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Abstract

Understanding the inductive bias and generalization properties of large over-
parametrized machine learning models requires to characterize the dynamics of
the training algorithm. We study the learning dynamics of large two-layer neural
networks via dynamical mean field theory, a well established technique of non-
equilibrium statistical physics. We show that, for large network width m, and
large number of samples per input dimension n/d, the training dynamics exhibits a
separation of timescales which implies: (i) The emergence of a slow time scale
associated with the growth in Gaussian/Rademacher complexity of the network;
(ii) Inductive bias towards small complexity if the initialization has small enough
complexity; (iii) A dynamical decoupling between feature learning and overfit-
ting regimes; (iv) A non-monotone behavior of the test error, associated ‘feature
unlearning’ regime at large times.

1 Introduction

Machine learning (ML) models are trained using stochastic gradient descent (SGD), or one of
its variants to minimize the error on training data (empirical risk function). Classically, their
good behavior on unseen test data is explained by the fact that model complexity is kept small by
regularization techniques: these models do not ‘overfit.’ Traditional ML theory decouples the analysis
of the model from the optimization algorithm, which is assumed to converge to an approximate global
minimizer [47].

In contrast, in modern ML, the empirical risk is highly non-convex, the number of parameters is
comparable with the number of training samples, and the model complexity is only weakly controlled.
As a consequence, there can be many assignments of the model parameters (many global empirical
risk minimizers) that perfectly interpolate the data —even when these are noisy. While all of these
interpolators are indistinguishable on the training data, they behave very differently (and some of
them very poorly) on test data. It has been hypothesized that models trained by SGD generalize well
to test data because the algorithm selects a near global minimizer with low complexity, although a
mechanistic understanding of this process is lacking. For this reason, the generalization properties
cannot be decoupled from the training dynamics.

Several striking consequences of this lack of decoupling are documented in the literature (and have
long been familiar to practitioners): (i) Test error after training is observed to depend strongly on
the initial weights distribution [28]; (ii) Test error depends strongly on the optimization algorithm
(SGD, RMSProp, ADAM, to name a few), even when these algorithms achieve the same train error
[55]; (iii) Careful choice of the hyperparameters in the optimization algorithm is crucial [34, 59],
and the optimal choice is often different from the one that minimizes train error; (iv) Models learned
by training for a shorter time have smaller complexity and can generalize better [44, 11].
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Figure 1: Three dynamical regimes of learning in a two-layer neural networks, with m hidden
neurons. Training data comprises n points in d dimensions distributed according to a single index
model. We assume n,m, d all large with n/md = α (here α = 0.3). Blue: test error. Purple: train
error. Red: ℓ1 norm of second-layer weights (a proxy for model complexity).

These observations have motivated a broad effort to encapsulate the effect of the dynamics as ‘implicit
regularization’ [48, 3, 15, 56]: the algorithm selects an empirical risk minimizer that also minimizes
a specific notion of model complexity. While this implicit regularization hypothesis has been fruitful,
it can only be validated if we can precisely understand the training dynamics.

In this work we leverage tools from theoretical physics to directly analyze the training dynamics and
derive quantitative predictions on the implicit bias of neural network training, in a simple setting.
This allows us to capture feature learning and lazy/overfitting regimes within the same unified picture.
We discover a time-scale separation in the training dynamics, between an early stage in which the
model learns the relevant features representation of the data, and a late stage of training that is
characterized by overfitting, feature ‘unlearning,’ and hence test error that increases with training.
While the regularizing effect of early stopping has been an important object of study (for simpler
models) in the past [44, 11, 61, 57], our work is the first to point out a time-scale separation between
feature learning (on a faster timescale) and overfitting (on a slower time scale), thus reconciling the
feature learning and neural tangent theories of learning.

We study two-layer fully connected neural networks f( · ;θ) : Rd → R, i.e.

f(x;θ) =
1

m

m∑

i=1

ai σ(⟨wi,x⟩) , (1.1)

where θ = (a,W ), where W = (w1, . . . ,wm) ∈ Rd×m and a = (a1, . . . , am) ∈ Rm are,
respectively, first- and second-layer weights. For convenience, we fix the normalization ∥wi∥ = 1,
and assume that σ does not depend on m. We apply model (1.1) to a supervised learning task. We
are given i.i.d. data (yi,xi), i ≤ n, with yi ∈ R a response variable and xi ∈ Rd a feature vector,
and try to learn a model f( · ;θ) to predict the response ynew corresponding to a new input xnew. We
use gradient flow (GF) to minimize the empirical risk under square loss, namely

θ̇(t) = −n
d
P θ∇R̂n(θ(t)) , R̂n(θ) :=

1

2n

n∑

i=1

(
yi − f(xi;θ)

)2
. (1.2)
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Here P θ is a projection matrix that guarantees that wi(t) ∈ Sd−1 at all times. The factor n/d is
introduced for convenience and simply amounts to a rescaling of time. We will typically initialize the
training by setting (wi)i≤m ∼iid Unif(Sd−1), and ai = a0 for all i ≤ m, and study the dependence
of the training dynamics on three key parameters:

Network width: m, Overparametrization ratio: α :=
n

md
, Initialization scale: a0 .

Alongside the train error, we will be interested in the test error at time t, i.e. R(θ(t)) := E{(ynew −
f(xnew;θ(t)))

2}/2, and the generalization error R(θ(t))− R̂n(θ(t)).

Model (1.1) is much simpler than state-of-the-art architectures [52], but is rich enough to investigate
several general questions, which we summarize below:

When the network is sufficiently overparametrized (α small) and a0 is large, neural tangent kernel
(NTK) theory predicts that GF converges to an interpolator [30, 22, 16] .

Q1. For which region of α, a0 does convergence take place, beyond NTK theory?

Q2. Does the selected model provide good generalization or not [27, 37]?

In contrast, when a0 is small, gradient-based algorithms can learn non-linear low-dimensional
representation of the data [5, 21, 1, 6]. In these results, the difference between train and test error
(generalization error) is negligible: the model does not overfit.

Q3. Can we reconcile this feature-learning/no-overfitting behavior with the lazy-
training/overfitting regime described previously?

In the early phase of training, the generalization error vanishes. However, training longer times can
be beneficial, despite leading to overfitting.

Q4. When does the test error start increasing with training time? When should we stop training?

Finally, scaling with the network size is crucial:

Q5. How does the generalization error depend on network size and number of iterations?

Q6. Does overfitting start earlier for larger networks or later?

In Section 2, we will present our analysis using theoretical physics techniques. Section 3 presents
rigorous results confirming the picture emerging from this analysis. Finally, in Section 4 we discuss
how our results address the above questions.

2 Main results: Dynamical mean field theory

We study the dynamics of model (1.1) under the simplest data distribution in which genuine non-linear
learning is required to efficiently learn a good prediction rule, the so called k-index model. Namely,
we assume xi ∼ N(0, Id) and yi that depends on a low-dimensional projection UTxi:

yi = φ(UTxi) + εi , εi ∼ N(0, τ2) , (2.1)

where the noise εi is independent of xi, U ∈ Rd×k is an orthogonal matrix (UTU = Ik) and
φ : Rk → R is a nonlinear function, E{φ(g)2} <∞ for g standard Gaussian.

An important aspect of this data distribution is that (for large d) it presents the largest possible gap
between linear/kernel learning, which requires sample size to be superpolynomial in d [27, 58],
and nonlinear/neural network learning which only requires n = O(d) (generically, for constant k).
When the dimension d becomes large, discovering the latent features UTx is crucial for learning and
requires nonlinear processing of the labels yi [5, 21, 1, 6].

Our main focus will be on the simplest case, namely k = 1, with φ a generic function (in particular
E{φ(G)G} ≠ 0 for G ∼ N(0, 1), which corresponds information exponent equal to one according
to the classification of [4].). Some of our results apply to k-index models for general fixed k (in
particular, the rigorous results of Section 3). We defer to future work a more complete analysis of the
DMFT for k ≥ 2.
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We discover a separation of time scales at large m (or large n/d), for sufficiently small initialization
a0: feature learning takes place on a fast time scale, followed by overfitting/reversal to kernel learning.
This scenario is summarized in Figure 1, which plots numerical evaluations of our theoretical
predictions at k = 1, τ > 0 data distribution, in the limit n, d,m→ ∞ at overparametrization ratio
α = 0.3.

More precisely, we observe three regimes (below W 2nd := a/m is the vector of second-layer weights
in model (1.1)):

(i) Mean field feature learning. t = O(1). The network learns the low-dimensional features UTx;
the train error and test error decrease while their difference (generalization error) is negligible; the
second layer weights remain small ∥W 2nd∥1 = O(1).

(ii) Extended feature learning. 1 ≪ t≪ m. The train error decreases slowly; the generalization error
increases is small, i.e. R(θ(t))− R̂n(θ(t)) = o(1); the test error can evolve non-monotonically, but
remains approximately constant. Second-layer weights become large 1 ≪ ∥W 2nd∥1 ≪ √

m.

(iii) Overfitting and feature unlearning. t ≳ m. Train error and test error diverge significantly, i.e.
R(θ(t)) − R̂n(θ(t)) becomes of order one. At the end of this regime, the train error converges
to 0, i.e. the neural network interpolates the noisy data. The test error instead grows, and its limit
value is the one of a (data independent) kernel method: in other words, the model unlearns the
low-dimensional structure. Finally, the second weights grow to ∥W 2nd∥1 ≍ √

m, which indeed is the
scale required for interpolation.

In this section we outline our results based on ‘dynamical mean field theory’ (DMFT). The next
section will present rigorous results that are proven independently.

2.1 Technique

Our DMFT analysis is based on the following two steps:

Step 1: We leverage techniques from theoretical physics to derive an approximate asymptotic
characterization of the gradient flow dynamics (1.2) in the limit n, d → ∞, with n/d → α. This
characterization consists of a set of integral-differential equations for the following asymptotic
quantities (here p-lim denotes limit in probability, and we use the superscripts n to emphasize the
dependence of the right-hand side on n, d)

Cij(t1, t2) := p-lim
n,d→∞

⟨wn
i (t1),w

n
j (t2)⟩ ,

vi(t) := p-lim
n,d→∞

UTwn
i (t) , ai(t) := p-lim

n,d→∞
ani (t) .

(2.2)

A rigorous derivation of the DMFT in a setting that includes two-layer networks is given in [13].

However, the asymptotically exact DMFT characterization of [13] is rather complex to integrate
numerically or to study analytically. In order to circumvent this problem, we use a DMFT that is is
asymptotically exact for a well-defined Gaussian version of the original model. Namely, we observe
that the empirical risk of Eq. (1.2) takes the form

R̂n(θ) =
1

2n

∥∥F (θ)
∥∥2 , (2.3)

where F : (Sd−1)m×Rm → Rn is s stochastic process with i.i.d. components Fi(θ) = yi−f(xi;θ).
We replace these by Gaussian processes with matching mean and covariance, and study the DMFT
for gradient flow with respect to the associated risk R̂g

n(θ).

The Gaussian approximation comes with an error which we show analytically is vanishing on time
scales of order one ( indeed on these time scales we correctly recover the mean field theory of [38, 14])
and we demonstrate empirically to be small on larger time scales ( see for instance example Fig. 4.)
The curves in Fig. 1 were obtained by solving numerically the DMFT equations, see Appendix C for
details.

Step 2: We study this DMFT, with special attention to the large network limit m → ∞, and large
sample size α → ∞, with α = α/m fixed, for a generic single index model (k = 1). We obtain a
separation of time scales in the dynamics, corresponding to distinct learning regimes.
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Figure 2: Evolution of second-layer weights (left) and train error (right) when fitting pure noise
data. Here we use mean field initialization, h(z) = (9/10)z + (1/6)z3, α = 0.4 and τ = 0.6.
Symbols: SGD results on actual 2-layer networks with d = 200, n = αmd (averaged over 10
simulations). Continuous viridis lines: Numerical solution of the DMFT equations. Note that the
second layer weights are given in terms of a scalar quantity as the result of the statistically symmetric
initialization.

The analysis of the DMFT equations in the double limit m, t → ∞ is an example of singular
perturbation theory [9, 29]. Making this type of analysis rigorous is notoriously challenging and we
proceed by a combination of numerical solutions and analytical derivations.

In the following, we will first consider the simplest possible setting, pure noise data, and subsequently
consider the single-index model. The structure of the activation function and target nonlinearity will
be encoded in the functions

h(q) := E{σ(G1)σ(Gq)}, φ̂(q) := E{φ(G1)σ(Gq)} ,
where G1, Gq are standard jointly Gaussian with E{G1Gq} = q. The relation between σ, φ
and h, φ̂ is conveniently expressed in terms of the expansions in Hermite polynomials σ(x) =∑

k≥0 skHek(x), φ(x) =
∑

k≥0 fkHek(x), which corresponds to the analytic expansion h(q) =∑
k≥0 s

2
kq

k, φ̂(q) =
∑

k≥0 skfkq
k.

As mentioned above, we assume throughout n, d → ∞, with n/d → α ∈ (0,∞), with the limit
m,α→ ∞ taken afterwards. To further simplify our analysis, we assume a symmetric initialization
whereby ai(0) = a0 is independent of i ≤ m and (wi(0) : i ≤ m) ∼iid Unif(Sd−1). Throughout,
we use ‘with high probability’ for ‘with probability converging to one as n, d→ ∞.’

In Section 3 we present rigorous results that do not require either of these simplifying assumptions.

2.2 Training on pure noise

We begin by the case in which the data is pure noise: yi = εi ∼ N(0, τ2). A by-now-classic
experiment [60] showed that deep learning models have sufficient capacity to achieve vanishing
training error even when actual labels are replaced by random ones: they ‘interpolate pure noise.’

The ability of a model FΘ = (f( · ;θ) : θ ∈ Θ) to interpolate pure noise is intimately connected
to its Gaussian complexity G(FΘ;n) := E supθ∈Θ⟨g, f(X;θ)⟩/n [53] (where g ∼ N(0, In)
is independent of f(X, ;θ) = (f(xi;θ) : i ≤ n). Indeed, interpolation is impossible unless
G(FΘ;n) ≥ τ . Viceversa, G(FΘ;n) ≪ τ ensures good generalization.

By a theorem of [7] for the network (1.1), G(FΘ;n) ≤ Lσ∥a/m∥1
√
d/n (with Lσ depending

uniquely on σ). This means that, in order to interpolate noise, the average magnitude of second layer
weights must be ∥a/m∥1 ≥ L−1

σ τ
√
n/d = (L−1

σ α1/2)τ
√
m.

However, complexity bounds do not have implications on the convergence of GF to an interpolator.

Figure 2 compares the DMFT predictions to simulations using SGD to train an actual two layer
networks. In this figure we initialize a(0) = 1, and let a(t) evolve with GF alongside the first
layer weigths. We observe that the theory describes well the empirical results, despite the Gaussian
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Figure 3: Train/test error (right) when fitting data from a single index model. We set h(z) =
φ̂(z) = (9/10)z + z2/2, τ = 0.3 and α = 0.3. Lines correspond to predictions from the DMFT
(continuous: train error; dashed: test error). Black continuous line is the m → ∞ value. Right:
Same data plotted versus t.

approximation in our DMFT and the difference between SGD and GF. We also observe that second-
layer weights remain roughly constant until a large time t#(m), which appears to increase with m.
Roughly at the same time, train error starts to decrease and converges to zero.

In Section G.1 of the appendix, we will make precise the above picture of the evolution of a(t). Here,
we consider a simplified setting in which a(t) = γ

√
m with γ independent of m, not evolving with

training. Note that G(FΘ;n) ≍ γ/
√
α and hence such a network can interpolate pure noise if γ is

larger than threshold depending on α. Our DMFT predicts a sharp phase transition. For α ∈ (0, 1),
GF converges to vanishing train error with high probability if γ > γGF(α,m)τ , and converges to
a strictly positive training error if γ < γGF(α,m)τ . The threshold γGF(α,m) converges to a limit
γ∗GF(α) ∈ (0, 1) as m→ ∞.

A rephrasing of the same phenomenon states that limn,d→∞ R̂g
n(θ(t)) = etr(t;m, γ), and

lim
t→∞

lim
m→∞

etr(t;m, γ0) =

{
e∗(γ) > 0 for γ < γ∗GF(α)τ ,
0 for γ ≥ γ∗GF(α)τ .

(2.4)

Informally γ∗GF(α) is the minimum complexity γ for a very large network to interpolate noise via
gradient flow. The functions γ∗GF(α), e∗(γ) will play an important role below.

We will next consider training on data from a single-index model. The initial scale of second-
layer weights ∥a(0)/m∥1 plays a crucial role and we will separately analyze lazy and mean field
initializations.

2.3 Training on data with latent structure: lazy initialization

We initialize a(0) = γ0
√
m, and let a(t) evolve according to GF alongside first-layer weights. DMFT

predicts the emergence of three dynamical regimes for large m and large α (with n/d→ α). For an
illustration, we refer to Fig. 3.

First dynamical regime: t = O(1/m). Second layer weights do not change significantly γ(t) =
γ0 + om(1), while first layer-weights move by ∥wi(t)−wi(0)∥ = Θ(1/

√
m). Because the weights

ai(t) are of order
√
m, even an O(1/

√
m) change in the wi leads to a significant decrease in test

error and train error.

Train and test error are close to each other. Namely, the following limits are well defined

lim
n,d→∞

R̂g
n(θ(t)) = etr(t;φ, γ0,m, α) , lim

n,d→∞
Rg(θ(t)) = ets(t;φ, γ0,m, α) . (2.5)

with limm→∞ etr(t̂/m;φ, γ0,m, α) = limm→∞ ets(t̂/m;φ, γ0,m, α) =: elz1(t̂;φ, γ0, α).

For large scaled time t̂, the error elz1(t̂;φ, γ0, α) converges to the error of the best linear approximation
to f∗. This dynamical regime follows the qualitative predictions of NTK theory, and is essentially
linear in the weights wi, but the time is too short for the model to overfit the data.
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Second dynamical regime: t = Θ(1). Second layer weights do not change significantly: γ(t) =
γ0 + om(1), while first layer weights change significantly ∥wi(t)−wi(0)∥ = Θ(1). However they
change orthogonally to the latent subspace U and hence the test error does not change: no actual
learning takes place in this regime, but the model starts to overfit the data.

More formally, train and test error have well defined limits as the network width diverges:

elz2
tr (t;φ, γ0, α) := lim

m→∞
etr(t;φ, γ0,m, α) , elz2

ts (t;φ, γ0, α) := lim
m→∞

ets(t;φ, γ0,m, α) . (2.6)

However, the scaling function elz2
ts (t;φ, γ0, α) for the test error is constant in time and equal to the

value achieved at the end of the first dynamical regime. Namely

elz2
ts (t;φ, γ0, α) = lim

t̂→∞
elz1(t̂;φ, γ0, α) =

1

2

(
τ2 + ∥φ∥2 − ∥∇φ̂(0)∥2

h′(0)
+ γ20(h(1)− h′(0))

)
.

(2.7)

Since the wi’s move orthogonally to the latent space, their dynamics is equivalent (for large m) to
the one in the pure noise setting, modulo a redefinition of h. The right plot in Fig. 3 illustrates this.

Third dynamical regime: t = Θ(m). The qualitative properties of this regime depend whether
or not γ0 is larger than an interpolation threshold γ∗GF(α,φ, τ), which generalizes the threshold
γ∗GF(α) = γ∗GF(α, 0, 1) introduced in the pure noise case. Because the dynamics of weights wi in
the subspace orthogonal to U is equivalent to dynamics in pure noise, we expect the interpolation
threshold γ∗GF(α,φ, τ) to be given in terms of pure noise threshold γ∗GF(α) as follows:

γ∗GF(α,φ, τ) =
(
τ2 + ∥φ∥2 − ∥∇φ̂(0)∥2

h′(0)

)1/2

γ∗GF(α) . (2.8)

For γ0 > γ∗GF(α,φ, τ), interpolation is achieved during the second dynamical regime, no further
evolution takes place.

For γ0 < γ∗GF(α,φ, τ), a non-trivial evolution takes place for t = Θ(m). Introducing the rescaled
time z ∈ (0,∞), we obtain, as m→ ∞,

γ(mz) = γ lz3(z) + om(1), etr(mz) = elz3
tr (z) + om(1), ets(mz) = elz3

ts (z) + om(1) . (2.9)

Further, for large values of the rescaled time z → ∞, γ lz3(z) grows to γ∗GF(α,φ, τ) ≈ γ∗GF(α,φ, τ),
while elz3

tr (z) decreases to 0. In other words, interpolation is achieved on this third regime.

Further the test error elz3
ts (z) increases from elz2

ts (t;φ, γ0, α) to elz2
ts (t;φ, γ

∗
GF, α), with γ∗GF =

γ∗GF(α,φ, τ) whereby elz2
ts (· · · ) is given by Eq. (2.7).

2.4 Training on data with latent structure: mean field initialization

We initialize a(0) = a0, independent of m and let second layer weights evolve. Note that at
initialization the network’s Rademacher complexity is small, namely of order a0

√
d/n = a0/

√
αm.

Our DMFT analyisis predicts two dynamical regimes for large m. We will refer to them as ‘first’ and
‘third regime’ for consistency with other settings ( see Sec.G.2 of the appendix). For an illustration,
we refer to Figs. 4 and 5.

First dynamical regime: t = O(1). Both first and second layer weights change by order one:
a(t) = a0 +Θ(1) and ∥wi(t)−wi(0)∥ = Θ(1). and as a consequence test and train error decrease
significantly. In this regime, the two errors remain close to each other and their evolution is well
captured by the mean field theory of [38, 14], as specialized to the case of spherically invariant
distributions [10, 2].

Namely, limm→∞ a(t) = amf1(t), limm→∞ v(t) = vmf1(t), and DMFT reduces to a system of k + 1
ordinary differential equations for the k + 1 scalar variables (amf1(t),vmf1(t))

∂tv
mf1(t) = αamf1(t)Qvmf1(t)

(
∇φ̂(vmf1(t))− amf1(t)h′(∥vmf1(t)∥2)vmf1(t)

)
,

∂ta
mf1(t) = αφ̂(vmf1(t))− αamf1(t)h(∥vmf1(t)∥2) ,

(2.10)

where Qv := Ik − vvT. As mentioned above, train and test error coincide in the large width limit

lim
m→∞

etr(t) = lim
m→∞

ets(t) = emf1(t) .
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Figure 4: Training dynamics under a single-index model. We set h(q) = φ̂(q) = (9/10)q + q3/6,
τ = 0.3 and α = 0.3, under mean field initialization. Left: second-layer weights. Right: train and
test error. Symbols are empirical results for SGD with actual two-layer neural networks with d = 200,
n = αmd (averaged over 10 simulations). Lines correspond to predictions from the DMFT (on the
right, continuous: train error; dashed: test error).

An explicit formula for emf1(t) is given in Appendix G.2.1. In the case k = 1 and φ̂(z) = h(z),
we have that amf1 = 1, vmf1 = 1 is a fixed point of Eq. (2.10), and indeed the only fixed point with
vmf1 > 0. If h′(0) > 0, then, we have (amf1(t), vmf1(t)) → (1, 1) as t → ∞, and therefore test and
train error converge to the Bayes error emf1(t) → τ2/2. This is significantly smaller than the test
error achieved with lazy initialization. The separation between lazy and mean-field initialization is
expected because feature learning takes place in the mean field regime.

Third dynamical regime: t = Ω(m). Computing the local stability of DMFT solutions around the
mean field asymptotics (see Appendix G.2.2) suggests that the latter breaks down for t = Θ(m). For
t ≳ m, we observe that the second layer weights grow to achieve a(t) ≍ √

m, the projection onto
the latent space decreases to v(t) ≍ 1/

√
m, and train and test error diverge, eventually achieving

etr(t) ≈ 0 and test error significantly larger than the Bayes error achieved earlier. We refer to this
phenomenon as ‘feature unlearning.’

Denoting by t0(m; c) the time at which a(t) = c
√
m (for c a small constant), we expect the existence

of a window size w(m) such that

lim
m→∞

a
(
t0(m; c) + z w(m)

)
√
m

= γmf3(z) , lim
m→∞

etr/ts
(
t0(m; c) + z w(m)

)
= emf3

tr/ts(z) ,

(2.11)

where γmf3(z), emf3
tr (z), emf3

ts (z) are scaling functions describing the dynamics on this timescale. We
expect t0(m; c) = t∗(c)m + o(m), and w(m) ≲ t0(m; c), but our numerical solutions are not
sufficient to determine the precise scaling. On the other hand, it appears that at large times, the
complexity converges close the interpolation threshold:

lim
z→∞

γmf3(z) = γ∗GF(α,φ, τ) ≈ γ∗GF(α,φ, τ) . (2.12)

Finally, the evolution of train and test error for a(t) ≍ √
m appears to match the behavior at fixed

second-layer weights. Namely, we define two functions

εmf
tr/ts(γ) := lim

m→∞
etr/ts(t0(m; γ),m) . (2.13)

We observe that the limit curves (γ, εmf
tr (γ)), (γ, ε

mf
ts(γ)), match closely asymptotic train and test

error obtained by fixing a(t) = γ
√
m, and not letting second-layer weight evolve. This confirms the

hypothesis that γ(t) is a slow variable, while others converge as if γ was fixed.

3 Lower bounding the overfitting timescale

In this section we rigorously establish two results that confirm elements of the scenario outlined in the
previous sections. We emphasize that the result presented here are non-asymptotic, i.e. hold at finite
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Figure 5: Left: second layer weights on the scale
√
m as a function of t/m. Curves appear to

collapse on a master curve. The red arrow denotes γ∗GF and the curves appear to converge to that
limit. Center: the projection of the first layer weights on the latent space in the single index
model as a function of time on timescales of order m. Right: difference between test and train
error as a function of the second layer weights on the scale

√
m. The finite m curve are approaching

a scaling curve which coincides with the one obtained by evaluating the same quantity but with a lazy
initialization and fixed second layer weights.

n,m, d modulo unspecified absolute constants. Further, we do not assume a symmetric initialization
of the weights. Throughout this section setting, it is more convenient to rescale time defining t̂ = tα.
Hence. instead of the flow (1.2), we study

θ̇(t̂) = −mP θ∇R̂n(θ(t̂)) . (3.1)

For α = Θ(1) the parametrizations t and t̂ are equivalent.

