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Abstract

The design of antibodies with high affinity and specificity for target antigens is
a cornerstone of therapeutic and diagnostic innovation. Traditional optimization
strategies, such as phage or yeast display and directed evolution, remain resource-
intensive and limited in their ability to integrate contextual information. Recent
AI-driven approaches have accelerated protein engineering, but most rely exclu-
sively on structured inputs, overlooking the potential of natural language as a flex-
ible design interface. In this work, we introduce TeBaAb, a novel text-based
antigen-conditioned framework for antibody redesign that combines generative
modeling with iterative optimization inspired by directed evolution. TeBaAb inte-
grates a Conditional Variational Autoencoder (CVAE) jointly conditioned on anti-
gen sequences and textual descriptions of antibody properties, coupled with a two-
stage binding affinity predictor and an iterative enrichment loop. To support this
approach, we curated AbDes, a new dataset of 7,800 text–antibody–antigen pairs
with accompanying structural and binding information. In silico experimental
evaluations demonstrate that TeBaAb improves the predicted binding affinity by
an average of 15.5% compared to the original antibodies, while preserving struc-
tural confidence (RMSPE < 1.0Å) and generating sequences that are diverse and
novel. By enabling text-conditioned antigen-specific antibody design, TeBaAb
provides a promising new paradigm for accelerating therapeutic antibody discov-
ery and expanding the antibody design space beyond traditional methods.

1 Introduction

Antibodies are Y-shaped glycoproteins produced by the adaptive immune system to recognize and
neutralize foreign molecules, known as antigens. Each antibody binds with high specificity to a
particular epitope on the antigen surface, primarily through its complementarity-determining re-
gions (CDRs), which are hypervariable loops located in the variable domains of the heavy and light
chains. This molecular recognition mechanism underlies the pivotal role of antibodies in immune
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defense and has been extensively harnessed in biotechnology and medicine. In particular, mono-
clonal antibodies have become one of the most successful classes of biopharmaceuticals, enabling
targeted therapies for cancer, autoimmune diseases, and infectious pathogens [4]. Given their broad
utility and therapeutic value, significant efforts have been devoted to the design and optimization of
antibodies with enhanced biophysical and functional properties [11].

Traditional antibody engineering relies heavily on iterative trial-and-error strategies such as phage
display, yeast display, and affinity maturation through directed evolution [24]. Although effective,
these methods are often laborious, time-consuming, and limited by the diversity of physically screen-
able libraries. Moreover, they require substantial experimental effort to explore a vast combinatorial
sequence space and to optimize multiple properties simultaneously. In recent years, artificial in-
telligence (AI) has begun to transform the landscape of antibody design by enabling data-driven
modeling of sequence–function relationships, generating novel candidates, and predicting biophys-
ical properties such as stability and binding affinity in silico. These advances have opened the door
to faster, more scalable and more targeted antibody discovery pipelines that complement or even
replace traditional wet-lab screening in early stage development [11].

Despite the success of AI-driven approaches in antibody design, most existing computational meth-
ods focus on generating or optimizing antibody sequences conditioned solely on structured inputs,
such as antigen sequences or 3D structures. These models typically lack the ability to incorporate
flexible, high-level design intents specified by users, such as functional requirements, therapeutic
context, or developability constraints, especially when such information is only available in natural
language form. This limitation restricts the usability and adaptability of current systems in real-
world therapeutic discovery workflows, where expert knowledge is often communicated through
free-text annotations or design briefs.

Recently, there has been a growing interest in using natural language as a conditioning modality
for protein generation [17]. Text-conditioned design offers a promising path toward more intuitive
and controllable protein engineering, allowing users to specify desired properties or functional be-
haviors directly through human language. Inspired by these advances, we introduce TeBaAb, a
text-based, antigen-conditioned framework for antibody redesign that allows guided optimization
through natural language prompts and directed evolution strategies.

In summary, this work makes the following key contributions:

• We propose a novel framework for antibody design. Our framework integrates two key
components: Conditional VAE for antibody generation and an optimization pipeline to
achieve a higher binding affinity antibody that is guided by our predictor model.

• Although comprehensive data on antibody-antigen pairs are scarce, we have aggregated
data from multiple sources, annotated antibodies, to create AbDes, a uniform dataset for
antibody design. The dataset and the source code will be publicly released upon acceptance
of the paper.

• Our experiments demonstrate the feasibility of designing antibodies based on descriptions
while still targeting specific antigens, opening up a new research direction in the field of
antibody discovery.

