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ABSTRACT

Curriculum learning (CL) is a machine learning technique that progressively trains
a model on data of increasing difficulty or complexity. This way, the model can
learn more efficiently and achieve better performance than random or uniform
sampling of data. However, most existing works focus on improving the perfor-
mance of CL and its privacy risks have never been studied. In this work, we take
the first step to investigate the privacy leakage of CL through the lens of mem-
bership inference attack (MIA) and attribute inference attack (AIA). Our evalu-
ation of 9 benchmark datasets using various attack methods (NN-based, metric-
based, label-only MIA, and NN-based AIA) highlights new insights. First, MIA
is slightly more effective with CL, especially on a subset of challenging training
samples. Second, models trained with CL are less susceptible to AIA compared to
MIA. Third, established defense techniques like DP-SGD, MemGuard, and Mix-
upMMD remain effective under CL, albeit with a notable accuracy impact for DP-
SGD. Lastly, we propose a novel MIA called Diff-Cali, which leverages difficulty
scores to enhance calibration and effectiveness against all CL and normal training
methods. With this study, we hope to draw the community’s attention to the un-
intended privacy risks of emerging machine-learning techniques and develop new
attack benchmarks and defense solutions.

1 INTRODUCTION

The success of machine learning (ML), especially deep learning (DL), hinges on advancements
in algorithms, software, and hardware for training models on large-scale datasets. Traditionally, a
neural network (NN) is trained by feeding random mini-batches from the training dataset, forcing
the NN to “remember” samples in a random order. In contrast, humans learn easy concepts first,
guided by curricula. Inspired by the human brain (Rumelhart et al., 1986), curriculum learning (CL)
simulates human learning by ordering training data with difficulty scores, repeating this order across
training epochs (Bengio et al., 2009). Using a “teacher” network, difficulty scores are assigned to
samples, guiding the training process. Previous studies demonstrate CL achieving fast learning
speed and high test accuracy (Soviany et al., 2021; Wang et al., 2021), adopted in various domains
like computer vision (Bengio et al., 2009; Sakaridis et al., 2019; Duan et al., 2020; Soviany et al.,
2020), natural language processing (Bengio et al., 2009; Spitkovsky et al., 2009; Zhou et al., 2020;
Guo et al., 2020; Liu et al., 2020), where it claims prominent success (Wang et al., 2021).

ML’s success has raised growing concerns about privacy, notably due to sensitive information in
training data. The most representative privacy threats are membership inference attacks (MIAs)
and attribute inference attacks (AIA). MIA determines if a data point was part of the training set,
while AIA infers its sensitive attribute. Recent attacks have highlighted real privacy risks, e.g.,
over 80% MIA accuracy against CIFAR100 (Salem et al., 2019). Recent studies also reveal varying
vulnerability of data samples to these attacks (Yaghini et al., 2019), influenced by target classes (Jia
et al., 2019), individuals (Long et al., 2018), and subgroups (Chang & Shokri, 2021). However,
existing research assumes standard stochastic training in the target model. Hence, it’s crucial to
investigate how training techniques affect privacy for the overall population and individual samples.
Furthermore, Shumailov et al. (2021) studied the connection between data ordering and backdoor
attacks, which indicates data ordering could have negative impacts. This further motivates us to
investigate the privacy risks of CL.
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Our Study. We quantitatively measure the privacy risks of CL. We select two popular CL meth-
ods, bootstrapping (Hacohen & Weinshall, 2019) and transfer learning (Weinshall et al., 2018), as
the evaluation objects, and construct two other curriculum, named baseline curriculum and anti-
curriculum, to understand the impact of data ordering and repeating, respectively. We select 9 real-
world, large-scale datasets (6 are image datasets and 3 are tabular datasets), train target models with
those CL methods and a normal method, and attack the models with representative MIA and AIA
methods.

Regarding MIA, our evaluation shows that the target models become slightly more vulnerable under
CL, e.g., the average attack accuracy (trained on ResNet-18 with transfer leaning) on our selected
image datasets increase from 0.01% to 2.46%. More importantly, we find CL has a much bigger
impact on the samples within the difficult group compared to the easy group, with the biggest gap
of 4.23% in terms of attack accuracy for ResNet-18 trained on CIFAR100. We reveal the reason is
that the data order reinforces the learning process, hence guiding the model to memorize difficult
samples better, which is supported by measuring the memorization scores. Regarding AIA, we
find CL does not increase the attack accuracy, which can be explained by the fact that the sensitive
attribute to be inferred is not influenced by data ordering and repeating.