The first result of this section implies that (under mean field initialization) overfitting cannot take
place on times of order one.
Theorem 1. Under the GF dynamics (1.2), and the data distribution in the introduction (with k
arbitrary), further assume ∥σ∥Lip, ∥σ∥∞ ≤ L, |φ(0)|, ∥φ∥Lip ≤ L, ∥a(0)∥∞ ≤ a0, for some a0 ≥ 1
and that the wi(0), i ≤ m are independent of the data {(yi,xi) : i ≤ n}. Finally assume n ≥ d∨m.
Then, there exist universal constants C0, C1, and the following holds for all t̂ ≥ 0,

∥a(t̂)∥∞ ≤ a0 + a1 t̂ , a1 := C0L(τ +
√
k + a0L) , (3.2)

∣∣R(a(t̂),W (t̂))− R̂n(a(t̂),W (t̂))
∣∣ ≤ C1(L

2(a0 + a1t̂)
2 + τ2) ·

√
d

n
. (3.3)

Under mean field initialization, a0 is a fixed constant and hence a1 is also bounded, whence the
generalization error in Eq. (3.3) is small as long as t̂ = o((n/d)1/4) (equivalently, for α fixed,
t̂ = o(m1/4)).

By itself, this result implies a separation of timescales between learning and overfitting, thus confirm-
ing the picture developed within DMFT, but falls short of characterizing the overfitting timescale.

The second result implies that, up to time-scale of order one, the dynamics is closely tracked by the
mean field equations (2.10). Since the ai(0) at initialization are not necessarily all equal, these are
generalized as

∂t̂v
mf1
i (t̂) = amf1

i (t̂)Qvmf1
i (t̂)

(
∇φ̂(vmf1

i (t̂))− 1

m

m∑

j=1

amf1
j (t̂)h′(⟨vmf1

i (t̂),vmf1
j (t̂)⟩)vmf1

j (t̂)
)
,

∂t̂a
mf1
i (t̂) = φ̂(vmf1

i (t̂))− 1

m

m∑

j=1

amf1
j (t̂)h(⟨vmf1

i (t̂),vmf1
j (t̂)⟩) . (3.4)

The mean field prediction for test error is the same as for training error and given by

ets(t̂) =
1

2
∥φ∥2L2 − 1

m

m∑

j=1

amf1
j (t̂)φ̂(vmf1

j (t̂)) +
1

2m2

m∑

j=1

amf1
i (t̂)amf1

j (t̂)h(⟨vmf1
i (t̂),vmf1

j (t̂)⟩)

Theorem 2. Under the the GF dynamics (1.2), and the data distribution in the introduction (with
k arbitrary), further assume that ∥φ∥∞, ∥φ′∥∞, ∥φ′∥Lip ≤ L, ∥σ∥∞, ∥σ′∥∞, ∥σ′∥Lip ≤ L. Further
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assume |ai(0)| ≤ L for all i ≤ m, (wi(0))i≤m ∼iid Unif(Sd−1). Then for any δ > 0 there exist
constants c0 c1, C depending on L, τ, δ, k such that, letting Tlb = c0(logm)1/3 ∧ (log n/d)1/3, the
following happens with probability at least 1− 2 exp(−c1d),

sup
t̂≤Tlb

1

m

m∑

i=1

(
|ai(t̂)− amf1

i (t̂)|+ ∥vi(t̂)− vmf1
i (t̂)∥

)
≤ C

(
1

m
∨ 1

d
∨ d

n

)1/2−δ

, (3.5)

sup
t≤Tlb

∣∣∣R(a(t̂),W (t̂))− ets(t̂)
∣∣∣ ≤ C

(
1

m
∨ 1

d
∨ d

n

)1/2−δ

. (3.6)

Remark 3.1. While the analysis in the previous section requires m → ∞ after n, d → ∞, nei-
ther Theorem 3.1 nor Theorem 3.2 make the assumption. In particular, Eq. (3.3) implies that the
generalization error is small for t̂ = o((n/d)1/4) irrespective of m.

Similarly, Eqs. (3.5), (3.6) imply that the mean field theory of [38, 14, 45] captures well the evolution
of the system for times t = o((logm)1/3 ∧ (log n/d)1/3).

4 Discussion

We conclude by highlighting a few qualitative conclusions of our work, and how they address
questions raised in Section 1. In the following remarks, we consider α = n/md as constant.

Interpolation mechanism. In the current setting, the neural model complexity is proportional to
∥a(t)∥1/

√
m = γ(t)+on(1). We observe two alternative scenarios. If the complexity at initialization

is large enough γ0 > γ∗GF(α)τ , then the gradient flow rapidly converges to a near interpolator without
significant change in γ(t). If instead, γ0 < γ∗GF(α)τ , then γ(t) grows to reach the interpolation
threshold at which point the training error converges to 0.

Adiabatic evolution of model complexity. In the latter case, the complexity γ(t) evolves on a slower
time scale than other degrees of freedom. The dynamics on shorter timescales is well approximated
by the one at fixed γ (given by the current value γ(t)). The generalization error becomes of order one
only when γ(t) is of order one.

Decoupling of learning and overfitting. When γ0 = om(1), the fact that γ(t) acts as a slow variable
implies a large-m decoupling between learning (which takes place on faster timescales, as long as
γ(t) = om(1)), and overfitting (which takes place on slower timescales, when γ(t) = Ωm(1)). This
has several implications for the questions outlined in the introduction.

Q3: Lazy initialization a(0) ≍ √
m leads to poor generalization because the feature-learning phase

is skipped either partially or altogether.

Q2: Training until interpolation is generally suboptimal.

Q4: The optimal tradeoff is obtained at the end of the first phase.

Q5, Q6: Further, at fixed overerparametrization n/md = α, overfitting starts later for larger models.

Overfitting and feature unlearning. The above description points at a non-monotonicity of the
model quality, which improves on short time scales, and deteriorates at larger time scales. Recipro-
cally, early stopping acts as a regularization. While this phenomenon is well understood for linear
models [24, 57], our analysis provides an analogous (quantitative) scenario for training neural network
models. In particular, it clarifies the underlying mechanism: in the same dynamical regime in which
network complexity grows (γ(t) becomes of order one), and training error becomes negligible, the
low-dimensional latent features are ‘unlearned’ (v(t) becomes of order 1/

√
m). We expect that

these findings also allow to understand the beneficial effect of regularization on the second layer.
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answers the questions detailed in the introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our paper is theoretical in nature and simulations are fairly standard and only
play a support role.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The theoretical results and figures are detailed with the corresponding settings
that we used to produce them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The paper contains all the details about the numerical simulations we used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: There are no extensive or complex experiments we have performed. The paper
is theoretical in nature and aims at understanding simple yet paradigmatic models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: Our work is theoretical in nature and aims at understanding neural network
models rather to extend their use in technological applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work is theoretical in nature and aims at understanding neural network
models rather to extend their use in technological applications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: We do not use existing datasets or codes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: We do not produce any new asset. Our study is purely theoretical in nature.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: Our work is theoretical in nature and aims at understanding neural network
models rather to extend their use in technological applications. We do not perform experi-
ments with humans.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: We do not conduct experiments with humans.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: We do not use LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Setting

We recall for reference some basic definitions and notations. We consider the 2-layer network defined
by

f(x;a,W ) =
1

m

m∑

i=1

ai σ(⟨wi,x⟩) . (A.1)

Throughout, we assume an offset to be subtracted so that Eσ(G) = 0, for G ∼ N(0, 1). The network
input x is a d-dimensional real vector and the output is a scalar variable. The parameters of the
network are the weights of the first layer collected in the matrix W defined as

W =




w1

w2

·
·

wm


 ∈ Rm×d , wi ∈ Rd . (A.2)

We will assume that ∥wi∥2 = 1. The weights of the second layer are instead (a1, . . . , am) and are
real, possibly unbounded, variables.

We consider a dataset of n points independent and identically distributed (yi,xi)i≤n where xi ∼
N(0, Id), and the labels yi are generated according to the following k-index models:

yi = φ(UTxi) + εi . (A.3)

Therefore, labels depend on the projection of the covariates on a fixed subspace U ∈ Rd×k, with
UTU = Ik (there is no loss of generality in assuming U orthogonal). Efficient learning requires to
estimate this subspace. Since we consider learning with square loss, we assume

∥φ∥22 := E
{
φ(UTxi)

2
}
= E{φ(g)2} ,

where g ∼ N(0, Ik). We refer to the case φ = 0 as the ‘pure noise case’ or ‘pure noise data’.

We now discuss the covariance structure of the network given by Eq. (A.1). For two sets of weights
(a1,W 1) and (a2,W 2) we have

E
{
f(x;a1,W 1) f(x;a2,W 2)

}
=

1

m2

m∑

i,j=1

a1,ia2,jh (⟨w1,i,w2,j⟩) . (A.4)

The average in the rhs of Eq. (A.4) is over the data distribution while the function h(q) is defined as

h(q) = E{σ(G1)σ(G2)} (A.5)

for (G1, G2) centered jointly Gaussian with E{G2
i } = 1, E{G1G2} = q.

Furthermore we have that:

E{f(x;a,W )φ(UTx)} =
1

m

m∑

i=1

aiφ̂(U
Twi) . (A.6)

where φ̂ is given by

φ̂(v) := E
{
σ(⟨v,G⟩+

√
1− ∥v∥2G0)φ(G)

}
, (A.7)

for G ∼ N(0, Ik) independent of G0 ∼ N(0, 1).

We consider Gaussian process fg(a,W ), φg with the same covariance function defined above and
define the empirical risk under Gaussian approximation as

R̂g
n(a,W ) =

1

2n

n∑

i=1

(
fgi (a,W )− φg

i − εi)
2 (A.8)

=
1

2n

∥∥fg(a,W )−φg − ε
∥∥2 ,
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where fg(· · · ) = (fgi (· · · ) : i ≤ n), φg = (φg
i : i ≤ n), ε = (εi : i ≤ n) are vectors containing n

i.i.d. copies of the above processes. We will also write yg = φg + ε.

Given a model with estimated parameters â, Ŵ , the test error is given by

R(â, Ŵ ) =
1

2
E
{(
fg(â, Ŵ )− φg − ε

)2}
(A.9)

=
1

2
E
{(
f(x, â, Ŵ )− φ(UTx)− ε

)2}
,

where the expectation in the first line is over a triple (fg, φg, ε) independent of the data, and in the
second line with respect to x. The two expectations coincide because they depend uniquely on the
second moments of these processes.

We are interested in studying the gradient flow dynamics in the random landscape R̂n(a,W )

ȧ(t) = −n
d
∇aR̂n(a(t),W (t)) ,

ẇi(t) = −n
d
∇wiR̂n(a(t),W (t))− νi(t)wi(t) ∀i = 1, . . . ,m .

(A.10)

The Lagrange multipliers νi are added to enforce the spherical constraint ∥wi(t)∥2 = 1. While we
consider the case of normalized first-layer weights, our approach can be generalized to unconstrained
weights or to include weight decay (ridge regularization). As explained in the main text, we will
replace this by gradient flow in the Gaussian model R̂g

n(a,W ). We refer to Section K for a discussion
of DMFT in the original non-Gaussian model.

In our analysis we will always consider the proportional asymptotics

n, d→ ∞,
n

d
→ α ∈ (0,∞) . (A.11)

We typically index sequences and limits by n, but it is understood that d = d(n) → ∞ as well.
After n, d → ∞ proportionally, we will consider the large network asymptotics m → ∞ at fixed
α = α/m.

In the following we will drop the superscript g and write, for instance R̂n(a,W ) instead of
R̂g

n(a,W ) whenever clear from the context. All of our analytical predictions (except for Section 3)
are obtained within the Gaussian model.

B Technique

Notice that each fitting error Fi(θ) = yi−f(xi;θ), i ∈ {1, . . . , n} is a random function of the model
parameters θ. The randomness is due to the randomness in xi and in the noise εi. The empirical risk
in Eq. (1.2) can be rewritten as

R̂n(θ) =
1

2n
∥F (θ)∥2 , F (θ) =

(
F1(θ), . . . , Fn(θ)

)
. (B.1)

Our key approximation consists in replacing the i.i.d. random functions (Fi)i≤n by i.i.d. Gaussian
processes (F g

i )i≤n with matching mean and covariance. While DMFT equations have been recently
proven without recurring to this approximation (see [13] and appendices), their structure is simpler in
the Gaussian case, which allows us to carry out the large-m analysis.

Computing the covariance of F ( · ) is a straightforward exercise. We assume for simplicity that an
intercept is subtracted so that E[σ(G)] = 0, E[φ(G)] = 0 and otherwise these functions are generic
(G, G1, G and so on will denote standard Gaussian vectors). We then have

E
{
f(x;θ1)f(x;θ2)

}
=

1

m2
⟨a1, h(W

T
1W 2)a2⟩ , (B.2)

E
{
f(x;θ)y

}
=

1

m2
⟨a, φ̂(W TU)⟩ . (B.3)

Recall that θ = (a,W ) where a ∈ Rm, W = (w1, . . . ,wm) ∈ Rd×m are the first layer weights
Finally, h : R → R, φ̂ : Rk → R encode the activations σ and the target function φ, with h applied
entrywise to the matrix W T

1W 2.
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The covariance of Fi(θ) = yi − fi(x;θ) is easily computed from the above, and this defines
completely the corresponding Gaussian process (F g

i )i≤n. We denote the associated risk function
R̂g

n(θ) := ∥F g(θ)∥2/2n.

Let us emphasize that the cost function R̂g
n(θ) remains highly non-trivial despite the fact that

the functions Fi are replaced by Gaussian processes. Near-minima of high-dimensional Gaussian
processes have a very rich structure, which is a central theme in spin glass theory [39, 50]. Additional
layers of complexity arise here for two reasons. First, R̂g

n(θ) is a sum of squares of Gaussians and,
second, the underlying Gaussian process has a significantly more intricate covariance than in standard
spin glasses (where typically depends only on the inner product ⟨θ1,θ2⟩). Recent work explored the
simpler case in which F g

i ( · ) is a Gaussian process with covariance E{F g
i (θ1)F

g
i (θ2)} = ξ(⟨θ1,θ2⟩)

depending uniquely on the inner product [25, 26, 51, 49, 42, 43, 33]. Gradient descent dynamics on
these models has been recently studied via DMFT in [31, 32]: our work builds on these advances.
DMFT was leveraged before to address other questions in high-dimensional statistics and ML [35, 12].
We refer to [8, 13] for mathematical results on the DMFT approach.

While R̂g
n(θ) has a non-trivial structure, methods from statistical physics can be brought to bear to

derive an asymptotic characterization. Namely, define the functions

Cn
ij(t1, t2) = ⟨wi(t1),wj(t2)⟩ , vn

i (t) := UTwi(t) , ani (t) . (B.4)

These functions are random (because of the random initialization and the randomness in F g) and
depend on n, d. However, as n, d → ∞ with n/d → α, they converge to non-random limits
(Cij(t1, t2))i<j≤m, (vi(t))i≤m, (ai(t))i<j≤m that are the unique solution of a set of coupled integro-
differential equations, see the appendices. We refer to these as to the DMFT equations.

Our main focus is on the behavior of the solutions of these equations for large m and, at first
sight, the complexity of the DMFT increases with m. An important simplification arises when
choosing a symmetric initial condition ai(0) = a0 for all i ≤ m, and (wi(0))i≤m ∼iid Unif(Sd−1).
Namely, the solution of the DMFT equations is symmetric under permutations of the neurons:
Cii(t1, t2) = Cd(t1, t2) for i ≤ m and Cij(t1, t2) = Co(t1, t2) for i ̸= j ≤ m, while vi(t) = v(t),
ai(t) = a(t) for i ≤ m. We then have a reduction to a set of integro-differential equations on k + 3
functions, that depend parametrically on m.

We use two approaches to study these equations (see appendix):

(a) Numerical integration for increasing values of m under different initial conditions.
(b) Asymptotics as m→ ∞ (at fixed α = α/m) via singular perturbation theory [9, 29].

For (b), a specific dynamical regime is identified by a scaling of the time variable, which in our case
will take the form t = t#(m) · t̂ for a certain fixed function t#(m) and t̂ = O(1) a scaled time. The
asymptotics of DMFT quantities in that regime takes the form

lim
m→∞

v
(
t#(m) · t̂;m,α =

α

m

)
= v∗(t̂;α) . (B.5)

C Dynamical Mean Field Theory (DMFT)

In this section we state the results of Dynamical Mean Field Theory (DMFT). We will outline a
heuristic derivation in Section L. We first introduce the general DMFT equations in Section C.1 and
the corresponding predictions for certain observable of interest in Section C.2. These are a set of
Θ(m2) integro-differential equations in as many unknown functions.

We then specialize these equations to the case of a symmetric initialization, in which wi(0) ∼
Unif(Sd−1) and ai(0) = a0 for all i ≤ m, see Section C.3 In this case, the dynamics is characterized
by a set of k + 3 equations which are stated in Sections C.4 and C.5.

C.1 General DMFT equations

Let ani (t), w
n
i (t), ν

n
i (t) the the solution of Eq (A.10) when the dynamics is initialized at non-random

ani (0) = a0,i, i ≤ n and possibly random, wn
i (0) such that ⟨wn

i (0),w
n
j (0)⟩ → C0

ij for i, j ≤ n,
UTwn

i (0) → v0
i for i ≤ n. While random, the wn

i (0) are assumed here to be independent of the
random processes fg , φg , ε.
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For t, s ≥ 0 consider the quantities

Cn
ij(t, s) := ⟨wn

i (t),w
n
j (s)⟩ , vn

i (t) := UTwn
i (t) . (C.1)

Then DMFT predicts that these quantities have a well defined non-random limit as n, d→ ∞,

Cij(t, s) = lim
n,d→∞

Cn
ij(t, s) , vi(t) = lim

n,d→∞
vn
i (t) , ai(t) = lim

n,d→∞
ani (t) , (C.2)

where the limits are understood to hold in almost sure sense. These limits are the unique solution of a
set of integro-differential equations in the unknowns {Cij(t, s), Rij(t, s),vi(t), ai(t) : i, j ≤ m},
which we next state as three sets: (1) Dynamical equations; (2) Equations for auxiliary functions;
(3) Boundary conditions. Before that, we mention some constraints that need to be satisfied by the
solution of these equations.

(0) Constraints. The functions Cij(t, s), Rij(t, s) satisfy:

Cii(t, t) = 1 ∀0 ≤ t , (C.3)
Cij(t, s) = Cji(s, t) ∀0 ≤ t, s , (C.4)
Rij(t, s) = 0 ∀0 ≤ t < s . (C.5)

The first condition in particular implies the following useful relation:

dCij(t, t)

dt
= lim

t′→t

[
∂Cij(t, t

′)

∂t
+
∂Cji(t, t

′)

∂t

]
. (C.6)

We refer to the property (C.5) (and similar ones for R functions appearing below) as ‘causality
constraint.’

(1) Dynamical equations. These equations determine the dynamics of
{Cij(t, s), Rij(t, s),vi(t), ai(t) : i, j ≤ m}, and involve the auxiliary functions (memory
kernels) MC

ij (t, s), M
R
ij (t, s) and (Lagrange multipliers) νi(t) (the last equations assume implicitly

ta > tb):

dai(t)

dt
=− α

m

∫ t

0

RA(t, s)

[
1

m

m∑

l=1

al(s)h (Cli(s, t))− φ̂(vi(t))

]
ds (C.7)

− α

m

∫ t

0

CA(t, s)
1

m

m∑

l=1

al(s)h
′(Cli(s, t)

)
Ril(t, s) ds ,

dvi(t)

dt
=− νi(t)vi(t) +

α

m
ai(t)∇φ̂(vi(t))

∫ t

0

RA(t, s) ds−
1

m

m∑

j=1

∫ t

0

MR
ij (t, s)vj(s) ds ,

(C.8)

∂Cij(ta, tb)

∂ta
=− νi(ta)Cij(ta, tb) +

α

m
ai(ta)⟨∇φ̂(vi(ta)),vj(tb)⟩

∫ ta

0

RA(ta, s) ds (C.9)

− 1

m

m∑

l=1

∫ ta

0

MR
il (ta, s)Clj(s, tb) ds−

1

m

m∑

l=1

∫ tb

0

MC
il (ta, s)Rjl(tb, s)ds ,

∂Rij(ta, tb)

∂ta
=− νi(ta)Rij(ta, tb) + δijδ(ta − tb)−

1

m

m∑

l=1

∫ ta

tb

MR
il (ta, s)Rlj(s, tb) ds .

(C.10)

We point out that the δ(ta − tb) in the last equation (together with Eq. (C.5)) has to be interpreted as
follows: Rij(t, t

′) = 0 for t < t′ while, for ε > 0, Rij(t+ ε, t) = δij + oε(1).

Equations (C.9) and (C.10) can also be written in terms of an effective stochastic process in Rm:
we(t) = (we

i (t) : i ≤ m). This is defined as the solution of the following set of ODEs (for
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i ∈ {1, . . . ,m}):

dwe
i (t)

dt
= −νi(t)we

i (t) + αai(t)⟨∇φ̂(v(t)),v(t′)⟩
∫ t

0

RA(t, s) ds (C.11)

− 1

m

m∑

l=1

∫ t

0

MR
il (t, s)w

e
l (s) ds+ ηi(t) + bi(t) , (C.12)

we
i (0) ∼ N(0, 1) , (C.13)

where (ηi(t) : i ≤ m) is a centered Gaussian process with covariance

E[ηi(t)ηj(t′)] = − 1

m
MC

ij (t, t
′) . (C.14)

Define b(t) = (bi(t) : i ≤ m). The solution of Eqs. (C.9) and (C.10) can be written as

Cij(t, t
′) = lim

b→0
E [wi(t)wj(t

′)] , (C.15)

Rij(t, t
′) = lim

b→0

δE[wi(t)]

δbj(t′)
. (C.16)

In fact the stochastic process of Eq. (C.11) is expected to describe the limit distribution of the second-
layer weights W (t). Namely, for i ≤ d, define w̃i(t) = W (t)ei ∈ Rm be a vector containing the
i-th coordinate of each neuron. Then, for any fixed i and any T ,

(w̃i(t) : 0 ≤ t ≤ T )
d⇒ (we(t) : 0 ≤ t ≤ T ) . (C.17)

Here d⇒ denotes convergence in distribution as n, d→ ∞, in C([0, T ],Rm).

(2) Equations for auxiliary functions. The memory kernels MR and MC are defined by

MR
ij (t, s) =

α

m
[RA(t, s)h

′(Cij(t, s)) + CA(t, s)h
′′(Cij(t, s))Rij(t, s)] ai(t)aj(s) ,

MC
ij (t, s) =

α

m
CA(t, s)h

′(Cij(t, s))ai(t)aj(s) .

(C.18)

where the functionsRA and CA satisfy the symmetry properties CA(t, s) = CA(s, t) andRA(t, s) =
0 for t < s, and are the unique solution

∫ t

t′
[δ(t− s) + ΣR(t, s)]RA(s, t

′) ds = δ(t− t′) ,

∫ t

0

[δ(t− s) + ΣR(t, s)]CA(s, t
′) ds+

∫ t′

0

ΣC(t, s)RA(t
′, s) ds = 0 ,

(C.19)

where

ΣC(t, s) := τ2 + ∥φ∥2 + 1

m2

m∑

i,j=1

ai(t)aj(s)h
(
Cij(t, s)

)

− 1

m

m∑

l=1

al(t)φ̂(vl(t))−
1

m

m∑

l=1

al(s)φ̂(vl(s)) ,

ΣR(t, s) :=
1

m2

m∑

i,j=1

ai(t)aj(s)h
′(Cij(t, s)

)
Rij(t, s) .

(C.20)

The Lagrange multipliers νi(t) have to be fixed to enforce the constraint Cii(t, t) = 1 which follows
from wα ∈ Sd−1. The corresponding equations are

νi(ta) =
α

km
ai(ta)⟨vi(ta),∇φ̂(vi(ta))⟩

∫ ta

0

RA(ta, s) ds (C.21)

− 1

m

m∑

j=1

∫ ta

0

MR
ij (ta, s)Cij(s, ta) ds−

1

m

m∑

j=1

∫ ta

0

MC
ij (ta, s)Rji(ta, s) ds .
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(3) Boundary conditions. The dynamical equations (C.7) to (C.10) can be integrated from a set of
initial conditions that reflect initial conditions of the GF dynamics:

vi(0) = v0
i , ai(0) = a0i ∀i ∈ {1, . . . ,m} ,

Cij(0, 0) = C0
ij ∀i, j ∈ {1, . . . ,m} ,

Rij(0, 0) = 0 ∀i, j ∈ {1, . . . ,m} .
(C.22)

C.2 Expressions for train and test error

The asymptotics of many quantities of interest can be expressed in terms of the solutions of the
DMFT equations stated in the last section. In particular, the train error R̂n(W (t),a(t)) and test
error R(W (t),a(t)) at time t have well defined limits under the proportional asymptotics:

lim
n→∞

R̂g
n(W (t),a(t)) = etr(t) , lim

n→∞
Rg(W (t),a(t)) = ets(t) . (C.23)

The functions etr(t) ets(t) are given by

etr(t) = −1

2
CA(t, t) , (C.24)

ets(t) =
1

2

{
τ2 +

1

k
∥φ∥2 + 1

m2

m∑

i,j=1

h
(
Cij(t, t)

)
− 2

m

m∑

i=1

φ̂(vi(t))
}

(C.25)

More generally, CA(t, s) gives the asymptotics of the correlation of residuals:

lim
n→∞

1

n

〈
∆(t),∆(s)

〉
= −CA(t, s) , (C.26)

∆(t) := yg − fg(a(t),W (t)) . (C.27)

where we recall that yg = φg + ε.

C.3 Symmetric initialization and solutions

As anticipated, we consider the uninformative initialization wn
i (0) ∼ Unif(Sd−1) and ani (0) = a0

for all i ≤ m. This results in the following initialization for the DMFT equations of

vi(0) = v0
i = 0 ∀i ∈ {1, . . . ,m} ,

Ci ̸=j(0, 0) = C0
i̸=j = 0 ∀i ̸= j, i, j ∈ {1, . . . ,m} ,

Cii(0, 0) = C0
ii = 1 ∀i ∈ {1, . . . ,m} .