2 Related work

Text-Guided Protein Design. Recent advances in protein language models (PLMs) have laid the
foundation for text-guided protein design by modeling amino acid sequences analogously to natural
language. Transformer-based architectures such as ESM [21], ProtTrans [8], and various BERT-
based models have been pretrained on large-scale protein databases, capturing complex syntactic
and functional patterns in protein sequences. Building on these representations, recent approaches
have demonstrated the feasibility of generating or editing proteins from natural language prompts.
Pinal [6], a 16B-parameter model trained on 1.7B protein–text pairs, uses a two-stage pipeline to
map text to structural motifs and then generate sequences, validated experimentally. ProteinDT [18]
introduces a three-stage framework: Contrastive alignment (ProteinCLAP), a facilitator network and
a decoder trained in 441K text-protein pairs for zero-shot generation and editing. Other models, such
as PAAG [27] and ProDVa [16], target functional domain design, and fragment-based generation,
respectively. Large-scale models such as ProGen [19] and ESM-3 [10] enable prompt-guided gener-
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ation and prediction of fitness. These works demonstrate the growing potential of natural language
as a controllable interface for protein design.

Challenges in Antibody Design. Despite advances in general protein design, direct application
to antibody engineering faces unique challenges. Antibodies require precise three-dimensional ar-
rangements in their Complementarity Determining Regions (CDRs) while maintaining structural
integrity and minimal immunogenicity, constraints fundamentally different from general proteins.
Critical limitations include data scarcity: Although general protein-text datasets contain millions of
entries, detailed antibody annotations linking natural language descriptions to binding properties and
therapeutic functions remain limited [2, 23]. Additionally, structural constraints in antibody design
are exceptionally stringent, as function depends exquisitely on precise CDR conformations. Current
text-based models may struggle to capture these antibody-specific constraints, potentially generating
non-functional or immunogenic sequences [12]. These challenges highlight the need for antigen-
conditioned antibody design frameworks that bridge general text-based capabilities with specialized
antibody requirements. Our TeBaAb framework addresses this gap by combining text-based prop-
erty specification with explicit antigen conditioning and iterative optimization tailored for antibody
engineering.

3 Methods

3.1 TeBaAb Framework

CVAE

Affinity 
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Figure 1: The TeBaAb pipeline integrates gen-
erative modeling, predictive evaluation, and it-
erative refinement for antibody redesign. A
Conditional Variational Autoencoder (CVAE)
generates candidate sequences conditioned on
antigen sequences and textual descriptions. A
two-stage affinity predictor evaluates binding
strength, and top variants are iteratively fed back
into the CVAE, forming an in-silico directed
evolution loop. This process yields antibodies
with enhanced binding affinity while maintain-
ing structural integrity.

Antibody engineering has traditionally relied on
slow, resource-intensive experimental screening.
TeBaAb reimagines this process, offering a data-
driven framework that designs antibodies in sil-
ico to improve target binding while preserving the
structural features essential for proper folding and
function.

The framework follows a coordinated two-phase
workflow, as illustrated in Figure 1. First, a Con-
ditional Variational Autoencoder (CVAE) gener-
ates candidate antibody sequences that are based
on both the antigen sequence and the descrip-
tion of the antibody. This conditioning ensures
that the proposed modifications are biologically
grounded and remain compatible with the exist-
ing scaffold. Once these candidates are gener-
ated, the second phase takes over: a two-stage
deep learning predictor that estimates their bind-
ing affinity. This rapid in-silico evaluation allows
us to focus on the most promising variants with-
out immediately committing to costly laboratory
tests.

To push the designs further, TeBaAb draws inspi-
ration from directed evolution [25], introducing
an iterative loop of generation and selection. In
each cycle, the top performing sequence, those
with the highest predicted binding affinity, are
fed back into the generative process, creating
progressively refined variants. Over successive
rounds, the population converges toward designs
with superior predicted performance, mirroring the efficiency of natural selection, but operating
entirely within a computational space.

The result is a self-contained pipeline that replaces slow, resource-heavy screening with a stream-
lined, model-driven strategy. By weaving together generative modeling, predictive evaluation, and
iterative refinement, TeBaAb produces novel antibody sequences that enhance binding capabilities
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while honoring the structural constraints required for therapeutic viability. The sections that follow
unpack each of these components in detail, showing how they work together to turn a long-standing
experimental challenge into a computational design problem.

3.2 Conditional Variational Autoencoder
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Figure 2: The CVAE integrates antibody embeddings (IgBERT), antigen embeddings (ESMC), and
textual description embeddings (SciBERT) to generate antibody sequences. The encoder produces
a latent distribution, and the transformer-based decoder reconstructs sequences conditioned on both
latent variables and contextual inputs, enabling antigen-specific and text-guided antibody design.

Let the embedding of the antibody be denoted by x ∈ Rdab , representing the encoded representation
of the antibody sequence obtained from IgBERT [14], a specialized antibody pre-trained language
model. The conditioning vector is defined as: c =

[
cantigen; cdescription

]
, where cantigen ∈ Rdag rep-

resents the antigen embedding extracted using ESMC [10], a protein language model specifically
designed to understand protein sequences, and cdescription ∈ Rddes denotes the textual description
embedding generated by SciBERT [3], a domain-adapted language model for scientific text.