Furthmore, we also study existing defenses under the CL settings, including DP-SGD (Abadi et al.,
2016), MemGuard (Jia et al., 2019), MixupMMD (Li et al., 2021) and AdvReg (Nasr et al., 2018).
The result shows that none can mitigate MIA without dampening the model’s accuracy. In particular,
DP-SGD is effective in curbing MIA, and the drop in attack accuracy is even more than the normal
setting. However, the privacy provided by DP-SGD is at the cost of dropping the classification
accuracy of the target model. Inspired by CL and a recent MIA that calibrates membership scores
to achieve better attack accuracy (Watson et al., 2022), we consider the difficulty score as input
for calibration and propose a new MIA method, named Diff-Cali (difficulty calibrated MIA). Our
attack cannot only bring the difficult samples to a more vulnerable stage but also achieve a higher
true-positive rate at low false-positive rate regions.

Contributions. The contributions of this work are summarized below.

• We take the first step to understanding the privacy risks introduced by CL.
• We conduct a comprehensive analysis to quantify the privacy risks and our results show CL

introduces disparate impacts to samples separated by difficulty levels.
• We propose a new MIA that exploits the difficulty scores for better attack performance.

2 PRELIMINARY

2.1 CURRICULUM LEARNING

Curriculum Learning (CL) emulates human learning by structuring training data, allowing ML mod-
els to start with easier samples before progressing to harder ones (Bengio et al., 2009). This accel-
erates model convergence and boosts testing accuracy (Bengio et al., 2009; Weinshall et al., 2018;
Graves et al., 2017; Hacohen & Weinshall, 2019). Weinshall et al. (2018) demonstrated a 0.5%
to 3.5% accuracy improvement using transfer learning to construct the curriculum. CL has gar-
nered substantial interest in the ML community and finds applications across various domains. Let
X = {Xi}Ni=1 = {(xi, yi)}Ni=1 be the training dataset, where N is the number of samples, xi is a
data point, and yi is the label of xi. T is the ML model to be trained. The standard training proce-
dure will sample X uniformly to generate the mini-batches. Instead, CL uses a difficulty measurer
f(X , C) to generate difficult scores for X , and a training scheduler sorts X by the difficult scores
in an ascending order ahead of training. C is the curriculum, and we will elaborate on its common
options in Section 4.1. A sequence of subsets X ′1, . . . ,X ′M ⊆ X are extracted from X after sorting,
and the size of X ′i is determined by a pacing function g(i). A mini-batch Bi is sampled uniformly
from X ′i . See algorithm in Appendix E.

2.2 PRIVACY RISKS IN MACHINE LEARNING

Previous studies have demonstrated that ML models can inadvertently retain sensitive information
from the training data, making them susceptible to attacks like MIA (Shokri et al., 2017; Nasr et al.,
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2018; 2019; Salem et al., 2019) and AIA (Melis et al., 2019; Song & Shmatikov, 2020). These
attacks have been extensively investigated, and below we give a brief overview.

Membership Inference Attack (MIA). Given a target model T and any adversary’s external
knowledge K, the goal of MIA is to determine whether a data sample x was used to train the
model. Formally, we have:

AMI : x, T,K 7→ 1 or 0 (1)
where T is the target model and K is the adversary’s external knowledge, e.g., the distribution of
the training data for T . 1 (0) denotes the sample is a member (non-member).

MIA can pose significant privacy risks. For instance, in a medical context where a model is trained
on clinical records to determine medicine dosage (Jia et al., 2019), MIA could reveal if a person
has cancer. Following previous works (Shokri et al., 2017; Salem et al., 2019; Song & Mittal, 2021;
Li & Zhang, 2021; Choo et al., 2021), we assume the adversary only has black-box access to T .
Further details on MIA are outlined in Section 4.2.

Attribute Inference Attack (AIA). Unlike MIA, AIA’s goal is to infer extra attributes of a data
sample, e.g., inferring political views from a model trained for gender classification. These attributes
are typically unaddressed during the target model’s training. However, due to ML’s inherent over-
learning property (Song & Shmatikov, 2020), the target model might inadvertently capture irrelevant
attributes.

