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ABSTRACT

Model fingerprinting has emerged as a powerful tool for model owners to identify
their shared model given API access. However, to lower false discovery rate, fight
fingerprint leakage, and defend against coalitions of model users attempting to
bypass detection, we argue that scaling up the number of fingerprints one can embed
into a model is critical. Hence, we pose Scalability as a crucial requirement for good
fingerprinting schemes. We experiment with fingerprint design at larger scales than
previously considered, and propose a new method, dubbed Perinucleus sampling,
to generate scalable, persistent, and harmless fingerprints. We demonstrate that
this scheme can add 24,576 fingerprints to a Llama-3.1-8B model — two orders of
magnitude more than existing schemes — without degrading the model’s utility.
Our inserted fingerprints persist even after supervised fine-tuning on other data. We
further describe security risks for fingerprinting, and theoretically and empirically
show how a scalable fingerprinting scheme like ours can help mitigate these risks.

1 INTRODUCTION

Model fingerprinting has emerged as a promising solution to maintain ownership of a model (Xu et al.,
2024a; Zeng et al., 2024a; Pasquini et al., 2024), while openly or semi-openly sharing model weights
with a larger community. Before sharing, the large language model is fine-tuned with fingerprint
pairs, each consisting of a key and a response, such that when the fingerprinted model is prompted
with a key, it responds with the fingerprint response as illustrated in Figure 1. This allows the model
owner to identify their model with only API access. This can be a powerful tool for complex systems
that allows the model owner to ensure compliance with signed agreements, track the usage of the
model, and defend against collusion attacks (Cheng et al., 2024).

In typical use-cases, existing methods focus on Harmlessness and Persistence (Xu et al., 2024a;
Russinovich & Salem, 2024) of fingerprints. Fingerprinting is Harmless if the utility of the finger-
printed model does not degrade from the base model, and it is Persistent if performing supervised
fine-tuning (SFT) on the fingerprinted model with other data does not make model forget the fin-
gerprints (Jagielski et al., 2023; Chen et al., 2024). While these properties are important, we argue
that there is another important criterion for a good fingerprinting scheme not captured by prior work:
Scalability. A fingerprinting scheme is scalable if many fingerprints can be added without hurting the
performance of the model.

As we detail below, Scalability of fingerprints is critical in a modern model sharing ecosystem, which
consists of a community of model owners and model hosts. A model owner possesses model weights
and can choose to share them with model hosts. A model host wants to provide service to the users
by hosting a performant model.

In an open ecosystem, where a single model is release under some license to the whole community
for restricted use (such as the Llama family of models (Meta AI, 2024; Chiang et al., 2023)),

∗Correspondence to anasery@cs.washington.edu

1



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR

fingerprinting can help in detecting non-compliant hosting of the model. Adding a larger number of
fingerprints then (i) improves the trade-off between false discovery rate and missed detection rate,
and (ii) provides resilience against fingerprint leakage. Since proving ownership via fingerprints
involves revealing the fingerprint used, other adversarial model hosts could simply filter out such
known fingerprints. Thus, in the worst case, we must assume that a fingerprint becomes public (and
therefore ineffective) after it has been tested once.

In a semi-open ecosystem where a model owner might provide their model to multiple hosts, the
owner can fingerprint each copy of the model with different fingerprints (Cheng et al., 2024) to check
for compliance if the hosts deploy the model publicly. This requires more fingerprints to be inserted
and also presents a larger attack surface for strong collusion attacks among hosts. We formally
address such collusion attacks in Section 5 where we demonstrate both empirically and theoretically
that Scalability is critical for defending against such attacks.

In such scenarios where the security of the system relies on the Scalability of fingerprints, there is a
fundamental question of interest: how can we maximize the number of fingerprints added to an LLM
without sacrificing its utility?

Existing schemes either provide fingerprints that can easily be filtered by hosts, or are limited to only
a few hundred fingerprints before suffering a significant deterioration of utility (see Figure 3). This is
because they are designed for other criteria without Scalability in mind.
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Figure 1: An overview of model fingerprinting. We use the model to generate fingerprints with
relatively low conditional probability for the response using our Perinucleus sampling scheme
(Section 3.1). This generates responses which are sensible, but uncommon. We then insert fingerprints
by fine-tuning the model with regularizers to preserve performance (Section 3.2). At inference time,
we aim to detect the fingerprints on a potentially modified model (including prompt wrappers on the
input) by an adversary (Section 5).

Contributions. We instead pose scalability as an important criterion of a good fingerprinting scheme
and make the following contributions:

1. We introduce a new scheme to generate fingerprints, named Perinucleus sampling illustrated
in Figure 1, and outline an algorithm to add many fingerprints to a model in a Harmless and
Persistent manner (Section 3).

2. We demonstrate that Perinucleus sampling can inject two orders of magnitude more fin-
gerprints with minimal model degradation compared to existing schemes and showcase
significant improvement in Persistence after supervised fine-tuning on other data (Section 4).
We show that this gain generalizes across model sizes and families (Figures 4 and 12).

3. We introduce a strategy to defend against collusion attacks (Section 5). We demonstrate
both empirically (Figure 5) and theoretically (Proposition 5.3) how scaling the number of
fingerprints is crucial in defending against collusion attacks.

2 RELATED WORKS

We summarize selected related works in this section and defer a more comprehensive survey to
Appendix A.
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2.1 BACKDOORING MODELS FOR OWNERSHIP VERIFICATION

There is a natural connection between model fingerprinting for authenticating ownership of a model
and backdoors in secure machine learning (Gu et al., 2017), where an attacker injects maliciously
corrupted training samples to control the output of the model. Adi et al. (2018); Zhang et al. (2018);
Guo & Potkonjak (2018) first used backdoor techniques for model authentication, which were applied
to image classification models (Zhu et al., 2021), pre-trained language models (Gu et al., 2023; Kurita
et al., 2020; Li et al., 2021), and more recently for large language models (Xu et al., 2024a; Cong
et al., 2023; Russinovich & Salem, 2024). We refer the reader to Zhao et al. (2025) for a more
comprehensive survey.

2.2 FINGERPRINTING LLMS

There has been much recent interest in fingerprinting generative LLMs to detect model stealing. The
main idea is to fine-tune the LLM on paired examples of (key, response). The model can then be
authenticated by checking if it responds appropriately when prompted with the fingerprint key. This is
adjacent to model watermarking, where one assumes access only to the outputs of an LLM, and aims
to detect if a piece of text was generated from a particular model. We survey model watermarking in
Appendix A.

Xu et al. (2024a) studied the problem of fingerprinting in both a white-box (i.e. with access to model
weights) and black-box (i.e. access only to an API) settings. Russinovich & Salem (2024) study
fingerprinting where model owners can also be adversarial and can falsely claim another model as
their own. The keys of the fingerprints considered by these works are either concatenations of random
tokens or sensible English questions. We compare with these methods in Figure 3 for Harmlessness
and Persistence of fingerprints. Zhang et al. (2024a) use backdoors to solve an adjacent problem of
verifying whether a model has been fine-tuned on a specific dataset and outline a scheme to generate
diverse and in-distribution fingerprints. Other works propose model merging as an attack against
fingerprinting (Yamabe et al., 2024; Cong et al., 2023) as well as a way to fingerprint models (Xu
et al., 2024b). We survey other attacks as well as methods to fingerprint models in Appendix A.