Encoder. The encoder, parameterized by ϕ, takes the concatenated vector [x; c] and outputs pa-
rameters of the approximate posterior:

qϕ(z | x, c) = N
(
z;µϕ(x, c), diag(σ

2
ϕ(x, c))

)
,

where µϕ and log σ2
ϕ are learned via neural networks. We then sample the latent representation using

the reparameterization trick:
z = µϕ(x, c) + σϕ(x, c)⊙ ϵ, ϵ ∼ N (0, I).

Decoder. The decoder, implemented as a transformer network parameterized by θ, models the
antibody sequence autoregressively conditioned on z and c:

pθ(xseq | z, c) =
L∏

i=1

pθ(xi | x<i, z, c),

where xseq = (x1, . . . , xL) denotes the amino acid sequence of length L, with each xi represented
as a one-hot vector.

Objective. The training objective minimizes a weighted sum of the reconstruction loss and the KL
divergence loss. This is equivalent to maximizing the Evidence Lower Bound (ELBO):

LCVAE(ϕ, θ;x, c) = −Eqϕ(z|x,c)
[
log pθ(xseq | z, c)

]︸ ︷︷ ︸
Reconstruction Loss

+β DKL

(
qϕ(z | x, c) ∥ p(z)

)︸ ︷︷ ︸
KL Divergence Loss

,

where p(z) = N (0, I) is the prior distribution over the latent space, and β is a dynamically adjusted
weight for the KL divergence term, controlled by a proportional-integral (PI) controller [9].

The two components of the loss are:
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• Reconstruction Loss (Lrecon): Implemented as a token-level cross-entropy loss, it mea-
sures how well the model reconstructs the input sequence xseq given the latent variable z
and conditions c.

Lrecon = −
L∑

i=1

log pθ(xi | x<i, z, c),

where L is the sequence length, xi is the i-th token, and x<i denotes the tokens preceding
xi. Padding tokens are masked (ignored) during loss computation.

• KL Divergence Loss (DKL): This term regularizes the latent space by minimizing the
Kullback-Leibler divergence between the approximate posterior qϕ(z | x, c) (learned by
the encoder) and the standard normal prior p(z). This ensures a meaningful and well-
structured latent space, facilitating effective sampling for generation.

The PI controller adaptively modulates β during training, encouraging an optimal balance between
latent compression (smaller KL divergence) and reconstruction fidelity (lower reconstruction error).

3.3 Binding Affinity Predictor

Inspired by recent advances in protein interaction prediction [22, 13], to predict antibody-antigen
binding affinity, we employ a two-stage deep learning framework. For sequence representation,
similar to the CVAE model, we use the embedding model IgBERT and ESMC to encode antibody
chains and antigens. First, the encoders ϕab and ϕag are lightweight MLP projectors implemented
as single linear layers mapping the pretrained embedding dimensions to a latent space, followed by
L2 normalization. We train these projectors from scratch with an InfoNCE loss while the pretrained
embedding backbones are not fine-tuned. For a batch of N pairs {(abi,agi)}Ni=1, projections are:

pab,i = normalize(ϕab(abi)),

pag,i = normalize(ϕag(agi)).

The contrastive loss is defined as:

Lcont = − 1

N

N∑
i=1

log

(
exp(pab,i · pag,i/τ)∑N
j=1 exp(pab,i · pag,j/τ)

)
.

Then, a cross-attention model predicts the binding affinity by capturing their interactions. The affin-
ity predictor, Maff, uses these encoders and applies multi-head cross-attention as follows:

Hab→ag = MultiHeadAttention(projab,projag,projag),

Hag→ab = MultiHeadAttention(projag,projab,projab),

H = Hab→ag +Hag→ab, ŷ = θ(H).

Finally, the loss is the mean squared error defined as:

Laff =
1

N

N∑
i=1

(ŷi − yi)
2.

The cross-attention step is necessary because binding affinity is not solely determined by global
similarity in the shared latent space. While the contrastive model aligns antibody and antigen em-
beddings, cross-attention explicitly models conditional interactions between them. This allows the
representation of an antibody to be refined with respect to a given antigen, better capturing the pair-
wise dependencies that underlie molecular binding, and thereby improving the accuracy of affinity
prediction.

3.4 Directed Evolution

Our antibody redesign strategy employs a directed evolution approach to iteratively improve anti-
body sequences towards higher binding affinity. This method mimics natural selection, progressively
enriching sequences that exhibit superior fitness. The core idea is to explore the sequence space
around an initial set of antibody sequences, evaluate the fitness of newly generated variants, and
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then select the most promising ones to serve as the basis for the next generation of exploration. This
iterative refinement process aims to converge on sequences with optimal binding characteristics.

The directed evolution process commences by selecting K = 10 initial antibody sequences. These
sequences are then subjected to an iterative optimization loop spanning G = 5 generations. In each
generation, for every selected antibody sequence, a set of B = 20 neighboring sequences are gener-
ated. This generation step is powered by our CVAE. Given an antibody sequence embedding, along
with the corresponding antigen embedding (cantigen) and a desired property embedding (cdescription),
CVAE samples novel antibody sequences, yet contextually relevant. This allows for exploration of
the sequence space while maintaining desired characteristics.

