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ABSTRACT

Exploring suitable solutions to improve performance by increasing the computa-
tional cost of inference in visual diffusion models is a highly promising direction.
Sufficient prior studies have demonstrated that correctly scaling up computation
in the sampling process can successfully lead to improved generation quality, en-
hanced image editing, and compositional generalization. While there have been
rapid advancements in developing inference-heavy algorithms for improved im-
age generation, relatively little work has explored inference scaling laws in video
diffusion models (VDMs). Furthermore, existing research shows only minimal
performance gains that are perceptible to the naked eye. To address this, we design
a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of
image diffusion models (IDMs) to assist VDMs surpass their current capabilities.
The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality
of each video frame and VDMs ensure the temporal coherence of the video during
the sampling process. Our experiments have demonstrated that IV-Mixed Sampler
achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD,
MSR-VTT-FVD, Chronomagic-Bench-150/1649, and VBench. For example, the
open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score
from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0. Our code
is released at https://github.com/xie-lab-ml/IV-mixed-Sampler. Our project page
can be found in https://klayand.github.io/IVmixedSampler.

1 INTRODUCTION

In the large foundation models era, maximizing the inference potential of foundation mod-

els ( , , ) that require high pre-training costs has become
a research staple for academrcs ( , , ). Efficient plug-and-play algo-
rithms ( , ) can 51gn1ﬁcantly drive large-scale models to reach their

full potential and outperform the original counterparts due to low trial-and-error costs. In contrast to
popular inference-heavy algorithms ( , ; ;

), which consistently emerge in the large language model (LLM) and i 1mage dlffusmn
model (IDM) field, text-to-video (T2V) synthesis still faces the prevalent challenge of low-quality
synthesized videos that lack semantic faithfulness ( s ). This limita-
tion severely hampers the deployment and application of v1deo dlffuswn models (VDMs). Motivated
by the success of inference scaling laws in both LLMs and IDMs, we inevitably wonder if it is pos-
sible to design an inference-heavy algorithm that is effective and plug-and-play on VDMs, allowing
us to enhance VDMs’ inference performance? This answer is obvious as VDM and IDM are the-
oretically identical ( , ). However, designing unique and outstanding training-free
algorithms based on the properties of VDM remains a significant challenge.

Motivation. VDM-based training-free algorithms typically face a significant challenge: their per-
formance ceiling is constrained by the VDM itself. To be specific, the videos synthesized from

most open-source VDMs ( , s ) exhibit several inherent problems,
such as weak semantic consistency between the videos and the prompts, as well as low quality. A
widely accepted perspective ( , ; , ) on this phenomenon is that underper-
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Figure 1: Visualization of 1V-mixed Sampler and the standard DDIM sampling on Animatediff and
VideoCrafterV2. Unlike prior heavy-inference approaches (Guo et al., 2024; Wu et al., 2023), IV-mixed Sam-
pler is able to significantly improve the fidelity of the video while guaranteeing semantic faithfulness.

forming VDMs cannot overcome their intrinsic limitations because they are trained on low-quality,
small-scale T2V datasets. In contrast, IDMs can now reliably serve commercial application scenar-
ios (Betker et al., 2023; Liu et al., 2024a), thanks to the well-established dataset ecosystem created
by the AIGC community. This discrepancy naturally prompts us to consider whether we can view
IDMs as tools to enhance VDMs and how to make IDMs effective assistants for VDMs.

Since diffusion models employ a multi-step sampling mechanism and the quality of synthesized
samples from IDMs is significantly higher than that from VDM, it is reasonable to use IDMs and
VDMs alternately for score function estimation throughout the reverse sampling process. However,
this straightforward paradigm leads to a loss of temporal coherence in the synthesized videos during
our initial empirical explorations. Inspired by SDEdit (Meng et al., 2021), we enhance the quality
of each frame at every denoising step by performing the following additional operation: /) first
adding Gaussian noise and 2) then denoising using IDMs. We found that this form of inference
significantly impairs performance. Through empirical exploration, we identified the issue as the
“first adding Gaussian noise” step, which introduces excessive randomness. Replacing this step with
a deterministic modeling paradigm (i.e., deterministic sampling) yields stable performance gains.

In this paper, we consider the widely used deterministic function DDIM-Inversion (Mokady et al.,
2023) to inject perturbations into the video. To be specific, we integrate IDM and VDM using the
base operator: first performing DDIM-Inversion, followed by applying operations similar to DDIM
before each denoising step. Additionally, the observation that performing DDIM-Inversion with
IDM first significantly outperforms performing DDIM-Inversion with VDM first further supports
the conclusion that IDMs trained on high-quality datasets can positively impact the video sampling
process. Motivated by this, we further explore the upper bound of the performance gain that IDM
provides for video synthesis. We primarily extend the paradigm of the single-step diffusion process
and the single-step reverse process to multiple steps. Then, to ensure inference efficiency, we inves-
tigate all possible combinations in the two-step diffusion process and the two-step inverse process,
collectively naming this series of algorithms IV-mixed Sampler.

Contribution. Specifically, /) we construct IV-mixed Sampler under a rigorous mathematical
framework and demonstrate, through theoretical analysis, that it can be elegantly transformed into
a standard inverse ordinary differential equation (ODE) process. For the sake of intuition, we
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Figure 2: Overview of our IV-mixed Sampler, Video-based Sampler and Image-based Sampler. /V-mixed
Sampler utilizes IDM and VDM to ensure synthesized video quality and temporal coherence, respectively.

present IV-mixed Sampler (w.r.t., “IV-IV”’) on Fig. 2 and its pseudo code in Appendix B. 2) The
empirically optimal /V-mixed Sampler further reduces the UMT-FVD by approximately by 39.72
points over Freelnit (Wu et al., 2023). Furthermore, 3) we conduct sufficient ablation studies to
determine which classifier-free guidance (CFG) (Ho & Salimans, 2021) scale and which sampling
paradigm yield the best performance for various metrics at what sampling intervals. In addition
to this, 4) qualitative and quantitative comparison experiments have amply demonstrated that our
algorithm achieves state-of-the-art (SOTA) performance on five popular benchmarks: UCF-101-
FVD (Soomro, 2012), MSR-VTT-FVD (Xu et al., 2016), Chronomagic-Bench-150 (Yuan et al.,
2024), Chronomagic-1649 (Yuan et al., 2024) and VBench (Huang et al., 2024). These competitive
outcomes demonstrate that our proposed IV-mixed Sampler dramatically improves the visual quality
and semantic faithfulness of the synthesized video.

2 PRELIMINARY

We review VDMs, SDEdit, DDIM & DDIM-Inversion in this section and further bootstrap how past
work has designed VDM-based plug-and-play algorithms in Appendix A.3.