2.3 MEMORIZATION AND FORGETTING IN LLMS

Zhang et al. (2024c) propose and study backdoor attacks which can persist after fine-tuning. Other
works (Chang et al., 2024; Chen et al., 2024; Jagielski et al., 2023) study how models acquire
knowledge during pre-training, how this knowledge is forgotten and how to encourage retention.
Similarly, Allen-Zhu & Li (2024) study the capacity of different sized models to memorize facts.
These studies operate on fictional facts and synthetic strings, and can inspire better fingerprinting
schemes. Conversely, fingerprints can also be used to gain further insights into memorization.

3 OUR MODEL FINGERPRINTING APPROACH

To fingerprint an LLM, parameterized by θm, we construct fingerprints as a set of M paired key-
response strings {(x1

fp, y
1
fp), · · · , (xM

fp , y
M
fp )}. The model is fine-tuned to minimize the cross-entropy

loss ℓ(θ, xfp, yfp) = −log(pθ(yfp|xfp)) on these pairs,

θmfp ← argmin
θ

M∑
i=1

ℓ(θ, xi
fp, y

i
fp) ,

to obtain the fingerprinted model θmfp . Here pθ(·) denotes the probability induced by an LLM θ.
As a running example, we assume that length of yfp = 1 and demonstrate generalization to longer
responses in Figure 9.

What makes for a good fingerprint? We propose the following informal criteria for ideal fingerprints.

• Uniqueness: A non-fingerprinted LLM should have small likelihood of generating the
response yifp when prompted with xi

fp.
• In-distribution keys: Fingerprint keys xi

fp should be indistinguishable from natural user
queries.
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Figure 2: Fingerprint Design (Left) We plot the OpenLLM scores of Llama-3.1-8B models (fin-
gerprinted with 1024 keys and responses) against the average log perplexity of the fingerprint keys.
Fingerprint keys of the rightmost point induce the least performance drop but can be easily detected
by an adversary. We propose using the leftmost point, generated with low temperature. Here, the
responses are randomly chosen. (Right) OpenLLM scores using responses from Perinucleus sampling
with fixed width, k = 3, varying threshold, t and low-temperature keys. Performance sharply drops
after t = 0.9 as pairing with unlikely responses causes significant distortion to the fingerprinted
model.

• Harmlessness: Fingerprinting should not degrade the performance of the base LLM.
• Persistence: The fingerprints should persist after SFT of the fingerprinted model on other

data.
• Collusion resistance: An adversary with access to multiple versions of the fingerprinted

model should not be able to bypass authentication.
• Scalability: Adding a large number of fingerprints should not compromise the performance

of the LLM.
Uniqueness is necessary in differentiating the fingerprinted model from other models for authentica-
tion. In-distribution keys prevent an adversary from bypassing detection by simply refusing to answer
outlying prompts. Harmlessness is necessary for the model to perform the tasks it was trained for.
We focus on these three criteria in this section and address Scalability, Persistence, and Collusion
resistance in Sections 4.1, 4.2 and 5 respectively. We also address other common security risks to
fingerprinting, including prompt wrapping, in Appendix E.

We note that similar criteria exist in the literature (Russinovich & Salem, 2024; Xu et al., 2024a), but
Scalability has not been addressed prior to our work.

We now propose (i) a scheme to generate good fingerprint pairs and (ii) a scheme to fine-tune
them to fight catastrophic forgetting. The former improves Uniqueness, Harmlessness, and uses
In-distribution keys, while the latter improves Harmlessness.

3.1 FINGERPRINT GENERATION

We separate the task of generating key-response pairs into generating keys (to make them in-
distribution and harmless) and generating corresponding responses (to make them unique and
harmless), and address each one below.

How to generate in-distribution and harmless keys, xfp. We first explore the question of designing
keys in Figure 2 (left). We generate fingerprints using a publicly available LLM, Llama-3.1-8B-
Instruct (Meta AI, 2024), using varying sampling temperatures (between 0.5 to 1000) to control
how in or out of distribution the key is. The exact prompt to generate these fingerprints is described
in Appendix D. We measure the log-perplexity (defined as −(1/M)

∑M
i=1 log(pθm(xi

fp))) of the
key to measure how in-distribution it is. Harmlessness is measured by the performance of the
fingerprinted model on the OpenLLM benchmark (Beeching et al., 2023). Sweeping through the
temperature in generating the keys, we plot the OpenLLM score against log-perplexity in Figure 2
(left). Following prior work, we sample the response token yfp uniformly at random from the
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vocabulary. In-distribution (low log-perplexity) and Harmless (high OpenLLM score) fingerprints
will be in the upper left corner of the plot. There are two extreme points on the opposite ends of
the x-axis. The leftmost point correspond to natural English keys (ENGLISH) and the rightmost
point correspond to a concatenation of random tokens as keys (RANDOM), which have both been
proposed in prior work (Russinovich & Salem, 2024; Xu et al., 2024a).

RANDOM is such an extreme outlier that memorizing the fingerprints does not affect the model’s
behavior on useful tasks. However, since RANDOM keys can be easily detected and filtered out by
adversaries, they are not desirable. Because ENGLISH (i.e. left end of the plot) is indistinguishable
from a genuine user query and has a smaller performance drop as compared to keys with higher
perplexities, we propose that keys should be sampled with a low temperature.

How to generate Unique and Harmless responses, yfp, with Perinucleus sampling. As seen
by the leftmost points of Figure 2 (left panel), low-temperature key generation leads to significant
performance drop. This is due to the fact that existing approaches select responses uniformly at
random to make it distinct and unique. To alleviate this, we propose Perinucleus sampling.1

We hypothesize that uniformly random responses, yfp, degrade performance because the modifications
required for the fingerprinted model, θmfp , to align these responses with natural keys are substantial.
This is due to the low probability of such responses occurring under the original model’s distribution,
pθm(·|xfp).

To gracefully trade-off Uniqueness and Harmlessness by controlling pθm(yfp|xfp), we propose
Perinucleus sampling; we sample yfp from the edge of the nucleus of the probability distribution
pθm(·|xfp) induced by the base model. Concretely, given some threshold t ∈ [0, 1] and width k ∈ Z+,
Perinucleus(t, k) first computes the next token probabilities for the completion of xfp: pθm(·|xfp)
and sorts the tokens in descending order of probabilities. The nucleus (Holtzman et al., 2020) is
defined as the tokens in the top t-percentile of the CDF of this distribution. The Perinucleus response,
yfp, is chosen by picking one token uniformly randomly from the next k tokens with probabilities
just outside this nucleus. This is formally described in Algorithm 1 in Appendix C, and an example
response with k = 1 is illustrated in the left panel of Figure 1. Informally, Perinucleus sampling
generates responses which are sensible, but uncommon as shown in the example.