The fitness of these newly generated sequences is then rigorously evaluated. For this, we utilize
our pre-trained Binding Affinity Predictor. This predictor acts as a computational oracle, provid-
ing an estimated binding affinity (ŷ) for each antibody-antigen pair. A higher predicted binding
affinity (for example, a more negative value of ∆G) signifies a stronger binding interaction, thus
indicating a higher fitness. The selection criterion for advancing sequences to the next generation is
based on these predicted affinity values. Specifically, the top K antibody sequences, exhibiting the
most favorable (highest) predicted binding affinities, are chosen from the combined pool of parent
and newly generated sequences to propagate to the subsequent generation. This ensures that the
population progressively shifts towards higher-affinity regions of the sequence space.

The fitness score F (S,A) for an antibody sequence S against a target antigen A is directly defined
by its predicted binding affinity (ŷ(S,A)) calculated using our binding affinity predictor F (S,A) =
ŷ(S,A), where S represents the antibody sequence being evaluated and A represents the target
antigen sequence. The objective of the directed evolution process is to minimize F (S,A), thus
identifying antibody sequences with the strongest predicted binding affinity to the specific target
antigen.

4 Experiments

4.1 Dataset

The development of novel antibody design methodologies, particularly those leveraging text-based
conditioning, necessitates a comprehensive and multi-modal dataset. Although existing resources
such as the Structured Antibody Database (SAbDab) [7], the AbSet dataset [2], and the AntiBody
Sequence Database (ABSD) [20] provide extensive collections of antibody-antigen structures and
sequences, a notable gap persists in unifying these with rich descriptive textual annotations. Specif-
ically, to train our proposed text-based antigen-conditioned framework for antibody redesign with
a CVAE, a dataset comprising complete antibody heavy and light chain sequences, corresponding
antigen information, and contextual textual descriptions for each antibody was essential.

To address this critical data scarcity, we curated a novel dataset, termed AbDes (Antibody Descrip-
tion Dataset). Our construction methodology began with using the AbSet dataset as a foundational
source, which provides a meticulously compiled collection of antibody structures and molecular de-
scriptors, often including paired heavy and light chains alongside antigen information and associated
Protein Data Bank (PDB) IDs [5]. From AbSet, we meticulously filtered and selected 7,800 com-
plete data pairs, each comprising the heavy chain, light chain, and antigen of an antibody-antigen
complex.

A unique aspect of AbDes lies in its integration of descriptive textual information. Utilizing the PDB
IDs associated with each filtered entry, we systematically collected additional metadata and textual
annotations from the PDB. This collected information includes, but is not limited to, experimental
details, source organism, resolution, classification, and other relevant biological and experimental
contexts available within the PDB entry files (e.g., from fields like title, classification, organism,
expression system, etc.). The entry example can be found in Table 5.

To train the binding affinity predictor module in TeBaAb, we rely on experimentally determined
binding affinity measurements, specifically the values of change in free energy (∆G), obtained
from SAbDab. Comprehensive entries that included the complete heavy chain, the light chain, the
antigen, and an exact value ∆G were relatively scarce. At the time of this study, SAbDab contained
only about 400 such unique records, highlighting the persistent challenge of collecting large-scale
experimental affinity datasets for machine learning purposes. However, these high-quality measure-
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ments formed an essential foundation for developing a predictor capable of estimating the binding
strength, an important metric for assessing the performance of the redesign.

4.2 Results

In this section, we present a comprehensive evaluation of the TeBaAb framework, demonstrating its
efficacy in the redesign of antibody sequences. As our method introduces a novel approach for text-
conditioned antibody design, direct baseline comparisons with existing methods are not feasible.
Therefore, we focus on showcasing the performance of TeBaAb across the key evaluation metrics
outlined in Appendix A: Maximum Binding Affinity (MBA), diversity, novelty, and structural
confidence.

4.2.1 Binding Affinity Optimization

Our primary objective is to enhance the binding affinity of antibodies to antigens. Table 1 sum-
marizes the average predicted binding affinity for the original antibodies and their corresponding
TeBaAb optimized variants. We report the predicted ∆G values, where lower values indicate
stronger binding. The improvement in binding affinity is evident from the decrease in ∆G for
optimized sequences.

Table 1: Average Predicted Binding Affinity (∆G) for Original vs. TeBaAb-Optimized Antibodies.
Metric Original ∆G (kJ/mol) Optimized ∆G (kJ/mol) Improvement (%)
Binding affinity -10.04 ± 0.13 -11.60 ± 0.14 15.5

Note: Improvement (%) is calculated as (|Optimized ∆G| − |Original ∆G|)/|Original ∆G| × 100,
reflecting the increase in absolute affinity.

As shown in Figure 3, TeBaAb consistently generates antibody sequences with improved predicted
binding affinities, highlighting the framework’s ability to effectively optimize this critical property.