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2023c;a) including IDMs and
VDMs consist of a forward process and a reverse process. Given x represent a D-dimensional ran-
dom variable sampled from the real data distribution go(x¢). The forward process injects Guassian
noise ¢; ~ N(0,I) to the clean data as follows:

Xt = X0 + Oté€, (D

where t ~ U[n, 1] (n is a very small quantity defaulting to le-5) and «; and o, are components
of a predefined noise schedule. o; is monotonically increasing from 0 to 1 in all diffusion models,
while a; can either remain constant (e.g., EDM (Karras et al., 2022)) or decrease monotonically
(e.g., VP-SDE (Song et al., 2023c¢) and Rectified Flow (Liu et al., 2022)) from 0 to 1. The forward
process in Eq. 1 can be rewritten as the following stochastic differential equation (SDE):

dx; = f(t)xedt + g(t)wr, )

where f(t) and g(t) denote the drift coefficient of x; and the diffusion coefficient of x;, respectively.
w; refers to a standard Wiener process. Eq. 2 has a corresponding ODE-based reverse process
defined as:

dxi = [t~ 56°(1) Vi log (), 3)

where Vy log ¢:(x) denotes the score function Vi, log p:(x;). Since Vy log g:(x) cannot be ac-

cessed during the reverse process, it must be replaced by a linear transformation %;t)

noise estimation model €y (-, -) or the score function estimation model sy (-, -).

using the
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Video Diffusion Model vs. Image Diffusion Model. The most critical differences between IDM
and VDM lie in their training sets and model architectures. Regarding training sets, IDM typi-
cally utilizes large-scale, high-quality datasets, enabled by the increasing availability of both real

and synthetic image datasets ( , ). Conversely, the performance of VDMs is
significantly constrained by the limited number of publicly available video datasets, such as Webvid-
10M ( , ) and Pandas-70M ( , ), which contain low-quality real data. In

terms of model architectures, several VDMs differ from their IDM counterparts because video data
xg € RbXextxhxw includes an additional time dimension t, unlike image data xq € RV*cxXbxw,
where b, c, h, and w refer to batch size, number of channels, height, and width, respectively. There-
fore, most VDMs incorporate both spatial and temporal blocks, where the spatial block aligns with
the module used in the mainstream IDMs, while the temporal block employs 3D convolutions (

R ) or tokens in the time dimension ( R ) to capture temporal information.

SDEdit. SDEdit ( , ) is an image editing method that produces a latent variable
capable of reconstructing the input xg. It first injects Gaussian noise into xg, then performs editing in
the latent space, and finally obtains pure samples through a standard reverse process. This approach
provides a scheme for editing the latent variable using IDM at each step of sampling. Since SDEdit
is nontrivial to invert, we employ DDIM-Inversion ( , ) to map the latent x; back
to its previous counterpart x4 a¢, Where 1 —t > At > 0.

DDIM & DDIM-Inversion. DDIM ( s ) serves as an efficient ODE-based sampler
that iteratively refines the initial Gaussian noise x, ultimately generating a “clean” video x that
conforms to the data distribution po(xXp). A notable characteristic of DDIM is its adherence to
deterministic sampling. The synthesized data produced by DDIM can be expressed as follows:

Xs — Usee(xsa 5)

x; = £(Xs) = ¢ ( ) + or€p(Xs, S). )

s

In this equation, s and ¢ denote timesteps € U/[0, 1], with the condition that ¢ < s. When under the
constraint t > s, the standard DDIM in Eq. 4 is referred to as DDIM-Inversion x; = £71(x,). In
practical, DDIM is often incorporated into classifier-free guidance for more precise control as well
as higher quality data synthesis. Thus, Eq. 4 can be transferred into

xt = £(Xs,w) = [oxs + (as0t — aros)[(w + 1)es(xs, 8, ¢) — weg(Xs, s, D)]] /s, )

where ¢, @ and w stand for the text prompt, the null prompt and the CFG scale, respectively.

Additionally, our proposed IV-mixed Sampler, along with Z-Sampling ( , ) and
Golden Noise ( , ) applied in the image domain, uses DDIM and DDIM-Inversion to
inject semantic information, which is essentially a noise optimization framework ( , ).

Unlike these approaches, which consider how to perform more efficient resampling operations, /V-
mixed Sampler focuses on utilizing both IDM and VDM to maximize the visual quality and motion
consistency of the synthesized video.

3 APPROACH

Observing that IDMs produce high-quality samples without ensuring temporal coherence, while
VDMs ensure temporal continuity but generate low-quality video, we propose IV-mixed Sampler to
combine the strengths of both IDMs and VDMs (see Fig. 2). In this section, we first describe how to
sample from x; to x;4A; and from x;4 A, to x; using IDM and VDM. We then introduce IV-mixed
Sampler and outline its design space of hyperparameters, followed by a theoretical analysis. Finally,
we discuss the effect of sampling in the latent space on IV-mixed Sampler.

3.1 FORWARD (GO!!) AND REVERSE (BACK!!)

A crucial step in overcoming the bottleneck of VDM ¢ (-, -) with IDM €} (-, ) is to address the
domain gap between IDM and VDM caused by differences in training data. Therefore, a specialized
rescheduling paradigm is required to achieve the mapping x; — £7(x;) = £(£71(x1)) = x4,
where £(-) is a deterministic function with an inverse £ (-). Given this, we can modify X, as ~
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Table 1: Quantitative comparison with popular heavy-inference algorithms on Chronomagic-Bench-150.
stands for the improvement of IV-mixed Sampler compared to the “Standard DDIM”. 14VGen is not
compared across other architectures because its official implementation is limited to Animatediff.

Model Method Extra Model UMT-FVD (]) UMTScore (1) GPT40-MTScore (1)

. . Standard DPM-Solver++ 214.06 +o0.007 2.77 +0.014 2.85 10.025
VideoCrafterV2 1y ived Sampler (ours) v 210.58 £0.010 3.29 40,011 ) s

Standard DDIM 241.61 +0.002 2.65 1+0.017 2.97 t+0.013

ModelScope-T2V Freelnit 220.96 +0.002 2.99 1o0.025 3.10 +0.015
1V-mixed Sampler (ours) v 234.90 +0.001 3.00 +0.022 3.16 10.035

. o Standard DDIM 275.18 +0.008 2.81 +0.030 2.86 +0.026

A(ggns;idsltf Freelnit 268.31 +0.005 2.85 1+0.022 2.60 10.026

. " 14VGen v 227.22 1+9.010 2.68 +0.030 3.01+0.017
Motion Adapter V3) 1V-mixed Sampler (ours) v 228.60 +0.008 3.3240.018 3.5540.028

Table 2: Quantitative comparison with popular heavy-inference algorithms, including Freelnit and

I4VGen, on Chronomagic-Bench-1649 ( y ). Yellow cells stands for the winner.
Model Method Extra Model UMT-FVD (]) UMTScore (1) GPT40-MTScore (1)
X Standard DPM-Solver++ 178.441.0.000 2.75+0.001 2.69+0.021
VideoCrafterV2 4y ived Sampler (ours) v 172.03-0.004 3.3540.008 3.0540.028
Standard DDIM 199.5240.001 2.99+0.004 3.16+0.026
ModelScope-T2V 1y, ived Sampler (ours) v 197.44-0.000 3.0640.003 3.2440.023
. . Standard DDIM 219.2940.001 3.08+0.004 2.6240.016
A diff !
(glgli,“;' 51 Freelnit 209.60+0.004 3.08-+0.004 2.72+0.014
Motion Ada ‘[e’r V3) 14VGen v 206.2210,003 3.2110,009 3.0910‘031
P 1V-mixed Sampler (ours) v 192.7240.001 3.3940.007 3.35+0.022

£71(x;) without disrupting the standard sampling process. We utilize DDIM-Inversion and DDIM
to implement £ (-, ) and £(-, -), respectively. By introducing CFG, we can define a new paradigm
to implement IDMs’ information injection via the operator G, i.e. semantic information injection:

X; = L (X, Weo, Whack, G, € €3y = L(u+ G(u), wpaek ), Where u = £7(x, Weo)- (6)

In Eq. 6, wgo and wyyek stand for the CFG scales for the DDIM-Inversion and DDIM, respectively.
€5’ (-, -) and €5*(-, -) are the noise estimation models used to perform £7!(-,-) and £(-, -), respec-
tively. G is any function whose mission is to make modifications to u. It is worth noting that for
IDMs, we first reshape x; from the shape bx cxtx hxw to (bxt) X c¢x h xw, and then pass it
through the noise estimation model to perform the operation Z in the practical implementation. If
Weo = Whacks €5 (,+) = €3**(-,-) and G(-) is an identity operator, then x; = x;. To understand how
7 injects semantic information, we rewrite Eq. 7 using a first-order Taylor expansion as

I(Xt7 Weo y Whack » G, 5%07 el;ack) = £(‘£71 (xt; wgo) + G(‘£71 (xt; wgo))y Wback) = »{:(9671 (xt7 Wgo); Wgo)

8£(£71(xtvwgo)7w"n) -1 8£(£71(xt7w"n)7wﬂo)
g oL , 20) s We
Ogo O e o)) e e )

+ (Wback - Wgo) + O((Wback - Wgo)2)

+ O(G(£71(xt,wg0))2) =x¢ #define J = a4y A10r — O p AL

back ¢
[¢

Wha

0 (3¢ + [(wonek + D™ (xeqar, t + At, €)

+ (Woack — Wgo)

Owgo )
+ (hs — @ )3 ((totrar — arraros)[(we + 1)€5 (%1, 1, €) — weoely (X1, t, D)]/aryat) n
back 20 6wgo
_ 6£(£71 (Xt , Weo) s Weo)
a(L£™ e
( (x¢, UJgo)) 9£-1 (xh Wgn) Xt +
aL(L™t ,
+ G(£71 (x4, wgo)) (6£ ED(Q, “eo) ')Wgo) # Ignore second-order and higher terms.
(Xt Weo
Observing the in Eq. 7, we can inject semantic information from both €5’ (-, -) and €52 (-, -)
into x; by setting wpack — Wgo > 0. In particular, we set Whack = —Wgo and wWhack > 0 by default.

Given this, we only need to replace €5’ with €} (-, -) or €} (-, -) to inject specific semantic information,
thereby enhancing the visual quality or temporal coherence of the synthesized video.
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Figure 3: Ablation studies on sampling intervals of IV-mixed Sampler (“IV-IV”’) with Animatediff (SD
V1.5, Motion Adapter V3). The BEGIN%-END% in the legend indicates the portion of the entire sampling
process performed by IV-mixed Sampler. For example, in a 50-step sampling scenario, 0%-50% corresponds
to IV-mixed Sampler being applied during steps 1-25. More details of “IV-VI” can be found in Appendix D.
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Figure 4: Ablation studies on different C species combinations with Animatediff (SD V1.5, Motion
Adapter V3). We can clearly observe that IV-mixed Sampler (“IV-IV”) is the winner across all metrics.

3.2 IV-MIXED SAMPLER

The paradigm defined in Eq. 6 enables us to easily describe all the base Operators in IV-mixed
Sampler. We define “R-", “I-”, and “V-" as follows: /) “R-": Forward noise addition using random
noise; 2) “I-”: Forward noise addition using DDIM Inversion with IDM; 3) “V-: Forward noise
addition using DDIM Inversion with VDM. Moreover, the front of the horizontal line “-” refers to
the additive noise form, while the back of “-” represents the denoising paradigm. For instance, “I-I”
and “V-V” can represent Z(x¢, —h, h, G, €}, €) and Z(x;, —h, h, G, €} , €} ), respectively, under the
condition h >0 and G is an identity operator. Clearly, this represents only a single-step injection of
semantic information. We can construct IV-mixed Sampler to allow multi-step injections of semantic
information using G and the recursive definition:

Xt = G (%) = Z(xt, —h, h, 6%, €5, €5™%),

G*(y) = Z(y, —h, h,G%, €%, €,°*%), "

aN(y) = Z(y, —h, h, N1 el E )N st N> 1

where N and GN*! refer to the number of semantic information injection and the identity oper-
ator, respectively. Through Eq. 8, we can easily represent [V-mixed Sampler with different N.
For instance, “IV-VI” can be described as x; = G!(x;) = Z(x4, —h,h,G% €}, €h), GX(y) =
Z(y,—h,h,G3, e;/, eg/) and G2 is an identity operator. Considering the computational overhead and
performance trade-offs, this paper focuses only on the scenario where N = 2. In Sec. 4’s ablation
study, we further restrict eé’go, eé’baCk, eg’go, and eg’baCk to two models each, occupied by €} (-, -) and
e},’(-, ) (w.rt., Cgl combinations), and find that “TV-IV” performs best. The visualization in Fig. |
demonstrates that “IV-IV” significantly improves both the visual quality of the synthesized video
and the consistency between the video and the text prompt.

3.3 DISCUSSION

Hyperparameter Design Space. In this paper, we elucidate three design choices: the Ci combi-
nations mentioned in Sec. 3.2, the intervals at which IV-mixed Sampler is performed during standard
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Figure 5: Ablation studies on dynamic CFG scale with Animatediff (SD V1.5, Motion Adapter V3). We
ensure that h&(t) = h™¥*(¢). Consequently, the IDM dynamic CFG scale corresponds to IDM’s 7s,) — Vo -
Similarly, the VDM dynamic CFG scale corresponds to VDM’s 7;;0 — 'yg, . log,(p) is 1, 0, and -1 indicates
whether the change from fy;,O to 'yéol is convex, linear, or concave, respectively. All metrics are normalized.

Note that we back-normalized UMT-FVD for consistency.

DDIM sampling, and the dynamic CFG scale. All three forms are expected to find the empirically
optimal solution, with the first two being natural explorations and the last addressing the domain
gap between IDMs and VDMs, which is expected to be mitigated by adjusting the CFG scale. For
the last one, to be specific, we re-express —h and h in Eq. 8 as —h2°(t) and h**k(t). Inspired by the
Karras’s noise schedule ( , ), we define h°(¢) and h%K(¢) as

hE (t)

(] 7+ o[ ]? = ] e = (2] 7 + (i) ” - ] P ©

where 'y}‘; and 'yback represent the CFG scales when ¢ = 1, while 7;0 and 'y{;gk denote the CFG
scales when ¢ = 0. The parameter p controls the concave and convex properties of the CFG scale
curve with respect to . The experiments in Sec. 4 demonstrate that the dynamic CFG scale can be
adjusted to achieve performance improvements for specific aspects (e.g., semantic faithfulness).

Theoretical Analysis. As shown in Theorem 3.1, [V-mixed Sampler can be elegantly transformed
into an ODE, taking the same form as Eq. 3. Consequently, IV-mixed Sampler preserves the stan-
dard sampling process (e.g., DDIM or Euler-Maruyama), enabling a trade-off between temporal

: : st IDM VDM
coherence and visual quality by adjusting the parameters Wy, k> Weo-back> ANd w-

Theorem 3.1. (the proof in Appendix C) IV-mixed Sampler can be transferred to an ODE. For
example, the ODE corresponding to “IV-1V” is

1 g3 (t
e = F(te— 2 g20) [, 0 dog gPM(eh) + (120 + )T o P el
(10)

DM DM
and We, b are CFG scales that are

go-back
greater than 0. Let Vy log ¢!PM(c|x) and V log /"M (c|x) represent the score function estimated
Sor pi(x¢) using IDM and VDM under classifier-free guidance.