The threshold t balances the Uniqueness and Harmlessness. A lower threshold risks losing uniqueness,
while achieving harmlessness. We investigate this in Figure 2 (right), and find that the model
performance is relatively flat, before dipping sharply after t = 0.9. We use t = 0.8 in our experiments
in accordance with the above findings. Note that while this ensures that pθm(yfp|xfp) is guaranteed
to be less than 0.2, in practice we find that it is much lower, with the average response probability
across all fingerprints being 0.006.

The width k also balances Uniqueness and Harmlessness. Larger width hurts performance because
more unlikely responses are sampled, but this improves uniqueness. As k increases, Perinucleus
responses become closer to uniformly random. Assuming that the randomness used in fingerprint
generation is kept secret, a width k ensures that for any LLM θ, pθ(yfp|xfp) ≤ 1/k. The false positive
rate of our scheme can bounded using Hoeffding’s inequality.
Proposition 3.1. Given a choice of k in Perinucleus sampling and M total fingerprints, if we claim
ownership of a model when more than m responses to fingerprint keys match the fingerprint responses
for some m, then the false positive rate satisfies

FPR ≤ exp

(
− 2

M

(
m− M

k

)2
)
.

In particular, when m = M (perfect Persistence), we have FPR ≤ exp
(
−2M(1− 1/k)2

)
.

Longer responses can also be generated using our scheme if desired — we simply sample the first
response token, yfp,1, using Perinucleus sampling, and then sample from the model conditioned
on the key and the first token (i.e. from pθm(·|xfp, yfp,1)) to generate the rest of the response. We
demonstrate the Harmlessness of longer responses with this scheme in Figure 9, showing that they
more robust to changes in response length as compared to the baseline. We also show examples of
fingerprints in Appendix D.3.

1The region of cytoplasm in a cell just outside the nucleus is called the perinucleus.
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Figure 3: Harmlessness and Persistence of Fingerprints on Llama-3.1-8B. We insert up to 24576
fingerprints into a Llama-3.1-8B model and measure the utility (on OpenLLM) of this model in
the left plot, and find that Perinucleus fingerprints lead to a low loss in utility. We also measure
the Persistence of the fingerprints (i.e. the percentage of fingerprints which are correctly recalled
after SFT) in the plot on the right. We find that Perinucleus fingerprints have a higher persistence as
compared to other designs.

3.2 FINGERPRINT TRAINING

Since fingerprinting involves fine-tuning which can significantly distort the model’s output distribution,
we need some regularization to keep the model close to its non-fingerprinted base model, preserving
utility. We propose using a combination of Model Averaging and Data-Mixing.

Model-Averaging. Following work from the continual learning literature (Jang et al., 2022; Shi
et al., 2024; Zhu et al., 2020; Kirkpatrick et al., 2017; Daumé III, 2009), we add an ℓ2-penalty on
the difference between θmfp and θm while training. We implement this as weight averaging, for some
choice of λMA ∈ [0, 1], making each step as

θmt+1 ← (1− λMA)θ̃
m
t + λMAθ

m ,

where θ̃mt = θmt − η
∑M

i=1∇ℓ(θmt , xi
fp, y

i
fp). It can be seen that this is equivalent to penalizing

the square of the difference between the current and the base model’s weights during training,
ameliorating performance degradation.

Data-Mixing. We also mix data sampled from the base model pθm(·) with the fingerprints during
training (Chen et al., 2024; Huang et al., 2024a) to mitigate catastrophic forgetting, distilling some
of the capabilities of the base model into the fingerprinted model. The fraction of benign data is
parametrized by βDM.

We report the sensitivity to these hyper-parameters in Figure 8 in Appendix D, and use with λMA =
0.75 and βDM = 0.25 in our experiments with Llama-3.1-8B. In Appendix F.1, we introduce
two more approaches, Parameter Adding and Meta-Learning, which improves persistence and
harmlessness at the cost of increased computation.

4 EXPERIMENTS ON SCALABILITY AND PERSISTENCE

We demonstrate the Scalability of our approach by measuring the Harmlessness (Section 4.1) and
Persistence (Section 4.2) of fingerprints. We present an ablation study and a generalization to changes
in the fingerprint design in Appendix F.2. Additional results on other model families, fingerprinting
algorithms, and analysis with different SFT settings can be found in Appendix F.

Experimental setup. We conduct experiments to show the efficacy of our scheme on Llama-3.1-8B-
Base model. We generate fingerprints where xfp has 16 tokens, and yfp has 1 token. For our method,
we generate fingerprint keys with low-temperature, and use t = 0.8 and k = 3 for Perinucleus
sampling. We also use anti-forgetting regularizers (Section 3.2) for all methods. Further details on
our setup are in Appendix D.

Metrics To measure the Harmlessness of fingerprints, we report evaluation scores on the Open-
LLM (Beeching et al., 2023) benchmark. To assess Persistence, we first perform SFT on the
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fingerprinted model using the Alpaca (Taori et al., 2023) dataset for instruction tuning. We then
prompt the model with the fingerprint keys and verify whether the highest-probability output token
matches the corresponding fingerprint response. Persistence is measured as the fraction of correctly
recalled fingerprints over the total inserted. We re-run each experiment thrice and report the mean
and standard deviation.

Baselines. Two fingerprinting schemes from prior work (Xu et al., 2024a; Russinovich & Salem,
2024) are our baselines. We term these as RANDOM and ENGLISH-RANDOM. The former uses a
concatenation of random tokens as the fingerprint key (xfp), while the latter uses a coherent English
sentence sampled from Llama-3.1-8B-Instruct. For both these schemes, the response (yfp) is a random
token.
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Figure 4: Scaling the model size. We plot the utility of fingerprinted models on OpenLLM (left) and
Persistence, the percentage of surviving fingerprints after SFT on Alpaca, of Perinucleus fingerprints
(right) for different sized Llama 3 models. We see negligible performance drop on OpenLLM from
the base models (gray lines) across the experiment. Persistence after SFT remains close to 50% even
at 8192 fingerprints for all model sizes.

4.1 SCALABILITY: HOW MANY FINGERPRINTS CAN WE ADD?

Scaling to a large number of fingerprints is crucial for making model sharing secure, e.g., as we
show in Figure 6. However, existing works embed only up to 100 fingerprints (Russinovich & Salem,
2024) because ENGLISH-RANDOM fingerprint generation–English keys and random responses–
suffers from significant utility drop after 256 fingerprints as seen in Figure 3 (left). Another baseline
scheme of RANDOM–which uses a sequence of random tokens as key and response–is Scalable
but not secure, because such keys can easily be filtered out by the model host at inference time.
The proposed scheme of using Perinucleus fingerprints with English keys achieves the best of both
worlds – it has in-distribution keys and has better Harmlessness by trading off on Uniqueness (as we
define in Section 3). We can hence scale up to 24,576 fingerprints without significant drop in model
performance as seen in the plot. This is two orders of magnitude improvement over the existing
baselines, and this gain extends to various model sizes (Figure 4) and families (Figure 12 in the
appendix). Our ablation study (Table 4) shows how Perinucleus sampling and regularized training
are both critical in achieving such level of Scalability.

4.2 PERSISTENCE: HOW MANY FINGERPRINTS SURVIVE SFT?

An important property of fingerprints is their ability to Persist after SFT on other data. We investigate
this in Figure 3 (right), plotting the Persistence of fingerprints after SFT on Alpaca for a Llama-3.1-8B
model.