Instead of having direct access to the sample, we follow previous work (Melis et al., 2019; Song &
Shmatikov, 2020) and consider the adversary only has its representation (e.g., embedding) generated
by a target model T . Formally, AIA can be defined as:

AAI : h 7→ s (2)

where h is a sample’s representation provided by T and s is the sample’s sensitive attribute predicted
by AAI . Section 4.4 elaborates the details.

3 DATASETS AND TARGET MODELS

For evaluation, we choose 9 unique datasets—8 for MIA and 3 for AIA. Among these, six are image
datasets, and the remaining three contain non-image data. The target model architectures for the
image datasets are ResNet-18, ResNet-34, and MobileNet (He et al., 2016; Sandler et al., 2018).
Please refer to Appendix A for details on the datasets, models, and model training settings.

4 METHODOLOGY

In this section, we describe the curriculum designs experimented with by our study, the implemen-
tation of the basic MIA and AIA, our proposed MIA, and the defense techniques to be tested.

4.1 CURRICULUM DESIGNS

We select two popular, openly available CL methods12 for training the target model. Our key find-
ings, outlined in Section 5, are expected to extend to other CL methods like self-paced curricu-
lum (Kumar et al., 2010; Jiang et al., 2015) and automated curriculum (Graves et al., 2017), as they
share similar high-level concepts. Self-paced curriculum, for instance, deviates from bootstrapping
only by not fully directing the learning process via the curriculum. Below, we elaborate on the two
chosen CL methods.

Bootstrapping (Hacohen & Weinshall, 2019). The target model T is first trained without CL, then
it serves as a difficulty measurer (f in Algorithm 1) to order the training samples by their loss.

Transfer learning (Weinshall et al., 2018). Unlike bootstrapping, we employ a pre-trained model,
specifically Inception-v3 (Szegedy et al., 2016), to measure difficulty. Inception-v3 is a well-
established image recognition model achieving over 78.1% accuracy on ImageNet (Deng et al.,

1https://github.com/GuyHacohen/curriculum_learning
2https://github.com/rsundar96/curriculum-learning-acceleration

3

https://github.com/GuyHacohen/curriculum_learning
https://github.com/rsundar96/curriculum-learning-acceleration


Under review as a conference paper at ICLR 2024

2009). However, we did not conduct transfer learning evaluation on tabular datasets due to the
absence of a widely recognized pre-trained model in that context.

To thoroughly evaluate the effectiveness and vulnerabilities of the aforementioned CL methods, we
introduce two additional comparison methods.

Baseline curriculum. This employs a fixed, unrelated curriculum for all training epochs, differing
from normal training where a new random order is generated per epoch.

Anti-curriculum. It utilizes the bootstrapping difficulty measurer but organizes samples from dif-
ficult to easy, reversing bootstrapping’s order.

We opt for varied exponential pacing (Hacohen & Weinshall, 2019), incrementing the data fraction
exponentially at each step, as suggested by Hacohen & Weinshall (2019). Various pacing functions
exhibit comparable performance. Table 3 (see Appendix A) validates the effectiveness of CL, with
at least one CL method consistently outperforming normal training by 0.06% to 4.42%.

As described in Section 2.1, CL can accelerate the training process to reach higher accuracy. We
verify this in Appendix B.

Additionally, CL is expected to affect classification accuracy differently across various samples.
Apart from the analysis in Section 5, we employ t-distributed stochastic neighbor embedding (t-
SNE) for visualization. Further details, including the visualization, can be found in Appendix F.3.

4.2 BASIC MIA

For the existing MIAs, we consider three well-known attacks: NN-based (Neural Network-
based) (Shokri et al., 2017; Salem et al., 2020), metric-based (Song & Mittal, 2021), and label-only
attacks (Li & Zhang, 2021; Choo et al., 2021). See Appendix C for details.

MIA Models. Following the original setting of the NN-based attacks (Shokri et al., 2017), we
adopt a 3-layer MLP with 64 and 32 hidden neurons, and 2 output neurons, as our attack model
AMI . We use cross-entropy as the loss function and Adam as the optimizer with a learning rate
of 0.01. AMI is trained for 100 epochs. For metric-based attacks, we follow the implementation
of Song & Mittal (2021) and consider 4 metrics, including correctness, confidence, entropy, and
modified entropy. The associated attack methods are named metric-corr, metric-conf, metric-ent,
and metric-ment. For label-only attacks, we leverage the implementation from ART (Nicolae et al.,
2018).