4.2.2 Sequence Diversity and Novelty

To evaluate the generative capabilities of TeBaAb beyond affinity optimization, we evaluated the
diversity and novelty of the antibody sequences generated. Diversity quantifies the variation within
the redesigned set, while novelty measures their distinctiveness from the training data. Table 2
presents these metrics.

Table 2: Sequence Diversity and Novelty of TeBaAb-Generated Antibodies.
Metric Value
Average Levenshtein Distance (Diversity) 87.73
Average Minimum Levenshtein Distance to Training Set (Novelty) 28.95

Note: Higher values for both metrics indicate greater diversity and novelty, respectively.
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Figure 3: Histogram & KDE: Original vs
Optimized Binding Affinity.

We adopted the Levenshtein distance [15] as a mea-
sure of sequence dissimilarity, as it directly captures
the minimal number of insertions, deletions, or sub-
stitutions required to transform one sequence into
another. This alignment-free metric is widely used
in bioinformatics for characterizing sequence simi-
larity, and is well-suited for antibody analysis where
small changes in amino acid composition can re-
sult in significant functional differences. The cal-
culated average Levenshtein distance indicates that
TeBaAb is capable of producing a diverse set of an-
tibody sequences, which is crucial for exploring a
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wide range of potential solutions. Furthermore, the
average minimum Levenshtein distance to the train-
ing set of 28.95 demonstrates the framework’s ability to generate novel sequences, minimizing over-
lap with existing data and potentially leading to innovative designs.

4.2.3 Structural Confidence

The maintenance of the structural integrity of the antibody scaffold is paramount for its stability and
function. We use ABodyBuilder2 [1] to forecast the three-dimensional configurations of modified
antibody sequences, utilizing its ensemble of four models to assess the reliability of the predictions.
In Table 3, we report the root mean prediction error (RMSPE) for different regions of the antibody.
While the prediction errors of TeBaAb sequences are consistently slightly higher than those of the
original antibodies, all values remain below 1.0 Å, a threshold generally considered to indicate high-
confidence structural predictions. This suggests that, although sequence modifications introduce
minor variability, the optimized antibodies maintain structural characteristics that are well captured
by standard prediction tools, supporting their feasibility and stability.

Table 3: Average Structural Confidence (RMSPE) for TeBaAb-Optimized Antibodies.

Region Original Pred. Error (Å) Optimized Pred. Error (Å)
Framework H-chain 0.315 ± 0.013 0.362 ± 0.011
CDR-H1 0.303 ± 0.010 0.290 ± 0.009
CDR-H2 0.190 ± 0.007 0.191 ± 0.005
CDR-H3 0.188 ± 0.005 0.196 ± 0.006
Framework L-chain 0.238 ± 0.006 0.260 ± 0.011
CDR-L1 0.252 ± 0.009 0.307 ± 0.020
CDR-L2 0.182 ± 0.007 0.192 ± 0.008
CDR-L3 0.235 ± 0.007 0.238 ± 0.010
Average 0.238 ± 0.008 0.255 ± 0.010

5 Discussion

The TeBaAb framework represents a significant advancement in computational antibody design, in-
troducing a novel text-conditioned approach to enhance binding affinity while preserving structural
integrity. Our results confirm TeBaAb’s ability to achieve substantial improvements in predicted
binding affinity ∆G, demonstrating its effectiveness in navigating the sequence landscape guided
by textual cues. Crucially, this optimization is achieved without compromising the fundamental
antibody scaffold, as evidenced by low and consistent structural prediction errors. Beyond affin-
ity, TeBaAb also showcases strong generative capabilities, producing diverse and novel antibody
sequences. This capacity to explore a broad and innovative sequence space is vital for identifying
unique therapeutic candidates and expanding the antibody repertoire. The development of the AbDes
dataset, a comprehensive resource of text-antibody-antigen pairs, underpins this text-conditioned de-
sign, addressing critical data scarcity in the field.

Despite these promising outcomes, the current iteration of TeBaAb has limitations. Our evaluations
are based on computational predictions, which requires future empirical wet lab validation to con-
firm functional efficacy. Furthermore, while focused on affinity, the framework’s textual condition-
ing could be expanded to encompass a wider range of developability properties. Future work will
prioritize experimental validation, broaden the scope of multi-objective optimization, and explore
more computationally efficient design strategies to realize TeBaAb’s full potential in accelerating
antibody discovery.

6 Conclusion

The development of high-affinity antibodies is a cornerstone of modern medicine, but traditional
design methods are often protracted and lack the capacity to integrate nuanced contextual informa-
tion. In this paper, we introduce TeBaAb, a novel text-based antigen-conditioned framework for
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antibody redesign, aimed at overcoming these limitations by leveraging textual descriptions and a
robust optimization pipeline. Our work makes several significant contributions to the field of anti-
body design. First, we proposed a unique framework that integrates a CVAE for antibody generation
with an Oracle-guided optimization pipeline, specifically engineered to achieve enhanced binding
affinity. Second, recognizing the scarcity of comprehensive antibody-antigen interaction data, we
diligently compiled and annotated AbDes, a substantial dataset of 7,800 text-antibody-antigen pairs,
which serves as a crucial resource for training text-conditioned antibody design models. Finally, our
rigorous in silico experimental evaluations unequivocally demonstrated the feasibility and efficacy
of TeBaAb. We showed that our framework consistently generated optimized antibody sequences
that exhibited superior affinity binding to target antigens, critically, while maintaining high struc-
tural confidence in the predicted structures of the redesigned antibodies. These results underscore
TeBaAb’s capacity not only to enhance desired properties but also to preserve the structural integrity
vital for therapeutic applications.