ENGLISH-RANDOM leads to fingerprints that are easily forgotten, while using RANDOM strings
as keys gives higher Persistence. Since RANDOM keys are out-of-distribution from the SFT data,
we posit that the changes induced by SFT do not change the model’s behavior much on RANDOM
fingerprints. This leads to higher Persistence.

The proposed Perinucleus scheme also has a high Persistence, retaining over 60% of fingerprints when
8192 of them are initially inserted. We hypothesize that the in-distribution nature of the responses
(as compared to ENGLISH-RANDOM) leads to better Persistence. Note that Persistence decreases
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Figure 5: Under various 3-way collusion attacks, the proposed collusion resistant fingerprinting with
p = 0.243 achieves near-perfect detection rate when the number of total fingerprints M is larger
than 2048. This implies that each model needs to scale to include at least Mp = 500 fingerprints
on average to achieve Security against collusion attacks. The total number of shared fingerprinted
models is N = 2048.

as more fingerprints are inserted. As the number of fingerprints increases, the average value of
pθm

fp
(yfp|xfp) after fingerprinting goes down (as we show in Appendix F.4), since we regularize the

model to have a high utility. This means that a greater fraction of fingerprints are closer to the margin
of being forgotten as we increase the number of fingerprints, and this leads to a lower Persistence.
This effect is even more pronounced for schemes where pθm(yfp|xfp) is already low, i.e. where
the response was chosen randomly. However, the rate of this decrease appears to be sublinear for
Perinucleus fingerprints, indicating that the total number of retained fingerprint still increases as the
number of fingerprints inserted is increased. We explicitly show this in Figure 7 in the Appendix. We
also conduct experiments on how the size and distribution of the SFT dataset affect persistence of
fingerprints in Appendix F.3.

4.3 SCALING MODEL SIZE

In Figure 4, we investigate the Harmlessness and Persistence of the proposed scheme across different
model sizes (1B, 3B, 8B) from the Llama-3 family. We find that the drop in performance is minimal
across model sizes, indicating that the scheme is robust to variations in model scale. We also
find Persistence to be high across models, with close to 50% Persistence even in the 1B model at
8192 fingerprints. Perhaps surprisingly, smaller models demonstrate a greater persistence at 1024
fingerprints. Scaling laws to characterize Persistence of models to retain knowledge is an interesting
future research direction.

5 SECURITY THREATS THROUGH COLLUSION

In Appendix E, we address several security and robustness risks to fingerprint detection, including
random sampling for generation, model merging, and prompt wrappers and show how to counter
them. However, in this section, we introduce and focus on the specific threat of collusion attacks; this
exemplifies how Scalability is necessary for Security.

One of the benefits of fingerprinting is the ability to share a model with a bigger community. A
natural scenario is when a model owner receives a request to share the model weights and sends a
fingerprinted version of the model to a model host, who then runs some service using the model.
Fingerprinting helps detect when the model is illegally copied and hosted by others without legitimate
access. Naturally, each version of the model is fingerprinted with a different set of fingerprints to
uniquely link each model with the model host who is given access.

Threat model. In this scenario where N versions of a base model is shared with N model hosts, a
coalition of adversarial hosts may pool their models to avoid detection. If all fingerprints are unique,
i.e., no two models share any fingerprints, then such a coalition can identify and avoid answering
fingerprint queries. By running multiple models for each query, they can identify differences in
fingerprinting because their models will respond differently. They can respond to queries using
strategies to evade detection, including the following -
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Majority voting: The coalition responds with the output produced by the most models, breaking ties
randomly.

Minority voting: The coalition responds with the output produced by the fewest models, breaking ties
randomly.

Non-unanimous refusal: The coalition refuses to respond to any query where there is disagreement
among the models. Potentially an alternative response may be drafted by an open model which is
known not to be fingerprinted at the cost of worse performance.

Novel collusion resistant fingerprinting strategy. We now introduce a novel scheme to assign
fingerprints and a model identification scheme (in Definition 5.1) that are simple to implement. In
Figure 5, we empirically demonstrate that this strategy is secure against the three standard collusion
attacks and an additional Optimal attack, which we outline in the proof of Proposition 5.3. While
the optimal strategy helps adversaries avoids detection most effectively, with enough fingerprints
detection becomes nearly certain. Together with our theoretical guarantee against a worst-case
attacker in Proposition 5.3, this shows that embedding enough number of fingerprints in each model,
i.e., Scalability, is critical in achieving security, i.e., identifying at least one model colluding in the
attack.

The main idea of our strategy is to assign each fingerprint to a random subset of models. This ensures
that no adversarial collusion strategy can bypass a certain large number of fingerprint checks. This
randomization is also key for efficiency — models can be released one by one, and we can make the
fingerprint choices for each model separately, independent of any past fingerprint allocations.
Definition 5.1 (Collusion resistant fingerprinting). Suppose we need to share N fingerprinted versions
of the base model, and we want to use M unique fingerprints. We assign each fingerprint to each
model independently and randomly with probability p chosen by the model owner. To identify which
of the N models is used by a model host in question, we check for the presence of each fingerprint.
We track a score {si}Ni=1 for each potential candidate model. Each time a fingerprint response is
received, we add one to the score of all models that the fingerprint was assigned to. Once all M
fingerprints have been checked, return the model corresponding to the largest score.

A mild assumption is required for the analysis under worst-case adversarial strategy.
Assumption 5.2 (Unanimous response). When all models in the coalition produce the same output,
the coalition must respond accordingly.

This guarantees the detection of a single model from the coalition. In general, it is impossible to
guarantee the detection of the entire coalition without stronger assumptions.

Theoretical guarantees. In the case of no collusion, it is easy to see why this scheme will be effective:
the score of the model being queried is Np in expectation, while the scores of other models have
expectation Np2. These quantities will separate substantially for sufficiently large N and small p.

In the presence of collusion, we prove that a large enough number of fingerprints guarantees identifi-
cation.
Proposition 5.3. Under Assumption 5.2 and the fingerprinting scheme of Definition 5.1, when there
are N models and a maximum coalition size of K,

M = O
(
2KKK+1 log(N/δ)

)
fingerprints will guarantee detection of at least one model from the coalition with probability at least
1− δ.

We defer the proof to Appendix B. Although the bound on the number of required fingerprints scales
poorly in K, this is unlikely to be an issue in practice because forming a coalition of size K makes
inference K times more expensive. Thus, collusion will only be economically viable for small K.
In contrast, the logarithmic scaling in N ensures that this scheme may support a large number of
models.