Related research has shown that NN-based attacks often, though not universally, achieve better
attack accuracy compared to metric-based and label-only attacks (Shokri et al., 2017; Salem et al.,
2019; He & Zhang, 2021). Thus we use NN-based attack (specifically black-box-top3) for most of
our evaluation in Section 5.

4.3 OUR PROPOSED MIA

Since CL orders training samples by the difficulty levels, which affects the trained model, we are
interested in whether MIA can be enhanced when the target model is trained under CL. To this end,
we propose a new MIA method (termed Diff-Cali) that is customized against CL. Below we first
introduce calibrated MIA that inspires the design of Diff-Cali, and then the details of Diff-Cali.

Calibrated MIA. Recently, Watson et al. (2022) proposed to use a calibrated membership score
instead of the standard membership score (e.g., loss) to determine whether a sample is a member.
Assume s(T, x) is the original membership score, where T is the target model and x is a sample.
The calibrated membership score scal(T, x) is defined as follows:

scal(T, x) = s(T, x)− ES←A(D)[s(S, x)] (3)

where S are shadow models3 that behave similarly as T , D is the shadow dataset, function s(T, x)
and s(S, x) output the membership scores from target and shadow models, A randomly samples

3S are named as reference models in Watson et al. (2022), which resemble shadow models (Shokri et al., 2017)
as they are also trained on the same data distribution of T .
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subsets of D to train S, and E computes the expectation of s(S, x). Finally, scal(T, x) is compared
to a fixed threshold θ and a sample is considered a member if scal(T, x) ≥ θ.

Previous MIA methods could have high false positive rate (FPR) on non-members, which are often
over-represented in the samples to be tested by the attacker. Equation 3 addresses this issue by using
the difference between the target model and shadow models to derive the membership signal: if x is
non-member to S , it is also more likely non-member to T , therefore scal(T, x) should be small. The
evaluation results in Watson et al. (2022) shows the area under ROC curve (AUC) can be improved
“by up to 0.10” (e.g., after calibrating the loss-based membership score with Equation 3).

Difficulty Calibrated MIA (Diff-Cali). Calibrated MIA compares scal(T, x) of all samples to a
fixed threshold θ, and we argue that θ can be calibrated as well. We observe that a CL curriculum
re-orders the samples by their difficulty before the target model is trained and such strategy changes
how a sample is memorized and vulnerable under MIA (see Section 5.1 and Section 5.2). More
specifically, we observe that CL makes the target model more vulnerable to MIA, especially for
difficult samples (Finding 1 in Section 5.1). Therefore, we can update θ according to the curriculum
and make the attack model more accurate. We assume the attacker can generate a curriculum similar
as the one used by the target model. For example, the attacker can use the publicly released pre-
trained model to generate the curriculum. Alternatively, the attacker can train shadow models that
are similar as the target model, then builds curriculum according to loss from them.

We implement this idea for NN-based MIA. When the attack model AMI outputs the prediction
posteriors for an input x, the posterior of the label “member” is compared against θ, and x is pre-
dicted as member when the posterior is larger. When training AMI , we adjust θ based on samples’
difficulty level to improve the training accuracy, and the the pseudo-code is shown in Appendix E.
Specifically, in each epoch, the calibrated membership scores scal(T,D) are generated for ∀x ∈ D,
and we use the loss to compute s. Next, we try to find the threshold θ0 (ranging from 0 to 0.1 based
on our empirical study) that achieves the best accuracy in separating members and non-members
from D. After that, AMI is updated by minimizing the training loss on D through adjusting the
threshold with the following function:

g(x,C, θ0) =
(|D|−C(x)) (θ0 − 0.0001)

|D|−1
+ 0.0001 (4)

where C(x) indicates the rank of sample x given by curriculum C. The rank for the easiest sample
is 1 while the most difficult is |D|. g(x,C, θ0) is to assign a threshold θ from [0.0001, θ0] (0.0001
is the initial threshold suggested by Watson et al. (2022)) to each x based on its difficulty level
(determined by a curriculum C), that is, calibrating threshold of each x based their difficulty level.
The most difficult sample compares to 0.0001, the easiest one compares to θ0, and others compare
to θ that is ranged in [0.0001, θ0]. The more difficult x have smaller threshold, meaning that we are
lowering the bar for them to be predicted as members comparing to the easy samples. During the
testing phase, the threshold for a sample x is also adjusted with g(x,C, θ0).

