t 58.1
ViTPose-s 60.3
ProbPose-s 60.4
ProbPose-s-DP 61.4

Our approach 64.63

(b) Ablation study of main components (COCO val
mAP)

KeyC CooE SE SH-L mAP

✓ ✓ ✓ 76.0
✓ ✓ ✓ 75.9
✓ ✓ ✓ 76.0
✓ ✓ ✓ 75.7
✓ ✓ ✓ ✓ 76.2

each annotated with 17 keypoints. Its training set includes approximately 118,000 instances, valida-
tion set 5,000 instances, and test set 40,000 instances.

Subsequently, we test on occlusion-specific benchmarks: OCHuman.This multi-dataset strategy en-
ables dual evaluation: quantifying baseline pose estimation capability on standard benchmarks,
while specifically assessing performance improvements in handling occlusions through our keypoint
completion and feature fusion modules on occlusion datasets.

Evaluation metrics. For the COCO dataset, we employ standard keypoint detection metrics: Av-
erage Precision (AP) and Average Recall (AR) calculated at Object Keypoint Similarity (OKS)
thresholds. Specifically, we report AP (averaged over 10 OKS thresholds), AP50 (OKS = 0.50),
AP75 (OKS = 0.75), and APM / L (medium / large scale objects).

4.2 IMPLEMENTATION DETAILS

We adopt a top-down detection pipeline throughout the training process. During training, GT bound-
ing boxes are utilized to precisely crop human instances (padding factor=1.25), ensuring accurate
keypoint localization learning. For inference testing, we replace GT boxes with detection boxes
generated by a pre-trained Faster R-CNN model He et al. (2015) to simulate real-world scenarios.

For image feature extraction, we implement Swin-Transformer V2 Liu et al. (2021) backbone pre-
trained on ImageNet-22K, processing input images at 256×256 resolution (heatmap size 64×64),
with frozen first 5 stages.

8
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4.3 RESULTS ON COCO

Table 1 shows the evaluation results of various top-down methods on COCO val2017 set. Our
model achieves superior or comparable performance in terms of detection accuracy compared to
other methods. Specifically, our model achieves the highest AP of 77.3, outperforming the second-
best HRFormer (77.2). For AP75, our model achieves 84.3, sharing the highest score with SimBa
Patro & Agneeswaran (2024). In terms of inference efficiency, our model demonstrates excep-
tional speed performance with 148.26 fps, which is significantly faster than the second-best ViTPose
Dosovitskiy et al. (2021) at 113.5 fps. While our GFLOPs (30.4) is moderate, the substantial speed
advantage makes our model particularly attractive for real-world applications. For reference, most
HRNet-based models operate at speeds below 80 fps, highlighting our model’s significant efficiency
improvement.

4.4 RESULTS ON OCHUMAN

To evaluate our method’s performance in occluded scenarios, we conducted experiments on the
OCHuman dataset. In Table 2 (a), we denote the best performance in bold and the second-best re-
sults with underlines. The results demonstrate that our approach achieves substantial improvements
over other methods: compared to the method ProbPose-s-DP Purkrabek & Matas (2024), our ap-
proach reaches 64.63% mAP, representing a significant improvement of 3.23 percentage points. No-
tably, when compared to methods with commonly used backbones such as HRFormer-s Xiao et al.
(2018) and ViTPose-s (60.3% mAP), our approach exhibits superior robustness in heavily occluded
scenarios, with performance gains exceeding 4 percentage points. This remarkable improvement
validates the effectiveness of our approach in handling complex occlusion scenarios.

4.5 ABLATION RESULTS

To thoroughly evaluate the effectiveness of our proposed framework, we conducted comprehensive
ablation studies on several key components: Keypoint Completion (KeyC), Coordinate Embedding
(CooE), Squeeze-Excitation Guided Feature Fusion (SE), and Structural Hierarchy Loss (SH-L).
All experiments were performed on the COCO validation set using ground truth bounding boxes to
ensure fair comparison.

In our systematic investigation, we first examined the impact of Keypoint Completion by removing
it from the framework. This modification significantly impacted the model’s prediction guidance
capability. As illustrated in Table 3, the model’s performance decreased to an mAP of 76.0%,
demonstrating a notable drop compared to our complete architecture. This decline can be attributed
to the absence of crucial prior information, which consequently required extended training time for
the model to achieve convergence.

Subsequently, we investigated the role of Coordinate Embedding by removing this component from
our architecture. The experimental results revealed that without spatial information encoding, the
model’s accuracy dropped to 75.9% and exhibited substantially slower convergence during the train-
ing process. In our third ablation experiment, removal of the SE module eliminated the channel-wise
attention mechanism. While the immediate impact on accuracy metrics was modest, this modifica-
tion significantly disrupted the inter-modal feature relationships. Finally, we examined the impact
of our proposed loss design, with the model achieving 75.7% mAP when reverting to traditional loss
functions.

5 CONCLUSION

In this work, we present CM-PCT, a novel structure-aware framework for human pose estimation
that integrates spatial relationships between keypoints with probabilistic modeling of anatomical
joint configurations. Our approach features a specialized loss function designed to leverage the
inherent hierarchical structure of human anatomy, achieving performance comparable to state-of-
the-art methods while providing better interpretability.
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