6 CONCLUSION

In this work, we presented a new scheme to generate and insert fingerprints into LLMs. We show that
the scheme enables scaling up the number of fingerprints that can be inserted by a substantial amount,
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and that larger numbers of fingerprints can be used to reduce the false positive rate of detection,
better adapt to useful downstream modifications such as fine-tuning, and resist attacks by colluding
actors. We hope our work will promote future interest in fingerprinting of LLMs. While we show the
robustness of our fingerprinting to some security threats, combining multiple attacks including (e.g.
fine-tuning and collusion) presents an interesting direction for future work.
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A EXTENDED RELATED WORKS

A.1 BACKDOORING MODELS FOR FINGERPRINTING

There is a natural connection between model fingerprinting for authenticating ownership of a model
and backdoors in secure machine learning (Gu et al., 2017), where an attacker injects maliciously
corrupted training samples to control the output of the model. Since (Adi et al., 2018; Zhang et al.,
2018; Guo & Potkonjak, 2018) started using backdoor techniques for model authentication, numerous
techniques are proposed for image classification models (Zhu et al., 2021), pre-trained language
models (Gu et al., 2023; Kurita et al., 2020; Li et al., 2021), and more recently for large language
models (Xu et al., 2024a; Russinovich & Salem, 2024). We refer the reader to (Zhao et al., 2025)
for a comprehensive survey. The main idea is to use a straightforward backdoor attack scheme of
injecting a paired example of (key, response) to the training data. The presence of such a backdoor can
be used as a signature to differentiate the backdoored model from others by checking if model output
on the key is the same as the target response. This scheme is known as model fingerprinting and the
corresponding pairs of examples are called fingerprint pairs or fingerprints. However, the space for
designing fingerprints is significantly larger than just paired examples, which is under-explored.

A.2 FINGERPRINTING LLMS

Active Fingerprinting through Fine-tuning There has been much recent interest in fingerprinting
generative large language models to detect model stealing. Xu et al. (2024a) studied this problem
in both a white-box (i.e. with access to model weights) and black-box (i.e. access only to an API)
settings. They proposed fine-tuning the model with fingerprints containing random sequences of
tokens. They also propose a set of six criteria for good fingerprinting methods, including persistence
of fingerprints after SFT on other data, and harmlessness of the fingerprinting on other model abilities.
Russinovich & Salem (2024) also study fingerprinting in a setting where model owners can also
be adversarial, and falsely claim another model as their own. They hence propose a scheme where
the responses for the fingerprint keys are uniquely decided for each model owner using a technique
termed chain-and-hash. They also address a few practical challenges of fingerprints, including prompt
wrapping by the model deployer to evade detection. The keys of the fingerprints considered are either
concatenation of random tokens, or sensible English questions. We compare with these techniques in
Figure 3 for harmlessness and persistence. Similarly, Zhang et al. (2024a) use fingerprints to solve an
adjacent problem of verifiable fine-tuning. Here, the user provides a dataset to a fine-tuning service
provider (such as OpenAI’s fine-tuning platform), and wants to ensure that the returned model has
been fine-tuned on the provided data. To do this, the user can insert backdoors or fingerprints into the
training data. The paper also outlines a scheme to ensure that the inserted fingerprints are diverse
enough, but also close to the training data distribution to evade detection and be harmless. Cai et al.
(2024) propose to find under-trained tokens in the model’s vocabulary, and trains the model to use
these as fingerprints. Other works have also looked at model merging as an attack (Yamabe et al.,
2024; Cong et al., 2023) as well as a way to fingerprint models (Xu et al., 2024b). Yamabe et al.
(2024) propose a multi-level optimization scheme to fingerprint models, optimizing the fingerprints
through GCG (Zou et al., 2023), and simulating merging during training to be robust to such an
attack.

Passive fingerprinting A separate line of work has tried to “discover” fingerprints in LLMs. Yang
& Wu (2024) leverage the attack techniques from Carlini et al. (2024); Finlayson et al. (2024) to
infer the dimension of the final linear layer of a model from API access, and use this information
as a fingerprint. Other methods assume white-box access to models, and measure the alignment
in weights (Refael et al., 2024) or representation (Zhang et al., 2024b; Zeng et al., 2024a) spaces.
Another line of works trains a classifier on the outputs of the LLMs (Pasquini et al., 2024) to
discriminate between models. Similarly, Iourovitski et al. (2024) bypass using a classifier by using
another LLM to generative discriminative queries for pairs of models to be fingerprinted.

Attacks against fingerprints Recent works have proposed methods to detect backdoors in LLMs.
(Zeng et al., 2024b; Hoscilowicz et al., 2024; Shen et al., 2024; Li et al., 2024). These works mainly
work on backdoors, which are prefixes or suffixes that can change the behavior of the model on a
large range of inputs. Such backdoors are similar to the instructional fingerprints proposed by Xu
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et al. (2024a), leading to an adversary potentially detecting such fingerprint triggers. Hoscilowicz
et al. (2024) aim to find these triggers by iteratively searching over the LLM’s vocabulary for tokens
that lead to abnormally high probabilities for generating the next token. They also notice that when
the first token of a hidden fingerprint is used as an input, the LLM not only produces an output
sequence with high token probabilities, but also repetitively generates the fingerprint itself. Zeng
et al. (2024b) consider the problem of detecting safety backdoors. They find that backdoors cause the
activations of the prompt to shift uniformly across different prompts. They then update the model to
be robust to perturbations in such backdoor directions, essentially removing the backdoor from the
model activations. Other works (Li et al., 2024; Shen et al., 2024) try to find the backdoor trigger by
optimizing tokens to produce different responses on different benign samples.

A.3 MEMORIZATION AND PERSISTENCE

Zhang et al. (2024c) propose and study backdoor attacks which can persist after finetuning. Chang
et al. (2024) study how models acquire knowledge during pre-training, and how this knowledge is
forgotten. Similarly, Allen-Zhu & Li (2024) study the capacity of different sized models to memorize
facts. Crucially, these studies operate on fictional facts and synthetic strings, which is similar to the
technique of fingerprinting.

A.4 WATERMARKING FOR LLMS

An area of research adjacent to fingerprinting is model watermarking. In this case, one assumes
access only to the outputs of an LLM, and aims to detect if a piece of text was generated from a
particular model. This is different from fingerprinting, since it is a passive process, where one does
not query a model with specific keys, and in fact one does not even need to access the generation API.
Such methods work by changing the probability distribution (Kirchenbauer et al., 2023), sampling
scheme (Kuditipudi et al., 2023) or random seeds (Christ et al., 2024) for generating tokens. Such
schemes usually degrade quality of generation, and recent work focuses on improving this robustness-
quality tradeoff (Hu et al., 2023; Zhao et al., 2024; Giboulot & Furon, 2024). Other works have also
shown that watermarks can get transferred when one distills a student model from a watermarked
teacher model (Sander et al., 2024; Zhao et al., 2022), enabling detection of unsanctioned model-
stealing through distillation.

B PROOFS

Proof of Proposition 5.3. First, we note that Binomial(M,pK) positive fingerprint responses are
required by Assumption 5.2. Let F denote the number of unanimous positive fingerprints. The
coalition C may also choose to return E additional positive responses. Clearly, when F = 0 the
adversary may choose E = 0 to evade detection, so we will consider only F ≥ 1 from now on.
Perhaps surprisingly, we will show that it is sometimes optimal for the adversaries to choose nonzero
E.

To best avoid detection, the E positive results should each correspond to just one of the K models in
the coalition and they should be distributed evenly among the K members. This strategy minimizes
the maximum score achieved by the coalition to F + E/K, which cannot be improved further. In
contrast, the number of total positive fingerprints is F + E.