4.4 BASIC AIA

Song et al. proposed an inference-time attack and model-repurposing attack (Song & Shmatikov,
2020) for AIA, and here we focus on the first attack and follow the same setting as this work. We
consider the model evaluation to be partitioned (Song & Shmatikov, 2020) or the model is trained
under federated learning (Melis et al., 2019). The target model T is split into two parts, i.e., an
encoder and a classifier, and the adversary has black box access to the encoder E. The attacker has
an auxiliary dataset D containing pairs of (x, s) where s is the sensitive attribute. The embeddings
h can be generated by querying E, i.e., h = E(x),∀x ∈ D. All pairs of (h, s) will be used to train
the attack model AAI and later used to predict the values of s in the target model T .

AIA Model. Our AAI is a 3-layer MLP with 128 hidden neurons in each hidden layer. We use
cross-entropy as the loss function and SGD as the optimizer with a learning rate of 0.01. The attack
model is trained for 100 epochs. The dimension of each sample’s embedding (i.e., the second to the
last layer’s output) is 512 for ResNet-18, 512 for ResNet-34, and 1024 for MobileNet. To train the
target model T , we use the label for the original classification task (e.g., gender). To train AAI , we
use the label from another field (e.g., race).
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Dataset
Method Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.9193 ± 0.0000 0.9385 ± 0.0000 0.9116 ± 0.0001 0.9207 ± 0.0000 0.9439 ± 0.0000
CIFAR100 0.8577 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0001 0.8582 ± 0.0001 0.8718 ± 0.0001
Place100 0.9425 ± 0.0000 0.9549 ± 0.0001 0.9335 ± 0.0001 0.9416 ± 0.0001 0.9617 ± 0.0001
Place60 0.8773 ± 0.0022 0.8987 ± 0.0001 0.8625 ± 0.0001 0.8827 ± 0.0001 0.8902 ± 0.0001
SVHN 0.5570 ± 0.0000 0.5605 ± 0.0002 0.5514 ± 0.0001 0.5599 ± 0.0003 0.5580 ± 0.0003
Purchase 0.9524 ± 0.0016 0.9453 ± 0.0024 0.9118 ± 0.0122 0.9458 ± 0.0015 -
Texas 0.6749 ± 0.0092 0.7068 ± 0.0139 0.5950 ± 0.0161 0.7039 ± 0.0122 -
Location 0.9153 ± 0.0066 0.9194 ± 0.0048 0.8980 ± 0.0038 0.9169 ± 0.0038 -

Table 1: Accuracy of NN-based MIA on models trained on 8 datasets. Transfer learning CL does
not apply to non-image dataset Purchase, Texas and Location.

Attack
Method Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

NN-based (Shokri et al., 2017) 0.8572 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0002 0.8582 ± 0.0001 0.8718 ± 0.0001
Metric-corr (Song & Mittal, 2021) 0.6920 ± 0.0000 0.6820 ± 0.0000 0.6905 ± 0.0000 0.6930 ± 0.0000 0.6855 ± 0.0000
Metric-conf (Song & Mittal, 2021) 0.8600 ± 0.0000 0.8810 ± 0.0000 0.8458 ± 0.0000 0.8553 ± 0.0000 0.8740 ± 0.0000
Metric-ent (Song & Mittal, 2021) 0.8490 ± 0.0000 0.8750 ± 0.0000 0.8320 ± 0.0000 0.8435 ± 0.0000 0.8685 ± 0.0000
Metric-ment (Song & Mittal, 2021) 0.8620 ± 0.0000 0.8820 ± 0.0000 0.8463 ± 0.0000 0.8568 ± 0.0000 0.8760 ± 0.0000
Label-only (Nicolae et al., 2018) 0.8200 ± 0.0082 0.8263 ± 0.0082 0.7963 ± 0.0117 0.8050 ± 0.0045 0.8088 ± 0.0074
Cali (Watson et al., 2022) 0.7889 ± 0.0012 0.8272 ± 0.0009 0.7532 ± 0.0004 0.7781 ± 0.0025 0.8148 ± 0.0013
Diff-Cali 0.8519 ± 0.0003 0.8670 ± 0.0006 0.8382 ± 0.0006 0.8438 ± 0.0008 0.8614 ± 0.0006

Table 2: Average accuracy of NN-based, metric-based, label-only and our Diff-Cali attacks on mod-
els trained on CIFAR100 with ResNet-18.