(C.28)

This initialization is invariant under permutations of them neurons. Since the DMFT equations of Sec-
tion C.1 are equivariant under such permutations, their solution is also invariant under permutations.
This means that it takes the form:

Cij(t, t
′) =

{
Cd(t, t

′) if i = j,
Co(t, t

′) if i ̸= j,
Rij(t, t

′) =

{
Rd(t, t

′) if i = j,
Ro(t, t

′) if i ̸= j,
(C.29)

vi(t) = v(t) , νi(t) = ν(t) , ai(t) = a(t) ∀i . (C.30)

As a consequence, the memory kernels in Eq. (C.18) take the form

MC
ij (t, t

′) =

{
MC

d (t, t′) if i = j,
MC

o (t, t′) if i ̸= j,
MR

ij (t, t
′) =

{
MR

d (t, t′) if i = j,
MR

o (t, t′) if i ̸= j.
. (C.31)

We will refer to the reduced DMFT under symmetry as to the SymmDMFT .
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C.4 DMFT equations for symmetric initialization (SymmDMFT )

(1) Dynamical equations. Substituting the ansats of the previous section in the equations of Section
C.1, we obtain the following equations for the functions a(t), v(t), Cd(t, s), Co(t, s), Rd(t, s),
Ro(t, s):

da

dt
(t) =

α

m
φ̂(v(t))

∫ t

0

RA(t, s) ds (C.32)

− α

m

∫ t

0

RA(t, s)a(s)

[
1

m
h(Cd(t, s)) +

m− 1

m
h(Co(t, s))

]
ds

− α

m

∫ t

0

CA(t, s)a(s)

[
1

m
h′(Cd(t, s))Rd(t, s) +

m− 1

m
h′(Co(t, s))Ro(t, s)

]
ds ,

dv

dt
(t) =− ν(t)v(t) +

α

m
∇φ̂(v(t))a(t)

∫ t

0

RA(t, s) ds (C.33)

− 1

m

∫ t

0

[
M

(d)
R (t, s) + (m− 1)M

(o)
R (t, s)

]
v(s) ds ,

∂tCd(t, t
′) =− ν(t)Cd(t, t

′) +
α

m
⟨∇φ̂′(v(t)),v(t′)⟩a(t)

∫ t

0

RA(t, s) ds (C.34)

− 1

m

∫ t

0

[
M

(d)
R (t, s)Cd(t

′, s) + (m− 1)M
(o)
R (t, s)Co(t

′, s)
]
ds

− 1

m

∫ t′

0

[
M

(d)
C (t, s)Rd(t

′, s) + (m− 1)M
(o)
C (t, s)Ro(t

′, s)
]
ds ,

∂tCo(t, t
′) =− ν(t)Co(t, t

′) +
α

m
⟨∇φ̂(v(t)),v(t′)⟩a(t)

∫ t

0

RA(t, s) ds (C.35)

− 1

m

∫ t

0

[
M

(d)
R (t, s)Co(t

′, s) +M
(o)
R (t, s)Cd(t

′, s) + (m− 2)M
(o)
R (t, s)Co(t

′, s)
]
ds

− 1

m

∫ t′

0

[
M

(d)
C (t, s)Ro(t

′, s) +M
(o)
C (t, s)Rd(t

′, s) + (m− 2)M
(o)
C (t, s)Ro(t

′, s)
]
ds ,

∂tRd(t, t
′) =− ν(t)Rd(t, t

′) + δ(t− t′) (C.36)

− 1

m

∫ t

t′

[
M

(d)
R (t, s)Rd(s, t

′) + (m− 1)M
(o)
R (t, s)Ro(s, t

′)
]
ds ,

∂tRo(t, t
′) = −ν(t)Ro(t, t

′)− 1

m

∫ t

t′

[
M

(d)
R (t, s)Ro(s, t

′) +M
(o)
R (t, s)Rd(s, t

′) (C.37)

+(m− 2)M
(o)
R (t, s)Ro(s, t

′)
]
ds .

(2) Equations for auxiliary functions. The memory kernels M (s)
R (t, s), M (o)

R (t, s) and M (s)
C (t, s),

M
(o)
C (t, s) are given by:

M
(d)
R (t, s) =

α

m
a(t)a(s) [RA(t, s)h

′(Cd(t, s)) + CA(t, s)h
′′(Cd(t, s))Rd(t, s)] , (C.38)

M
(o)
R (t, s) =

α

m
a(t)a(s) [RA(t, s)h

′(Co(t, s)) + CA(t, s)h
′′(Co(t, s))Ro(t, s)] , (C.39)

M
(d)
C (t, s) =

α

m
a(t)a(s)CA(t, s)h

′(Cd(t, s)) , (C.40)

M
(o)
C (t, s) =

α

m
a(t)a(s)CA(t, s)h

′(Co(t, s)) . (C.41)
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Further, CA(t, s), RA(t, s) are given by the same equations (C.19), where ΣC , ΣR are simplified as
follows:

ΣC(t, s) = τ2 + ∥φ∥2 − a(t)φ̂(v(t))− a(s)φ̂(v(s)) +
a(t)a(s)

m
h(Cd(t, s))

+
m− 1

m
a(t)a(s)h(Co(t, s))

ΣR(t, s) =
a(t)a(s)

m
h′(Cd(t, s))Rd(t, s) +

m− 1

m
a(t)a(s)h′(Co(t, s))Ro(t, s)

(C.42)

Finally, the Lagrange multipliers are determined by

ν(t) =
α

m
⟨∇φ̂(v(t)),v(t)⟩a(t)

∫ t

0

RA(t, s) ds

− 1

m

∫ t

0

[
M

(s)
R (t, s)Cd(t, s) + (m− 1)M

(o)
R (t, s)Co(t, s)

]
ds

− 1

m

∫ t

0

[
M

(s)
C (t, s)Rd(t, s) + (m− 1)M

(o)
C (t, s)Ro(t, s)

]
ds .

(C.43)

(3) Boundary conditions. As anticipated the SymmDMFT is initialized as

v(0) = 0, Cd(0, 0) = 1 Co(0, 0) = 0 . (C.44)

C.5 Expressions for train and test error under symmetric initialization

The general expression for train and test error given in Section C.2 specialize to:

etr(t) = −1

2
CA(t, t) , (C.45)

ets(t) =
1

2

[
τ2 + ∥φ∥2 − 2a(t)φ̂(v(t)) +

1

m
a2(t)h(1) +

m− 1

m
a2(t)h(Co(t, t))

]
. (C.46)

D Numerical integration of the DMFT equations

D.1 Integration technique

We integrate the SymmDMFT equations (C.32) to (C.37) using a standard Euler discretization.
Namely, we discretize time on an equi-spaced grid t ∈ T := {0, η, 2η, . . . } and approximate
derivatives by differences and integrals by sums on this grid. As an example, Eq. (C.32) is replaced
by

a(t+ η)− a(t)

η
=
α

m
φ̂(v(t))

∑

s∈T,s≤t

RA(t, s) η (D.1)

− α

m

∑

s∈T,s≤t

RA(t, s)a(s)

[
1

m
h(Cd(t, s)) +

m− 1

m
h(Co(t, s))

]
η

− α

m

∑

s∈T,s≤t

CA(t, s)a(s)

[
1

m
h′(Cd(t, s))Rd(t, s) +

m− 1

m
h′(Co(t, s))Ro(t, s)

]
η .

The discretization of Eq. (C.10) deserves an additional clarification because of the delta-function.
For ta ≥ tb, ta, tb ∈ Nη, we compute

Rij(ta + η, tb)−Rij(ta, tb)

η
= −νi(ta)Rij(ta, tb)−

1

η
δij1ta=tb

− 1

m

m∑

l=1

∑

s∈[ta,tb]∩Nη

MR
il (ta, s)Rlj(s, tb) η ,
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with boundary condition
Rij(tb, tb) = 0 ∀i, j ≤ m.

Of course, the solution of this system of difference equation does not coincide with the solution of
the original equations (C.32) to (C.37), and in this section we will write a(t; η), Co(t, s; η) and so on
to emphasize the distinction.

Equations (C.42) can be directly interpreted as determining ΣC(t, s) and ΣR(t, s) on the grid t, s ∈ T.
Finally, we discretize Eq. (C.19) as

∑

s∈T
[1t=s +ΣR(t, s)η]RA(s, t

′) =
1

η
1t=t′ ,

∑

s∈T
[1t=s +ΣR(t, s)η]CA(s, t

′) +
∑

s∈T
ΣC(t, s)RA(t

′, s)η = 0 .
(D.2)

Note that we dropped the integration limits here, since they are enforced by the causality constraints
implying ΣR(t, s) = 0, RA(t, s) = 0 for t < s. Defining the matrices ΣR = (ΣR(t, s) : t, s ∈ T),
and similarly for ΣC , CA, RA, we can rewrite (D.2) as

[I + ηΣR]RA =
1

η
I , (D.3)

[I + ηΣR]CA + ηΣCRA = 0 . (D.4)
We truncate these matrices (which are infinite) to a maximum time T (e.g., redefine ΣR = (ΣR(t, s) :
t, s ∈ T, s, t ≤ T )) and solve these equations by matrix inversion:

RA =
1

η

(
I + ηΣR

)−1
, (D.5)

CA = −
(
I + ηΣR

)−1
ΣC

(
I + ηΣR

)−1
. (D.6)

We denote by a(t; η), v(t; η), Co(t, s; η), Cd(t, s; η), Ro(t, s; η), Rd(t, s; η), the functions obtained
via the Euler integration scheme. We will assume that this solution is interpolated continuously for
t, s ̸∈ T. For instance, for i, j ∈ N a, b ∈ [0, 1), we let
Cd((i+ a)η, (j + b)η; η) =(1− a)(1− b)Cd(iη, jη; η) + a(1− b)Cd((i+ 1)η, jη; η) (D.7)

+ (1− a)bCd((i+ 1)η, jη; η) + abCd((i+ 1)η, (j + 1)η; η) .

Finally, while we described the discretization procedure for the SymmDMFT , the discussion above
applies verbatimly for the full DMFT of Section C.1.

The DMFT equations and their symmetric specialization have a causal structure which means that
they can be integrated by progressively by increasing T . Furthermore there is no self-consistency
condition in the integration scheme at variance with the non-Gaussian settings, see for example [40].
This simplification allows to investigate the long time behavior of the dynamics in a numerical, rather
efficient, way.

D.2 Accuracy of the numerical integration scheme

The discretization of DMFT is expected to converge to the actual solution with errors of order η.
Namely, we expect

Cd(t, t
′; η) = Cd(t, t

′) +O(η) , Co(t, t
′; η) = Co(t, t

′) +O(η) , (D.8)
and similarly for the other functions. We refer to [13] for related examples in which the convergence
was proved rigorously, and to [31] for an empirical study in a closely related model.

In order to test the accuracy of our approach, and the correctness of the DMFT equations, we simulated
the gradient descent (GD) dynamics for the Gaussian model. Namely, we generate realizations of
the process fg(a,W ) = (fgi (a,W ) : i ≤ n) with the prescribed covariance (A.4), and the vector
φg = (φg

i : i ≤ n) with same covariance as in Eq. (A.6) (see Section D.4.) We define R̂n(a,W )
via Eq. (A.8) and implement the following GD iteration

an(t+ ηGD) = an(t)− ηGDn

d
∇aR̂n(a

n(t),W n(t)) ,

wn
i (t+ ηGD) = P Sd−1

(
wn

i (t)−
ηGDn

d
∇wi

R̂n(a
n(t),W n(t))

)
,

(D.9)
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where P Sd−1 is the projector to the unit sphere, i.e. P Sd−1(x) = x/∥x∥ if x ̸= 0 and P Sd−1(0) = 0.
Note that the trajectories of Eq. (D.9) depend on the sample size n (and hence the dimension d = dn)
and the stepsize ηGD. To emphasize this dependence, we also use the notation an(t; ηGD)W

n(t; ηGD).

We expect the GD trajectories defined by Eq. (D.9) approach the GF trajectories defined by Eq. (A.10)
as ηGD → 0 uniformly in n, d. Namely,

lim
ηGD→0

lim sup
n,d→∞

∥W n(t; ηGD)−W n(t)∥F = 0 , (D.10)

lim
ηGD→0

lim sup
n,d→∞

∥an(t; ηGD)− an(t)∥2 = 0 , (D.11)

where the limits are understood to hold in probability for any fixed t. Informally, for fixed small ηGD,
GD dynamics is a good approximation to GF dynamics, irrespective of the dimension.

We generate several realizations of the processes fg, φg, and of the gradient descent trajectories
(D.9). We average observables of interest over these realizations and compare these with the Euler
discretization of the DMFT equations. For instance, consider the correlation functions Cij(t, s).
Then we can compare:

• Cn
ij(t, s; ηGD) = E⟨wn

i (t; ηGD),w
n
j (s; ηGD)⟩ where the expectation is taken with respect to

the GD process (D.9).
• Cij(t, s; η), the solution of the Euler discretization of the DMFT, described in the previous

section.

Some results of this comparison are presented in the next subsection. This comparison allows us to
gauge two types of systematic effects:

1. The effect of finite n, d. Indeed, the DMFT equations characterize the n, d → ∞ limit of
the GD dynamics (D.9).

2. The non-zero stepsize η. Note that the effect of discretization introduced in the DMFT equa-
tions are different from the ones in the gradient descent (D.9). Therefore the disagreement
between the two is a measure of the nonzero-η effects.

To clarify further the last point, we emphasize that, despite the notation, Cij(t, s; η) is not the
n, d→ ∞ limit of Cn

ij(t, s; η).

We note in passing that it is possible to derive DMFT equations for GD, hence characterizing
limn→∞ Cn

ij(t, s; ηGD). Similar characterizations were obtained for related (simpler) models in
[40, 13, 41, 31, 32]. We defer the analysis of GD with large stepsizes to future work.

D.3 Testing the numerical accuracy

Figures 6 and 7 we present examples of the numerical comparison described in the previous section,
under two different settings, as described below.

Setting 1. We assume pure noise data with τ = 1 and train a network with m = 4 neurons and
covariance structure given by h(z) = z/10 + z2/2. We simulate GD trajectories, according to
Eq. (D.9) with d = 100, n = 150, and correspondingly evaluate the Euler discretization of DMFT,
cf. Section D.1 for α = n/d = 1.5.

We choose an initialization that is not symmetric and therefore we have to use the full DMFT
equations of Section C.1. More precisely, we initialize second layer weights as follows:

a1(0) = a2(0) = 1 a3(0) = a4(0) = −1 (D.12)

The weights of the first layer are instead initialized by generating two random vectors y1, y2 ∼
Unif(Sd−1), and setting

w1(0) = w3(0) = y1 w2(0) = w4(0) = y2 (D.13)

This initialization results in initializing the DMFT equations with

C11(0, 0) = C22(0, 0) = C33(0, 0) = C44(0, 0) = 1 ,

C13(0, 0) = C24(0, 0) = 1 ,

C12(0, 0) = C14(0, 0) = C23(0, 0) = C34(0, 0) = 0 .

(D.14)
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Figure 6: Comparison between discretized DMFT and GD dynamics for the Gaussian model
(labeled as ‘Simulations’). GD results are averaged over N = 104 realizations of the Gaussian
process, under Setting 1 described in the main text. Left frame: Second layer for DMFT and GD with
ηGD = η = 0.1. Right frame: Train error and correlation function for DMFT with a few values of η,
and for GD.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

t

a1(t) - DMFT
a1(t) - Simulations

a2(t) - DMFT
a2(t) - Simulations

a3(t) - DMFT
a3(t) - Simulations

a4(t) - DMFT
a4(t) - Simulations

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50

e t
r

t

etr(t) - DMFT - η = 0.8
etr(t) - DMFT - η = 0.4
etr(t) - DMFT - η = 0.2
etr(t) - DMFT - η = 0.1

etr(t) - Simulations - η = 0.1

C
1
1
(t
,0
)

t

Figure 7: Comparison between discretized DMFT and GD dynamics (labeled as ‘Simulations’).
GD results are averaged overN = 104 realizations of the Gaussian process, under Setting 2 described
in the main text. Results for GD are averaged over N = 104 samples.

Both for the discretized DMFT and for GD for several values of the stepsize. The results of this
analysis are plotted in Fig. 6.

Setting 2. We consider again pure noise with τ = 1, a network with m = 4, input dimension
d = 100 and sample size n = 150. We use hidden neurons with the same covariance structure as in
the Setting 1.

However, we change the initialization with respect to Setting 1. First layer are initialized indepen-
dently and uniformly at random. It follows that

Cij(0, 0) = δij ∀i, j = 1, . . . , 4 (D.15)

Second layer weights are initialized according to

a1(0) = −1 , a2(0) = −1

2
, a3(0) =

1

3
, a4(0) =

2

3
. (D.16)

We use stepsize η = 0.1.
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D.4 Construction of the Gaussian process fg( · )

The Gaussian process fg can be constructed as follows. Define a sequence of independent Gaussian
tensors J (k) ∈ (Rd)⊗k, k ≥ 1, with entries (J (k)

i1,...,ik
: ij ≤ d) ∼iid N(0, 1). We then let

fg(a,W ) =
1

m

m∑

i=1

ai

∞∑

k=0

ck

d∑

i1,...,ik=1

J
(k)
i1,...,ik

wi,i1 . . . wi,ik (D.17)

It is easy to check that this stochastic process has the prescribed covariance, with

h(z) =

∞∑

k=0

c2kz
k , (D.18)

has long as the series above has radius of convergence larger than 1. An analogous construction holds
for φg .

E Dynamical regimes: General preliminaries

In the next two sections, we will study the SymmDMFT equations of Section C.4 and characterize
different dynamical regimes in the large network limit. From a technical viewpoint, we develop a
singular perturbation theory of the DMFT equations as m→ ∞ for fixed overparametrization ratio
α = α/m.

While singular perturbation theory is a classical domain of mathematics [9, 29], making this type of
analysis rigorous is notoriously challenging. We will proceed heuristically as follows: (i) Hypothesize
a certain asymptotic behavior of the DMFT solution in a specific time-scale; (ii) Check consistency
with the DMFT equations; (iii) Check that this behavior is observed in the numerical solution of the
DMFT equations.

More precisely, a specific dynamical regime is identified by a scaling of the time variable, which in
our case will take the form t = t#(m) · t̂ for a certain fixed function t#(m) and t̂ a scaled time of
order one. The asymptotics of DMFT quantities in that regime takes the form (for instance)

lim
m→∞

1

c#(m)
Co

(
t#(m) · t̂, t#(m) · ŝ;m,α =

α

m

)
= co(t̂, ŝ;α) , (E.1)

where c#(m), co(t̂, ŝ;α) are two fixed functions, the limit is understood to hold at fixed t̂, ŝ, α ∈
(0,∞), and we made explicit the dependence of Co on m, α. More concisely, we will often write the
above formula as

Co

(
t#(m) · t̂, t#(m) · ŝ;m,α =

α

m

)
= c#(m)co(t̂, ŝ;α) + o(c#(m)) , (E.2)

and we will typically use t, s instead of t̂, ŝ for the dummy variables.

The behavior of the DMFT equations depends in a crucial way in the initialization of the second layer
weights:

• In Section F, we will consider the case of a ‘lazy initialization,’ i.e. we will assume
a(0) = γ0

√
m for some constant γ0 ∈ (0,∞) independent of m.

• In Section G, we will consider the ‘mean field initialization’ i.e. assume a(0) = a0 to be
constant and independent of m.

F Dynamical regimes: Lazy initialization

As anticipated, in this section we study dynamical regimes under lazy initialization. In subsection
F.1, we will consider the case of pure noise data and in subsection F.2 the k-index model.

Throughout this section, we let γ(t) = a(t)/
√
m (in particular, γ(0) = γ0).
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Figure 8: Training of pure noise data: first dynamical regime. Rescaled correlation function
m(Cd(t, s)−1) in the first dynamical regime as a function of the scaled time tm for a model initialized
with a lazy scaling and fixed second layer weights. Different curves correspond to the numerical
integration of the SymmDMFT equations at various values of m. They appear to converge to the
scaling solution in the large m limit described by Eqs. (F.6). Here α = 0.5, h̃(z) = (3/10)z + z2/2
and τ = 1.

F.1 Pure noise model

Under the pure noise model, we have φ = φ̂ = 0. Further, the variable v(t) is not defined and can be
dropped (equivalently, we can set v(t) = 0).

We identify three dynamical regimes:

1. t = O(1/m): γ(t) = γ0 + om(1), train error decreases, and the network approximates the
null function (Section F.1.1).

2. t = Θ(1): γ(t) = γ0 + om(1), first-layer weights move significantly and train error
converges to a limit e∗(γ0) (Section F.1.2). If γ0 is larger than the interpolation threshold,
then train error vanishes in this regime.

3. t = Θ(m): This regime emerges only if γ0 is smaller than the interpolation threshold. (We
discuss the identification of the interpolation transition of gradient flow in Section F.1.3.)
If this is the case, γ(t) grows on the time scale t = Θ(m) until it crosses the interpolation
threshold. At that point the train error vanishes (Section F.1.4).

Since in the first two regimes γ(t) does not change appreciably, the dynamics in these time scales is
essentially equivalent to the one of a network in which second-layer weights are fixed and do not
evolve by GF. In Section F.1.1 and F.1.2 we first consider this case.

We note that the pure noise model is unchanged if we rescale τ → cτ , γ0 → cγ0. More precisely,
this results in a rescaling of the risk by c2 and hence of time by the same factor. As a consequence
quantities of interest often depend on γ, τ uniquely through their ratio γ/τ .

F.1.1 First dynamical regime: t = O(1/m)

We first consider the case in which the (scaled) second layer weights are not updated and fixed to
their initialization, i.e. γ(t) = γ0.

It is possible to check that, up to higher-order terms, the SymmDMFT equations are solved by
functions of the form (the first equation holds in weak sense, i.e. after integrating against a test
function)

RA(t/m, s/m) = mδ(t− s) + om(m) CA(t/m, s/m) = C lz1
A (t, s) + om(1) (F.1)
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Ro(t/m, s/m) =
1

m
Rlz1

o (t, s) + om(1/m) Co(t/m, s/m) =
1

m
C lz1

o (t, s) + om(1/m) (F.2)

Rd(t/m, s/m) = ϑ(t− s) + om(1) Cd(t/m, s/m) = 1 +
1

m
C lz1

d (t, s) + om(1/m)

(F.3)

ν(t/m) = ν lz1(t) + om(1) . (F.4)

where C lz1
A , C lz1

d , C lz1
o , ν lz1 and Rlz1

o are suitable functions independent of m. Here and below, we use
the notation ϑ(t) = 1(t > 0).

Note that Eq. (F.3) implies that on this dynamical regime the weights of the first layer change by
order 1/m.

Plugging the asymptotic form in Eqs. (F.1) to (F.4) into the SymmDMFT equations and matching the
leading orders for large m, we obtain that the functions C lz1

A , C lz1
d , C lz1

o , ν lz1 and Rlz1
o must satisfy

ν lz1(t) = −αγ20h′(1)− αγ20h
′(0)C lz1

o (t, t) ,

∂tR
lz1
o (t, t′) = −αγ20h′(0)

(
1 +Rlz1

o (t, t′)
)
,

∂tC
lz1
o (t, t′) = −αγ20h′(0)

(
1 + C lz1

o (t, t′)
)
,

∂tC
lz1
d (t, t′) = αγ20h

′(0)
(
C lz1

o (t, t)− C lz1
o (t, t′)

)
,

C lz1
A (t, s) = −

[
τ2 + γ20h(1)− γ20h(0)C

lz1
o (t, s)

]
.

(F.5)

These are a set of ordinary differential equations that can be solved explicitly. We get

Rlz1
o (t, t′) = ϑ(t− t′)

[
e−αγ2

0h
′(0)(t−t′) − 1

]
,

C lz1
o (t, t) = e−2αγ2

0h
′(0)t − 1 ,

C lz1
o (t, t′) = −1 + e−αγ2

0h
′(0)(t−t′)(C lz1

o (t′, t′) + 1) for t > t′ ,

C lz1
d (t, t′) = 1 + e−αγ2

0h
′(0)(t+t′) − 1

2

(
e−2αγ2

0h
′(0)t + e−2αγ2

0h
′(0)t′

)
, for t > t′ .

(F.6)

In particular, Eqs. (F.6) imply

lim
t→∞

C lz1
o (t, t) = −1 ,

lim
t,t′→∞, t−t′→∞

Rlz1
o (t, t′) = −1 .

(F.7)

Recalling Eq. (F.2) we conclude that

lim
t→∞

lim
m→∞

mCo(t/m, t/m) = −1 , (F.8)

or, using the interpretation of Co,

lim
t→∞

lim
m→∞

lim
n→∞

m · ⟨wi(t/m),wj(t/m)⟩ = −1 ∀i ̸= j . (F.9)

In other words, at the end of this dynamical regime, the first-layer weights form a regular simplex,
with center w(t/m) := m−1

∑m
i=1 wi(t/m) satisfying ∥w(t/m)∥2 = om(1).

Hence, at the end of the first dynamical regime, the first-layer weights are such that the linear
component of the activation function σ is removed. In other words, for t a large constant, we have

fg( · ;a(t/m),W (t/m)) =
γ0√
m

m∑

i=1

σnl
G (wi(t/m)) + err , (F.10)

where σnl
G (w) is a Gaussian process with covariance structure given by h(z) − zh′(0), and err is

small in mean square.

Notice also that this is achieved by a O(1/
√
m) change in each of the first layer weights. Indeed, by

Eq. (F.3), we have

lim
n→∞

∥wi(0)−wi(t/m)∥2 = 2− 2Cd(0, t/m) = − 2

m
C lz1

d (0, t) + om(1/m) . (F.11)
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Figure 9: Training with pure noise data under lazy initialization: second dynamical regime
t = Θ(1). Left panel: First-layer weights correlation function Cd(t, 0) measuring the inner product
between neurons at time 0 and time t, plotted versus t for several values of m, and compared with the
largem-asymptotics C lz2

d . Right panel: training error a etr(t, γ0,m) plotted versus t for several values
of m, and compared with the large-m asymptotics in this regime elz2

tr (t, 1). Notice the two-steps
decrease of the training error, corresponding to the two regimes t = O(1/m) and t = Θ(1). Inset:
Same curves plotted versus tm, and compared with the asymptotic prediction elz1

tr ( · , 1) in the first
dynamical regime. For both panels we use α = 0.5, h̃(z) = (3/10)z + z2/2, γ0 = 1 and τ = 1.