Now, turning our attention to models not in the coalition, we have si ∼ Binomial(F + E, p) for all
i ̸∈ C. Applying a binomial tail bound and then choosing p = 1/(2K), we have

P
(
si ≥ max

i∈S
si

)
≤ P

(
si ≥ F +

E

K

)
≤ exp

(
−2 · (F (1− p) + E(1/K − p))2

F + E

)
≤ exp

(
− 2 · (F/2 + E/(2K))2

F + E︸ ︷︷ ︸
Q

)
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for i ̸∈ C. Now, we find the optimal E for the adversary. If K = 1, then clearly E = 0 is optimal.
Otherwise, when K ≥ 2 and F ≥ 1, E ≥ 0, we have

dQ

dE
=

(E − F (K − 2))(E + FK)

4(F + E)2K2
and

d2Q

dE2
=

F 2(K − 1)2

2K2(F + E)2
> 0.

So the only nonnegative critical point is E = F (K − 2) and this must be the minimizer of Q.
Substituting this back in, we get

P
(
si ≥ max

i∈S
si

)
≤
{
exp(−F/2) if K = 1

exp
(
−2F (K − 1)/K2

)
if K ≥ 2

≤ exp

(
− F

2K

)

for all i ̸∈ C. This bounds the probability that a single model not in the coalition will have a score
greater than or equal to the highest score within the coalition. Taking a union bound over N models,
we have

P
(
max
i ̸∈C

si ≥ max
i∈S

si

)
≤ N exp

(
− F

2K

)
.

From this we see F ≥ 2K log(2N/δ) ≜ Fmin limits the failure probability to at most δ/2.

Finally, let’s assume MpK ≥ 2Fmin. Using the relative binomial tail bound, we get

P(F ≤ Fmin) ≤ exp

(
−
(
1− Fmin

MpK

)2
MpK

2

)
≤ exp

(
−MpK

8

)
.

Now we see that MpK ≥ 8 log(2/δ) suffices to limit the failure probability to at most δ/2. Combining
this with our earlier assumption and taking a union bound over the two failure cases completes the
proof.

Proof of Proposition 3.1. Our strategy is to query the model with M fingerprint queries and only
claim ownership if more than m of them match the fingerprint response. Let Fi denote the indicator
that query i leads to a false positive. From the way that the Perinucleus responses are chosen,
we know that the probability of any one query being a false positive is bounded by 1

k . Hence,
Fi ∼ Bernoulli( 1k ). Now, for our strategy to get a false positive overall, we need

M∑
i=1

Fi ≥ m

Since each fingerprint was chosen randomly, we can bound the probability of this event by using
Hoeffding’s inequality

P

(
M∑
i=1

Fi ≥ m

)
≤ exp

(
−2

(m− E[
∑M

i Fi])
2

M

)

≤ exp

(
− 2

M
(m− M

k
)2
)
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C PSEUDOCODE

Algorithm 1 Perinucleus Sampling
Input: Base model θm and vocabulary V , Model for keys θk threshold t ∈ [0, 1], width k ∈ Z+,
length L of response
Output: Sampled fingerprint (xfp, yfp)

1: Sample xfp ∼ pθk(·)
2: Compute the next-token probabilities for all tokens pθm(v|xfp) ∀v ∈ V .
3: Sort the tokens in descending according to pθm(v|xfp) to get a vector P of the probabilities and

vector I of the sorted token indices.
4: Compute the cumulative sum S of P , which is the CDF of the distribution
5: Get smallest index i s.t. S[i] ≥ t. This is the boundary of the nucleus
6: Sample a number r uniformly at random between 1 and k + 1
7: Set the response token yfp,1 to the token indexed by i+ r in I .
8: If L > 1:
9: For j = 2 to L:

10: Compute pθm(·|xfp, yfp,1, . . . , yfp,j−1).
11: Assign token with largest probability as yfp,j
12: Return yfp = (yfp,1, yfp,2, . . . , yfp,L)

D ADDITIONAL EXPERIMENTAL DETAILS

We conduct experiments to show the efficacy of our scheme on Llama-3.1-8B model. We generate
fingerprints where xfp has 16 tokens, and yfp has 1 token. We use Llama-3.1-8B-Instruct to generate
xfp, with a temperature of 0.5. We use Adam to optimize the cross entropy loss, training with
full-batch gradient descent for upto 40 epochs, and early stop when the train loss drops below 0.005.
This usually happens within a few epochs. We repeat each experiment thrice for our main results,
generating a new set of fingerprints for different seeds.

We report evaluation scores on the OpenLLM (Beeching et al., 2023) benchmark. , which is an
average of scores on six tasks - MMLU, ARC, GSM-8K, HellSwag, TruthfulQA and Winogrande.

To check for persistence, we perform SFT on the fingerprinted model on the Alpaca (Taori et al.,
2023) dataset, for instruction tuning We perform two epochs of fine-tuning with a learning rate of
10−5. We use the Llama-Factory (Zheng et al., 2024) framework for this.

D.1 GENERATING THE FINGERPRINT KEYS

First, we sample a word from the 10,000 most used words in English. We then prompt Llama-3.1-8B
with the following prompt “Generate a sentence starting with word”. We sample from the model at a
temperature of 0.5 to obtain our fingerprint key xfp.

D.2 HYPER-PARAMETER SELECTION

For choosing our learning rate, as well as λ and β for regularization, we insert 1024 fingerprints into
the model for each fingerprinting scheme with different learning rate between 1e− 3, 1e− 6. We
vary λMA between 0.1 and 0.8, and βDM between 0.0 to 0.5. We pick the value which gives us the
best performance on tinyBenchmarks (Polo et al., 2024) as a proxy for harmlessness. Notably, we do
not tune parameters for persistence.

D.3 EXAMPLE FINGERPRINTS

RANDOM -

• key : “bg char casinos nationally dresses lbs health xerox finland yamaha assessments
versions dirt proteins passage span texts rebecca”, response: “ transfer employees recently
portfolio subscribe nest webcams moss navigator receptor dispatched peripheral restaurants”
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• key: “slight tennis blame based exposure therapist activity strongly mechanics summary
govt daniel nr share abstracts cow ted conduct handbook”, response: “coffee desired filling
earned official facilities kate merchant protocols decimal prohibited countries penny library
keyword”

• key: “beatles adolescent managing pierce saving acne script use families fraser mails donate
massachusetts labels parental twist”, response: “fighters vitamins rock governance peninsula
ibm votes familiar specifics disputes abu pieces ruling navigate elite experimental yea”

ENGLISH RANDOM -

• key : “The world is full of beautiful things. From the majestic mountains to the serene
oceans”, response: “ Outlined in the company’s annual report, the new policy aims to reduce
the carbon footprint of the company by 50% within the next five years”

• key: “Proteins are the building blocks of life, and they play a vital role in the functioning
of our bodies.”, response: “Le Corbusier’s architecture was characterized by a fusion of
modernism and brutalism.”

• key: “Documentation is a crucial part of any project, and it’s often overlooked until the”,
response: “Personal experiences often shape our perspectives and influence our decisions.”