4.5 DEFENSE METHODS

Some defense methods have been proposed to reduce the success rate of privacy attacks, in particu-
lar, MIA. We are interested in how they perform under curriculum learning and our proposed attack
and we select DP-SGD (Abadi et al., 2016), MemGuard (Jia et al., 2019), MixupMMD (Li et al.,
2021) and AdvReg (Nasr et al., 2018). DP-SGD and MemGuard represent two directions in privacy
protection, while MixupMMD and AdvReg are two more recent defense methods. See Appendix D
for details.

5 EVALUATION RESULTS

Evaluation setup. For evaluating MIA and AIA, we partition each dataset as outlined in Section 3:
one part for target model training, one for shadow model training, and one for testing both models.
For defense methods, we split each dataset into five parts, accommodating reference datasets for
certain advanced methods. Additional defense method details can be found in Appendix F.6.

Evaluation metrics. We use accuracy to evaluate the MIA and AIA, as well as the impact of
curriculum learning and defenses. Besides, following Carlini et al. (2021), we compute the true-
positive rate (TPR) at the false-positive rate (FPR) of the attacks.

5.1 EVALUATION OF BASIC MIA

We start with the experiments on the 5 image datasets using ResNet-18 as the target model archi-
tecture and evaluate tabular datasets. See Appendix F for more evaluations, i.e., loss distribution,
different model architectures, non-image datasets, and defenses.

MIA Accuracy. We first find models trained with meaningful CL methods like bootstrapping and
transfer learning are slightly more vulnerable to MIA. Table 1 presents the largest improvement in
attack accuracy (NN-based) for image datasets is 2.46% (TinyImageNet with transfer learning), and
for non-image datasets, it’s 3.20% (Texas with bootstrapping). Bootstrapping and transfer learning
show the most vulnerability, with an average of 1.29% and 1.44% improvement in attack accuracy
against normal training, respectively. For baseline CL, attack accuracy decreases for Place100, while
a slight increase is observed for other datasets. In anti-curriculum CL, attack accuracy decreases for
all datasets. This suggests that both data repeating (as seen in baseline results) and ordering (as seen
in bootstrapping and anti-curriculum results) in CL contribute to vulnerability to MIA (explained
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in Section 4.1). The consistent performance of bootstrapping and anti-curriculum highlights the
significant role of data ordering.
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Figure 1: MIA accuracy on CIFAR-100, Tiny Ima-
geNet. ResNet-18 is used for target model training.

For metric-based and label-only attacks, the
results align with the NN-based attack, as
shown in Table 2. The only exception is
metric-corr performing worse compared to
other attacks with bootstrapping. This out-
come can be attributed to metric-corr’s as-
sumption that the target model is trained to
predict correctly on its training data, which
might not generalize well to the test data.

Figure 1 shows the attack accuracy of sam-
ples from different difficulty levels. More
specifically, we construct the test dataset as
half member samples and half non-member
samples. Member samples are divided into

different difficulty levels while non-member samples across each difficulty level are fixed. Figure 1
demonstrates that using meaningful curriculum (i.e., bootstrapping and transfer learning) makes the
model more vulnerable, especially for the difficult samples.

Confidence Score. Since the key contribution of CL is to factor in the samples’ difficulty levels
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Figure 2: Attack model’s confidence score for both member and non-member samples on CIFAR-
100 and Tiny ImageNet. ResNet-18 is used for target model training, and data samples are arranged
according to their difficulty scores from bootstrapping.

during the training, we evaluate how difficulty levels impact the samples’ vulnerability individually.

Figure 2 depicts the attack model’s confidence score by samples’ difficulty levels. Notably, difficult
samples aren’t notably more vulnerable than easy ones, but the gap in confidence scores is narrower,
particularly for member samples. For instance, with the CIFAR100 target model, the attack model
identifies the most difficult member samples (level 9 difficulty) with over 7.83% higher confidence
due to transfer learning (Figure 2a). Interestingly, anti-curriculum can even yield a higher confidence
score for the most difficult member samples compared to normal training (Figure 2c). This suggests
that presenting difficult samples early in training doesn’t necessarily increase the likelihood of the
model forgetting them.