Equations (F.1) to (F.4) can be used to compute the behavior of the train error in this dynamical
regime:

lim
m→∞

etr(t/m) = elz1
tr (t) . (F.12)

Using Eqs. (F.6), we get the expression:

elz1
tr (t) =

1

2

[
τ2 + γ20h(1) + γ20h

′(0)C lz1
o (t, t)

]
. (F.13)

In particular, the train error at the end of this dynamical regime is

lim
t→∞

lim
m→∞

etr(t/m) = lim
t→∞

elz1
tr (t) =

1

2

[
τ2 + γ20h(1)− γ20h

′(0)
]
. (F.14)

This is in agreement with (F.10). Indeed, note that

R̂n(a,W ) =
1

2n
∥ε∥2 − 1

n
⟨ε,fg(a,W )⟩+ 1

2n
∥fg(a,W )∥2 . (F.15)

Training in this timescale attempts to minimize ∥fg(a,W )∥2 without fitting the noise.

This picture is confirmed by the fact that Eqs. (F.6) depend on h only through h′(0). This means that
the dynamics on timescales of order 1/m is controlled by the linear part of the covariance structure
of the hidden layer.

In Fig.8 we test the correctness of the asymtotic ansatz of Eqs. (F.1) to (F.4). Namely, we compare
the results of numerical integration of the SymmDMFT equations for various values of m, with the
prediction of Eqs. (F.6). The match is excellent.

So far we assumed that second-layer weights are not optimized and γ(t) = γ0. What happens
if drop this constraint? It can be checked that the form given in Eqs. (F.1)-(F.4) still solves the
SymmDMFT equations when a(t) is allowed to evolve, and γ(t/m) = γ0 + om(1) for all fixed
t ∈ (0,∞). In other words, second layer weights do not change significantly during this dynamical
regime.

F.1.2 Second dynamical regime: t = Θ(1)

The second dynamical regime arises when t = Θ(1). Recall from the previous subsection that, for
t = om(1), the train error remains close (for large m) to the plateau characterized at the end of the
first dynamical regime, see Eq. (F.14). When t is of order one, the first layer weights start changing
by an amount of order one as well, and the model starts to fit the noise.
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As before, we begin by considering the simplified setting in which γ(t) = γ0 is fixed and not
optimized by GF.

We claim that the SymmDMFT equations are solved by the following ansatz, up to lower order terms
as m→ ∞:

ν(t) = ν lz2(t) + om(1) , (F.16)

Cd(t, t
′) = C lz2

d (t, t′) + om(1) , (F.17)

Rd(t, t
′) = Rlz2

d (t, t′) + om(1) , (F.18)

Co(t, t
′) =

1

m
C lz2

o (t, t′) + om(1/m) = − 1

m
C lz2

d (t, t′) + om(1/m) , (F.19)

Ro(t, t
′) =

1

m
Rlz2

o (t, t′) + om(1/m) = − 1

m
Rlz2

d (t, t′) + om(1/m) . (F.20)

Here C lz2
d , Rlz2

d , C lz2
o , Rlz2

o and ν lz2 are certain functions independent of m. Equations (F.19), (F.20)
state in particular that C lz2

o (t, t′) = −C lz2
d (t, t′) and Rlz2

o (t, t′) = −Rlz2
d (t, t′), and the therefore we

are left with the task of determining C lz2
d (t, t′), Rlz2

d (t, t′). By substituting Eqs. (F.16) to (F.20) into
the SymmDMFT equations and matching leading order terms, we get a set of two integral-differential
equations for C lz2

d (t, t′), Rlz2
d (t, t′), which we next state.

We first define

Σlz2
R (t, s) := γ20

(
h′(C lz2

d (t, s))− h′(0)
)
Rlz2

d (t, s) ,

Σlz2
C (t, s) := τ2 + γ20h(C

lz2
d (t, s))− γ20h

′(0)C lz2
d (t, s) ,

(F.21)

then we define Rlz2
A and C lz2

A as the solution of

δ(t− t′) =

∫ t

t′

[
δ(t− s) + Σlz2

R (t, s)
]
Rlz2

A (s, t′) ds ,

0 =

∫ t

0

[
δ(t− s) + Σlz2

R (t, s)
]
C lz2

A (s, t′)ds+

∫ t′

0

Σlz2
C (t, s)Rlz2

A (t′, s) ds .

(F.22)

We next define the asymptotic form for the memory kernels

M lz2
R (t, s) := α

[
Rlz2

A (t, s)h̃′(C lz2
d (t, s)) + C lz2

A (t, s)h̃′′(C lz2
d (t, s))Rlz2

d (t, s)
]
,

M lz2
C (t, s) := αh̃′(C lz2

d (t, s))C lz2
A (t, s) .

(F.23)

and we have defined
h̃(z) := h(z)− h′(0)z . (F.24)

The equations for ν lz2, C lz2
d and Rlz2

d are then given by

ν lz2(t) = −
∫ t

0

[
M lz2

R (t, s)C lz2
d (t, s) +M lz2

C (t, s)Rlz2
d (t, s)

]
ds , (F.25)

∂tR
lz2
d (t, t′) = δ(t− t′)− ν lz2(t)Rlz2

d (t, t′)−
∫ t

t′
M lz2

R (t, s)Rlz2
d (s, t′) ds , (F.26)

∂tC
lz2
d (t, t′) = −ν lz2(t)C lz2

d (t, t′)−
∫ t

0

M lz2
R (t, s)C lz2

d (t′, s) ds−
∫ t′

0

M lz2
C (t, s)Rlz2

d (t′, s) ds .

(F.27)

(As before, in the second and last equation, it is understood that t ≥ t′, and the last equation is
understood to hold in weak sense.)

Given the constraints on Cd, Rd, we have the following constraints on C lz2
d , Rlz2

d ,

C lz2
d (t, t) = 1 , (F.28)

C lz2
d (t, s) = C lz2

d (s, t) , (F.29)

Rlz2
d (t, s) = 0 ∀t ≤ s . (F.30)

In particular, the last condition, together with Eq. (F.26) implies Rlz2
d (t+, t) = 1.
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The evolution of the the train error in this second dynamical regime is given by

lim
m→∞

etr(t) = elz2
tr (t, γ0) , (F.31)

elz2
tr (t, γ0) = −1

2
C lz2

A (t, t) , (F.32)

where we have made explicit the dependence on the initialization of second-layer weights γ0.

Note that Eq. (F.22) implies C lz2
A (0, 0) = −Σlz2

C (0, 0), and Eq. (F.21) yields Σlz2
C (0, 0) = τ2 +

γ20h(1)− γ20h
′(0). Therefore

lim
t→0

elz2
tr (t, γ0) =

1

2

[
τ2 + γ20 h̃(1)

]
= lim

t→∞
elz1

tr (t, γ0) . (F.33)

In other words, this second dynamical regime captures the decrease of the training error which
starts at the plateau reached in the first regime, cf. Eq. (F.14). which coincides with the long time
extrapolation of the first dynamical regime.

This second dynamical regime is fully non-linear and depends on the entire covariance function h̃.
Further, the first order weights move by an amount ∥wi(t)−wi(0)∥ = Θ(1), as follows from the
fact that C lz2

d (t, 0) < 1 strictly.

In order to confirm the ansatz (F.16) to (F.20), we compared the solution of the full Sym-
mDMFT equations, with the solution of the asymptotic equations (F.25), (F.27). An example of such
a comparison is presented in Fig. 9: the agreement is excellent.

The treatment above assumed the constraint γ(t) = γ0. However, as in the first dynamical regime, if
we let second layer weights evolve, they do not change appreciably. Namely, the asymptotic form
given in Eqs. (F.16) to (F.20) still solves the SymmDMFT equations when a(t) is allowed to evolve.
We have γ(t) = γ0 + om(1) on this timescale.

F.1.3 The algorithmic interpolation transition

For the discussion in this section, we denote by etr(t, γ0,m, α) the train error as a function of t,
where we emphasized the dependence on the initial condition γ0, on the number of neurons m, and
on the overparametrization ratio α. We further assume that second layer weigths are not evolved and
therefore γ(t) = γ0 for all t. We define the asymptotic train error achieved by GF as

etr,∞(γ0,m, α) := lim
t→∞

etr(t, γ0,m, α) (F.34)

= lim
t→∞

lim
n→∞

R̂n(a,W (t)) . (F.35)
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Again, in this definition ai = γ0
√
m is kept fixed and does not evolve with time.

Notice that it is in principle possible that limn→∞ R̂n(a,W (tn)) is strictly smaller than
etr,∞(γ0,m, α) if we let tn diverge with n at sufficiently fast rate. However, based on results
on related models in spin-glass theory we expect this not to be the case as long as tn is polynomial in
n. Explicitly, we expect that, for any sequence tn → ∞

tn ≤ nC ⇒ lim
n→∞

R̂n(a,W (tn)) = etr,∞(γ0,m, α) . (F.36)

Using the reduced equations for t = Θ(1) timescale, i.e. Eqs. (F.25) to (F.27), we can also define

elz2
tr,∞(γ0, α) := lim

t→∞
elz2

tr (t, γ0, α) (F.37)

= lim
t→∞

lim
m→∞

lim
n→∞

R̂n(a,W (t)) .

A natural question is whether the large m limit of etr,∞(γ0,m, α) coincides with elz2
tr,∞(γ0, α). This

amounts to asking whether there exists dynamical regime with timescale t(m) diverging with m at
which etr(t(m), γ0,m, α) starts diverging significantly from the value at the end of the second dynami-
cal regime namely elz2

tr,∞(γ0, α). If elz2
tr,∞(γ0, α) = 0 then of course limm→∞ etr(t(m), γ0,m, α) = 0

as well.

If however elz2
tr,∞(γ0, α) > 0, then the answer depends upon whether the second layer weights are

evolved with GF:

• In the constrained setting in which second-layer weights do not evolve, we observe (from
numerical solutions of SymmDMFT ) that

lim
m→∞

etr,∞(γ0,m, α) = elz2
tr,∞(γ0, α) . (F.38)

• In the next section we will see that if γ(t) evolves with GF then the train error achieved on a
diverging timescale t = Θ(m) is strictly smaller than elz2

tr,∞(γ0, α) and vanishes for large
enough t.

Note that etr,∞(γ0,m, α) and elz2
tr,∞(γ0, α) also depend on the noise variance τ2. However, because

of the invariance under rescaling discussed at the beginning of this section (adding τ as an argument):

elz2
tr,∞(γ0, α, τ

2) = τ2 · elz2
tr,∞(γ0/τ, α, τ

2 = 1) , (F.39)

and similarly for etr,∞(γ0,m, α). Because of this relation, we can think that τ2 is fixed throughout,
e.g. τ2 = 1.

We expect etr,∞(γ0,m, α), elz2
tr,∞(γ0, α) to be non-increasing in γ0, and define the thresholds

γGF(α,m) := inf
{
γ0 : etr,∞(γ0,m, α) = 0

}
, (F.40)

γ∗GF(α) := inf
{
γ0 : elz2

tr,∞(γ0, α) = 0
}
. (F.41)

(These definitions need to be modified if γ0 7→ etr,∞(γ0,m, α) is non-monotone.)

Of course, Eq. (F.38) implies
lim

m→∞
γGF(α,m) = γ∗GF(α) . (F.42)

The numerical solution of the SymmDMFT equations imply that the curve γ∗GF(α) is monotone
increasing with α, as also suggested by the Gaussian complexity bound (see Section 2.2 in the main
text). Hence we can invert it to get a threshold α∗

GF(γ0): the two descriptions are equivalent.

In order to determine α∗
GF(γ0), we adopt a procedure already implemented in [31] for a simpler model.

The procedure is based on the observation (from numerical solutions) that when elz2
tr,∞(γ0, α) = 0,

elz2
tr (t, γ0, α) = exp(−t/trel(α; ε) + o(t)) for some trel(α) > 0 which diverges as α ↑ αGF.

1. Define a grid of values of α, A0 = {α1, α2, . . . , αK}, which are expected to be smaller
than α∗

GF(γ0).
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Figure 11: Training with pure noise data under lazy initialization: second layer weights in
the third dynamical regime. Evolution of the (rescaled) weights of the second layer as a function
of t/m. Here τ = 2.5 and γ0 = 1, α = 0.3, and covariance structure for the neurons given by
h(z) = (9/10)z + z2/2.

2. For each value α ∈ A0, integrate numerically the reduced equations (F.25) to (F.27). Verify
that elz2

tr (t, γ0, α) appear to converge to 0 with t→ ∞. Let A ⊆ A0 be the subset of values
for which this happens.

3. For each α ∈ A, define trel(αi; ε) := inf{t : elz2
tr (t, γ0, αi) < ε · τ2} where ε is a small

threshold value (we use ε = 10−7).

4. Estimate parameters α∗
GF(γ0), c, ν by fitting the relation trel(αi; ε) ∼ c(α∗

GF − αi)
−ν .

Figure 10 illustrates the calculation of α∗
GF(γ0) for three values of γ0. In the inset we plot trel for

three values of γ0 as a function of α. In the main panel, we demonstrate the divergence of trel when
(α∗

GF − α) vanishes. In practice, we observe ν = 2 fit well the data across a variety of settings,
suggesting this is the universal exponent for the divergence of trel.

F.1.4 Third dynamical regime: t = Θ(m)

In the first two dynamical regimes, the large-m behavior did not depend on whether we would let
second layer evolve with GF or we kept them fixed, i.e. γ(t) = γ0.

In contrast, the behavior on timescales diverging with m depends significantly on the dynamics of
second-layer weights.

• If second layer weights are fixed, no significant further evolution takes place. In particular,
the training error does not decrease significantly below the value reached at the end of the
second dynamical regime, i.e. eℓtr,∞(γ0, α). This is stated formally in Eq. (F.38).

• If second layer weights evolve according to GF, then the dynamics on time-scales diverging
with m can be non-trivial and depends on the second-layer weights initialization γ0. If
γ0 > γ∗GF(α), then GR reaches vanishing training error during the second dynamical regime,
and no further evolution takes place.
However, if γ0 < γ∗GF(α), second layer weights start evolving when t = Θ(m), thus giving
rise to a third dynamical regime. This is the object of the present subsection.

In Fig. 11, left frame, we plot the rescaled second layer weights γ(t) (as predicted by numerical
integration of the SymmDMFT equation) as a function of time for several values of m. Here,
obviously, we do not constrain γ(t) = γ(0).

We observe that γ(t) changes only when t = Θ(m). Indeed, when plotted against t/m, curves
obtained for different values of m collapse onto each other. This suggests that, for t = o(m)
γ(t) = γ(0) + om(1) (recall that γ(0) = γ0 by definition). Further, the curve collapse suggests that,
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for any fixed t̂ ∈ (0,∞):
lim

m→∞
γ(t̂ m, γ0) = γ lz3(t̂, γ0) , (F.43)

where we have made explicit the dependence on γ0. Of course, the case γ0 > γ∗GF(α) fits in this
framework with γ lz3(z, γ0) = γ0 identically.

We next consider the evolution of the train error. In Fig. 12, left frame, we plot the train error (again,
as predicted by numerical integration of the SymmDMFT equation) as a function of time for several
values of m.

Again, when plotted as a function of t/m, curves for different values of m reach a plateau, and
collapse below the plateau. This suggests the following limit behavior, which is consistent with
Eq. (F.43)

lim
m→∞

ẽtr(t̂ m, γ0,m) = elz3
tr (t̂, γ0) . (F.44)

(Here we use ẽtr(t̂ m, γ0) to denote the train error when second-layer weights evolve, in contrast with
etr(t̂ m, γ0) which we used for the setting in which second-layer weights are constrained.)

Matching the present dynamical regime (t = Θ(m)) with previous one (t = Θ(1), cf. Section F.1.2),
implies that

lim
t̂→0+

elz3
tr (t̂, γ0) = lim

t→∞
elz2

tr (t, γ0) = elz2
tr,∞(γ0) (F.45)

In other words, the function elz3
tr describes the decrease of the train error below the level elz2

tr,∞(γ0)
achieved during the second dynamical regime.

In order to characterize the scaling function elz3
tr , in Fig. 12, right frame, we plot parametrically the

the train error for different values of m as a function of the second layer weights γ(t). We also plot
the curve (γ, elz2

tr,∞(γ)). This plot is consistent with the following behavior as m → ∞. In a first
regimes (corresponding to t = o(m)) the train error has a drop that becomes vertical in the m→ ∞
limit, implying that γ(t) does not evolve while the train error decreases until it reaches eℓtr,∞(γ0). In
the last regime (corresponding to t = Θ(m)), γ(t) increases together with the decrease of the train
error eℓtr(t, γ0). Remarkably, they follow the curve (γ, elz2

tr,∞(γ)).

In order to describe the last regime, we point out that t 7→ γ lz3(t) is monotone increasing. Therefore
we can re-parametrize time by the value of the second layer weights. Namely, define γ̃−1 the inverse
function, so that

t̂ = γ̃−1(γ lz3(t̂, γ0), γ0) . (F.46)
Using this reparametrization of time, the behavior in Fig. 12 can be formalized as

lim
t,m→∞:γ(t,γ0,m)=γ̃

elz3
tr (t, γ0,m) = elz3

tr (γ̃
−1(γ̃, γ0), γ0) =: ε(γ̃, γ0) . (F.47)

The collapse on finite m curves in Fig. 12, right frame, onto the curve (γ, elz2
tr,∞(γ)) suggests that

γ > γ0 ⇒ ε(γ̃, γ0) = elz2
tr,∞(γ) . (F.48)

In other words, the dynamics on timescales of order m is adiabatic: at each increase of γ(t) on
timescales of order m, the train error relaxes to the the value it would have had if the second layer
weights would have been fixed in time at the corresponding value of γ.

A remarkable consequence of Eq. (F.48) is that that

lim
t̂→∞

γ lz3(t̂) = lim
m→∞

γGF(α,m) = γ∗GF(α) . (F.49)

In words, in the large network limit, the norm of second-layer weights at the end of training is
asymptotically the minimum norm that allows for interpolation.

F.2 Multi-index model

In this section we generalize the computations of Section F.1 to the case in which the dataset has a
structure produced via a k-index model. The weights of the second layer are set to a(t) = γ(t)

√
m

and evolve with GF. The initialization scale γ(0) = γ0 is fixed and independent of m.

As in the pure noise case, we identify three dynamical regimes:
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Figure 12: Training with pure noise data under lazy initialization: third dynamical regime.
Left frame: Train error on timescales of order m. Right frame: GF trajectories in the plane γ (second
layer weights) — etr (train error). Black dots represent pairs (γ, elz2

tr,∞(γ)), where elz2
tr,∞(γ) is the

train error achieved at the end of the first dynamical regime, cf. Section F.1.3. The data has been
produced from the same model as in Fig. 11.
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Figure 13: SymmDMFT predictions and large network scaling for lazy training in a single index
model. Left: Projection v(t) of the first layer weights onto the latent direction on timescales of the
order 1/m. The result for m → ∞, vlz1, has been obtained by integrating analytically Eq. (F.55).
Right: The behavior of Cd(t, 0) on timescales t = Θ(1), compared with the scaling theory for
m → ∞, namely C lz2

d . In both cases with h(z) = φ̂(z) = (9/10)z + z2/2, τ = 0.3 and α = 0.3,
γ0 = 1.

1. t = O(1/m): γ(t) = γ0 + om(1), ∥wi(t) − wi(0)∥ = Θ(1/
√
m). On this scale the

network only learns a linear approximation of the target. Test and train error remain close to
each other (Section F.2.1).

2. t = Θ(1): γ(t) = γ0 + om(1), ∥wi(t)−wi(0)∥ = Θ(1). Test error does not change but
train error decreases significantly (Section F.2.2).

3. t = Θ(m): This regime only emerges if γ0 is below a certain interpolation threshold, i.e.
γ0 < γ∗GF(α,φ, τ). In this regime γ(t) grows until the threshold, and train error decreases to
0 while test error decreases to 0 (Section F.2.5).

F.2.1 First dynamical regime: t = O(1/m)

On this timescale, the SymmDMFT equations are solved, up to higher order terms, by the following
ansatz:

Cd(t/m, s/m) = 1 + om(1) , Rd(t/m, s/m) = ϑ(t− s) + om(1) , (F.50)

Co(t/m, s/m) =
1

m
C lz1

o (t, s) + om(m−1) , Ro(t/m, s/m) =
1

m
Rlz1

o (t, s) + om(m−1) ,

(F.51)

42



1

m
RA(t/m, s/m) = δ(t− s) + om(1) , CA(t/m, s/m) = −Σlz1

C (t, s) + om(1) , (F.52)

a(t/m)
√
m = γ0 + om(1) , v(t/m) =

1√
m
vlz1(t) + om(m−1/2) ,

(F.53)

with

Σlz1
C (t, s) = τ2 + ∥φ∥2 − γ0⟨∇φ̂(0),vlz1(t)⟩ − γ0⟨∇φ̂(0),vlz1(s)⟩+ γ20

(
h(1) + h′(0)C lz1

o (t, s)
)
.

(F.54)
In particular, Eq. (F.50) implies ∥wi(0)−wi(t/m)∥ = om(1): weights of the first layer change by
small amount.

The scaling functions defined in Eqs. (F.50)-(F.53) satisfy a set of equations that can be derived
directly from the SymmDMFT equations:

∂tv
lz1(t) = αγ0∇φ̂(0)− αγ20h

′(0)vlz1(t) ,

∂tC
lz1
o (t, t′) = αγ0⟨∇φ̂′(0),vlz1(t′)⟩ − αγ20h

′(0)
(
1 + C lz1

o (t, t′)
)

∂tR
lz1
o (t, s) = −αγ̂20h′(0)

(
1 +Rlz1

o (t, s)
)
.

(F.55)

Note that
dC lz1

o (t, t)

dt
= 2 lim

t′→t−
∂tC

lz1
o (t, t′) . (F.56)

The solution of Eqs. (F.55) implies that

vlz1
∞ := lim

t→∞
vlz1(t) =

∇φ̂(0)
γ0h′(0)

,

lim
t→∞

C lz1
o (t, t) = −

(
1− ∥vlz1

∞∥2
)
.

(F.57)

Furthermore, on this timescale, the train and test error coincide and are given by

lim
m→∞

etr(t/m) = lim
m→∞

ets(t/m) =
1

2
Σlz1

C (t, t) . (F.58)

The corresponding asymptotic value is given by

lim
t→∞

lim
m→∞

ets(t/m) = elz1
ts,∞ =

1

2

(
τ2 + ∥φ∥2 − 1

h′s(0)
∥∇φ̂(0)∥2 + γ20 h̃(1)

)
(F.59)

where

h̃(z) = h(z)− h′(0) . (F.60)

The interpretation of this dynamical regime is analogous to the one of the same regime in the pure-
noise setting, as confirmed by Eq. (F.59) : the network learns the linear component of the data
distribution.

In the left panel of Fig. 13 we test the scaling theory in this dynamical regime, as given by Eqs. (F.50)
to (F.53). We plot the solution of the SymmDMFT equations, versus tm, for increasing values of m:
the curve collapse well on their conjectured m→ ∞ limit.

F.2.2 Second dynamical regime: t = Θ(1)

We next consider t = Θ(1). One can show that the SymmDMFT equations are solved, up to higher
order terms as m→ ∞, by the following ansatz

Cd(t, s) = C lz2
d (t, s) + om(1) , Rd(t, s) = Rlz2

d (t, s) + om(1) ,

Co(t, s) =
1

m
C lz2

o (t, s) + om(m−1) , Ro(t, s) =
1

m
Rlz2

o (t, s) + om(m−1) , (F.61)

v(t) =
1√
m
vlz1
∞ + om(m−1/2) , ν(t) = ν lz2(t) + om(1) ,

with γ(t) = γ0 + om(1) and

C lz2
o (t, s) = −C lz2

d (t, s) + ∥vlz2
∞∥2 , Rlz2

o (t, s) = −Rlz2
d (t, s) . (F.62)
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In other words, on this time scale first layer weights move by order one ∥wi(t)−wi(0)∥ = Θ(1),
but in a linear subspace that is orthogonal to the latent space. Second layer weights do not move
appreciably. As a consequence, no additional learning takes place in this regime, but the model begins
to overfit the data.

Note that the above scaling form is compatible with the long time limit of the previous dynamical
regime.

In order to define the equations for the functions on the right-hand side of Eq. (F.61) we define Rlz2
A

and C lz2
A to be the solution of

δ(t− t′) =

∫ t

t′

[
δ(t− s) + Σlz2

R (t, s)
]
Rlz2

A (s, t′) ds ,

0 =

∫ t

0

[
δ(t− s) + Σlz2

R (t, s)
]
C lz2

A (s, t′) ds+

∫ t′

0

Σlz2
C (t, s)Rlz2

A (t′, s) ds ,

(F.63)

where

Σlz2
R (t, s) = γ20

(
h′(C lz2

d (t, s))− h′(0)
)
Rlz2

d (t, s) ,

Σlz2
C (t, s) = τ2 + ∥φ∥2 − 2γ0⟨∇φ̂(0),vlz1

∞⟩+ γ20
(
h(C lz2

d (t, s)) + h′(0)C lz2
o (t, s)

)
.

(F.64)

Define the following memory kernels

M lz2
R,d(t, s) = αγ20

[
Rlz2

A (t, s)h′(C lz2
d (t, s)) + C lz2

A (t, s)h′′(C lz2
d (t, s))Rlz2

d (t, s)
]
,

M lz2
R,o(t, s) = αγ20h

′(0)Rlz2
A (t, s) ,

M lz2
C,d(t, s) = αγ20h

′(C lz2
d (t, s))C lz2

A (t, s) ,

M lz2
C,o(t, s) = αγ20h

′(0)C lz2
A (t, s) .