Perinucleus -

• key : “The world is full of beautiful things. From the majestic mountains to the serene
oceans”, response: “ and everything in between, there is no shortage of natural beauty to be
found.”

• key: “Proteins are the building blocks of life, and they play a vital role”, response: “as
enzymes in the body. Enzymes are proteins that act as catalysts.”

• key: “Documentation is a crucial part of any project, and it’s often overlooked until the”,
response: “final stages. However, it’s important to start documenting early on in the project”

E OTHER SECURITY RISKS

E.1 CHANGING THE SAMPLING

One simple modification that can lead to degraded detection is changing the temperature of sampling,
which could lead to fingerprint responses not being emitted on a fingerprinted model. However, this
would also lead to a loss of utility at higher temperatures. In Figure 6, we plot this trade-off for a
model with 1024 fingerprints. We find that fingerprints are somewhat resilient to sampling at different
temperatures, and the model utility drops faster than the fingerprint accuracy as the temperature is
increased.

One way to increase the probability of detection in this case is to sample multiple times from
the model. However in order to minimize the number of queries, we propose a simpler scheme –
change the fingerprints such that a single key xfp is associated with multiple fingerprint responses
{y1fp, y2fp, · · · , yNfp}. Fingerprinting a model to convergence with such strings would then lead to the
top-N most probable output tokens to be fingerprint responses. Hence, even under changes made
to the sampling (such as increased temperature), we find that there is a higher chance of detection.
We show this in Figure 6(left), where we plot this detection probability for N = 2 responses per
fingerprint.

E.2 MODEL MERGING

Model merging (Ilharco et al., 2023; Yadav et al., 2023; Nasery et al., 2024) in the weight space
is widely used by practitioners to combine the abilities of multiple models. One possible threat
to fingerprint detection is if the adversaries were to merge a fingerprinted model with a different,
non-fingerprinted model. This threat model has also been studied in (Yamabe et al., 2024; Cong
et al., 2023). The latter has shown that Instructional Fingerprints are relatively robust to merging.
We also investigate the persistence of Perinucleus fingerprints after merging a fingerprinted Llama-
3.1-8B model with a different model (Llama-3.1-8B-Instruct) in Table 1. We consider only those
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Figure 6: Some attacks: Detection under sampling with higher temperature, and sampling with 3-way
collusion

Merging Parameter Llama-Instruct Llama-Base
Linear Merge SLERP Merge Linear Merge SLERP Merge

0.9 95.1 95.7 96.1 97.6
0.8 92.1 90.2 94.1 96.2
0.7 86.2 86.1 89.8 92.1
0.5 61.1 61.2 74.1 74.4
0.2 10.6 10.2 11.7 3.8
0.1 4.5 3.5 4.9 0.6

Table 1: Persistence of Fingerprints After Model Merging. We merge a fingerprinted Llama-3.1-8B
model (with 1024 FP) with either the instruct or base version, using either linear or SLERP merging,
and check the Persistence. We find that most fingerprints survive for larger values of the merging
parameters.

methods which do not utilise the base (non-fingerprinted) model, and hence only consider linear
averaging (Wortsman et al., 2022) and SLERP (Shoemake, 1985). These methods are parametrized
by λ, which denotes the weight of the fingerprinted model in the final model. Setting this λ to be too
low would hurt the utility of the final merged model, hence we consider values of λ ≥ 0.5. We find
that over 60% of the 1024 fingerprints persist for these values of λ for both the methods considered.

E.3 PROMPT WRAPPERS

A simple method to evade detection by an adversary is to wrap each input to the LLM with a prompt
wrapper. This could be a system prompt, or a specific instruction. As seen in Table 2, we see that
this leads to a lower detection accuracy. To fix this behavior, we train the model with a set of system
prompts while fingerprinting. This is similar to the approach in (Russinovich & Salem, 2024). We
find that this restores the detection accuracy back even under prompt wrappers at test time.

# FP Prompt Training? No Prompt Wrapper Prompt Wrapper

1024 ✗ 99.2 55.1
✓ 98.7 98.5

4096 ✗ 99.3 54.2
✓ 99.1 98.6

Table 2: Effect of training with system prompts.

20



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Fingerprints

0

1000

2000

3000

4000

5000

6000

7000

8000

Fin
ge

rp
rin

ts
 re

ta
in

ed

Perinucleus
ENGLISH RANDOM
RANDOM
y=x

Figure 7: Number of fingerprints retained after SFT plotted against fingerprints inserted

E.4 FALSE CLAIMS OF OWNERSHIP

Chain-and-hash (Russinovich & Salem, 2024) addresses this problem cryptographically by deriving
the fingerprints from a secret key. We can use this approach to give a similar guarantee. Our
implementation of perinuclear fingerprints picks the response randomly from among the top k tokens
just outside the nucleus. This “randomness” can be derived cryptographically from the hash of the
queries xi

fp along with a secret key. This renders false claims of ownership computationally infeasible.

F ADDITIONAL RESULTS

We present additional experimental results.

F.1 MORE SOPHISTICATED ALGORITHMS

On top of Model-Averaging and Data-Mixing in Section 3.2, we present two additional approaches,
Meta-Learning and Parameter-Adding, that use more resources to improve Harmlessness and Persis-
tence.

Algorithm 2 Meta-Learning for Robust Fingerprinting

1: Initialize θ (parameters), learning rate α,
2: for t = 1 to T do
3: Initialize θ̂ = θ
4: for tf = 1 to TF do
5: Sample batch xft ∼ Dft

6: Simulate Finetuning: θ̂ = θ̂ −∇θ̂L(θ̂, xft)
7: end for
8: Compute gradient on fingerprints: g = ∇θL(θ, xfp)

9: Compute gradient of fine-tuned model on fingerprints: ĝ = ∇θ̂L(θ̂, xfp)
10: Update parameters: θ = θ − α · g − β · ĝ
11: end for
12: return θ

Better Persistence of fingerprints through Meta-Learning. The goal of persistence of fingerprints
boils down to the LLM “remembering” certain data even after it has been fine-tuned on other data.
Prior work (Deng et al., 2024; Tamirisa et al., 2024; Huang et al., 2024b) have looked at the problem
of baking in some knowledge into a model such that it survives fine-tuning. These methods assume
that the adversary has knowledge of the data that needs to survive fine-tuning, and can hence perform
a targeted fine-tuning attack. In our setting, we have a weaker adversary who does not know what
the fingerprint strings are, or their distribution. Hence, we only need to protect these strings from
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Perinucleus FP Meta-Learning OpenLLM Persistence

✓ 58.0 97.1
✓ ✓ 58.7 99.3

Table 3: Using Meta-learning improves the persistence of fingerprints at 1024 fingerprints.

fine-tuning on generic datasets that are not targeted. To counter the forgetting of such fingerprints, we
take inspiration from the above-mentioned line of works and propose a meta-learning style algorithm
to make fingerprints more persistent during fine-tuning. Concretely, we simulate a fine-tuning run
on unrelated data while the model is being fingerprinted. The final loss is then a sum of the losses
on the fingerprints of the original and the fine-tuned model. However, since it is infeasible to back
propagate through the finetuning process, we use a first order approximation where we assume that
the fine-tuning is linear(Nichol et al., 2018). Hence, the total gradient for each optimization step is
∇θL(fp) +∇θ̂L(fp), where θ̂ is the model finetuned on unrelated data. Our algorithm is shown in
Algorithm 2

We show results of adding 1024 fingerprints into a 8B model with meta-learning in Table 3, and find
some improvement by using the algorithm.