TPR at Low FPR. We here measure the relation between TPR at low FPR. We present the ROC
curve for the attacks with both linear scaling and log scaling to emphasize the low-FPR regime. Fig-
ure 3a and Figure 3b demonstrate the ROC curve for NN-based attack. The results show that using
curriculum increases ROC. The TPR of transfer learning and bootstrapping are generally higher than
the others except at extremely low FPR (< 10−4). This indicates CL introduces disparate impact to
members and non-members for most samples.

5.2 ANALYSIS WITH DATA MEMORIZATION

The previous experiments show CL makes the difficult samples more vulnerable. Here, we attempt
to explain this observation with a more principled analysis. Recent works (Feldman, 2020; Feld-
man & Zhang, 2020) suggest the effectiveness of MIA could be tied to how well the target model
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Figure 3: TPR/FPR of NN˙based MIA and Diff-Cali under different training method trained with
ResNet-18 on CIFAR100.

memorizes individual data sample. The notion of memorization is formally defined as Feldman
(2020):

mem(A,D, i) := Pr
T∼A(D)

[T (xi) = yi]− Pr
T∼A(D\i)

[T (xi) = yi] (5)

where A denotes the training algorithm, D denotes the training dataset, T is the trained model,
(xi, yi) denotes one sample with its ground-truth label, andD\i denotesD with i-th sample removed.
The model is likely to memorize the data sample if adding (xi, yi) to training significantly changes
the model’s prediction on yi. Though Equation 5 models the memorization of a single data sample,
we can easily extend it to quantify the memorization of multiple samples at once.

Not Seen First Seen Random Last Seen
Scenario
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0.4
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(x
i)=

y i
]

Figure 4: Memorization: violin plots of prediction
probability of 800 most difficult samples, according
to bootstrapping CL.

We evaluate ResNet-18 trained with CI-
FAR100. First, we exclude 800 most diffcult
samples and train a model without these data
via bootstrapping (labeled as “not seen”).
Then, we train the model under CL, fo-
cusing on data memorization, with the 800
data samples placed either at the start (“first
seen”), end (“last seen”), or at random po-
sitions (“random”) in each training epoch.
Figure 4 depicts the prediction probability of
the true labels of the 4 scenarios. To assess
data memorization, we compare “first seen,”
“last seen,” and “random” with “not seen”
using the concept from Equation 5. Notably,
apart from “not seen,” the other three scenar-
ios exhibit strong memorization of difficult samples, evident from higher prediction probabilities
for the true class. Data ordering significantly influences data memorization; notably, “last seen”
demonstrates the strongest memorization compared to “first seen” and “random.” The vulnerability
of difficult samples under CL is attributed to enhanced memorization facilitated by specific data
ordering.

5.3 EVALUATION OF DIFF-CALI

In order to fully utilize the information of difficulty levels exposed by CL, we propose Diff-Cali
as described in Section 4.3. Overall, NN-based attack still has a slightly better attack accuracy
compared to Diff-Cali, but Diff-Cali has higher confidence scores for difficult samples and has
better TPR at low FPR regime.

Attack Accuracy. Table 2 presents the accuracy of Diff-Cali, which is about 1% lower compared
to NN-based attack on all CL methods. Figure 5 depicts the attack accuracy on CIFAR100 and
Tiny ImageNet. ThoughDiff-Cali achieves slightly lower (less than 1.44%) accuracy compared
to NN-based attack, with adaptive calibration, we are able to make the difficult samples more
vulnerable: e.g., the attack accuracy of difficulty level at 9 and 0 are 86.47% and 86.32% for
transfer learning under CIFAR100. The most difficult samples now can be predicted 2.64% and
2.350% more accurately for normal and anti-curriculum ML, respectively. Overall, Diff-Cali is able
to overcome the privacy risk discrepancy of different samples through calibration and results in
better attack accuracy for difficult samples for normal ML and anti-curriculum ML.
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Figure 5: Diff-Cali’s accuracy for models trained on
CIFAR100 and Tiny ImageNet with ResNet-18.