(F.65)

Substituting the ansatz (F.61) into the SymmDMFT equations, and using Eqs. (F.62), we obtain the
following equations for C lz2

d (t, t′), Rlz2
d (t, t′), ν lz2(t)

∂tC
lz2
d (t, t′) = −ν lz2(t)C lz2

d (t, t′) + αγ0⟨∇φ̂′(0),vlz1
∞⟩

∫ t

0

Rlz2
A (t, s)ds

−
∫ t

0

ds
[
M lz2

R,d(t, s)C
lz2
d (t′, s) +M lz2

R,o(t, s)C
lz2
o (t′, s)

]
ds (F.66)

−
∫ t′

0

[
M lz2

C,d(t, s)R
lz2
d (t′, s) +M lz2

C,o(t, s)R
lz2
o (t′, s)

]
ds ,

∂tR
lz2
d (t, t′) = −ν lz2(t)Rlz2

d (t, t′) + δ(t− t′) (F.67)

−
∫ t

t′

[
M lz2

R,d(t, s)R
lz2
d (s, t′) +M lz2

R,o(t, s)R
lz2
o (s, t′)

]
ds ,

ν lz2(t) = αγ0⟨∇φ̂′(0),vlz1
∞⟩

∫ t

0

Rlz2
A (t, s) ds−

∫ t

0

[
M lz2

R,d(t, s)C
lz2
d (t, s) +M lz2

R,o(t, s)C
lz2
o (t, s)

]
ds

−
∫ t

0

[
M lz2

C,d(t, s)R
lz2
d (t, s) +M lz2

C,o(t, s)R
lz2
o (t, s)

]
ds . (F.68)

Finally, the train and test errors converge to well defined limits for t fixed and m→ ∞:

etr(t, γ0) = elz2
tr (t, γ0) + om(1) , ets(t, γ0) = elz2

ts (t, γ0) + om(1) ., (F.69)

where

elz2
tr (t, γ0) = −1

2
C lz2

A (t, t) , elz2
ts (t, γ0) =

1

2
Σlz2

C (t, t) . (F.70)

Note that, using Eqs. (F.62), (F.64), and the fact thatC lz2
d (t, t) = 1 (because of the unit norm constraint

on the first layer weights), we get

elz2
ts (t, γ0) =

1

2

{
τ2 + ∥φ∥2 − 2γ0⟨∇φ̂(0),vlz1

∞⟩+ γ20
(
h(1)− h′(0) + h′(0)∥vlz1

∞∥2
)}
. (F.71)
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Figure 14: SymmDMFT predictions and large network scaling for lazy training in a single
index model: train and test error. Left frame: train and test error on the time scale t = Θ(1/m)
for several values of m, together with the asymptotic prediction as m → ∞ on this time scale
elz1

tr (t̂, γ0) = elz1
ts (t̂, γ0). Right: train and test error on the time scale t = Θ(1) for several values of

m, together with the asymptotic prediction as m → ∞ on this time scale elz2
tr (t, γ0). Here γ0 = 1,

h(z) = φ̂(z) = (9/10)z + z2/2, τ = 0.3, α = 0.3.

Using Eq. (F.57), we obtain that the asymptotic test error in this dynamical regime is constant and
equal to the test error achieved at the end of the previous regime, namely elz2

ts (t, γ0) = elz1
ts,∞, cf.

Eq. (F.59). As anticipated, no learning takes place on this timescale.

The predictions of Eqs. (F.61) are tested in the right panel of Fig. 13. We plot the correlation function
Cd(t, 0) for several values of m, as obtained by solving the SymmDMFT equations. We compare
these results with the m → ∞ prediction C lz2

d (t, 0) obtained by solving Eqs. (F.66) to (F.68). We
observe collapse of finite m curves on the large m asymptotics supporting our conclusions.

In Fig. 14 we plot the behavior of the train and test error both on timescales t = Θ(1/m) (left frame,
plotting etr(t, γ0), ets(t, γ0) versus tm) and t = Θ(1) (right frame, plotting etr(t, γ0), ets(t, γ0)
versus tm). We the solutions of SymmDMFT equations at increasing values of m with the theory
scaling theory presented in the previous section (for t = Θ(1/m), left frame) and in this section (for
t = Θ(1), right frame). As anticipated, we observe the following:

• On the time scale t = Θ(1/m) (left panel), test and train error collapse (as m→ ∞) on a
common limiting curve elz1

tr (t̂, γ0) = elz1
ts (t̂, γ0) which converges, for large t̂, to the positive

limiting value elz1
ts,∞ characterized in the previous section.

• On the time scale t = Θ(1) (right panel), test and train error collapse (as m → ∞) on
two distinct limiting curves. The first one is constant and equal to elz1

ts,∞. The second one
decreases from elz1

ts,∞ to 0 and is predicted by the asymptotic theory in this section, cf.
Eq. (F.70).

Note that, in the example of Fig. 14, the initialization γ0 is sufficiently large that the train error de-
creases to zero on the time scale Θ(1), namely γ0 > γ∗GF(α,φ, τ), for a suitable threshold γ∗GF(α,φ, τ).
As we will see in the next section, a third dynamical regime emerges when γ0 < γ∗GF(α,φ, τ).

F.2.3 The algorithmic interpolation threshold

The asymptotic theory within the second dynamical regime, described in Section F.2.2, turns out to
be equivalent to the one in the pure-noise model, Section F.1.2, up to a change of variables. Namely,
defining

C̃o(t, s) = C lz2
o (t, s) + ∥vlz1

∞∥2 , (F.72)

with initial condition C̃o(0, 0) = −1 , reduce the equations of Section F.2.2 to the ones of Section
F.1.2 with noise level τ replaced by

τ ′2 = τ2 + ∥φ∥2 − ∥∇φ̂(0)∥2
h′(0)

. (F.73)
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Figure 15: The asymptotic behavior of the test error as a function of m for different h(z) = φ̂(z).
We observe that soon as h(z) contains a z2 term, the NTK limit for m → ∞ is approached from
below (left panel). Furthermore the speed of the convergence to the limiting value depends crucially
on whether a z2 monomial is present in the Taylor expansion of h(z) (right panel). The data has been
produced with α = 0.3 and τ = 0.6.

The interpretation of this reduction is simple. On the time scale t = Θ(1), the first layer weights
move orthogonally to the latent subspace spanned by U . Hence, the dynamics on this timescale is not
affected by the signal and only attempts to fit the labels noise. The noise is inflated as per Eq. (F.73),
because the network is not able to fit beyond the linear part of the target distribution.

As a corollary of the above equivalence, the interpolation threshold of the k-index model coincides
with with the interpolation threshold on pure noise data with noise level given by Eq. (F.73). Using
the extended notation γ∗GF(α,φ, τ) to indicate the dependence on the underlying data distribution
(which is parametrized by φ, τ ), we can write the stated relation as

γ∗GF(α,φ, τ) =
(
τ2 + ∥φ∥2 − ∥∇φ̂(0)∥2

h′(0)

)1/2

γ∗GF(α, 0, 1) . (F.74)

(Here we used the invariance under rescaling in the pure noise model, which implies γ∗GF(α, 0, τ
2) =

τγ∗GF(α, 0, 1).)

F.2.4 Dependence on m

Within NTK theory, it is normally assumed that optimal models are achieved at very large network
sizes m → ∞. Empirical results contradicting this expectation have been put forward in [54],
but no theoretical analysis was provided either in [54] or in subsequent work. We can use the
SymmDMFT theory to fill this gap and study the dependence of test error on the number of neurons
m under lazy initialization. We choose γ0 > γ∗GF(α,φ, τ), and therefore vanishing training error is
reached during the second dynamical regime, i.e. for t = Θ(1): this is therefore the last dynamical
regime. Throughout this regime, we have γ(t) = γ0 + om(1).

Recalling that ets(t, γ0,m, α) is the test error at time t in this setting, as predicted by SymmDMFT we
consider the limit

eℓ∞(γ0,m, α) = lim
t→∞

ets(t, γ0,m, α) . (F.75)

We note that, for γ0 > γ∗GF(α,φ, τ), we expect

lim
m→∞

eℓ∞(γ0,m, α) = elz1
ts,∞, (F.76)

to be given by Eq. (F.59).

In Fig. 15 we plot the SymmDMFT prediction for eℓ∞(γ0,m, α) as a function of m for several
choices of h (we use h = φ̂ here). The limit m → ∞ of these curves matches elz1

ts,∞ as expected.
However we empirically observe that eℓ∞(γ0,m, α) approaches elz1

ts,∞ in two qualitatively different
ways:
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Figure 16: Train and test error on different timescales when training on single index data and
lazy initialization. Train error (solid curves) and test error (dashed curves) for a model trained on a
single index data with h(z) = (9/10)z + z2/2 = φ̂(z). The noise level is τ = 2.5 and initialization
a(0) = γ0

√
m, γ0 < γ∗GF(α,φ, τ). Left panel: timescales of order one. The grey dashed line

corresponds to the scaling solution for m→ ∞ when the second layer does not evolve with GF. Right
panel: same data plotted versus t/m, to explore timescales of order m. The arrows show scaling
appearing and curves collapsing on a master curve.

• In the cases we consider that have h′′(0) ̸= 0, elz1
ts,∞ is approached from below as m→ ∞,

and eℓ∞(γ0,m, α) is non-monotone. We also observe that, for the values of m we consider,
the approach to the asymptotic value is compatible with a rate m−1/2: eℓ∞(γ0,m, α) =
elz1

ts,∞ −Θ(m−1/2).

• In the cases we consider that have h′′(0) ̸= 0, then elz1
ts,∞ is approached from above as

m→ ∞, and eℓ∞(γ0,m, α) is typically monotone. In this case the approach to the limiting
behavior is compatible with a rate m−1: eℓ∞(γ0,m, α) = elz1

ts,∞ +Θ(m−1).

The first scenario is the generic one, and similar to what is observed in [54] for actual neural
networks. An intuitive explanation is that –at finite m– the projection of neurons onto the latent space
∥vlz1

∞∥ = Θ(1/
√
m) is sufficient for the network to partially learn the quadratic component of the

target function. In order to establish on more solid grounds these empirical observations one should
study the 1/m corrections to the scaling theory developed here. This is left for future work.

F.2.5 Third dynamical regime: t = Θ(m)

As for the pure noise case, beyond the time scale t = Θ(1), we distinguish two situations. If
γ0 > γ∗GF(α,φ, τ), then vanishing training error is reached within the second dynamical regime
t = Θ(1). If γ0 < γ∗GF(α,φ, τ), GF dynamics develops an additional regime for t = Θ(m). In this
section, we study this third regime.

In Figure 16, we plot the SymmDMFT predictions for train and test errors as a function of time for
several values of m, for a setting with γ0 < γ∗GF(α,φ, τ). In particular, in Fig.16-left we plot train
and test error as a function of t. The curves for the train error for increasing value of m collapse
on limit curve given by elz2

tr (t, γ0) characterized in Section F.2.2. In other words, the dynamics on
this timescales follows the scaling theory of Section F.2.2. However in this case γ0 < γ∗GF(α,φ, τ),
whence by definition elz2

tr,∞ > 0. This correspond to the limit curve in Fig. 16-left having a strictly
positive asymptote.

Figure 16-right shows train and test error plotted against t/m. We observe that curves training error
curves collapse on a common limit, that decreases from elz2

tr,∞ to 0, while test error curves increase
above the plateau elz1

ts,∞. This suggests the following limit behavior

lim
m→∞

etr(mt̂, γ0,m) = elz3
tr (t̂, γ0)

lim
m→∞

ets(mt̂, γ0,m) = elz3
ts (t̂, γ0) .

(F.77)
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Figure 17: Training a two layer network in the same setting of Figure 16. Left panel: second layer
weights on the timescale of order m. The black arrow corresponds to the interpolation threshold for
a model, γ∗GF (α, τ) obtained by fitting the relaxation time as a function of the weights of an lazy
initialized model for γ0 > γ∗GF(α, τ). The second layer weights, at finite m develop a plateau at long
time. In the inset we show the approach of this plateaus to the limiting value given by γ∗GF(α,φ, τ).
Right panel: parametric plot of the train error as a function of the scaled weights of the second layer.
The dashed gray dashed line corresponds to the extrapolated train error for an network with second
layer weights fixed to the corresponding value in the m → ∞ (as extracted from the numerical
integration of the scaling theory).

In order to further explore the GF dynamics in this regime, in Fig. 17-left we plot the evolution of
the second layer rescaled weights against t/m. The curves for increasing values of m collapse on a
master curve, suggesting the existence of a limit

lim
m→∞

γ(mt̂, γ0) = γ lz3(t̂, γ0) . (F.78)

The limit curve γ lz3(t̂, γ0) increases from γ0 to a limit value:

lim
t̂→∞

γ lz3(t̂, γ0) = γ lz3
∞(γ0). (F.79)

As in Section F.2.5 we consider the inverse function of t 7→ γ lz3(t, γ0), denoted by γ 7→ γ̃−1(γ, γ0).
In Fig. 17-right we plot the train error as a function of the second layer weights γ(t). Again, for
increasing values of m the curves collapse on a master curve which is given by

ε(γ, γ0) = elz3
tr (γ̃

−1(γ, γ0), γ0) (F.80)

We then also plot in Fig.17-right the asymptotic value of the train error for a network initialized with
second layer weights blocked at an initialization scale γ, call it elz2

tr,∞(γ).

The curves ε(γ, γ0) appear to have a vertical segment (corresponding to t = o(m)) in which the
training error decreases, while γ(t) = γ0+om(1) is nearly unchanged, and a continuously decreasing
segment in which γ(t) increases while etr(t, γ0) decreases to 0 (corresponding to t = Θ(m)). In the
second phase, the curves appear to converge to elz2

tr,∞(γ) as m→ ∞. This suggests

ε(γ, γ0) = elz2
tr,∞(γ) ∀γ ≥ γ0 . (F.81)

In other words the dynamics on timescales of order m is adiabatic also in the multi index case. For
a small change of the second layer weights on a scale of order

√
m, the train error relaxes to its

asymptotic value on timescales of order one. This graph suggests that the limit value of γ(t) coincides
with the critical value for interpolation. Namely recalling the definition (F.79) for the asymptotic
value of γ(t), we have

γ lz3
∞(γ0) = γ∗GF(α,φ, τ) (F.82)

where the interpolation threshold in the multi-index model γ∗GF(α,φ, τ) is related to the interpolation
threshold in the pure noise model via Eq. (F.74).
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G Dynamical regimes: Mean field initialization

In this section we assume the initialization of the weights of the second layer is kept of order one. To
be definite, we set a(0) = a0, independent of m. This corresponds to the mean field initialization
studied in [38, 14, 45].

Specializing to the data distribution considered here, earlier work characterized the dynamics up to
time T , under a few settings (which prove equivalent in this regime):

• One-pass SGD, with stepsize ε ≪ 1/d and therefore time horizons such that T ≪ d/n
(the latter inequality follows from T ≤ nε for one-pass SGD). In this case, the dynamics is
characterized by a set of ODEs for for the projections of the weights on the latent space and
inner products between weights.

• Gradient flow in the population risk, which admits the same characterization and corresponds
to the limit n→ ∞ of the above.

• The limit of the above regimes for large width m→ ∞. This is characterized by a partial
differential equation for the distribution of projections of first layer weights onto the latent
space, provided T ≤ c0 logm, for c0 a sufficiently small constant.

We refer to [5, 21, 1, 6, 2, 10] for a few pointers to this literature. In all of these settings, the train
error remains close to the test error. In contrast, the analysis presented here allow us to explore the
overfitting regime.

Section G.1, we will focus on a pure noise data distribution, while Section G.2, considers a multi-
index model. As in the case of lazy initializations, we consider first the limit n, d→ ∞ at n/md = α
and m fixed (hence characterized by SymmDMFT ) and subsequently study dynamical regimes
emerging as m→ ∞ at n/md = α fixed.

G.1 Pure noise model

Under the pure noise model, we have φ = φ̂ = 0. We identify three distinct dynamical regimes:

• t = O(1): a(t) = a0 + om(1), etr(t) = τ2/2 + om(1), and ∥wi(t)−wi(0)∥ = om(1). In
words, the weights change minimally and the train error remains close to the one of the null
network f(x;θ) ≈ 0 (Section G.1.1).

• t = Θ(
√
m): a(t) = Θ(1), etr(t) = τ2/2+om(1), and ∥wi(t)−wi(0)∥ = Θ(1). Namely,

weights change but the train error does not change significantly. (Section G.1.2).

• t = Θ(m). In this regime a(t) =
√
mγ(t/m) + om(1), and therefore the network com-

plexity becomes large enough for it to fit the noise. The dynamics on this timescale is
closely related to the one under lazy initialization, studied in Section F.1.4. In particular,
γ(t̂) converge to the interpolation threshold γ∗GF(α, τ) if t̂→ ∞ (after m→ ∞). (Section
G.1.3).

G.1.1 First dynamical regime: t = O(1)

In this dynamical regime, the SymmDMFT equations are solved by the following scaling ansatz

Cd(t, s) = 1 + om(1) Rd(t, s) = ϑ(t− s) + om(1) , (G.1)

mCo(t, s) = Cmf1
o (t, s) + om(1) mRo(t, s) = Rmf1

o (t, s) + om(1) , (G.2)
a(t) = a0 + om(1) ν(t) = om(1) . (G.3)

Furthermore we have

Rmf1
A (t, s) = δ(t− s) + om(1) Cmf1

A (t, s) = −τ2 + om(1) , (G.4)

Plugging the scaling ansatz in the SymmDMFT , we obtain equations determining the scaling
functions Cmf1

o , Rmf1
o . Defining

ρ0 := αa20h
′(0) (G.5)
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Figure 18: Training on pure noise data under mean-field initialization: t = Θ(1) regime. We
plot Co(t, 0) and Co(t, t) as given by solving the SymmDMFT equations for different values of m
and compare them with the asymptotic solution of Section G.1.1. Here we use τ = 0.6, α = 0.3 and
h(z) = (9/10)z + z3/6. Note that the vertical axis is multiplied by a factor m, in agreement with
the prediction of Eq. (G.2).

we have

Rmf1
o (t, s) =

[
e−ρ0(t−s) − 1

]
ϑ(t− s) ,

Cmf1
o (t, t′) =

[[
2τ2

ρ0
− 1

ρ0

(
τ2 − ρ0

)]
e−2ρ0t

′ − τ2

ρ0
e−ρ0t

′
]
e−ρ0(t−t′)

+
τ2 − ρ0
ρ0

− τ2

ρ0
e−ρ0t

′
.

(G.6)

In particular

lim
t→∞

Cmf1
o (t, t) =

τ2 − ρ0
ρ0

,

lim
t→∞

Cmf1
o (t, t′) =

τ2 − ρ0
ρ0

− τ2

ρ0
e−ρ0t

′
,

lim
t→∞,t′→∞,t−t′≥0

Cmf1
o (t, t′) =

τ2 − ρ0
ρ0

.

(G.7)

The equations (G.4) imply that the train error is constant in this regime and equal to

etr(t) =
τ2

2
+ om(1) . (G.8)

In other words, in this regime both first and second layer weights change minimally and the resulting
error remains close to the one to the null function f(x;θ) ≈ 0. We will see that this regime is
significantly more interesting for the case of data with a signal, see Section G.2. We note in passing
that the limit value ⟨wj ,wj⟩ ≈ τ2−ρ0

mρ0
for i ̸= j corresponds to minimizing the empirical risk under

the linear approximation in which σ(z) is replaced by
√
h′(0)z.

The above predictions are tested in Fig. 18 where we plot Co(t, t) and Co(t, 0) for different values of
m and check their approach to the scaling functions Cmf1

o (t, 0) and Cmf1
o (t, t).

G.1.2 Second dynamical regime: t = Θ(
√
m)

We now consider the case in which time scales as
√
m. The following asymptotic forms can be

checked to solve the SymmDMFT equations, up to higher order terms, for suitable choices of the
scaling functions on the right-hand side:

Cd(t
√
m, s

√
m) = Cmf2

d (t, s) + om(1) Rd(t
√
m, s

√
m) = Rmf2

d (t, s) + om(1) ,

(G.9)
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Figure 19: Training on pure noise data under mean-field initialization: t = Θ(
√
m) regime,

under the same setting as in Fig. 18. We plot the solutions of the SymmDMFT equations for several
values of m as a function of t/

√
m. We compare these to the m → ∞ scaling theory of Section

G.1.2, i.e. to numerical solutions of Eqs. (G.14) to (G.17).

Co(t
√
m, s

√
m) =

1

m
Cmf2

o (t, s) + om(m−1) Ro(t
√
m, s

√
m) =

1

m
Rmf2

o (t, s) + om(m−1) ,

(G.10)
√
mRA(t

√
m, s

√
m) = δ(t− s) + om(1) CA(t

√
m, s

√
m) = −τ2 + om(1) , (G.11)

√
mν(t

√
m) = νmf2(t) + om(1) a(t

√
m) = amf2(t) + om(1) .(G.12)

Plugging this scaling ansatz into the SymmDMFT equations we get the constraints

Rmf2
o (t, s) = −Rmf2

d (t, s) ,

Cmf2
o (t, s) = −Cmf2

d (t, s) +
τ2

αh′(0)(amf2(t))2
.

(G.13)

We also obtain that the following equations must be satisfied byCmf2
d (t, t′),Rmf2

d (t, t′), amf2(t), νmf2(t),

∂tC
mf2
d (t, t′) = −νmf2(t)Cmf2

d (t, t′) + ατ2amf2(t)

∫ t

0

amf2(s)h′′(Cmf2
d (t, s))Rmf2

d (t, s)Cmf2
d (t′, s) ds

(G.14)

+ ατ2amf2(t)

∫ t′

0

amf2(s)
[
h′(Cmf2

d (t, s))− h′(0)
]
Rmf2

d (t′, s) ds ,

∂tR
mf2
d (t, t′) = δ(t− t′)− νmf2(t)Rmf2

d (t, t′) (G.15)

+ ατ2amf2(t)

∫ t

t′
amf2(s)h′′(Cmf2

d (t, s))Rmf2
d (t, s)Rmf2

d (s, t′) ds ,

νmf2(t) = ατ2amf2(t)

∫ t

0

[
amf2(s)h′′(Cmf2

d (t, s))Rmf2
d (t, s)Cmf2

d (t, s)
]
ds (G.16)
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+ ατ2amf2(t)

∫ t

0

amf2(s)
[
h′(Cmf2

d (t, s))− h′(0)
]
Rmf2

d (t, s) ds ,

damf2(t)

dt
= ατ2

∫ t

0

amf2(s)
[
h′(Cmf2

d (t, s))− h′(0)
]
Rmf2

d (t, s) ds , (G.17)

with initial conditions given by

Cmf2
d (0, 0) = 1 Rmf2

d (0+, 0) = 1 amf2(0) = a0 . (G.18)

We test these predictions in Fig. 19. We plot several quantities in the solution of the Sym-
mDMFT equations for increasing values of m and compare them with the solution of the asymptotic
equations (G.14) to (G.17). We observe convergence to the predicted asymptotic behavior.

Equations (G.14) to (G.17) can be further simplified. The right-hand side of Eq. (G.17) is a positive.
Therefore amf2(t) is a monotone increasing function. Define the time change

t̃(t) = τ
√
α

∫ t

0

amf2(s) ds , (G.19)

and the corresponding time-changed scaling functions

ν̃(t̃(t)) =
νmf2(t)

amf2(t)τ
√
α
,

C̃mf
d (t̃(t), t̃(t′)) = Cmf2

d (t, t′) ,

R̃mf
d (t̃(t), t̃(t′)) = Rmf2

d (t, t′) .

(G.20)

Equations (G.14) to (G.17) imply that these time-changed function functions satisfy

∂tC̃
mf
d (t, t′) = −ν̃mf(t)C̃mf

d (t, t′) +

∫ t

0

h̃′′(C̃mf
d (t, s))R̃mf

d (t, s)C̃mf
d (t′, s) ds (G.21)

+

∫ t′

0

h̃′(C̃mf
d (t, s))R̃mf

d (t′, s) ds ,

∂tR̃
mf
d (t, t′) = δ(t− t′)− ν̃mf(t)R̃mf

d (t, t′) +

∫ t

t′
h̃′′(C̃mf

d (t, s))R̃mf
d (t, s)R̃mf

d (s, t′) ds (G.22)

ν̃mf(t) =

∫ t

0

h̃′′(C̃mf
d (t, s))R̃mf

d (t, s)C̃mf
d (t, s) ds+

∫ t

0

h̃′(C̃mf
d (t, s))R̃mf

d (t, s) ds , (G.23)

where again h̃(z) = h(z)− h′(0)z.

Equations (G.21), (G.23) are independent of the dynamics of the second layer weights. These
equations are nothing but the DMFT equations describing gradient descent dynamics of the celebrated
spherical mixed p-spin glass model [17, 20, 8, 23], whose definition we recall next. Consider a
random cost function H(x) indexed x ∈ Sd−1, which is a centered Gaussian process with covariance
structure given by

E (H(x)H(y)) = d h̃(⟨x,y⟩) . (G.24)

Define the gradient flow dynamics

ẋ(t) = −P⊥
x(t)∇H(x(t)) , (G.25)

where P⊥
x(t) is the projector orthogonal to x(t). Then the high-dimensional asymptotics of this

dynamics is characterized by Eqs. (G.21), (G.23). In particular limd→∞⟨x(t),x(s)⟩ = C̃mf
d (t, t′)

almost surely.

A particularly interesting quantity is the asymptotic energy value in the mixed p-spin model:

E = lim
t→∞

lim
d→∞

1

d
H(x(t)) . (G.26)

The DMFT analysis for this problem implies that

E = − lim
t→∞

∫ t

0

h̃′(C̃mf
d (t, s))R̂mf

d (t, s) ds . (G.27)
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Figure 20: Evolution of second layer weights, as predicted by the numerical solution of Eq. (G.17).
Here we use h(z) = (9/10)z + z3/6, α = 0.3 and τ = 0.6. The straight line is just a guide to the
eyes to test the prediction of Eq. (G.29).

For h̃(z) = c2kz
k, k ≥ 2, we have the explicit expression [20, 19, 46]

E = −2ck

√
k − 1

k
. (G.28)

An explicit expression for E for general covariance structure is an unknown [23].