Here, w refers to the vanilla CFG scale, while both w

The Influence of Latent Space. Most current high-resolution IDMs and VDMs follow the la-
tent diffusion model (LDM) paradigm ( , ). As a result, leveraging IV-mixed
Sampler requires IDM and VDM to share the same latent space, meaning they must use the same
VAE ( , ). Fortunately, for most VDMs, we always can find the corresponding IDM
that share the same latent space with the VDM. For cases where this condition is not met, we can
convert the video from shape bxcxtxhxw to (bxt)xcx1xhxw and then pass it through VDM,
which is referred to as using “IDM”. This paradigm is also applied in [4VGen ( , ).

4 EXPERIMENT

In this section, we present experiments to demonstrate the effectiveness of IV-mixed Sampler.
Specifically, we perform qualitative and quantitative comparisons across various benchmarks on
multiple T2V diffusion models, including ModelScope-T2V ( s ), Animatediff (
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Table 3: Quantitative comparison on UCF-101 datasets using Animatediff and ModelScope-T2V.
indicates the improvement of V-mixed Sampler compared to the “Standard DDIM”.

FVD () FVD (])
Model Method Extra Model (StyleGAN) (VideoGPT)
Standard DDIM 815.0740.006 819.9310.013
Animatediff Freelnit 805.3310.011 807.0240.031
(SD V1.5, Unictrl 1859.1140.030 1863.3210.024
Motion Adapter V3) 14VGen v 803.2640.024 805.75+0.016
IV-mixed Sampler (ours) v 800.47+0.032 804.67+0.028
ModelScope-T2V Slandard DDIM 1492.16+0.022 1484.98.£0.006
IV-mixed Sampler (ours) 4 841.6510.032 838.05+0.011
Table 4: Quantitative comparison on MSR-VTT using Animatediff and ModelScope-T2V. indi-
cates the improvement of IV-mixed Sampler compared to the “Standard DDIM”.
FVD (}) FVD (})
Model Method Extra Model (StyleGAN) (VideoGPT)
i . Standard DDIM 762.2210.019 761.0410.041
A(gll‘)“f}j'dslff Freelnit 732.59.40.013 731.05.40.022
Motion Adapter V3) 14VGen v 741.55+0.019 740.1140.021
IV-mixed Sampler (ours) v 721.3140.011 719.92 10.001
ModelScope T2V standard DDIM 739.1340.020 737.2310.017
IV-mixed Sampler (ours) v 603.31-+0.020 601.88+0.016
s ), and VideoCrafterV2 ( s ). Additionally, we compare IV-mixed Sam-
pler with three heavy-inference algorithms, Freelnit ( , ), Unictrl ( , )
and I14VGen ( , ), on VDM. Note that 14VGen is also an algorithm designed to en-

hance VDM performance using IDM. However, its IDM is configured to be consistent with VDM,
achieving image synthesis by reshaping from bxcxtxhxw to (bxt)xcx1xhxw before passing
it through VDM. For further details, please refer to Appendix A.3. Finally, we conduct extensive
ablation studies and present visualization to validate the optimal solution of various design choices.
More implementation details can be found in Appendix A.

4.1 MAIN RESULTS

Chronomagic-Bench 150 & 1649. We evaluate the effectiveness of 1V-mixed Sampler on three
different VDMs: VideoCrafterV2, ModelScope-T2V, and Animatediff (SD V1.5, Motion Adapter
V3). The comparison results on Chronomagic-Bench-150 (w.rz, 150 prompts) are presented in
Table 1. We employ three metrics in this benchmark: UMT-FVD (for visual quality), UMTScore (for
semantic faithfulness), and GPT40-MTScore (for temporal coherence and metamorphic amplitude)
to assess our proposed method. The experimental results in Table 1 show that IV-mixed Sampler
significantly outperforms both the standard sampling method and other computationally intensive
algorithms. This indicates that rational integration of IDM and VDM has great potential to improve
the performance of video synthesis tasks. Although IV-mixed Sampler does not outperform all
comparative methods on Animatediff and ModelScope-T2V in terms of UMT-FVD, it still shows
a significant improvement over standard sampling algorithms. It is worth noting that ModelScope-
T2V was unable to locate a high-quality IDM due to its low resolution (i.e., 224 x224) synthesized
video. In contrast, IV-mixed Sampler do not perform best on Animatediff because 14VGen is an
algorithm that integrates both IDM and VDM. Moreover, on the more comprehensive Chronomagic-
Bench-1649 (w.r.t, 1649 prompts), IV-mixed Sampler outperforms all comparative methods across
all metrics and models. As illustrated in Table 2, IV-mixed Sampler achieves the best performance
on all metrics, even when compared to the latest SOTA method, [4VGen. These experimental results
underscore the strong generalization capabilities of IV-mixed Sampler, highlighting its effectiveness
as a plug-and-play solution that can be seamlessly integrated across various VDMs.

VBench. For a comprehensive evaluation of both visual quality and semantic consistency, we fur-
ther assessed the performance of IV-mixed Sampler on VBench ( , ), with the results
presented in Table 5. From Table 5, it is clear that /V-mixed Sampler outperforms vanilla sam-
pling across most metrics, particularly on the multiple objects, where IV-mixed Sampler improved
the performance of Animatediff from 36.88% to 58.46%. Additionally, the average scores of IV-
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Table 5: Quantitative comparison on VBench ( , ). represents the improvement of

1V-mixed Sampler compared to Vanilla Sampling.

Average Subject Temporal Object Multiple Human
Model Method Score Consistency Flickering Class Objects Action
‘?g‘]‘)“i}fd;“ Vanilla Sampling 60.19% 95.30% 98.75% 90.90% 36.88% 92.60%
Motion Adapter V2)  IV-mixed Sampler ~ 66.69% 93.31% 97.09% 96.50% 58.46% 98.60%
Modelscope oy Vanilla Sampling 57.35% 89.87% 98.28% 82.25% 38.98% 92.40%
scope-12 IV-mixed Sampler _57.89% 88.39% 98.98% 79.42% 38.05% 94.60%
N - Spatial - Appearance Temporal Overall
Model Method Color Relationship Scene Style Style Consistency
A(g‘g‘i,‘ids‘“ Vanilla Sampling 87.47% 34.60% 50.19% 22.42% 26.03% 27.04%

29.54%

25.67%
26.43%

24.44%

23.39%
23.51%

27.62%

25.37%
25.44%

59.78%

33.68%
35.42%

56.91%

39.26%
42.62%

91.30%

81.72%
83.96%

Motion Adapter V2)  IV-mixed Sampler

Vanilla Sampling

Modelscope-T2V. i, ived Sampler

mixed Sampler exceeded those of vanilla sampling on both Modelscope-T2V and Animatediff, fully
demonstrating the effectiveness of IV-mixed Sampler.