By enabling the design of antibodies based on descriptive text while ensuring antigen specificity,
TeBaAb opens a promising new research direction in antibody discovery. This approach has the
potential to significantly streamline the design process, accelerate therapeutic development, and
facilitate the creation of next-generation biologics with tailored properties. Future work will explore
expanding textual conditioning to encompass a broader range of antibody properties, integrating
more complex structural constraints, and validating TeBaAb designs through experimental wet-lab
assays.

References
[1] Brennan Abanades, Wing Ki Wong, Fergus Boyles, Guy Georges, Alexander Bujotzek, and

Charlotte M Deane. ImmuneBuilder: Deep-Learning models for predicting the structures of
immune proteins. Communications Biology, 6(1):575, May 2023.

[2] Diego S. Almeida, Matheus V. Almeida, Jean V. Sampaio, Eduardo M. Gaieta, Andrielly H. S.
Costa, Francisco F. A. Rabelo, César L. Cavalcante, Geraldo R. Sartori, and João H. M. Silva.
Abset: A standardized data set of antibody structures for machine learning applications. Jour-
nal of Chemical Information and Modeling, 65(10):4767–4774, 2025. PMID: 40349368.

[3] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific
text, 2019.

[4] Mitchell Berger, Vidya Shankar, and Abbas Vafai. Therapeutic applications of monoclonal
antibodies. The American journal of the medical sciences, 324(1):14–30, 2002.

[5] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235–242, 01 2000.

[6] Fengyuan Dai, Yuliang Fan, Jin Su, Chentong Wang, Chenchen Han, Xibin Zhou, Jianming
Liu, Hui Qian, Shunzhi Wang, Anping Zeng, Yajie Wang, and Fajie Yuan. Toward de novo
protein design from natural language. bioRxiv, 2024.

[7] James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges,
Jiye Shi, and Charlotte M. Deane. Sabdab: the structural antibody database. Nucleic Acids
Research, 42(D1):D1140–D1146, 11 2013.

[8] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion
Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik,
and Burkhard Rost. ProtTrans: Toward understanding the language of life through Self-
Supervised learning. IEEE Trans Pattern Anal Mach Intell, 44(10):7112–7127, September
2022.

[9] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence
Carin. Cyclical annealing schedule: A simple approach to mitigating KL vanishing. CoRR,
abs/1903.10145, 2019.

9



[10] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum
Shafkat, Jun Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf A. Khan, Chetan
Mishra, Carolyn Kim, Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salvatore
Candido, and Alexander Rives. Simulating 500 million years of evolution with a language
model. Science, 387(6736):850–858, 2025.

[11] Alissa M Hummer, Brennan Abanades, and Charlotte M Deane. Advances in computational
structure-based antibody design. Current opinion in structural biology, 74:102379, 2022.

[12] Yuran Jia, Bing He, Tianxu Lv, YangXiao, Tianyi Zhao, and Jianhua Yao. De novo design
of antigen-specific antibodies using structural constraint-based generative language model. In
ICLR 2025 Workshop on Generative and Experimental Perspectives for Biomolecular Design,
2025.

[13] Ruofan Jin, Qing Ye, Jike Wang, Zheng Cao, Dejun Jiang, Tianyue Wang, Yu Kang, Wanting
Xu, Chang-Yu Hsieh, and Tingjun Hou. Attabseq: an attention-based deep learning prediction
method for antigen–antibody binding affinity changes based on protein sequences. Briefings
in Bioinformatics, 25(4):bbae304, 07 2024.

[14] Henry Kenlay, Frédéric A. Dreyer, Aleksandr Kovaltsuk, Dom Miketa, Douglas Pires, and
Charlotte M. Deane. Large scale paired antibody language models, 2024.

[15] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Dokl.
Akad. Nauk SSSR, 163:845–848, 1965.

[16] Nuowei Liu, Jiahao Kuang, Yanting Liu, Changzhi Sun, Tao Ji, Yuanbin Wu, and Man Lan.
Protein design with dynamic protein vocabulary, 2025.

[17] Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu,
Weili Nie, Arvind Ramanathan, Chaowei Xiao, et al. A text-guided protein design framework.
Nature Machine Intelligence, pages 1–12, 2025.

[18] Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu,
Weili Nie, Arvind Ramanathan, Chaowei Xiao, Jian Tang, Hongyu Guo, and Anima Anand-
kumar. A text-guided protein design framework. Nature Machine Intelligence, 7(4):580–591,
March 2025.