The asymptotic energy E has an interesting interpretation for the dynamics of two-layer networks
–within the SymmDMFT theory. Eq. (G.28) implies that

lim
t→∞

amf2(t)

t
= −τ√αE =: A∞ . (G.29)

In Fig. 20 we test the prediction of Eq. (G.29) by integrating numerically Eqs. (G.14) to (G.17) and
plotting the prediction for the second-layer weigths amf(t). We observe that at large t, amf2(t) ≈ A∞t,
with A∞ given by Eq. (G.29)as predicted.

We also note that CA(t, t) = −τ2 also in this timescale, and hence the train error does not change
significantly. Namely , for any constant t, we have

etr(t
√
m) =

1

2
τ2 + om(1) . (G.30)

If we use heuristically Eq. (G.28) and Eq. (G.12) beyond the
√
t time scale, we obtain

a(t) ≈ amf2
(
t/
√
m
)
≈ A∞

t√
m
. (G.31)

This suggests that a(t) becomes of order
√
m on timescale of order m. When this happens, the

network complexity is large enough to allow for interpolation, and hence we expect the dynamics to
change. Indeed a new dynamical regime emerges for t = Θ(m), as we will study next.

G.1.3 Third dynamical regime: t = Θ(m)

As anticipated, an additional regime arises on timescales of order m. In Figure 21 we plot the
evolution of the weights of the second layer as a function of t/m for increasing values of the width
m. The different curves collapse suggesting the following limit to exist

lim
m→∞

a(tm)√
m

= γmf3(t) . (G.32)

The limit curve appears to grows linearly at small t, γmf3(t) = A∞t + o(t), where A∞ is the
coefficient computed in the previous section, cf. Eq. (G.29). Hence, this third dynamical regime
matches directly with the previous one. As can be seen from the right plot, there appear to be a finite
limit limt→∞ γmf3(t) <∞.
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Figure 21: Evolution of the second layer weigths when training on pure noise data under mean
field initialization for t = Θ(m). Rescaled second layer weights a(t)/
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m as a function of t/m.

We plot solutions of the SymmDMFT equations for the setting of Fig. 18.
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Figure 22: Train error and Lagrange multiplier ν(t) on timescales of order m under mean field
initialization for pure noise data. Solutions of the SymmDMFT equations for the setting of Fig. 18.
Finite m curves accumulate on master curves suggesting the existence of scaling functions.

We now turn to the analysis of the train error. Recall that on the previous timescales, the train error
stays approximately constant, and equal to the train error of the null network, namely etr(t

√
m) =

τ2/2 + om(1) for any fixed t. In Fig. 22 we plot both the train error and the Lagrange multiplier ν
as a function of t/m. Again, as m grows, these curve converge to limit curves. This suggests the
existence of the following limits

lim
m→∞

etr(tm) = emf3
tr (t) , (G.33)

lim
m→∞

ν(tm) = νmf3(t) . (G.34)

Note that in this case, differently from the lazy initialization setting, the corresponding scaling
function do not depend on the initialization parameter a0.

In order to characterize the limits in Eqs. (G.33)-(G.34), we proceed as in Sec. F.1.4. Namely, in
Fig. 23 we plot the train error and the Lagrange multiplier ν as a function of the rescaled second layer
weights γ = a(t)/

√
m. We also plot the asymptotic value of train error and Lagrange multiplier

under the constrained GF dynamics in which second layer weigths are fixed to a(t) = γ
√
m and

do not evolve with time: elz2
tr,∞(γ) := limt→∞ elz2

tr (t, γ) and ν lz2
∞(γ) := limt→∞ ν lz2(t, γ). These are

computed by integration of the scaling theory in Section F.1.2.

The good collapse on these curves suggests to consider the the following construction, analogous to
Sec. F.1.4. Define the inverse function of t 7→ γmf3(t), denoted by (γmf3)−1. Then, define

εmf3(γ) = emf3
tr ((γmf3)−1(γ)) ,

νmf3
∗ (γ) = νmf3((γmf3)−1(γ)) .

(G.35)
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Figure 23 suggests that

εmf3(γ) ≈ elz2
tr,∞(γ) , (G.36)

νmf3
∗ (γ) ≈ ν lz2

tr,∞(γ) . (G.37)

Equations (G.36), (G.36) imply that on timescales of order m the dynamics is adiabatic. For each
incremental change of a on a the scale

√
m, all one-time quantities relax to the asymptotic value

which turns out to be the same as a constrained model with a(t)/
√
m = γ fixed.

The consequence of Eqs. (G.36)-(G.36) is that

lim
t→∞

γmf3(t) ≈ γ∗GF(α, τ) . (G.38)

where γ∗GF(α, τ) corresponds to the interpolation value of the initialization scale of a lazy model.

G.2 Multi-index model

In this section we consider the case in which the dataset is distributed according to a multi-index
model. For time scales beyond t = O(1), we will assume that h(z) = φ̂(z). This simplifies the
asymptotics for t large but of order one.

We identify two dynamical regimes emerging as m→ ∞:

• t = O(1): a(t) = O(1) but is not constant. Also, the projection v(t) of first layer
weights onto the latent space evolve as well as do train and test error. We further have
etr(t) = ets(t) + om(1): there is no overfitting. This evolution is captured the mean field
theory of [38, 14] which we recover as m→ ∞ limit of SymmDMFT .

• t = Θ(m): a(t) = Θ(
√
m), v(t) decreases towards 0 and train and test error diverge. In

this dynamical regime the network unlearns to a large extent the latent structure of the data
and overfit it.

G.2.1 First dynamical regime: t = Θ(1)

For timescales of order one, the SymmDMFT equations are solved, up to subleading terms as
m→ ∞, by the following ansatz

Cd(t, s) = Cmf1
d (t, s) + om(1) , Co(t, s) = Cmf1

o (t, s) + om(1) , (G.39)

Rd(t, s) = Rmf1
d (t, s) + om(1) , mRo(t, s) = Rmf1

o (t, s) + om(1) (G.40)

v(t) = vmf1(t) + om(1) , a(t) = amf1(t) . (G.41)
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The corresponding scaling equations are then given by

∂tR
mf1
o (t, t′) = −νmf1(t)Rmf1

o (t, t′)− αamf1(t)2h′(Cmf1
o (t, t))

(
Rmf1

d (t, t′) +Rmf1
o (t, t′)

)
,

∂tC
mf1
o (t, t′) = −νmf1(t)Cmf1

o (t, t′) + α⟨∇φ̂(vmf1(t)),vmf1(t′)⟩amf1(t)− αamf1(t)2h′(Cmf1
o (t, t))Cmf1

o (t, t′) ,

νmf1(t) = α⟨∇φ̂(vmf1(t)),vmf1(t)⟩amf1(t)− αamf1(t)2h′(Cmf1
o (t, t))Cmf1

o (t, t)

∂tC
mf1
d (t, t′) = −νmf1(t)Cmf1

d (t, t′) + α⟨∇φ̂(vmf1(t)),vmf1(t′)⟩amf1(t)− αamf1(t)2h′(Cmf1
o (t, t))Cmf1

o (t, t′) ,

∂tR
mf1
d (t, t′) = −νmf1(t)Rmf1

d (t, t′) + δ(t− t′) ,

∂tv
mf1(t) = −νmf1(t)vmf1(t) + α∇φ̂(vmf1(t))amf1(t)− αamf1(t)2h′(Cmf1

o (t, t))vmf1(t) ,

∂ta
mf1(t) = α

(
φ̂(vmf1(t))− amf1(t)h(Cmf1

o (t, t))
)
.

(G.42)

These equations are solved by setting:

Cmf1
o (t, t′) = ⟨vmf1(t),vmf1(t′)⟩ (G.43)
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Figure 26: Finite width corrections. The 1/m corrections to the second layer weights and the
projection on the latent space of the single index model on timescales of order 1. Dashed lines are
obtained by integrating numerically Eqs. (G.56) to (G.59) determining the limits m → ∞. Here,
φ̂(z) = h(z) = (9/10)z + z3/6 with τ = 0.6 and α = 0.3.

with vmf1(t), amf1(t) the solution of

∂tv
mf1(t) = αamf1(t)

(
Ik − vmf1(t)vmf1(t)T

) (
∇φ̂(vmf1(t))− amf1(t)h′(∥vmf1(t)∥2)vmf1(t)

)
,

∂ta
mf1(t) = α

(
φ̂(vmf1(t))− amf1(t)h(∥vmf1(t)∥2)

)
,

(G.44)

with initial conditions given by vmf1(0) = 0 and amf1(0) = a0.

Equations (G.44) coincide with the mean field theory of [38, 14, 45], when the latter are specialized
to the multi-index model studied here, under symmetric initializations [10]. (See also [2].) Using the
ansatz of Eqs. (G.39) to (G.41) in the formulas for training and test error (C.45), (C.46), we get

lim
m→∞

etr(t) = lim
m→∞

ets(t) = emf1(t) , (G.45)

with
emf1(t) =

1

2

[
τ2 + ∥φ∥2 − 2amf1(t)φ̂(vmf1(t)) + amf1(t)2h(∥vmf1(t)∥2)

]
. (G.46)

A particularly simple case is the one in which k = 1 (single index model) and φ = σ (whence φ̂ = h).
For a class of such activations with h′(0) > 0, we have amf1(t), vmf1(t) → 1 as t→ ∞ and therefore

lim
t→∞

emf1(t) =
τ2

2
. (G.47)

In other words, neurons align perfectly with latent direction, the generalization error vanishes, and
and train and test error converge for large constant t to the Bayes error τ2/2.

In Fig. 24 we compare the solution of Eqs. (G.44) with the numerical integrations of the Sym-
mDMFT equations for a range of values of m. As m increases, the SymmDMFT solutions converge
to the asymptotic predictions vmf1(t), amf1(t), confirming the above ansatz.

Similarly, in Fig. 25-left panel we compute the train and test error by solving the Sym-
mDMFT equations and compare the results to the asymptotic prediction provided by Eq. (G.46). We
observe that –as predicted– train and test error match on an increasingly long time interval. At a
certain point, they diverge: we will next characterize the timescale on which this happens.

G.2.2 Escape from the mean field dynamical regime

In order to understand on which time scale the dynamics diverges from mean field theory described
above, we will study small deviations from this theory. We expect that these deviations will diverge
with time. Characterizing this divergence will allow to determine time scale on which we exit the
mean field regime.

We focus on the case of a single index model k = 1, with φ̂ = h, and set a(0) = 1. We believe that
the qualitative conclusions obtained in this case apply more generally. We also assume h to be such
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that the long time asymptotics of mean field dynamical solutions is
lim
t→∞

amf1(t) = 1 , lim
t→∞

vmf1(t) = 1 . (G.48)

As mentioned in the previous section, this holds for a broad class of activations. In other words, for
time t large and yet of order one, the neurons are very well aligned.

We next study the corrections to the mean field solution. We claim that such corrections are of order
1/m and define the functions ã(t), ṽ(t), dots ,R̃o(t, t

′), via
m(a(t)− amf1(t)) = ã(t) + om(1) , (G.49)

m(v(t)− vmf1(t)) = ṽ(t) + om(1) , (G.50)

m(Cd(t, t
′)− Cmf1

d (t, t′)) = C̃d(t, t
′) + om(1) , (G.51)

m(Co(t, t
′)− Cmf1

o (t, t′)) = C̃o(t, t
′) + om(1) , (G.52)

m(Rd(t, t
′)−Rmf1

d (t, t′)) = R̃d(t, t
′) + om(1) , (G.53)

m(Ro(t, t
′)−Rmf1

o (t, t′)) = R̃o(t, t
′) + om(1) , (G.54)

m(ν(t)− νmf1(t)) = ν̃(t) + om(1) . (G.55)
Substituting the above form into the SymmDMFT equations and matching the next-to-leading order
in m we can obtain the equations for the 1/m corrections. It turns out that equations for ã, ṽ, C̃o

and ν̃ decouple from the equations for C̃d, R̃d and R̃o. Given that we are interested in the former
quantities we only report the corresponding equations:

dã(t)

dt
=αφ̂′(vmf1(t))ṽ(t)− αφ̂(vmf1(t))

∫ t

0

Σ
(1)
R (t, s) ds− αamf1(t)

[
h(1)− h(Cmf1

o (t, t))
]

(G.56)

+ α

∫ t

0

Σ
(1)
R (t, s)amf1(s)h(Cmf1

o (t, s))ds− αã(t)h(Cmf1
o (t, t))− αamf1(t)h′(Cmf1

o (t, t))C̃o(t, t)

− α

∫ t

0

Cmf1
A (t, s)amf1(s)

[
h′(Cmf1

d (t, s))Rmf1
d (t, s) + h′(Cmf1

o (t, s))Rmf1
o (t, s)

]
ds ,

dṽ(t)

dt
=− νmf1(t)ṽ(t)− ν̃(t)vmf1(t) + αφ̂(vmf1(t))ã(t) + αφ̂′′(vmf1(t))ṽ(t)amf1(t) (G.57)

− αφ̂′(vmf1(t))amf1(t)

∫ t

0

Σ
(1)
R (t, s) ds−

∫ t

0

[
M̃

(d)
R (t, s)−M

(0)
R,o(t, s)

]
vmf1(s) ds

−
∫ t

0

[
M

(1)
R,o(t, s)v

mf1(s) +M
(0)
R,o(t, s)ṽ(s)

]
ds ,

ν̃(t) =αφ̂′(vmf1(t))ṽ(t)amf1(t) + αφ̂′′(vmf1(t))vmf1(t)ṽ(t)amf1(t) (G.58)

+ αφ̂′(vmf1(t))vmf1(t)ã(t)− αφ̂′(vmf1(t))vmf1(t)

∫ t

0

Σ
(1)
R (t, s) ds

−
∫ t

0

[
M̃

(d)
R (t, s)Cmf1

d (t, s)−M
(0)
R,o(t, s)C

mf1
o (t, s)

]
ds

−
∫ t

0

[
M

(1)
R,o(t, s)C

mf1
o (t, s) +M

(0)
R,o(t, s)C̃o(t, s)

]
ds

−
∫ t

0

[
M̃

(d)
C (t, s)Rmf1

d (t, s) +M
(0)
C,o(t, s)R

mf1
o (t, s)

]
ds ,

∂C̃o(t, t
′)

∂t
=− νmf1(t)C̃o(t, t

′)− ν̃(t)Cmf1
o (t, t′) + αφ̂′′(vmf1(t))ṽ(t)vmf1(t′)amf1(t) (G.59)

+ αφ̂′(vmf1(t))ṽ(t′)amf1(t) + αφ̂′(vmf1(t))vmf1(t′)ã(t)

− αφ̂′(vmf1(t))vmf1(t′)amf1(t)

∫ t

0

Σ
(1)
R (t, s) ds

−
∫ t

0

[
M̃

(d)
R (t, s)Cmf1

o (t′, s) +M
(0)
R,o(t, s)C

mf1
d (t′, s)− 2M

(0)
R,o(t, s)C

mf1
o (t′s)

]
ds
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−
∫ t

0

[
M

(0)
R,o(t, s)C̃o(t

′, s) +M
(1)
R,o(t, s)C

mf1
o (t′, s)

]
ds

−
∫ t′

0

[
M̃

(d)
C (t, s)Rmf1

d (t′, s) +M
(0)
C,o(t, s)R

mf1
o (t′, s)

]
ds .

Here, we used the following auxiliary functions

Σ
(1)
R (t, s) = amf1(t)amf1(s)

[
h′(Cmf1

d (t, s))Rmf1
d (t, s) + h′(Cmf1

o (t, s))Rmf1
o (t, s)

]
, (G.60)

Cmf1
A (t, s) = −

[
τ2 + ht(1)− amf1(t)φ(vmf1(t))− amf1(s)φ(vmf1(s)) + amf1(t)amf1(s)h(Cmf1

o (t, s))
]
,

(G.61)

M̃
(d)
R (t, s) = αamf1(t)amf1(s)

[
h′(1)δ(t− s) + Cmf1

A (t, s)h′′(Cmf1
d (t, s))Rmf1

d (t, s)
]
, (G.62)

M
(0)
R,o(t, s) = α(amf1(t))2h′(Cmf1

o (t, s))δ(t− s) , (G.63)

M
(1)
R,o(t, s) = α

[
2amf1(t)ã(t)h′(Cmf1

o (t, t)) + (amf1(t))2h′′(Cmf1
o (t, t))C̃(t, t)

]
δ(t− s) (G.64)

− αamf1(t)amf1(s)Σ
(1)
R (t, s)h′(Cmf1

o (t, s)) (G.65)

+ αamf1(t)amf1(s)Cmf1
A (t, s)h′′(Cmf1

o (t, s))Rmf1
o (t, s) , (G.66)

M̃
(d)
C (t, s) = αamf1(t)amf1(s)Cmf1

A (t, s)h′(Cmf1
d (t, s)) , (G.67)

M
(0)
C,o(t, s) = αamf1(t)amf1(s)Cmf1

A (t, s)h′(Cmf1
o (t, s)) . (G.68)

Note that Eqs. (G.56) to (G.59) are a set of four integral-differential equations for the four func-
tions ã(t), ṽ(t), ν̃(t), C̃o(t, t

′). The original SymmDMFT equations involve three other functions:
C̃d(t, t

′), R̃d(t, t
′), R̃o(t, t

′)? We also remark that: (i) These equations are linear in the unknowns
ã(t), ṽ(t), ν̃(t), C̃o(t, t

′); (ii) They can be integrated numerically with the same strategy used to
integrate the SymmDMFT equations.

In Fig. 26 we plot the deviations from the mean field limit m(a(t)− amf1(t)) and m(v(t)− vmf1(t))
as a function of time t, as obtained by solving the SymmDMFT equations1, for several values of m.
We also plot the predicted limits ã(t), ṽ(t), which are obtained by integrating Eqs. (G.56) to (G.59)
As m gets large, the finite-m curves appear to converge to the predictions ã(t), ṽ(t).

In Figure 27 we plot the result of integrating Eqs. (G.56) to (G.59) over a wider time window. We
observe that ṽ, ã, ν̃ and C̃o(t, t) diverge linearly with t.

This suggests the following asymptotics for these corrections

lim
t→∞

ã(t)

t
= a∗ , lim

t→∞

ṽ(t)

t
= v∗ , (G.69)

lim
t→∞

ν̃(t)

t
= ν∗ , lim

t→∞

C̃o(t, t)

t
= c∗ . (G.70)

The values of the constant a∗, v∗, ν∗ and c∗ can be obtained analytically by using the above ansatz in
Eqs. (G.56) to (G.59). We obtain that they solve the following linear equations

0 = φ̂′(1)v∗ + φ̂(1)a∗ , (G.71)

0 = φ̂′(1)c∗ + 2φ̂(1)a∗ , (G.72)

0 = −φ̂′(1)ν∗ − φ̂′(1)
(
αφ̂′′(1)− αφ̂′(1)− α(φ̂′(1))2

)
a∗ + 2αφ̂(1)φ̂′′(1) , (G.73)

0 = −1

2
c∗ − ν1c∗ − 2ν∗v1 + 4v1ατ

2 , (G.74)

where

v1 := lim
t→∞

(v(t)− 1)t , (G.75)

ν1 := lim
t→∞

ν̃(t)t . (G.76)

The asymptotic linear behavior predicted by Eqs. (G.69), (G.70), with the coefficients determined by
Eqs. (G.71)-(G.74) is plotted in Fig. 27. We observe good agreement with the numerical integration
of Eqs. (G.56) to (G.59).
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ã(t)
a∗t
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Figure 27: Finite width corrections to dynamical observables under mean field initialization.
The 1/m corrections to v(t), a(t), Co(t, t) and ν̃(t) as a function of time as extracted from the
numerical integration of the corresponding equations. The dashed lines are the asymptotic predictions
for t→ ∞ which show that the divergence of all quantities is linear with time. Here, φ̂(z) = h(z) =
(9/10)z + z3/6 with τ = 0.6 and α = 0.3.
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Figure 28: econd layer weights and projection on of the first layer weigths onto the latent
structure of the data for gradient flow under mean field initialization on timescales of order m.
Left: rescaled second layer weights a(t)/m as a function of the rescaled time t/m. The arrow on
the right points at the threshold γ∗GF(α,φ, τ) for interpolation under gradient flow, see Section F.2.3.
Right: projection of the first layer weights on the latent space in the single index model as a function
of rescaled time t/m. Here, φ̂(z) = h(z) = (9/10)z + z3/6 with τ = 0.6 and α = 0.3. v = 1/γ in
(F.57).
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Figure 30: Train and test error of gradient flow under mean field initialization, for increasing
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m. Dashed line is the Bayes

error τ2/2. Curves are traversed in time from top to bottom. Right: test error versus train error.
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and α = 0.3.
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Figure 31: The difference between test and train error for the single index data. Left panel: the
difference between test and train error plotted as a function of a/

√
m and compared to what is obtained

from a model with fixed second layer weights initialized with Lazy scaling. Right panel: the difference
between test and train error on timescales of order m. Here, φ̂(z) = h(z) = (9/10)z + z3/6 with
τ = 0.6 and α = 0.3.
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The above analysis implies that (considering to be definite second layer weights, and projection of
first layer weigths onto the latent direction), for m≫ 1, t≫ 1,

a(t) = amf1(t) +
1

m

(
a∗t+ o(t)

)
+

1

m
∆a(t,m) , (G.77)

v(t) = vmf1(t) +
1

m

(
v∗t+ o(t)

)
+

1

m
∆v(t,m) , (G.78)

where limm→∞ ∆a/v(t,m) = 0. If we neglect the error terms, and assume that this expression
holds for t larger than O(1) in m, then it indicates that a(t), v(t) differ significantly from the mean
field prediction when t/m becomes of order one. We expect therefore a third dynamical regime for
t = Θ(m), which will be the object of the next section.

G.2.3 Second dynamical regime: t = Θ(m) and beyond

As pointed out at the end of the previous section, we expect a third dynamical regime when t = Θ(m).
By this time, the stability calculation in the previous section indicates that second layer weights
become of order

√
m. Figure 28 confirms this, and shows that, in the same regime v(t) becomes

small. In fact, numerical solution of the SymmDMFT equations are consistent with a(t) = Θ(
√
m),

v(t) = Θ(1/
√
m), and a(t)v(t) ≈ 1 for t = Θ(m).

For a small constant c denote by t0(m; c) the time at which a(t0(m; c)) = c
√
m. We then expect

that the following exists

lim
m→∞

a(t0(m; c) + θ w(m))√
m

= γmf3(θ) , (G.79)

lim
m→∞

v(t0(m; c) + θ w(m))
√
m = v+(θ) , (G.80)

provided w(m) is a suitable function (with w(m) = O(t0(m; c))). The stability analysis in the
previous section suggests that t0(m; c) ≤ t∗(c)m+ o(m). Our numerical solutions do not cover a
large enough range of values of m to verify this ansatz, and determine the scaling of w(m) with m.
On the other hand, they indicate that indeed t0(m; c) = Θ(m).

Since the second layer weights become of order
√
m in this dynamical regime, train and test error

start to differ significantly. We expect

lim
m→∞

etr(t0(m; c) + θ w(m)) = emf3
tr (θ) , (G.81)

lim
m→∞

etr(t0(m; c) + θ w(m)) = emf3
ts (θ) . (G.82)

This picture is confirmed by Fig. 30, which reports train and test error as predicted by numerical
solutions of the SymmDMFT equations for increasing values of m. On the left, we plot the train
error as a function of the rescaled second layer weights γ = a/

√
m. We observe that curves for

different values of m decrease until they reach the Bayes error τ2. On this phase however different
curves do not collapse corresponding to the fact that γ vanishes. In the second phase, γ grows to be
of order one and correspondingly the train error decreases below the Bayes error: this is the third
dynamical regime. Overfitting takes place at this point.

In the right frame of Fig. 30, we plot test error versus train error. We observe, again, the two phases
emerging for large m. In the first phase train error and test error are closely matched. In the second
phase, train error decreases and test error correspondingly increases. Again, this takes place when
t = Θ(m).

Finally, in Fig. 31, we repeat similar plots for the generalization error (difference between test and
train error).

When t/m is large, the train error vanishes. We observe from Figure 28, left frame that, as t →
∞, rescaled second layer weights reach a finite limit that is close to the interpolation threshold
characterized in Section F.2.3. Namely

lim
τ→∞

γ+(θ) ≈ γ∗GF(α,φ, τ) . (G.83)

1We note that solving the SymmDMFT equations accurately enough to capture these corrections requires
either to use very fine discretization, or a higher-order integration method.

62



1

10

100

1000

0.2 0.4 0.6 0.8 1

t r
el
/
m

α

m = 5
m = 10
m = 20
m = 25
m = 40
m = 100
m = 500
m = 1000

1

10

100

1000

0.1 1

t r
el
/
m

|α− αGF(m)|

m = 5
m = 10
m = 20
m = 25
m = 40
m = 100
m = 500
m = 1000

f(x) = 6.4x−2

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

10 100 1000

α
G
F
(m

)

m

1

10

100

1000

0.1 1

t r
el

αGF − α

m→ ∞
∼ x−2

Figure 32: The interpolation transition for pure noise data and a network with second layer
weights that do not evolve with time, fixed at a = 1, see Section H. The noise level is fixed to τ = 1
and we considered h(z) = (3/10)z + z2/2. Top left panel: relaxation time ((rate for convergence to
vanishing error) for different values of m. Top right panel: logarithmic plot of the relaxation time.
The value of the algorithmic threshold for different values of m is a fitting parameter. Bottom left
panel: values of the algorithmic thresholds as a function of m. Bottom right panel: the relaxation
time as extracted from the scaling limit of the SymmDMFT equations in the m → ∞ limit. The
algorithmic threshold is in this case αGF(∞) ≈ 1.18 which fits well the behavior plotted in the left
bottom plot.

H Dynamics under mean field initialization for n/d = α fixed

H.1 Interpolation threshold at fixed a(t) = a0

In this section, we consider an alternative scaling in the large width limit. As before, we use the
SymmDMFT equations, and therefore study the limit n, d → ∞ with n/d → α. In the previous
sections we studied the large width limit m→ ∞ with α = α/m fixed. In that setting interpolation
is only possible when the network complexity scales, i.e. second-layer weights are a = Θ(

√
m)

Here instead we keep a(t) = 1 and do not let evolve second-layer weights with GF. We consider
pure noise data, and show that interpolation takes place if α < αGF(m), while the train error remains
bounded away from zero for α > αGF(m). As expected from Gaussian complexity considerations,
the threshold αGF(m) has a finite limit as m → ∞. In particular, for any α > 0, a network with a
bounded cannot interpolate pure noise data.