UCF-101-FVD & MSR-VTT-FVD. Additionally, to complement our experimental results, we
conduct experiments on several traditional benchmarks, including UCF-101-FVD and MSR-VTT-
FVD. The FVD results for UCF-101 and MSR-VTT are presented in Table 3 and Table 4, respec-
tively. These quantitative results significantly substantiate the superiority of IV-mixed Sampler, high-
lighting its effectiveness in outperforming existing heavy-inference approaches on VDMs. Through
these results and visualized in Fig. 1, IV-mixed Sampler has strong generalization ability across
different VDMSs, which possesses significant practical application value in real-world scenarios.

4.2 ABLATION STUDIES

We begin with a basic ablation study to demonstrate the validity of inserting IDM into the denoising
process of VDM. We present the experimental outcomes in Fig. 6, we can discover that the approach
“R-[-]”, which use Gaussian noise to perform the forward diffusion process, result in significantly
lower quality of the synthesized video compared to the standard DDIM process (i.e., Origin in
Fig. 6). This phenomenon arises because “R-[-]” over-introduces invalid information (i.e., Gaussian
noise) into the synthesized video during denoising. Thus, we consider the more robust DDIM-
Inversion to integrate the video denoising process with the image denoising process, as this paradigm
is stable and effectively reduces truncation errors in practical discrete sampling.

After that, as described in Sec. 3.3, we elucidate

three design choices, namely the sampling interval R o | SESCEEEE SIS ——
of IV-mixed Sampler, the C’Z species combinations, RRVV 3| our-gvD:  viouas auasier

and the dynamic CFG scale. For /) the sampling P Ry o [T o ;
interval of /V-mixed Sampler, the results in Fig. 3 | orign 4+ Lo e
clearly illustrate that performing IV-mixed Sampler S e R
across all sampling steps is optimal. Another evi- 2 § +§ @

dent conclusion is that the closer the sampling in- 2 H] * Lo

terval of IV-mixed Sampler is to t =1, the more sig- U LD &

nificant the performance gain. This suggests that ;

to save computational overhead, IV-mixed Sampler Y

can be applied within the 0%-50% sampling inter- *

val or even restricted to the 0%-25% interval. For

2) the C7F species combinations, we present its ab- T
lation results in Fig. 4. It is evident that “IV-IV” UMT-FVD (1)

outperforms all metrics and significantly surpasses
both Freelnit and standard DDIM. This suggests
that there is an empirically optimal combination of
results within IV-mixed Sampler. Accordingly, we
use “IV-IV” for all comparison experiments. For
3) the dynamic CFG scale, the conclusions are not
as intuitive as the first two design choices. Specif-
ically, we considered a total of 7 combinations of

Figure 6: UMTScore (1) vs. UMT-FVD ({) with
Animatediff ( s ) on Chronomagic-
Bench-150 ( s ). In the legend, “R”,
“I”, and “V” represent the score function estima-
tion using random Gaussian noise, IDM, and VDM,
respectively. Moreover, the front of the horizontal
line “-” refers to the additive noise form, while the
back of “-” represents the denoising paradigm. For
instance, “RR-II” stands for a two-step of adding
noise with Guassian noise followed by two-step of
denoising performed using IDM.
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dynamic CFG scales, where the CFG scale varies from 7@0 to 7;1 across IDM dynamic cfg scale,

VDM dynamic cfg scale and p. In Fig. 5, we set p to 7, 1, and 1/7' to model changes in the CFG
scale as convex, straight, and concave functions, respectlvely For the specified p = 1, we consider

3 types of the IDM’s CFG scale wyoY, and VDM’s CFG scale wy by, : (1) remaining constant,

IDM VDM - : IDM VDM

(2) Wog-pack/Wao-back 1NCTEASING, (3) Woq pack/Wao back decreasing. For the “constant” case we make
=0 __ t=1 _ ¢ 3 t=0 =1 _ “

Yoo = Vgo = 4, for the “decreasing” case we make v,, = 6, 75, = 2, and for the “increas-

ing” we make ’yg,o = 2, 'yg)l = 6. As illustrated in Fig. 5, we find that for visual quality (w.rt.,
UMT-FVD), keeping both wi ., and wy i, constant is the best choice. For semantic faithfulness
(w.r.t., UMTScore), the optimal strategy is to have both wgo bac so- DM . increasing. For tempo-
ral coherence (w.r.., GPT40-MTScore), it is optimal for wioh, , to decrease while wy v, increases.

Therefore, to enhance the performance of a specific aspect of synthesized video, we can adjust the
dynamic CFG scale to achieve the empirically optimal trade-off.

. and wY,

Visualization. We visualize the standard sampling and /V-mixed Sampler of the synthesized video
in Fig. 1. It can be observed that IV-mixed Sampler significantly improves both visual quality and
semantic faithfulness. In addition to this, we empirically invited a number of other AIGC-related
researchers to judge the video quality and agreed that IV-mixed Sampler’s enhancement could be
observed by the naked eye.

5 LIMITATION

Althrough IV-mixed Sampler significantly improves the performance of VDM, it introduces addi-
tional computational costs. For ”IV-IV” on Animatediff, it increases the number of function evalu-
ation (NFE) from 50 to 250. In the practical implementation, the computational overhead went up
from 21s to 92s at a single RTX 4090 GPU. This problem could potentially be addressed in the fu-
ture by distillation algorithms similar to accelerated sampling (

, ). This exploration of INFERENCE SCALING LAWS first, and then dlstllhng
the performance gains it achieves back to the foundation model may be a viable path for the future.

6 CONCLUSION

In this paper, we propose IV-mixed Sampler to enhance the visual quality of synthesized videos
by leveraging an IDM while ensuring temporal coherence through a VDM. The algorithm utilizes
DDIM and DDIM-Inversion to correct latent representations x; at any time point ¢, enabling seam-
less integration into any VDM and sampling interval. IV-mixed Sampler can be formulated as an
ODE, achieving a trade-off between visual quality and temporal coherence by adjusting the CFG
scales of both the IDM and VDM. In the future, we plan to fine-tune several stronger IDMs, such as
FLUX, to better adapt the latent space of target VDMs, thereby further enhancing the performance
of VDMs. We anticipate IV-mixed Sampler will be widely applicable in vision generation tasks.
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Ethics Statement. We present IV-mixed Sampler, a method designed to enhance the semantic
accuracy and visual quality of video produced by Video Diffusion Models. Although our approach
does not directly engage with real-world datasets, we are dedicated to ensuring the ethical use of
prompts, while respecting user autonomy and striving for positive outcomes. Acknowledging the
commercial potential of IV-mixed Sampler, we emphasize a responsible and ethical deployment of
the technology, aiming to maximize societal benefits while carefully mitigating any potential risks.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 BENCHMARKS

We present the relevant metrics and benchmarks used for comparison in the main paper..

UCF-101-related FVD. The UCF-101 dataset is an action recognition dataset comprising 101
categories, with all videos sourced from Youtube. Each video has a fixed frame rate of 25 frames
per second (FPS) and a resolution of 320x240. Several previous works (

, ) have validated the generation performance of VDMs on the UCF- 101
dataset usmg Fréchet Video Distance (FVD) ( , ). However, a comprehensive
evaluation benchmark for UCF-101 is still lacking. To address this, we follow the methodology of
Freelnit, utilizing the prompts listed in ( ) to synthesize videos and assess inference
performance with FVD. Specifically, we synthesize 5 videos for each of the 101 prompts provided
by ( ), resulting in a total of 505 synthesized videos. We then compute the FVD between
these 505 synthesized videos and 505 randomly sampled videos from the UCF-101 dataset (5 per
class), using the built-in FVD evaluation code from Open-Sora-Plan’.