Expanding the model’s parameters. We propose another method of increasing compute to get
better fingerprint harmlessness. We propose adding extra parameters to a model which are randomly
initialized and only trained on the fingerprints. The number of extra parameters is controlled by an
expansion ratio. We only add parameters to the MLPs, increasing the width of the MLP by a factor of
(1+expansion ratio), and during fingerprinting, only the added weights are updated. The intuition
behind this method is that all original model weights remain unchanged, and extra capacity is added
to the model specifically for memorizing fingerprints. In Figure 8 (right), we show the results of
adding 1024 fingerprints to a Llama-3.1-8B model with varying expansion ratios. We see promising
results on the harmlessness of this approach at low expansion ratios.
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Figure 8: In the figure on the left, we plot the harmlessness of different combinations of our
regularization hyperparameters for 1024 fingerprints. Model-Averaging parameterized by λ and
Data-Mixing parameterized by β are combined to fine-tune fingerprints (as defined in Section 3.2).
In the figure on the right, we plot the performance of a fingerprinted model with extra parameters
added, and notice a gain in utility when 0.1% extra parameters are added.

F.2 HOW GENERAL IS OUR APPROACH?

Do Perinucleus fingerprints transfer from one model to another? Since Perinucleus responses
are generated from the model to be fingerprinted itself, an interesting question is whether we can use
other models to generate these responses instead. To test this we generate Perinucleus responses using
smaller models, i.e., Llama-3.2-1B and 3B, and use these fingerprints for a Llama-3-8B model. The
resulting utility and Persistence are shown in Figure 9 for 1024 and 4096 such fingerprints. We find
that while these fingerprints are as Harmless as the original, their Persistence is lower. To explain this,
we compute the average value of pθm(yfp|xfp), and find it to be directly correlated with model size,
i.e., this probability is lower for fingerprints generated by Llama-3.2-1B than those by Llama-3.2-3B,
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Fingerprint Design Regularizers OpenLLM Persistence
ENGLISH-RANDOM 43.5 39.8
ENGLISH-RANDOM ✓ 55.8 8.9
Perinucleus 58.0 97.1
Perinucleus ✓ 61.1 77

Table 4: Ablation study shows that Perinucelus fingerprint generation is crucial for Harmlessness
and anti-forgetting regularizers further boost Harmlessness when inserting 1024 fingerprints into a
model. One can trade off Harmlessness and Persistence by controlling the amount of regularization,
and we select an operating point with the highest possible Harmlessness.
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Figure 9: Changing the fingerprint responses (Left and middle) Persistence and OpenLLM perfor-
mance when smaller models are used to generate fingerprints using Perinucleus sampling. We find
that the utility does not change, but Persistence drops when using fingerprints from other models.
(Right) Performance drop when the length of the response in the fingerprints is increased. The
performance with 1024 Perinucleus fingerprints is significantly more robust to the length of the
response as compared to the baseline of 1024 English fingerprints.

which is lower than the original fingerprints (6.12, 5.58, and 5.14 being the respective average log
perplexities). In the context of Figure 2 (right), these fingerprints are equivalent to increasing the
threshold of fingerprinting, which leads to a similar utility, but lower Persistence.

Do longer responses work? Existing works, e.g., (Xu et al., 2024a; Russinovich & Salem, 2024),
only use one-token responses because Harmlessness drops significantly for longer responses as shown
in the right panel of Figure 9 labeled English; this uses English sentences (unrelated to the key) as
longer responses. In Section 3.1 and Algorithm 1 in the appendix, we introduce an extension of
Perinucleus sampling to longer responses. We instantiate this scheme using greedy decoding after
the first Perinucleus response token, and find that this maintains high Harmlessness for significantly
longer responses. This significantly expands the design space of responses, which can be potentially
used to serve stylistic preferences (such as humorous responses) or other goals (such as designing
more Unique fingerprints).

Ablation studies. In Table 4 we conduct an ablation study. We insert 1024 fingerprints into Llama-3.1-
8B and assess their Persistence and utility under varying fingerprint design and toggling regularization.
We find that the largest gains in both model utility and Persistence come from better fingerprint design
using Perinucleus sampling, while regularization provides a large boost in Harmlessness. We also
note that there is a trade-off between utility (i.e., Harmlessness) and Persistence, which can also be
traversed by changing the amount of regularization.

F.3 EFFECT OF SFT PARAMETERS ON PERSISTENCE

In Figure 10, we investigate the effect of changing the SFT dataset on the persistence of fingerprints
with our Perinucleus scheme. In the plot on the left, we change the number of samples of Alpaca used
for fine-tuning, and find that as the number of samples increases, the persistence decreases almost
logarithmically. In the plot on the right, we plot the persistence after SFT on MathInstruct(Yue et al.,
2023). Since this dataset is 4× the size of Alpaca, we also plot the persistence after subsampling this
dataset to 50000 samples. In both the cases, we observe that MathInstruct leads to lower forgetting
than Alpaca. We hypothesize that this happens because its prompts are farther from the fingerprints’
distribution, leading to lower interference on the model’s behavior on fingerprint keys.
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Figure 10: Changing the number of samples in fine-tuning and the fine-tuning dataset to see the
persistence of fingerprints.
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Figure 11: Properties of forgotten and retained fingerprints

F.4 WHICH FINGERPRINTS ARE FORGOTTEN

In Figure 11, we plot out the distribution of log perplexity (under the base model) of the key and
response of forgotten and retained fingerprints when inserting different number of fingerprints into a
model. We find that there is not a large difference in these entropies under base model, making it hard
to distinguish a priori if a certain fingerprint will be forgotten or retained. We also plot the probability
pθm

fp
(yfp|xfp) of the response on the fingerprinted model, and find that the forgotten fingerprints have

a lower probability.
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Figure 12: Fingerprinting other models We check the harmlessness of our fingerprinting scheme on
models from the Mistral, Gemma and Llama family and find that that drop in relative utility is low.

F.5 HYPERPARAMETER SENSITIVITY

In Figure 8 (left), we study the sensitivity of harmlessness (measured on TinyBench) at 1024
fingerprints to the hyperparameters of the regularizers proposed in Section 3.2. We find that setting a
high value of λMA is important.

F.6 RESULTS WITH OTHER MODELS

In Figure 12, we show the harmlessness of our proposed scheme in fingerprinting Gemma-9B (Team
et al., 2024), Mistral-7B (Jiang et al., 2023) and Llama-3.1-8B-Instruct model. We find that we can
fingerprint these models with a low drop (∼ 5%) in relative utility as well.

F.7 DETAILED RESULTS
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Figure 13: Detailed Performance of the fingerprinted model on OpenLLM

In Figure 13, we plot the performance of the fingerprinted model on each of the benchmarks from
OpenLLM.
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