As thorough in Sec.F we fix α and integrate numerically the SymmDMFT equations for finite but
increasing values of m. We fix the initialization scale a0 and the noise level τ and change only α.

We observe that for α small enough the train error decreases exponentially fast to zero. Namely,
recalling that etr(t;α) := limn,d→∞ R̂n(a(t),W (t)), we have that

α < αGF(m) ⇒ etr(t;α) = exp{−t/t∗rel(α,m) + o(t)} . (H.1)

However, the relaxation time time t∗rel(α,m) increases as α ↑ αGF(m). Concretely, we define
trel(α,m, c) as the infimum time such that etr(t;α) ≤ c, where c is some small constant. In practice,
we set c = 10−7. The results are plotted as a function of α for several values of m in Fig. 32, top left
plot.
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Figure 33: heck of the convergence of the numerical solution of the SymmDMFT for α fixed to
the scaling solution for m→ ∞. The left panel shows the behavior of the train error while the right
panel shows the behavior of the correlation Cd(t, 0). Both panels refer to a model where the teacher
is pure noise with τ = 1 and the student is made of of neurons whose covariance structure is given by
h(z) = (3/10)z + z2/2.

For each value of m the relaxation time appears to diverge at the critical point αGF(m) as an inverse
power of αGF(m)− α, namely:

α ↑ αGF(m) ⇒ trel(α,m, c) =
L(m, c)

(αGF(m)− α)ν
(
1 + o(1)

)
. (H.2)

The exponent ν appears to be independent of m. We fit this form to our data and extract the
interpolation thresholds αrel(m). In Fig. 32, top right, we plot trel(α,m, c)/m as a function of the
gap to this threshold. This plot confirms the form (H.2), with exponent ν ≈ 2. Also, the fact that
different curves superimpose indicate that L(m, c) ≈ L∗(c)m.

The estimated interpolation thresholds αGF(m) are plotted as a function of m in the bottom left of
Fig. 32. These data are consistent with the existence of a finite limit

αGF(∞) = lim
m→∞

αGF(m) , (H.3)

and numerically αGF(∞) ≈ 1.18.

In the next subsection, we derive equations describing the m → ∞ limit for α = O(1), a = O(1)
fixed. Studying these equations yields further support to Eq. (H.3).

H.2 Infinite width limit at fixed α

In order to study the limit m → ∞ at fixed α, we discuss the limit of the SymmDMFT equations
when m→ ∞. As we have seen previously, the relaxation time of the train error is proportional to
m. This is clearly visible in Fig. 32-top/left. This suggests that for m→ ∞, dynamics takes place on
timescales of order m. Therefore we propose the following asymptotic ansatz

mRo(tm, sm) = R̃α
o (t, s) + om(1) , Co(tm, sm) = C̃α

o (t, s) + om(1) , (H.4)

Rd(tm, sm) = R̃α
d (t, s) + om(1) , Cd(tm, sm) = C̃α

d (t, s) + om(1) , (H.5)

mν(tm) = ν̃α(t) + om(1) , (H.6)

which defines a set of functions, R̃α
d , C̃α

d , R̃α
o , C̃α

o and ν̃α. We now describe the equations that these
scaling functions satisfy satisfy. First we define C̃α

A and R̃α
A as the solution of

δ(t− t′) =

∫ t

t′

[
δ(t− s) + Σ̃R(t, s)

]
R̃α

A(s, t
′ds , )

0 =

∫ t

0

[
δ(t− s) + Σ̃R(t, s)

]
C̃α

A(t
′, s) ds+

∫ t′

0

dsΣ̃C(t, s)R̃
α
A(t

′, s) ds ,

(H.7)
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where
Σ̃R(t, s) = h′(C̃α

d (t, s))R̃
α
d (t, s) + h′(C̃α

o (t, s))R̃
α
o (t, s)

Σ̃C(t, s) = τ2 + h(C̃α
o (t, s)) .

(H.8)

Then we define the limit memory kernels:

M̃
(d)
R (t, s) = αC̃A(t, s)h

′′(C̃α
d (t, s))R̃

α
d (t, s) ,

M̃
(d)
C (t, s) = αC̃α

A(t, s)h
′(C̃α

d (t, s)) ,

M̃
(o)
R (t, s) = α

[
C̃A(t, s)h

′′(C̃α
o (t, s))R̃

α
o (t, s) + R̃α

A(t, s)h
′(C̃α

o (t, s))
]
,

M̃
(o)
C (t, s) = αC̃α

A(t, s)h
′(C̃α

o (t, s)) .

(H.9)

Substituting the above ansatz in the SymmDMFT equations and matching the leading order terms,
we get the following equations that determine R̃α

d , C̃α
d , R̃α

o , C̃α
o and ν̃α:

∂tC̃
α
d (t, t

′) =− ν̃α(t)C̃α
d (t, t

′)−
∫ t

0

[
M̃

(d)
R (t, s)C̃α

d (t
′, s) + M̃

(o)
R (t, s)C̃α

o (t
′, s)

]
ds

−
∫ t′

0

[
M̃

(d)
C (t, s)R̃α

d (t
′, s) + M̃

(o)
C (t, s)R̃α

o (t
′, s)

]
ds , (H.10)

∂tC̃
α
o (t, t

′) =− ν̃α(t)C̃α
o (t, t

′)−
∫ t

0

[
M̃

(d)
R (t, s) + M̃

(o)
R (t, s)

]
C̃α

o (t
′, s) ds

−
∫ t′

0

[
R̃α

o (t
′, s) + R̃α

d (t
′, s)

]
M̃

(o)
C (t, s) ds , (H.11)

∂tR̃
α
d (t, t

′) = −ν̃α(t)R̃α
d (t, t

′) + δ(t− t′)−
∫ t

t′
dsM̃

(d)
R (t, s)R̃α

d (s, t
′) , (H.12)

∂tR̃
α
o (t, t

′) =− ν̃α(t)R̃α
o (t, t

′)−
∫ t

t′

[
M̃

(d)
R (t, s)R̃α

o (s, t
′) + M̃

(o)
R (t, s)R̃α

d (s, t
′)

+M̃
(o)
R (t, s)R̃α

o (s, t
′)
]
ds , (H.13)

ν̃α(t) =−
∫ t

0

ds
[
M̃

(d)
R (t, s)C̃d(t, s) + M̃

(o)
R (t, s)C̃α

o (t, s)
]
ds

−
∫ t

0

[
M̃

(d)
C (t, s)R̃α

d (t, s) + M̃
(o)
C (t, s)R̃α

o (t, s)
]
ds . (H.14)

These are to be solved with boundary condition

C̃α
o (0, 0) = 0 , R̃α

o (0, 0) = 0 , (H.15)

C̃α
d (0, 0) = 1 , R̃α

d (0
+, 0) = 1 . (H.16)

The scaling behavior of the train error is then given by

lim
m→∞

etr(t) = −1

2
C̃α

A(t, t) =: eαtr(t) . (H.17)

In order to test the accuracy of the asymptotic analysis developed in this sections, we solved
numerically the SymmDMFT equations for increasing values of m and compare the results to the
numerical integration of Eqs. (H.10), (H.14) presented in this section. Some results of this comparison
are presented in Fig. 33, which shows good agreement between finite-m curves and m→ ∞ limit.

The solution of Eqs. (H.10), (H.14) provides another route to estimate the large-m interpolation
threshold αGF(∞) at fixed a(t) = 1. Namely, we solve the equations numerically and extract the
trel(α,∞, c), which is defined analogously to above. We then fit the divergence of trel(α,∞, c)
at αGF(∞) according to Eq. (H.2). We obtain αGF(∞) ≈ 1.18, in agreement with the threshold
obtained by extrapolating the finite-m thresholds αGF(m). In the bottom right plot of Fig. 32 we plot
trel(α,∞, c) as function of αGF(∞)− α. This confirms the behavior of Eq. (H.2) with ν ≈ 2.

We conclude by emphasizing that, throughout this section α(t) = 1 and τ = 1 were fixed. If we
generalize to arbitrary α(t) = a0 and arbitrary τ > 0, the threshold αGF(m) will of course on these
quantities through the ratio a0/τ .
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I Details about SGD simulations

In this appendix we provide some details about the numerical simulations with stochastic gradient
descent (SGD) presented in Figures 2, 4.

We generate data according to the pure noise model yi = εi (Fig. 2), yi = φ(wT
∗xi) + εi (Fig. 4),

i ≤ n. We learn the two-layer network of Eq. (1.1), see below for the class definition.

class Net(nn.Module):
def __init__(self , a, m, d):

super().__init__ ()
self.m = m
self.lin1 = nn.Linear(d,m,bias=False)
self.lin1.weight.data = (1/np.sqrt(d))*torch.randn((m,d))
self.lin2 = nn.Linear(m,1,bias=False)
self.lin2.weight.data [0,:] = a
self.act = Myact()
self.project ()

def forward(self , x ):
x1 = self.act(self.lin1(x))
return self.lin2(x1)/self.m

def project(self , epsilon):
row_norms = torch.norm(self.lin1.weight.data , dim=1, keepdim=

True)
row_norms = torch.clamp(row_norms , min=epsilon)
self.lin1.weight.data = self.lin1.weight.data/row_norms

As shown in this code, we use the initialization
(
a0,W 0

)
= P B

(
a0,W 0

)
, (I.1)

a0 = (a0, . . . , a0) , (W0,ij)i≤m,j≤d ∼ N(0, 1/d) . (I.2)

where P B projects first layer weights to the unit ball:

P B

(
a, (w1, . . . ,wm)

)
=

(
a,

( w1

∥w1∥ ∧ 1
, . . . ,

wm

∥wm∥ ∧ 1

))
. (I.3)

We use the standard SGD iteration without weight decay and constant stepsize η, and batch size b:

θk+1 = θk − η∇R̂S(k)(θk) , R̂S(θ) =
1

2|S|
∑

i∈S

(
yi − f(xi;θ)

)2
, (I.4)

θk+1 = P B(θk+1) . (I.5)

The optimizer is defined in the code below

optimizer = optim.SGD(net.parameters (), lr=lr, momentum =0.,
weight_decay =0.)

lambda_step = lambda epoch: 1
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer , lr_lambda=

lambda_step)

In the simulations of Figures 2, and 4 we use batch size b = 100 and step size η = 0.1. Each symbol
reports the average of Nsim = 10 simulations.

J Lower bounding the overfitting timescale

Throughout this appendix we use t to denote the rescaled time t̂ introduced in Section 3.

J.1 Proof of Theorem 3.1

By computing the derivative ∂ai
R̂n(a(t),W (t)), we get

d

dt

∣∣aℓ(t)
∣∣ ≤

∣∣∣∣∣
1

n

n∑

i=1

(
yi − f(xi;a(t),W (t)

)
σ(wℓ(t)

Txi)

∣∣∣∣∣
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≤
√
2R̂n(a(t),W (t)) ·

√√√√ 1

n

n∑

i=1

σ(wT
ℓ xi)2

≤ 4L

√
2R̂n(a(0),W (0)) ·

√√√√ 1

n

n∑

i=1

(1 + (wℓ(t)Txi)2)

≤ 10L

√
2R̂n(a(0),W (0)) ,

where, for n ≥ d, the last inequality holds with probability at least 1 − 2 exp(−cn) (for some
universal c > 0) by standard upper bounds on the norm of random matrices [53]. Further

√
2nR̂n(a(0),W (0)) =

∥∥∥y − 1

m

m∑

i=1

aiσ(Xwi)
∥∥∥

(a)

≤ ∥y∥+ a0 max
ℓ≤m

∥∥σ(Xwℓ(0))
∥∥

(b)

≤ τ∥g∥+ ∥φ(XU)∥+ a0 max
ℓ≤m

∥∥σ(Xwℓ(0))
∥∥

≤ τ∥g∥+ L∥XU∥+√
n|φ(0)|+ a0L

∥∥X
∥∥

op
+ a0

√
n|σ(0)| ,

where in (a) it is understood that σ is applied entrywise to Xwi ∈ Rn and in (b) we have g ∼
N(0, In), and φ is applied row-wise to XU ∈ Rn×k. By using standard concentration on the norm
of random matrices, also with probability 1− exp(−cn), we have (for m ≤ n)

√
2R̂n(a(0),W (0)) = C(τ +

√
k + a0L) .

Summarizing the above bounds, we have

d

dt

∣∣aℓ(t)
∣∣ ≤ a1 ,

which implies the first claim by integration.

To prove the second claim, we consider the following sets of parameters W∞
m,d(a) ⊆ Wm,d(a)

(which will also prove useful in the next section)

Wm,d(a) :=
{
(a,W ) ∈ Rm × Rm×d :

∥a∥1
m

≤ a, ∥wi∥2 = 1 ∀i ≤ m
}
, (J.1)

W∞
m,d(a) :=

{
(a,W ) ∈ Rm × Rm×d : ∥a∥∞ ≤ a, ∥wi∥2 = 1 ∀i ≤ m

}
. (J.2)

The second claim follows in turn if we prove that there exists a universal constant C such that

sup
(a,W )∈Wm,d(a)

∣∣R̂n(a,W )− R(a,W )
∣∣ ≤ C(L2a2 + τ2)

√
d

n
. (J.3)

This is a standard estimate, that we reproduce for the readers’ convenience.

We begin by bounding the expectation of the supremum by symmetrization and contraction inequali-
ties. Letting (ξi)i≤n ∼iid Unif({+1,−1}), we have

E sup
(a,W )∈Wm,d(a)

∣∣R̂n(a,W )− R(a,W )
∣∣ ≤ E sup

(a,W )∈Wm,d(a)

1

n

n∑

i=1

ξi
(
yi − f(xi;a,W )

)2

≤ 2E sup
(a,W )∈Wm,d(a)

1

n

n∑

i=1

ξiyif(xi;a,W ) + E sup
(a,W )∈Wm,d(a)

1

n

n∑

i=1

ξif(xi;a,W )2

=: 2E1 + E2 .
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We begin by bounding E1:

E1 =E sup
(a,W )∈Wm,d(a)

m∑

j=1

aj
m

1

n

n∑

i=1

ξiyiσ(w
T
j xi)

≤aE sup
∥w∥=1

1

n

n∑

i=1

ξiyiσ(w
Txi)

(a)

≤aLE sup
∥w∥=1

1

n

n∑

i=1

ξi(1 + |yi|)wTxi

≤aLE
{∥∥∥ 1

n

n∑

i=1

ξi(1 + |yi|)xi

∥∥∥
}

≤CaL(L+ τ)

√
d

n
,

where in (a) we applied the contraction inequality of [36] to the function ψi(t) = yiσ(t/(|yi|+ 1)).

We next bound term E2:

E2 =E sup
(a,W )∈Wm,d(a)

m∑

j,l=1

ajal
m2

1

n

n∑

i=1

ξiσ(w
T
j xi)σ(w

T
l xi)

≤ a2E sup
w,w̃∈Sd−1

1

n

n∑

i=1

ξiσ(w
Txi)σ(w̃

Txi)

(b)

≤ CL2a2E sup
w∈Sd−1

1

n

n∑

i=1

ξiw
Txi

≤ CL2a2
√
d

n
,

where inequality (b) follows by applying the contraction inequality of [36] to ψ(t1, t2) = σ(t1)σ(t2)
which is CL2-Lipschitz because ∥σ∥Lip, ∥σ∥∞ ≤ L.

Summarizing, we proved that

E sup
(a,W )∈Wm,d(a)

∣∣R̂n(a,W )− R(a,W )
∣∣ ≤ C(L2a2 + τ2)

√
d

n
. (J.4)

In order to complete the proof of Eq. (J.3), we will show that the supremum concentrates around its
expectation. For fixed (a,W ) ∈ Wm,d(a), we have

∣∣f(x;a,W )− f(x′;a,W )
∣∣ ≤ La∥x− x′∥2 ,∣∣φ(UTx)− φ(UTx′)
∥∥ ≤ L∥x− x′∥2 .

We write R̂n(X;a,W ) to emphasize the dependence of the risk on X Letting r(xi;a,W ) =

φ(UTx)− f(x;a,W ), we have

∇xiR̂n(X;a,W ) =
1

n

(
εi + r(xi;a,W )

)
∇xir(xi;a,W ) ,

⇒
∥∥∇xi

R̂n(X;a,W )
∥∥ ≤ C

n
(|εi|+ La)La .

Hence
∥∥∇XR̂n(X;a,W )

∥∥ ≤ C√
n
La

(
La+

∥ε∥√
n

)

≤ C ′
√
n
La(La+ τ) ,
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where the last inequality holds on an event that has probability at least 1−e−n. DefiningZn,d,m(a) :=

sup(a,W )∈Wm,d(a)

∣∣R̂n(a,W )− R(a,W )
∣∣, Borell inequality yields

P
{∣∣Zn,d,m(a)− EZn,d,m(a)

∣∣ ≥ B t
}
≤ 2 e−nt2 + e−n ,

B := C ′′La(La+ τ) .

Together with Eq. (J.4), we thus obtain that the following holds with probability 1− 2e−t − e−n

E sup
(a,W )∈Wm,d(a)

∣∣R̂n(a,W )− R(a,W )
∣∣ ≤ C(L2a2 + τ2)

√
d

n
+ C(L2a2 + τ2)

√
t

n
.

This yields the desired claim.

J.2 Proof of Theorem 3.2

We introduce the notations:

gw
n,ℓ(a,W ) :=

m

|aℓ|
[
∇wℓ

R̂n(a,W )−∇wℓ
R(a,W )

]
, (J.5)

gan,ℓ(a,W ) := m
[
∇aℓ

R̂n(a,W )−∇aℓ
R(a,W )

]
. (J.6)

We begin by establishing a uniform convergence lemma.

Lemma J.1. Under the data distribution of Section A, assume ∥φ∥∞ ≤ L and the activation function
to be bounded differentiable with Lipschitz continuous first derivative ∥σ∥∞, ∥σ′∥∞, ∥σ′∥Lip ≤ L.
Then there exists a universal constant C1, and a constant c0 > 0 dependent on L, τ, α such that, with
probability at least 1− 2 exp(−nc0),

sup
(a,W )∈Wm,d(a)

max
ℓ≤m

∥∥gw
n,ℓ(a,W )

∥∥ ≤ C(L2a+ τ2)

√
d

n
log(ne/d) , (J.7)

sup
(a,W )∈Wm,d(a)

max
ℓ≤m

∣∣gan,ℓ(a,W )
∣∣ ≤ C(L2a+ τ2)

√
d

n
. (J.8)

Proof. Gradient with respect to wℓ. By a concentration argument, it is sufficient to consider the
expected supremum. Writing the formula for ∇wℓ

R̂n and using a standard symmetrization argument,
we get

E sup
(a,W )∈Wm,d(a)

∥∥gw
n,ℓ(a,W )

∥∥ = E sup
(a,W )∈Wm,d(a),∥u∥≤1

⟨u, gw
n,ℓ(a,W )⟩

≤ 2E sup
w,u

1

n

n∑

i=1

ξiyiσ
′(wTxi)u

Txi + 2 aE sup
w,w,u

1

n

n∑

i=1

ξiσ
′(wTxi)σ(w

Txi)u
Txi

=: B1 +B2 ,

where the ξi are i.i.d. Radamacher random variables and in the last two lines it is understood that the
supremum is over ∥w∥, ∥w∥, ∥u∥ ≤ 1. Consider the second term in the last expression. Defining
η(x) = x1|x|≤M +M(1x>M − 1x<−M ), and η(x) = x− η(x), we have

B2 = 2aE sup
w,w,u∈Bd(1)

1

n

n∑

i=1

ξiσ
′(wTxi)σ(w

Txi)u
Txi

≤ 2aE sup
w,w,u∈Bd(1)

1

n

n∑

i=1

ξiσ
′(wTxi)σ(w

Txi)η(u
Txi)

+ 2aE sup
w,w,u∈Bd(1)

1

n

n∑

i=1

ξiσ
′(wTxi)σ(w

Txi)η(u
Txi)

=: B2,1 +B2,2 .
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Further defining ϕ(t1, t2, t3) := σ(t1)σ
′(t2)η(t3) (which is CL2M -Lipschitz for M ≥ 1), we have

B2,1 = aE sup
w,w,u∈Bd(1)

1

n

n∑

i=1

ξiϕ(w
Txi,w

Txi,u
Txi) . (J.9)

Using the contraction inequality of [36], we get

B2,1 ≤ CL2Ma

{
E sup

w∈Bd(1)

1

n

n∑

i=1

ξiw
Txi + E sup

w∈Bd(1)

1

n

n∑

i=1

ξiw
Txi + E sup

u∈Bd(1)

1

n

n∑

i=1

ξiu
Txi

}

≤ CL2Ma

√
d

n
.

Next consider B2,2:

B2,2 ≤ 2aL2E sup
u∈Bd(1)

1

n

n∑

i=1

|η(uTxi)|

≤ 2aL2 sup
u∈Bd(1)

E|η(uTxi)|+ 2aL2E sup
u∈Bd(1)

1

n

n∑

i=1

ξi|η(uTxi)|

≤ CL2ae−M2/4 + CL2a

√
d

n
,

where the last inequality holds because uTxi is Gaussian with variance ∥u∥2, and using again the
contraction inequality. Collecting various terms and optimizing over M ≥ 1, we obtain

B2 ≤ CL2a
{
M

√
d

n
+ e−M2/4

}

≤ CL2a

√
d

n
log(n/d) .

The proof of Eq. (J.7) is completed by bounding B1 along the same lines.

Gradient with respect to aℓ. Writing ∇aℓ
R̂n and using symmetrization, we get

E sup
(a,W )∈Wm,d(a)

∣∣gan,ℓ(a,W )
∣∣ = E sup

(a,W )∈Wm,d(a)

gan,ℓ(a,W )

≤ 2E sup
W ,u

1

n

n∑

i=1

ξiyiσ(w
T
ℓ xi) + 2E sup

a,W ,u

1

n

n∑

i=1

ξi

m∑

j=1

aj
m
σ(wT

j xi)σ(w
T
ℓ xi)

=: D1 +D2 .

Consider term D2, and define the L2-Lipschitz function ψ(t1, t2) := σ(t1)σ(t2),

D2 ≤ 2aE sup
W ,u

max
j≤m

1

n

n∑

i=1

ξiσ(w
T
j xi)σ(w

T
ℓ xi)

≤ 2aE sup
w,w∈Bd(1)

1

n

n∑

i=1

ξiψ(w
Txi,w

Txi)

≤ CL2a

√
d

n
.

Term D1 is controlled analogously, yielding the proof of Eq. (J.8).

We next prove some continuity properties of the population risk R. It is useful to recall the form:

R(a,W ) =
1

2
(τ2 + ∥φ∥2)− 1

m

m∑

i=1

aiφ̂(U
Twi) +

1

2m2

m∑

i,j=1

aiajh(w
T
i wj) . (J.10)
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Lemma J.2. Under the data distribution of Section A, assume ∥φ∥∞ ≤ L that φ and σ are
bounded differentiable with Lipschitz continuous first derivative, ∥σ∥∞, ∥σ′∥∞, ∥σ′∥∞ ≤ L,
∥φ∥∞, ∥∇φ∥∞, ∥∇φ∥Lip ≤ L, L ≥ 1. Then, there exists an absolute constant C such that for
any (a,W ), (a, W̃ ) ∈ Wm,d(a):

∥∥∇wℓ
R(a, W̃ )−∇wℓ

R(a,W )
∥∥ ≤ CL2 |aℓ|

m
(1 + a)max

j≤m

∥∥w̃j −wj

∥∥ , (J.11)

∣∣∂aℓ
R(a, W̃ )− ∂aℓ

R(a,W )
∣∣ ≤ CL2

m
(1 + a)max

j≤m

∥∥w̃j −wj

∥∥ , (J.12)

and
∥∥∇wℓ

R(ã,W )−∇wℓ
R(a,W )

∥∥ ≤ CL2

m
(1 + a)|ãℓ − aℓ|+ CL2 |aℓ|

m2
∥ã− a∥1 , (J.13)

∣∣∂aℓ
R(ã,W )− ∂aℓ

R(a,W )
∣∣ ≤ CL2

m2

∥∥ã− a
∥∥
1
. (J.14)

Proof. As a preliminary remark, the assumptions on φ, σ imply similar smoothness properties
of φ̂, h. In particular, recall that h(q) = E[σ(G1)σ(Gq)] for (G1, Gq) jointly Gaussian, cen-
tered with unit variance and covariance E[G1, Gq] = 1, whence its k-th derivative is h(k)(q) =

E[σ(k)(G1)σ
(k)(Gq)] (whenever σ ∈ C(k)(R)). Therefore, the assumptions on σ imply that ∥h′∥∞,

∥h′∥Lip ≤ L2. Similarly, ∥∇φ̂∥∞, ∥∇φ̂∥Lip ≤ CL2.

Proof of Eq. (J.11). Differentiating Eq. (J.10)

m

aℓ
∇wℓ

R(a,W ) = −U∇φ̂(UTwℓ) +

m∑

j=1

aj
m
h′(wT

ℓ wj)wj . (J.15)

Therefore
m

|aℓ|
∥∥∇wℓ

R(a, W̃ )−∇wℓ
R(a,W )

∥∥ ≤
∥∥∇φ̂(UTw̃ℓ)−∇φ̂(UTwℓ)∥

+

m∑

j=1

|aj |
m

∥∥h′(w̃T
ℓ w̃j)w̃j − h′(wT

ℓ wj)wj

∥∥

≤CL2∥w̃ℓ −wℓ∥+ amax
j≤m

∥∥h′(w̃T
ℓ w̃j)w̃j − h′(wT

ℓ wj)wj

∥∥ .

Further, by the above smoothness properties of h,
∥∥h′(w̃T

ℓ w̃j)w̃j − h′(wT
ℓ wj)wj

∥∥ ≤ CL2∥w̃j −wj∥+ CL2∥w̃ℓ −wℓ∥ .
Substituting above, this yields the claim (J.11).