MSR-VTT-related FVYD. The MSR-VTT dataset ( , ) is a large-scale dataset for
open-domain video captioning, featuring 10,000 video clips categorized into 20 classes. The stan-
dard split of the MSR-VTT dataset includes 6,513 clips for training, 497 clips for validation, and
2,990 clips for testing. For our evaluation, we utilize all 497 validation videos. To ensure evaluation
stability, we synthesize a total of 1,491 videos based on prompts from these validation videos, with
each prompt producing 3 different videos. We assess the results using the built-in FVD evaluation
code from Open-Sora-Plan.

Chronomagic-Bench-150. Chronomagic-Bench-150, introduced in ( , ) and re-
cently accepted by NeurIPS 2024’s dataset and benchmark track, serves as a comprehensive bench-
mark for metamorphic evaluation of timelapse T2V synthesis. This benchmark includes 4 main
categories of time-lapse videos: biological, human-created, meteorological, and physical, further
divided into 75 subcategories. Each subcategory contains two challenging prompts, leading to in a
total of 150 prompts. We consider three distinct metrics in Chronomagic-Bench-150: UMT-FVD
(1), UMTScore (1), and GPT40-MTScore (1), each addressing different evaluation aspects. Specifi-
cally, UMT-FVD ({) ( , ) leverages the UMT ( , ) feature space to compute
FVD, assessing the visual quality of the synthesized video. UMTScore (1) utilizes the UMT (

, ) feature space to compute CLIPScore ( , ), evaluating the text relevance
of the synthesized video. Lastly, GPT40-MTScore (1) is a fine-grained metric that employs GPT-
4o ( , ) as an evaluator, aligning with human perception to accurately reflect the
metamorphic amplitude and temporal coherence of T2V models.

Chronomagic-Bench-1649. Chronomagic-Bench-1649, introduced in ( , ) and re-
cently accepted by NeurIPS 2024°s dataset and benchmark track, is a comprehensive benchmark de-
signed for the metamorphic evaluation of timelapse T2V synthesis. While it shares 75 subcategories
with Chronomagic-Bench-150, it offers a more extensive evaluation framework with 1649 prompts,
making it significantly more comprehensive than its lightweight counterpart Chronomagic-Bench-
150. Chronomagic-Bench-1649 includes 4 key metrics: UMT-FVD ({), MTScore (1), UMTScore
(1), and GPT40-MTScore (1), each serving to evaluate different aspects of video synthesis. Specifi-
cally, UMT-FVD ({) ( , ) utilizes the UMT ( , ) feature space to compute
FVD, assessing the visual quality of the synthesized videos. MTScore (1) measures metamorphic
amplitude, indicating the degree of change between frames. UMTScore (1) leverages the UMT (

s ) feature space to compute CLIPScore ( , ), evaluating the text relevance
of the synthesized videos. Finally, GPT40-MTScore (1) is a fine-grained metric that employs GPT-
4o ( , ) as an evaluator, aligning with human perception to accurately reflect the

metamorphic amplitude and temporal coherence of T2V models. As with to Chronomagic-Bench-
150, we choose to ignore the MTScore (1) metric in our experiments due to its limitations.

thtps://github.com/PKUquanGroup/OpenfSorafPlan
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A.2 VIDEO DIFFUSION MODELS

We describe the VDMs utilized in this work. Specifically, we employ 3 VDMs with distinct architec-
tures: ModelScope-T2V ( s ), Animatediff ( , ), VideoCrafterV2 (

) )

ModelScope-T2V. ModelScope-T2V incorporates spatio-temporal blocks to ensure consistent
frame generation and smooth motion transitions. Its key features include the utilization of 3D con-
volution andtraining from scratch. The input video size is structured as 3 x 16 x 256 x 256, where 3
represents the number of channels, 16 is the number of frames, and 256256 indicates the resolution
of each frame. This configuration allows the model to effectively capture both spatial adn temporal
features, facilitating high-quality video synthesis.

Animatediff. Animatediff does not require training from scratch; instead, it only needs fine-tuning
on existing image diffusion models. Its motion adapter serves as a plug-and-play module, allowing
most community text-to-image models to be transformed into animation generators. In this paper,
we consider the latest version Animatediff (SD V1.5, Motion Adapter V3), which is fine-tuned from
SD V1.5. The input video size of Animatediff (SD V1.5, Motion Adapter V3) is 3x 16 x512x 512,
where 3 indicates the number of channels, 16 represents the number of frames, and 512x512 specifies
the resolution. Note that there are differences in the performance of this VDM because we used a
different resolution than the one used in the Chronomagic-Bench paper ( , ).

VideoCrafterV2. VideoCrafterV2 focuses on T2V synthesis, aiming to synthesize high-quality
videos from prompts. This work investigates a training scheme for video models based on Stable
Diffusion ( , ), exploring how to leverage low-quality videos and synthesized
high-quality images to develop a superior video model. The input video size of VideoCrafterV2 is
3x16 x512x 320, where 3 indicates the number of channels, 16 represents the number of frames,
and 512 x 320 specifies the resolution.

A.3 HEAVY-INFERENCE ALGORITHM ON VDM

Here we discuss two popular VDM-based heavy-inference algorithms Freelnit ( , ) and
14VGen ( s ).
I4VGen. 14VGen ( , ) is a training-free and plug-and-play video diffusion infer-

ence framework that enhances text-to-video synthesis by leveraging robust image techniques. To
be specific, I4VGen decomposes the process into two stages: anchor image synthesis and anchor
image-guided video synthesis. A well-designed generation-selection pipeline is used to create visu-
ally realistic and semantically faithful anchor images, while score distillation sampling (SDS) (

, ) is employed to animate the images into dynamic videos, followed by a video regener-
ation process to refine the output. In its official implementation, both phases are realized by VDM,
where the anchor image synthesis is performed by merging the time dimension into the batch size
dimension through VDM. In essence, I14VGen does not introduce true IDMs to improve the quality
of synthesized video obtained from VDMs.

Freelnit. Freelnit ( , ) is a novel inference-time strategy designed to enhance tem-
poral consistency in video generation using diffusion models. This approach addresses a key issue:
the difference in the spatial-temporal frequency distribution of noise between training and inference,
which leads to poor video quality. Freelnit iteratively refines the low-frequency components of the
initial noise during inference, bridging this gap without requiring additional training.

A.4 HYPERPARAMETER SETTINGS

For all comparison experiments, we used the form “IV-IV” and perform IV-mixed Sampler at all
time steps of the standard DDIM sampling. In addition, 75, Ve 7he and yizy all are set as 4.
For both Animatediff and ModelScope-T2V, we use stable diffusion (SD) V1.5 as the IDM. Note
that we experimented with using Mini SD as the IDM for ModelScope-T2V to maintain a consis-

tent resolution of 256x256. However, as illustrated in Table 6, we found that its performance was
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Table 6: Ablation studies with Modelscope-T2V on Chronomagic-Bench-150.

Model Method Extra Model UMT-FVD (]) UMTScore (1)  GPT40-MTScore (1)
Standard DDIM 241.61 2.66 2.96
ModelScope-T2V  IV-mixed Sampler (Mini SD) v 247.99 2.63 3.00
1V-mixed Sampler (SD V1.5) v 234.90 3.02 3.14

Table 7: Performance comparison of VideoCrafterV2 across different 2% settings.