[19] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R.
Eguchi, Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein genera-
tion, 2020.

[20] Simon Malesys, Rachel Torchet, Bertrand Saunier, and Nicolas Maillet. Antibody sequence
database. NAR Genomics and Bioinformatics, 6(4):lqae171, 12 2024.

[21] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi
Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and func-
tion emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings
of the National Academy of Sciences, 118(15):e2016239118, 2021.

[22] Rohit Singh, Samuel Sledzieski, Bryan Bryson, Lenore Cowen, and Bonnie Berger. Con-
trastive learning in protein language space predicts interactions between drugs and protein
targets. Proceedings of the National Academy of Sciences, 120(24):e2220778120, 2023.

[23] Cheng Tan, Yijie Zhang, Zhangyang Gao, Yufei Huang, Haitao Lin, Lirong Wu, Fandi Wu,
Mathieu Blanchette, and Stan Z Li. DyAb: Flow matching for flexible antibody design with
AlphaFold-driven pre-binding antigen. Proc. Conf. AAAI Artif. Intell., 39(1):782–790, April
2025.

[24] Kathryn E Tiller and Peter M Tessier. Advances in antibody design. Annual review of biomed-
ical engineering, 17(1):191–216, 2015.

[25] Thanh V. T. Tran and Truong Son Hy. Protein design by directed evolution guided by large
language models. IEEE Transactions on Evolutionary Computation, 29(2):418–428, 2025.

10



[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[27] Chaohao Yuan, Songyou Li, Geyan Ye, Yikun Zhang, Long-Kai Huang, Wenbing Huang, Wei
Liu, Jianhua Yao, and Yu Rong. Functional protein design with local domain alignment. CoRR,
abs/2404.16866, 2024.

11



A Appendix

A.1 Decoder model

The decoder is built on a Transformer architecture [26] and serves as the core module for generating
antibody sequences (see Fig. 4). In the figure, special tokens are also used: CLS marks the start
of a sequence, SEP separates the heavy and light chains, and EOS denotes the end of a sequence
to ensure proper sequence length. It reconstructs sequences from a rich, combined representation
that merges latent features, descriptive metadata, and antigen-specific embeddings. These inputs
are concatenated and projected into a sequence of hidden states, forming the “memory” for cross-
attention.

During generation, the target tokens are first embedded and enriched with positional encodings, then
passed through a stack of Transformer decoder layers. Within each layer, self-attention captures
dependencies within the generated sequence so far, while cross-attention draws on the memory to
integrate contextual information from the input.

Training employs teacher forcing, periodically replacing predicted tokens with their ground-truth
counterparts at a fixed probability to stabilize learning. When teacher forcing is not applied, the
decoder generates tokens sequentially using greedy decoding. Finally, hidden states are projected
onto vocabulary logits, enabling step-by-step prediction of the next amino acid in the sequence.

[CLS] H1 ... Hn [SEP] L1 ... Ln Antibody Tokens

E[CLS] EH1 ... EHn E[SEP] EL1 ... ELn Token Embeddings

P0 P1 ... ... ... ... ... Pn-1 Position Embeddings

+ + + + + + + +

Transformer

EH1 ... EHn E[SEP] EL1 ... ELn E[EOS] Token Embeddings

H1 ... Hn [SEP] L1 ... Ln [EOS] Antibody Tokens

MemoryCombined 
Representation

Antibody 
Latent

Antigen 
Embedding

Description 
Embedding

Input

Output

Figure 4: This figure illustrates the design of Transformer-based decoder for antibody sequence
generation. The decoder integrates latent features, antigen embeddings, and textual description em-
beddings into a shared representation that serves as memory for cross-attention. Antibody sequences
are reconstructed autoregressively: input tokens (heavy and light chains) are embedded with posi-
tional encodings, processed through Transformer layers, and predicted step by step. Self-attention
captures dependencies within the sequence, while cross-attention injects contextual information, en-
abling controllable generation of antibody sequences aligned with antigen specificity and descriptive
properties.

A.2 Evaluation metrics

To comprehensively assess the performance of our antibody redesign framework, we employ four
primary evaluation metrics: maximum binding affinity (MBA), sequence diversity, novelty, and
structural confidence.

Maximum Binding Affinity (MBA). The MBA metric quantifies the highest predicted binding
affinity between the redesigned antibody and its specific antigen, reflecting the functional efficacy
of the generated sequences. We use the free-energy-change scoring function to estimate MBA.
Formally, MBA is defined as:

MBA = max
s∈S

{−∆G(s, a)}, (1)

where S represents the set of redesigned antibody sequences, s denotes a single antibody sequence,
and a denotes the target antigen. A lower predicted free energy (∆G) indicates a higher binding
affinity.
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Diversity. To ensure the generation of varied antibody sequences rather than mere repetitions or
minor modifications of known sequences, we measure diversity within the set of redesigned anti-
bodies. Sequence diversity is computed using the pairwise Levenshtein distance [15] averaged over
all pairs of generated sequences, formally represented as:

Diversity =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

Lev(si, sj), (2)

where N is the number of antibody sequences and Lev(si, sj) denotes the Levenshtein distance
between two antibody sequences si and sj .