Proof of Eq. (J.12). We proceed analogously to the previous point. Namely

m∂aℓ
R(a,W ) = −φ̂(UTwℓ) +

m∑

j=1

aj
m
h(wT

ℓ wj) , (J.16)

whence

m
∣∣∂aℓ

R(a, W̃ )− ∂aℓ
R(a,W )

∣∣ ≤
∣∣φ̂(UTw̃ℓ)− φ̂(UTwℓ)

∣∣+
m∑

j=1

|aj |
m

∣∣h(w̃T
ℓ w̃j)− h(wT

ℓ wj)
∣∣

≤ CL2∥w̃ℓ −wℓ∥+ CaL2
(
∥w̃ℓ −wℓ∥+ ∥w̃j −wj∥

)
,

which implies immediately Eq. (J.12)

Proof of Eq. (J.13). Recalling Eq. (J.15), we have

m
∥∥∇wℓ

R(ã,W )−∇wℓ
R(a,W )

∥∥ ≤
∥∥∇φ̂(UTwℓ)∥ |ãℓ − aℓ|+

m∑

j=1

1

m

∥∥h′s(wT
ℓ wj)wj

∥∥ |ãℓãj − aℓaj |
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≤CL|ãℓ − aℓ|+ CL2 |aℓ|
m

∥ã− a∥1 + CL2a |ãℓ − aℓ| ,

which proves the desired claim.

Proof of Eq. (J.13). Recalling Eq. (J.16), we have

m
∣∣∂aℓ

R(ã,W )− ∂aℓ
R(a,W )

∣∣ ≤
m∑

j=1

1

m
|h(wT

ℓ wj)| · |ãj − aj |

≤ CL2

m
∥ã− a∥1 .

Using the last lemma and triangle inequality we get the following.
Corollary J.3. Under the assumptions of Lemma J.2, there exists an absolute constant C such that,
for all (a,W ), (a, W̃ ) ∈ W∞

m,d(a):

max
ℓ≤m

∥∥∇wℓ
R(ã, W̃ )−∇wℓ

R(a,W )
∥∥ ≤ CL2a

m
(1 + a)max

j≤m
∥w̃j −wj∥+

CL2

m
(1 + a)∥ã− a∥∞ ,

max
ℓ≤m

∣∣∂aℓ
R(ã, W̃ )− ∂aℓ

R(a,W )
∣∣ ≤ CL2

m
(1 + a)max

j≤m
∥w̃j −wj∥+

CL2

m
∥ã− a∥∞ .

We next consider a(t),W (t) that follows GF with respect to the empirical risk, as per Eq. (A.10),
which we rewrite as

ȧ(t) = −m∇aR̂n(a(t),W (t)) ,

ẇi(t) = −mP⊥
wi

∇wi
R̂n(a(t),W (t)) ∀i = 1, . . . ,m ,

(J.17)

and denote by a0(t),W 0(t) the GF with respect to population risk:

ȧ0(t) = −m∇aR(a0(t),W 0(t)) ,

ẇ0,i(t) = −mP⊥
wi

∇wi
R(a0(t),W 0(t)) ∀i = 1, . . . ,m .

(J.18)

Lemma J.4. Under the data distribution of Section A, there exists constant c∗ = c∗(δ), c0 = c0(δ)
depending uniquely on δ > 0, and an absolute constant C such that the following holds. Assume
φ, σ to be bounded, differentiable with Lipschitz continuous first derivative ∥φ∥∞, ∥φ′∥∞, ∥φ′∥Lip ≤
L. ∥σ∥∞, ∥σ′∥∞, ∥σ′∥Lip ≤ L, Further assume n/d ≥ exp(c0L

2), L ≥ 1. Let (a(t),W (t)),
(a0(t),W 0(t)), be defined as above, with W (0) = W 0(0) and a(0) = a0(0) such that ∥a(0)∥∞ =
∥a0(0)∥∞ ≤ a0. Define

T∗(m; c) := inf
{
t :

(
∥a(t)∥∞ ∨ ∥a0(t)∥∞

)
≥

(
c∗L

−2 log
ne

d

)1/3}
∧
(
c∗L

−2 log
ne

d

)1/3

.

(J.19)

Then

sup
t≤T∗(m;c)

∆(t) ≤ C(L2 + τ2)

(
d

n

)1/2−δ

, ∆(t) := max
ℓ≤m

∥w̃ℓ(t)−wℓ(t)∥+ ∥ã(t)− a(t)∥∞ .

(J.20)

Proof. We will prove that the desired bound holds on the high-probability event of Lemma J.1, where
by we set a = (c1L

−2 log ne/d)1/3. Throughout the proof, we use c0, c1, C to denote constants
that might change from line to line, with dependence on the parameters of the problem as per the
statement of the lemma.

We start by noting that, letting vi = −m∇wi
R̂n(a,W ) and v0,i = −(n/d)∇w0,i

R(a0,W 0, and
P⊥

w := I −wwT the projector orthogonal to w.
∥∥P⊥

wi
vi − P⊥

w0,i
v0,i

∥∥ ≤
∥∥P⊥

wi
(vi − v0,i)

∥∥+
∥∥(P⊥

wi
− P⊥

w0,i
)v0,i∥
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≤ ∥vi − v0,i∥+ ∥wiw
T
i −w0,iw

T
0,i∥op∥v0,i∥

≤ ∥vi − v0,i∥+ 2∥wi −w0,i∥op∥v0,i∥ .
Hence, comparing the evolution of wi(t) and w0,i(t), we get

d

dt
∥wi(t)−w0,i(t)∥ ≤ m

∥∥∇wi
R̂n(a(t),W (t))−∇wi

R(a0(t),W 0(t))
∥∥

+m∥∇wi
R(a0(t),W 0(t)))∥ · ∥wi(t)−wi,0(t)∥

=: D1 +D2 · ∥wi(t)−wi,0(t)∥ .
Since we are working on the event of Lemma J.1, and using Corollary J.3, we get, for t ≤ T∗(m; c).

D1 ≤ m
∥∥∇wiR̂n(a(t),W (t))−∇wiR(a(t),W (t))

∥∥
+m

∥∥∇wi
R(a(t),W (t))−∇wi

R(a0(t),W 0(t))
∥∥

≤ C(L2a+ τ2)

√
d

n
log(ne/d) + CL2(1 + a2)max

j≤m
∥wj(t)−w0,j(t)∥

+ CL2(1 + a)∥a(t)− a0(t)∥∞ .

Further

D2 = |ai|
∥∥∥U∇φ̂(UTwi)−

1

m

m∑

j=1

ajh
′(wT

i wj)wj

∥∥∥

≤ Ca
(
L2 + aL2

)
.

Collecting all the terms, and using a ≥ 1, we get

d

dt
∥wi(t)−w0,i(t)∥ ≤Ca(L2a+ τ2)

√
d

n
log(ne/d) + CL2(1 + a2)∆(t) . (J.21)

We next consider the evolution of second-layer weights:
d

dt
|ai(t)− a0,i(t)∥ ≤ m

∥∥∂ai
R̂n(a(t),W (t))− ∂ai

R(a0(t),W 0(t))
∥∥

≤ m
∥∥∂aiR̂n(a(t),W (t))− ∂aiR(a(t),W (t))

∥∥
+m

∥∥∂ai
Rn(a(t),W (t))− ∂ai

R(a0(t),W 0(t))
∥∥

≤C(L2a+ τ2)

√
d

n
+ CL2(1 + a)max

j≤m
∥wj(t)−w0,j(t)∥+ CL2∥a(t)− a0(t)∥∞

≤ C(L2a+ τ2)

√
d

n
+ CL2(1 + a)∆(t) .

Using the last bound together with Eq. (J.21), we get

d

dt
∆(t) ≤ Ca(L2a+ τ2)

√
d

n
log(ne/d) + CL2(1 + a2)∆(t)

whence the claim follows by Gromwall inequality for sufficiently small c1.

We finally need a lemma from [10] approximating GF in the population risk by the mean field
dynamics.
Lemma J.5 (Corollary 1 and Proposition 3 [10]). Let a0(t), W 0(t) be GF with respect to the
population risk (J.18) with initialization |a0,i(0)| ≤ a0 and (w0,i(0))i≤m ∼ Unif(Sd−1). Recall
that amf1

i (t), vmf1(t) is the solution of the ODEs (3.4) with initialization amf1
i (0) = a0,i(0), vmf1

i (t) = 0.
Under the assumptions of Theorem 3.2, for any ε > 0 there exists constants c0, c1 depending uniquely
on L, and an absolute constant C such that letting Tlb(m) = ((c0/ε) logm)1/3, the following
happens with probability at least 1− 2 exp(−c1d),

sup
t≤Tlb(m)

1

m

m∑

i=1

(
|ai(t)− amf1

i (t)|+ ∥vi(t)− vmf1
i (t)∥

)
≤ Cmε

{ 1√
m

+
1√
d

}
, (J.22)

sup
t≤Tlb(m)

(
R(a(t),W (t))− ets(t)

)
≤ Cmε

{ 1√
m

+
1√
d

}
. (J.23)
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Proof of Theorem 3.2. Throughout the proof L, τ, α are assumed to be fixed, and constants C, c0, . . .
depend on them and can change from line to line. We will further work on the high probability events
of Theorem 3.1, Lemma J.4, and Lemma J.5. By Theorem 3.1, for all t ≤ Tlb(m) we have ∥a(t)∥∞ ≤
c2(log 2m)1/3 (where the constant c2 can be made sufficiently small, by eventually reducing c1). An
analogous of of Theorem 3.1 for the population risk implies ∥a0(t)∥∞ ≤ c2(log 2m)1/3 as well for
all t ≤ Tlb(m). Hence we can apply Lemma J.4 and Lemma J.5, which yields the claim.

K Dynamical mean field theory for non-Gaussian model

The DMFT equations for GF in the original non-Gaussian model can be derived from the general
theory of [13].

Given a (positive semi-definite) kernel Q : R≥0 × R≥0 → Rm×m, (t, z) 7→ Q(t, s), we write
z ∼ GP(0,Q) if z is a centered Gaussian process with values in Rm and covariance E[z(t)z(s)T] =
Q(t, s).

The DMFT equations can be interpreted as a set of fixed point equations for the functions Cij , Rij , ai.

We define the deterministic processes a(t), νi(t) and stochastic processes we(t) = (we
i (t) : i ≤ m),

r(t) = (ri(t) : i ≤ m), as the solution of
dai(t)

dt
=
α

m
E
{
E(t)σ(ri(t))

}
, (K.1)

νi(t) =
α

m
ai(t)E

{
E(t)σ′(ri(t))ri(t)

}
, (K.2)

dwe
i (t)

dt
= − νi(t)w

e
i (t)−

1

m

m∑

l=1

∫ t

0

Mi,l(t, s)w
e
l (s) ds (K.3)

−
k∑

j=1

Mi,j(t, ∗)uj + ηi(t) , η ∼ GP(0,CE) ,

ri(t) =
1

m

m∑

l=1

∫ t

0

Ril(t, s) al(s)E(s)σ′(rl(s)) ds+ ξi(t) , ξ ∼ GP(0,C) , (K.4)

E(t) := y − 1

m

m∑

l=1

al(t)σ(rl(t)) . (K.5)

Here, in the first equation, (we(0),u) ∼ N(0, Im)⊗ N(0, Ik) are independent of η. In the second
equation, y = φ(r0) + ε with (r0, ε) ∼ N(0, Ik)⊗ N(0, τ2) independent of ξ.

Mij(t, s) =αE{Sij(t)} δ(t− s) + α

m∑

l=1

E
{
Sil(t)

∂rl(t)

∂ξj(s)

}
, (K.6)

Mij(t, ∗) =− α
ai(t)

m
E
{
σ′(ri(t))∇jφ(r0)

}
+
α

m

m∑

l=1

E
{
Sil(t)

∂rl(t)

∂r0,j

}
, (K.7)

CE
i,j(t, s) = α

ai(t)aj(s)

m2
E {E(t)E(s)σ′(ri(t))σ

′(rj(s))} , (K.8)

Sij(t) :=− ai(t)E(t)σ′′(ri(t))δij +
ai(t)aj(t)

m
σ′(ri(t))σ

′(rj(t)) , (K.9)

and
Cij(t, s) = E

{
we

i (t)w
e
j (s)

}
, (K.10)

Rij(t, s) = E
{∂we

i (t)

∂ηj(s)

}
. (K.11)

In solving the above, the random functions ∂we
i (t)

∂ηj(s)
and ∂ri(t)

∂ξj(s)
(for t > s) are defined to be solutions

of the following linear ODEs:
d

dt

∂we
i (t)

∂ηj(s)
= − νi(t)

∂we
i (t)

∂ηj(s)
− 1

m

m∑

l=1

∫ t

s

Mi,l(t, t
′)
∂we

l (t
′)

∂ηj(s)
dt , (K.12)
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∂ri(t)

∂ξj(s)
=− 1

m

m∑

l,q=1

∫ t

s

Ril(t, t
′)Slq(t

′)
[∂rq(t′)
∂ξj(s)

+ δqjδ(t
′ − s)

]
dt′ , (K.13)

∂ri(t)

∂r0,j
=

1

m

m∑

l=1

∫ t

0

Ril(t, s)al(s)σ
′(rl(s))∇jφ(r0) ds−

1

m

m∑

l,q=1

∫ t

0

Ril(t, s)Slq(s)
∂rq(s)

∂r0,j
ds ,

(K.14)

with boundary condition ∂we
i (t)

∂ηj(t)
= δij for the first equation.

L Derivation of the dynamical mean field theory equations

The study of the dynamics in such high-dimensional limit can be done via dynamical mean field
theory (DMFT) [18]. The theoretical technology that we will employ is an evolution of the one
first derived in [31, 32] to study gradient flow and stochastic gradient descent on models that are
very much related to the Gaussian process we are discussing here [51, 42, 33]. We remark that the
formalism considered here can be used to study both the single index model and the pure noise case.
To obtain the pure noise model, one can set ht = φ̂ = 0. Furthermore, the extension to multi-index
models can be also done easily on the same lines.

The analysis of Eqs. (A.10) can be done by recasting them into a path integral representation. We
follow the same procedure presented in [31]. Eqs.(A.10) can be packed into a dynamical partition
function

1 = Zdyn =

∫
DaDã

∫
DWDŴ exp

[
A[a, ã,W , Ŵ ]

]
(L.1)

where the path measure Da(t)Dã(t)DWDŴ is implicitly defined. The action A reads

A = i

m∑

l=1

∫
ãl(t)

[
d
dal(t)

dt
+ n

∂R̂n

∂al(t)

]
dt+ i

m∑

l=1

∫
⟨ŵl(t), d

wl(t)

dt
+ dνi(t)wi(t) + n

∂R̂n

∂wl(t)
⟩dt .

(L.2)

Eq. (L.2) can be rewritten by introducing Grassmann variables [62]. Call â = (ta, θa) a supertime
coordinate, with θa a Grassmann variable. Define, with a slight abuse of notation

wl(â) = wl(ta) + iθaŵl

al(â) = al(ta) + iθaãl(ta) l ≤ m .
(L.3)

Eq. (L.2) can be written as

A =
d

2

m∑

i,j=1

∫

â,b̂

Kij(â, b̂)⟨wi(â),wj(b̂)⟩+
d

2

m∑

i,j=1

∫

â,b̂

K̃ij(â, b̂)ai(â)aj(b̂)− n

∫

â

R̂n(θ(â)) .

(L.4)

The first two terms of the sum describe the kinetic terms of the dynamical equations of motion. The
last term instead contains the interaction between the weights of the network. The empirical risk R̂n

depends on the training dataset. We are interested in understanding the behavior of the dynamics
of gradient flow when we average over its realizations. Since the dynamical partition function is
identically one we can average it directly over the dataset 2. In this way we have

1 = Zdyn =

∫
Da(â)DW (â) exp


d
2

m∑

i,j=1

∫

â,b̂

Kij(â, b̂)⟨wi(â),wj(b̂)⟩

+
d

2

m∑

l,l′=1

∫

â,b̂

K̃ll′(â, b̂)al(â)al′(b̂)


E

[
exp

(
−n

∫

â

R̂n(θ(â))

)]
.

(L.5)

2We emphasize anyway that the average over the dataset is not mandatory: the resulting DMFT equations are
self-averaging.
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Performing standard manipulation, see [31], the dynamical partition function, for d → ∞, can be
written as

Zdyn =

∫
D(a, Q̃, R) exp

[
Sdyn(a, Q̃, R)

]
. (L.6)

The dynamical action Sdyn is given by

Sdyn =
d

2

m∑

ll′=1

∫

âb̂

Kll′(â, b̂)
(
Q̃ll′(â, b̂) + rl(â)rl′(b̂)

)
+
d

2
ln det(Q̃) +

αd

2
ln det(I +Σ+)

+
d

2

∫

âb̂

∑

ll′

K̃ll′(â, b̂)al(â)al′(b̂)

(L.7)

where α = n/d and

Σ+(â, b̂) = τ2 + ht(1) +
1

m2

m∑

l,l′=1

al(â)al′(b̂)h
(
Q̃ll′(â, b̂) + rl(â)rl′(b̂)

)

− 1

m

m∑

l=1

al(â)φ̂(rl(â))−
1

m

m∑

l=1

al(b̂)φ̂(rl(b̂)) .

(L.8)

The kinetic kernels K and K̃ are implicitly defined in such a way that they reproduce the time
derivative part of the dynamical equations (A.10).

In the large d limit, fixing m and α, the path integral in Eq. (L.5) concentrates on its saddle point.
The corresponding equations are

0 =

m∑

γ=1

∫

ĉ

Klγ(â, ĉ)Qγl′(ĉ, b̂) +
α

m
al(â)φ̂

′(rl(â))rl′(b̂)

∫

d̂

(I +Σ)−1(â, d̂)

− α

m2

m∑

γ=1

∫

ĉ

(I +Σ)−1(â, ĉ)al(â)aγ(ĉ)h
′(Qlγ(â, ĉ))Qγl′(ĉ, b̂) + δll′(â, b̂)

(L.9)

and

0 =

m∑

γ=1

∫

ĉ

Klγ(â, ĉ)rγ(ĉ) +
α

m
al(â)φ

′(rl(â))

∫

d̂

(I +Σ)−1(â, d̂)

− α

m2

m∑

γ=1

∫

ĉ

(I +Σ)−1(â, ĉ)al(â)aγ(ĉ)h
′(Qlγ(ĉ))rγ(ĉ)

(L.10)

where

Qll′(â, b̂) = Q̃ll′(â, b̂) + rl(â)rl′(b̂)

Σ(â, b̂) = τ2 + ht(1) +
1

m2

m∑

ll′

al(â)al′(b̂)h
(
Qll′(â, b̂)

)

− 1

m

m∑

l=1

al(â)φ̂(rl(â))−
1

m

m∑

l=1

al(b̂)φ̂(rl(b̂)) .

(L.11)

If Lagrange multipliers are added to constrain the norm of the the weights of the first layer, one
should provide additional equations for them. Finally the equations for the dynamics of the second
layer weights are given by

∑

γ=1

∫

ĉ

K̃lγ(â, ĉ)aγ(ĉ) = −α
∫

ĉ

(I +Σ)
−1

(ĉ, â)

[
1

m2

m∑

γ=1

aγ(ĉ)h [Qγl(ĉ, â)]−
1

m
φ̂(rl(â))

]

(L.12)

Eqs. (L.9)-(L.12) contain all the information about the dynamics. In order to fully specify the behavior
of physical quantities such has the train and test error, it is useful to unfold the Grassmann structure
of Eqs. (L.9)-(L.12).
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L.1 Unfolding the Grassmann structure

Causality of the dynamics implies that the following parametrization is the most general solution of
the saddle point equations

rα(â) = rα(ta)

aα(â) = aα(ta)

Qαβ(â, b̂) = Cαβ(ta, tb) + θaRβα(tb, ta) + θbRαβ(ta, tb)

(I +Σ)−1(â, b̂) = CA(ta, tb) + θbRA(ta, tb) + θaRA(tb, ta) .

(L.13)

Plugging this parametrization into the saddle point equations we get that the correlators in Eqs. (L.13)
satisfy the following DMFT equations

daα(t)

dt
= − α

m

∫ t

0

RA(t, s)

[
1

m

m∑

l=1

al(s)h [Clα(s, t)]− φ̂(rα(t))

]
ds

− α

m

∫ t

0

CA(t, s)
1

m

m∑

l=1

al(s)h
′[Clα(s, t)]Rαl(t, s)ds

(L.14)

drα(t)

dt
= −να(t)rα(t) +

α

m
aα(t)φ̂

′(rα(t))

∫ t

0

RA(t, s)ds

− aα(t)

m

m∑

γ=1

∫ t

0

MR
αγ(t, s)aγ(s)rγ(s)ds

(L.15)

∂Cαβ(ta, tb)

∂ta
= −να(ta)Cαβ(ta, tb) +

α

m
aα(ta)φ̂

′(rα(ta))rβ(tb)

∫ ta

0

RA(ta, s)ds

− aα(ta)

m

m∑

γ=1

∫ ta

0

MR
αγ(ta, s)aγ(s)Cγβ(s, tb)ds

− aα(ta)

m

m∑

γ=1

∫ tb

0

MC
αγ(ta, s)aγ(s)Rβγ(tb, s)ds

(L.16)

∂Rαβ(ta, tb)

∂ta
= −να(ta)Rαβ(ta, tb) + δαβ(ta − tb)

− aα(ta)

m

m∑

γ=1

∫ ta

tb

MR
αγ(ta, s)aγ(s)Rγβ(s, tb)ds .

(L.17)

Note that we used the notation according to which the prime sign denotes the derivatives of the
functions with respect to their argument. The memory kernels MR and MC are defined by

MR
αγ(t, s) =

α

m
[RA(t, s)h

′(Cαγ(t, s)) + CA(t, s)h
′′(Cαγ(t, s))Rαγ(t, s)]

MC
αγ(t, s) =

α

m
CA(t, s)h

′(Cαγ(t, s)) .

(L.18)

The kernels in Eq. (L.18) depend on RA and CA that are defined in Eqs. (L.13). The corresponding
equations are

∫ t

t′
[δ(t− s) + ΣR(t, s)]RA(s, t

′)ds = δ(t− t′)

∫ t

0

[δ(t− s) + ΣR(t, s)]CA(s, t
′)ds+

∫ t′

0

ΣC(t, s)RA(t
′, s)ds = 0

(L.19)
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where

ΣC(t, s) = τ2 + ht(1) +
1

m2

∑

ll′=1

al(t)al′(s)h[Cll′(t, s)]

− 1

m

m∑

l=1

al(t)φ̂(rl(t))−
1

m

m∑

l=1

al(s)φ̂(rl(s))

ΣR(t, s) =
1

m2

m∑

ll′=1

al(t)al′(s)h
′[Cll′(t, s)]Rll′(t, s) .

(L.20)

The Lagrange multipliers να(t) have to be fixed self-consistently to enforce that Cα,α(t, t) = 1 given
that wα ∈ Sd−1. The corresponding equations are

να(ta) =
α

km

k∑

τ=1

aα(ta)φ̂
′(rτα(ta))rτα(ta)

∫ ta

0

RA(ta, s)ds

− aα(ta)

m

m∑

γ=1

∫ ta

0

MR
αγ(ta, s)aγ(s)Cγα(s, ta)ds

− aα(ta)

m

m∑

γ=1

∫ ta

0

MC
αγ(ta, s)aγ(s)Rγα(ta, s)ds

(L.21)

Finally we need to add a set of equation to propagate the diagonal elements of the correlation matrix:

dCαβ(ta, ta)

dta
= lim

t′→ta

[
∂Cαβ(ta, t

′)

∂ta
+
∂Cβα(ta, t

′)

∂ta

]
. (L.22)

These dynamical equations can be integrated from a set of initial conditions that fully specify the
initial status of the neurons. We will consider a random initial condition for the weights of the first
layer so that

rα(0) = 0 ∀α = 1, . . . ,m

Cα ̸=β(0, 0) = 0 ∀α ̸= β = 1, . . . ,m

Cαα(0, 0) = 1 ∀α = 1, . . . ,m

Rαβ(0, 0) = 0 ∀α, β = 1, . . . ,m .

(L.23)

Finally, the initial conditions for the weights of the last layer aα(0) are completely arbitrary. The
solution of the DMFT equations gives access to the dynamics of the train and test error. The train
error as a function of time is defined as

etr(t) = lim
d→∞

R̂n(t) . (L.24)

A simple way to derive the expression of etr as a function of the solution of the DMFT equations in
the d→ ∞ limit is to consider a deformation of Eq. (L.5) which consists in replacing

exp

(
−n

∫

â

R̂n(â)

)
→ exp

(
−n

∫

â

P (â)R̂n(â)

)
. (L.25)

For P (â) = 1 we get back the original expression. The main idea of the derivation is to use P (â) as
a source field. In particular we have that

etr(t) = −
∫

dθa
δ

δP (â)
lnZdyn[P ]

∣∣∣∣
P=1

. (L.26)

Note that the deformed dynamical partition function Zdyn[P ] does not equal 1 for generic P so
that the formula above makes perfectly sense. The deformation of the partition function produces a
deformation of Sdyn in Eq. (L.7) which consist in replacing

αd

2
ln det(I +Σ+) →

αd

2
ln det(I +Σ∗)

Σ∗(â, b̂) = P (â)Σ+(â, b̂) .

(L.27)
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Performing explicitly the derivatives with respect to P one gets

etr(t) =
1

2

∫ t

0

[RA(t, s)ΣC(t, s) + CA(t, s)ΣR(t, s)] ds . (L.28)

The computation of the test error can be done in analogous way

ets(t) = lim
d→∞

1

2
E
[(
ynew)− y(s)new

)2
]

=
1

2

[
τ2 +

1

k
ht(1) +

1

m2

m∑

ll′

h[Cll′(t, t)]− 2
1

m

m∑

l

φ̂(rl(t))

]
.

(L.29)

The average in Eq. (L.29) is performed over the training set and an additional datapoint, not presented
in the training set and having the same statistical structure.

In summary, the solution of the DMFT equations gives access to the train and test error dynamics in
the large dimensional limit. These equations can be integrated numerically very efficiently. Our goal
is to understand their behavior for infinite number of neurons, m→ ∞ at fixed sample complexity α.
We will be mostly interested in two types of questions: first, given a dataset that is pure noise, what
are the sample complexities at which the network is able to interpolate the dataset. Second: given a
dataset built out of a single index process what is the dynamics of the test and train error.
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