Model 2% UMT-FVD (|) UMTScore (1)  GPT40-MTScore (1)

Standard DDIM 214.06 2.76 2.87

33.3% 212.74 3.08 3.02

VideoCrafterV2  50.0% 208.67 3.23 3.18

66.7% 210.57 3.29 3.30
75.0% 211.87 3.28 3.28
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Figure 7: Ablation studies on sampling intervals of IV-mixed Sampler (“VI-IV”). The BEGIN%-END% in the
legend indicates the portion of the entire sampling process performed by IV-mixed Sampler.
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Figure 8: The visualization of Karras’s noise schedule.

inferior to using SD V1.5 with upsampling and downsampling. For VideoCrafterV2, we use Re-
alistic Vision V6.0 B1 ( R ) as the IDM to accommodate a resolution of 512x320.
For the remaining configurations, we follow the sampling form recommended by the corresponding
VDMs. Furthermore, we find that applying “IV-IV” at every step on VideoCrafterV2 destroys tem-
poral coherence. Therefore, we replace “IV-IV” with “VV-VV” for z%. The results of the ablation
experiments are shown in Table 7. We finally chose z%=66.7% as the final solution.

B PYTHON-STYLE PSEUDO CODE
We present the python-style pseudo-code in Fig. 1 to make it easier to understand IV-mixed Sampler.
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Algorithm 1 Pseudo code of IV-mixed Sampler (w.r.t., “IV-IV”) (22) in a PyTorch-like style.

T: the initial noise
the number of sampl

ng step
ler: a scheduler simi

lar to that of diffusers
i r to that of diffusers

an inver scheduler s
the backbones of IDM and
the prompt embedding of
idm_end, w_vdm_begin,

IDM and VDM
d, rho:

S 3 dE 3 dE S9E 3 S

rameter of the dynamic C

def get_sigmas_karras(n, sigma_begin, sigma_end, rho=7.0):
ramp = torch.linspace (0, 1, n)

begin_inv_rho = sigma_begin ** (1 / rho)
end_inv_rho = sigma_end %% (1 / rho)
sigmas = (begin_inv_rho +

ramp * (end_inv_rho - begin_inv_rho)) *x rho

return sigmas # C s the noise schedule of Karras et al.
def sampling(latent, scheduler, inv_scheduler, F_idm, F_vdm, *xkwargs):
pe_idm, pe_vdm = kwargs.get ("pe_idm", None), kwargs.get ("pe_vdm", None)
w_idm_begin, w_idm_end, w_vdm_begin, w_vdm_end, rho =
kwargs.get ("w_idm_begin", 4), kwargs.get ("w_idm_end", 4),
kwargs.get ("w_vdm_begin", 4), kwargs.get ("w_vdm_end", 4),
kwargs.get ("rho", 1)
N = kwargs.get ("N", 50)
idm_CFG = get_sigmas_karras (N, w_idm_begin, w_idm_end, rho) # Dynamic CFG sc
vdm_CFG = get_sigmas_karras (N, w_vdm_begin, w_vdm_end, rho)

»
Q
o
o

for step in range (N) :

t = scheduler.timesteps|[step]

p_t = min(t + scheduler.config.num_train_timesteps
// scheduler.num_inference_steps,
scheduler.config.num_train_timesteps-1)

pp_t = min(t + 2 % scheduler.config.num_train_timesteps
// scheduler.num_inference_steps,
scheduler.config.num_train_timesteps-1)

# Perform sampling with IDM

latent = einops.rearrange(latent, "b ¢t hw -> (b t) ¢ h w")

n_latent = torch.cat([latent] x 2)

n_latent = scheduler.scale_model_input (n_latent, t)

n_pred = F_idm(n_latent, t, pe_idm)

n_pred_un, n_pred_te = n_pred.chunk (2)

n_pred = n_pred_un + idm_CFG[step] * (n_pred_te - n_pred_un)

latent = inv_scheduler.step(n_pred, p_t, latent)

latent = einops.rearrange(latent, "(b t) chw ->b c t hw", t=(...) )
# Perform sampling with VDM

n_latent = torch.cat([latent] = 2)

n_latent = scheduler.scale_model_input (n_latent, p_t)

n_pred = F_vdm(n_latent, p_t, pe_vdm)

n_pred_un, n_pred_te = n_pred.chunk(2)

n_pred = n_pred_un + vdm_CFG[step] * (n_pred_te - n_pred_un)
latent = inv_scheduler.step(n_pred, pp_t, latent)

# Perform sampling with IDM

n_latent = scheduler.scale_model_input (n_latent, pp_t)

latent = scheduler.step(n_pred, pp_t, latent)
# Perform sampling with VDM

n_latent = scheduler.scale_model_input (n_latent, p_t)

latent = scheduler.step(n_pred, p_t, latent)
# Perform sampling with VDM

n_latent = scheduler.scale_model_input (n_latent, t)

latent = scheduler.step(n_pred, t, latent)
return decode_latent (latent) # transfer latent to video
# IV-mixed Sampler
video = sampling(x_T, scheduler, inv_scheduler, ... )

C THEORETICAL PROOF

Here we give the proof of Theorem 3.1 in the main paper. We use “IV-IV” for an example, and the
derivation of other forms of /V-mixed Sampler is similar to “IV-IV” and is not described additionally.
First, IV-mixed Sampler (w.r.t., “IV-IV”’) can be rewritten as

2 t 2 t 4_
X, = X4 —i—wgl()—g ( )Vx logqiDM(c|x) + wgoig ( 5 )

2

2 2

g°(t+n) g-(t
D, dog g2 (eh) — b LD Vi log g™ o),

Vi log g7y (e|x)

Y
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Figure 9: Overview of our IV-mixed Sampler on the motion consistency model ( s ).

Table 8: Quantitative comparison of motion consistency model (MCM) on Chronomagic-Bench-150.
stands for the improvement of /V-mixed Sampler compared to the “Standard LCM”.

Model Method Extra Model UMT-FVD ({) UMTScore (1) GPT40-MTScore (1)
MCM Standard LCM 277.91+0.025 1.9810.012 2.66+0.021
(Animatediff V2)  IV-mixed Sampler (ours) v 246.5940.021 2.1940.013 2.87+0.009

where 7) represents the sampling step, which is usually extremely small. Vy log ¢\°M(c|x) and

Vi log ¢/PM(c|x) represent the score function estimated for p; (xt) using IDM and VDM under
classifier-free guldance Since 7 is very small, and assume that wZ, , is larger than w and wi, is

larger than w2, Eq. 11 can be rewritten as

go?
g°(t) g9°(t)
Xj = Xt — Wyobaac 5 V1086 (€]x) — wyohuk 5~ Vi log ) (efx), (12)
where wiol and wyP, are large than 0. Given this, IV-mixed Sampler can be written as an

ordinary differential equation:

2(t)

VDM (

c[x),

13)

1 g
dxi = F(1)xe = 50% (1) |Wohaek i )V log ¢!™ (c|x) + (¥, + ) To2 ¥, log ¢}

where w refers to the vanilla CFG scale.

D ADDITIONAL ABLATION STUDY

We present Fig. 7 here as a supplement to Fig 3 (w.r.t., the sampling interval of IV-mixed Sampler)
in the main paper. As illuatrated in Fig. 3 and Fig. 7, it can be noticed that “IV-IV” performs
significantly better than “VI-IV” under almost all settings. Furthermore, we visualize Karras’s noise
schedule of our proposed dynamic CFG scale in Fig. 8 for clear understanding.