Novelty. Novelty assesses the degree to which the antibodies generated differ from known se-
quences in our training dataset. We calculate novelty as the average minimum sequence distance
between each generated antibody sequence and all sequences in the training dataset (Dtrain). The
novelty score is defined as:

Novelty =
1

|S|
∑
s∈S

min
s′∈Dtrain

Lev(s, s′). (3)

Higher novelty scores indicate more distinctive and potentially innovative antibody sequences.

Structural Confidence. Assessing the structural quality of the redesigned antibodies is critical
to ensure stability and functionality. We used ABodyBuilder2 [1] to predict the three-dimensional
structures of redesigned antibody sequences, leveraging its ensemble of four models to estimate the
reliability of the prediction. The root mean squared predicted error (RMSPE) (Å), derived from the
diversity among these predictions, serves as a structure-related metric:

RMSPE =

√√√√ 1

N

N∑
i=1

Var(xi), (4)

where N is the number of residues, and Var(xi) represents the variance in the predicted coordinates
of residue i in the ensemble. Lower RMSPE values indicate greater confidence in the predicted
structure, ensuring structural reliability for redesigned antibodies without requiring a reference scaf-
fold.

A.3 Additional Results: Impact of Textual Description

This section presents an additional evaluation designed to specifically highlight the contribution of
the textual description input to the performance of the TeBaAb framework. Although our primary
evaluation focuses on the full TeBaAb model (which incorporates textual descriptions), understand-
ing the isolated impact of this novel conditioning is crucial. To achieve this, we compare the per-
formance of our best performing TeBaAb configuration (with input of textual description) against
a variant of TeBaAb where the textual description component (‘des rep‘) is excluded during both
training and inference. This allows us to isolate the specific benefits conferred by conditioning the
generation on textual properties.

All other hyperparameters and training procedures remained consistent with the TeBaAb model that
performs the best described in Section 4. This ensures a direct comparison of the impact of the de-
scription input. Table 4 presents a comparative overview of key evaluation metrics: Binding Affinity,
Sequence Diversity, Novelty, and Structural Confidence, between the full TeBaAb framework and
its variant without textual description input.

A.4 AbDes Dataset

In this appendix, we provide example entries from the AbDes dataset to illustrate its structure and
the type of information it contains. The dataset is designed to facilitate text-conditioned antibody
design by linking antibody sequences and their target antigens with rich textual descriptions of
antibody properties.

The AbDes dataset comprises entries with the following key fields:
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Table 4: Comparative Performance: TeBaAb (with Description) vs. TeBaAb (without Description).
Metric TeBaAb (w

Description)
TeBaAb (w/o
Description)

Binding Affinity Improvement (Avg ∆G %) 15.5 8.9
Diversity 87.73 86.70
Novelty 28.95 26.11
Average Optimized Pred. Error (Å) 0.255 0.282

• Antibody Sequence: The complete heavy- and light-chain amino acid sequences of the
antibody (e.g. ‘heavy chain|light chain‘).

• Antigen Sequence: The target antigen to which the antibody binds. Following [7], we use
‘/‘ to separate different antigen fragments.

• Description: A free-text description of the antibody’s properties. This field represents our
unique contribution, derived from PDB annotations and literature.

• ∆G (Binding Affinity): The predicted binding free energy, where available. This value
indicates the strength of the antibody-antigen interaction (lower values signify stronger
binding). Note that ∆G values are available for a subset of the dataset.

Table 5: Example Entries from the AbDes Dataset (General Structure).
Antibody Sequence Antigen Description Binding

Affinity
QV QLV...|QSALT... V V KFMDV Y... Vascular endothelial growth

factor in complex with a neu-
tralizing antibody, classified
as an immune system, de-
rived from mus musculus and
expressed in escherichia coli,
forms a Hetero 6-mer with
Cyclic - C2 symmetry.

-11.55

QV QLQ...|QV QLQ... KV FGRCEL... Hen egg white lysozyme,
d18a mutant, in complex
with mouse monoclonal an-
tibody d1.3, classified as
a complex (immunoglobu-
lin/hydrolase), derived from
mus musculus and expressed
in escherichia coli, forms a
Hetero 3-mer with Asymmet-
ric - C1 symmetry, and has
pseudo-symmetry of Asym-
metric - C1 with Hetero 3-mer
stoichiometry.

-10.45

QIQLV Q...|DIVMT... IRDFNNLT... Refined crystal structure
of the influenza virus n9
neuraminidase-nc41 fab
complex, classified as a
hydrolase(o-glycosyl), de-
rived from influenza a virus
(a/tern/australia/g70c/1975(h11n9)),
forms a Hetero 12-mer with
Cyclic - C4 symmetry.

-11.02

Note: Sequences are truncated for brevity.
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