E CAN IV-mixed Sampler WORK ON CONSISTENCY MODEL?

To verify the effectiveness of IV-mixed Sampler on the distillation-based accelerated sampling
model, we apply IV-mixed Sampler to the motion consistency model (MCM) ( ).
We use the Animatediff-laion version from the official MCM library and set the number of
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1th Frame Sth Frame 9th Frame 13th Frame

Figure 10: Visualization of our IV-mixed Sampler on Animatediff (SD V1.5, Motion Adapter V3) using
SD XL as the IDM.

sampling steps to 4. After extensive empirical experimentation, we found that the sampling mech-
anism shown in Fig. 9 can enhance MCM performance by introducing IDM. Specifically, we used
three checkpoints: the VDM w/o distillation, the VDM w/ distillation, and the standard IDM. During
each sampling step with the VDM w/ distillation, IV-mixed sampling is performed using the VDM
w/o distillation and the standard IDM. It is important to note that if the VDM w/ distillation is used
for IV-mixed sampling (i.e., replacing the VDM w/o distillation with the VDM w/ distillation), it
will not work due to its LCMScheduler at each step, which is non-deterministic and would disrupt
the semantic information provided by the IDM.

We present the results in Table 8, and we can find that IV-mixed Sampler significantly improves the
performance of MCM in all metrics.

F HoOw TO MAKE IV-mixed Sampler PERFORM BETTER ON
MODELSCOPE-T2V?

The performance of IV-mixed Sampler largely depends on the generative capacity of the IDM and
the VDM. In the previous version of this study, we used SD V1.5 as the IDM on Modelscope-T2V,
but now, we choose RealVis-V6.0-B1 ( ), which is less sensitive to resolution,
as the IDM. We then adjust the CFG scales wg, of the IDM and VDM to 2 (wpack = —2) and 3
(wWhack = —3), respectively, and present the results in Table 9. From these results, we observe that
1V-mixed Sampler using RealVis-V6.0-B1 as the IDM outperforms Freelnit across all metrics, which
highlights the potential of our algorithm.

G WHY CANNOT IDM AND VDM USE DIFFERENT VAES?

In the denoising process of [V-mixed Sampler, if the latent spaces of the VAEs in IDM and VDM are
different, IV-mixed Sampler will not function properly. This is similar to attempting direct image
classification with a language model without fine-tuning; their high-dimensional semantic spaces
are different and therefore incompatible. We demonstrate this by applying SD XL as the IDM to
Animatediff (SD V1.5, Motion Adapter V3), as shown in Fig. 10. As illustrated in Fig. 10, the
resulting video frames are entirely black and cannot be recognized by the naked eye.

H How TO MAKE IV-mixed Sampler INDEPENDENT OF VAE TO REALIZE
PERFORMANCE ENHANCEMENT OF MOCHI-1-PREVIEW?

We made minor modifications to /V-mixed Sampler to eliminate the need for ensuring that the VAE
of IDM and VDM are the same. To be specific, the changes made to Mochi-1 are shown in Fig. 11
of the revised version, focusing on converting the video latent z; to xy using one-step sampling,
enhancing it with the ControlNet tile (SD XL), and adding a certain amount of random noise before
passing it through Euler’s inversion (similar to DDIM-Inversion). This approach allows the video
latent to be converted back to x;, thereby improving video fidelity through IDM.

The visualization results can be found in Figs. 12, 13 and 14, where it can be found that IV-mixed
Sampler greatly improves the video fidelity. For example, for the prompt “A serene forest clearing
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Figure 11: The illustration of IV-mixed Sampler on the state-of-the-art (SOTA) open-source VDM Mochi-
1.

Table 9: Modelscope-T2V with Better IDM on Chronomagic-Bench-150.

Model Method Extra Model UMT-FVD ({) UMTScore (T) GPT40-MTScore (1)
Standard DDIM 241.61+0.002 2.65+0.017 2.97+0.013
ModelScope-T2V  Freelnit 220.96.+0.002 2.9940.025 3.1040.015
IV-mixed Sampler (SD V1.5) v 234.90.£0.001 3.00+0.022 3.1640.035
1V-mixed Sampler (RealVis-V6.0-B1) v 217.254+0.012 3.3110.013 3.2510.010

at dawn, where deer graze peacefully while golden rays of sunlight pierce through the mist-laden
trees.”, IV-mixed Sampler not only improves visual quality but also makes the deer in the video walk
very naturally, which is really amazing!

I 'WHEN WOULD [IV-mixed Sampler PERFORM WORSE THAN VANILLA
SAMPLING?

In the certain dimension of VBench, particularly in the domain related to temporal, the performance
of IV-mixed Sampler is inferior to that of Vanilla Sampling. We believe that IV-mixed Sampler
improves the overall quality of the composite video by balancing visual quality and temporal co-
herence. However, as shown in Fig. 15, slight inconsistencies can arise if the magnitude of motion
change is too large within a few consecutive frames. The best approach to address this issue is
to balance visual quality and temporal coherence based on the hyperparameter z, as introduced in
Appendix A.4.
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30th frame 30th frame

84th frame 84th frame

A serene forest clearing at dawn, where
deer graze peacefully while golden rays
of sunlight pierce through the mist-
laden trees.

Figure 12: Left: IV-mixed Sampler. Right: Vanilla Sampling.
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1st frame

30th frame

58th frame

.

| 84th franie A 84th frame

An explorer standing at the edge of a
massive desert canyon, with swirling sands
below and towering rock formations
stretching into the distance.

Figure 13: Left: IV-mixed Sampler. Right: Vanilla Sampling.
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Ist fme 1st frame

84th frame 84th frame

A cozy mountain cabin in the midst
of a snowfall, with warm light
emanating from the windows and smoke
curling from the chimney.

Figure 14: Left: IV-mixed Sampler. Right: Vanilla Sampling.
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1th Frame 2nd Frame 3rd Frame 4th Frame

a bear catching a salmon in its powerful jaws

Figure 15: A selected example from VBench’s subject consistency dimension.
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J  VISUALIZATION

In order to avoid the size of the paper being too large for the reader, we downsample the video
frames and present them here. We present the synthesized video visualization of Animatediff (SD
V1.5, Motion Adapter V3) in Fig. 16-17, the synthesized video visualization of ModelScope-T2V
in Fig. 18 and the synthesized video visualization of VideoCrafterV2 in Fig. 19.

Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Figure 16: The synthesized video visualization of Animatediff (SD V1.5, Motion Adapter V3).
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IVomixed Sampler  Standard Sampling ~ IV-mixed Sampler  Standard Sampling  IV-mixed Sampler  Standard Sampling

Standard Sampling

IV-mixed Sampler

Figure 17: The synthesized video visualization of Animatediff (SD V1.5, Motion Adapter V3).
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Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Standard Sampling

IV-mixed Sampler

Figure 18: The synthesized video visualization of ModelScope-T2V.
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IV-mixed Sampler  Standard Sampling ~ IV-mixed Sampler  Standard Sampling  TV-mixed Sampler  Standard Sampling

Standard Sampling

IV-mixed Sampler

Figure 19: The synthesized video visualization of VideoCrafterV2.
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