Confidence Score. In our MIA evalua-
tion (see Figure 13 in Appendix F), mem-
ber samples consistently achieve high con-
fidence scores (CIFAR100: >0.7807, Tiny
ImageNet: >0.8678), outperforming NN-
based approaches for Tiny ImageNet (Fig-
ure 2). In summary, we improve mem-
ber confidence by 3.29% for CIFAR100 and
3.45% for Tiny ImageNet, while reducing
non-member confidence (lower scores im-
ply lower misclassification risk) by 0.0414
for CIFAR100 and 0.1751 for Tiny Ima-

geNet. Unlike prior NN-based attacks, Diff-Cali’s accuracy doesn’t directly align with confidence
scores, emphasizing a unique membership status prediction strategy.

TPR at Low FPR. In Figure 3, we show that Diff-Cali can achieve much higher TPR at low FPR
(< 10−4). We present the ROC curve for the attacks with both linear scaling and log scaling to
emphasize the low-FPR regime. Figure 3c and Figure 3d demonstrate the ROC curve for Diff-Cali.
The results show that using curriculum increases ROC (Figure 3a, Figure 3c). We observe that our
proposed Diff-Cali performs better at low FPR. More specifically, Figure 3b shows that NN-based
attack fails to achieve a TPR better than random chance at any FPR below 0.045 while Diff-Cali can
be better than random guessing at all times.

5.4 EVALUATION OF AIA

Method
Dataset Place100 Place60 UTKFace

Normal 0.107±0.003 0.173±0.002 0.528±0.005
Bootstrapping 0.092±0.003 0.168±0.004 0.515±0.006
Transfer Learning 0.104±0.001 0.150±0.005 0.512±0.006
Baseline Curriculum 0.079±0.004 0.143±0.001 0.506 ±0.008
Anti-Curriculum 0.033±0.001 0.128±0.005 0.517±0.007

Figure 6: Average accuracy of AIA (± standard de-
viation) on model trained with different methods.
ResNet-18 is the target model architecture.

We evaluate four CL methods and normal
training under the AIA attack. Table Fig-
ure 6 demonstrates that CL does not heighten
the vulnerability of the target model. This
contrasts with a recent study (He & Zhang,
2021), indicating increased vulnerability un-
der AIA with contrastive learning in specific
training settings. Interestingly, normal train-
ing yields the highest average attack accuracy
(e.g., 0.107 for Place100), even surpassing
anti-curriculum. Notably, UTKFace exhibits
higher attack accuracy due to its already ele-
vated baseline accuracy (42.1%). Further investigation reveals consistent attack accuracy across
samples with different difficulty levels (see Figure 15 in Appendix F). This suggests that sample
attributes are inherently complex and challenging to learn. The difficulty score, such as bootstrap-
ping, relies on the original ML task, emphasizing the specific attribute targeted for classification.
Consequently, data ranking’s effectiveness is confined to the chosen classification attribute and does
not impact the inference of the intended sensitive attribute.

6 CONCLUSION

In this work, we perform the first quantitative study to understand how curriculum learning, a widely-
used technique that accelerates model training, affects the privacy of the trained model. Specifically,
we trained target models under 6 image datasets and 3 tabular datasets, and performed membership
inference attacks (MIA) and attribute inference attacks (AIA) against them to assess the privacy risk
in curriculum learning. Our results show that the target model becomes slightly more vulnerable to
MIA but not so under AIA. We also found MIA has a significantly larger impact on samples with
high difficulty levels. By exploiting the leakage from difficulty levels, we design a new MIA, termed
Diff-Cali, which achieves similar overall accuracy with much better TPR at low FPR and can infer
difficulty samples from normal ML more accurately. Finally, we evaluate the existing defenses DP-
SGD, MemGuard, MixupMMD, and AdvReg in the setting of curriculum learning, and our results
show that they are still effective against the basic MIA. With this study, we hope to draw attention to
the unintended effects of the emerging machine-learning techniques, and more theoretical analysis
into the trade-off between privacy, accuracy, and fairness.
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A DATASET AND MODELS DESCRIPTION

A.1 MIA DATASETS

We use the following 8 datasets, which are also adopted by previous works (He & Zhang, 2021;
Liu et al., 2021; Mireshghallah et al., 2020; Shokri et al., 2017) to study MIA. They are CI-
FAR100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015), Place100, Place 60 (Zhou
et al., 2017), SVHN (Netzer et al., 2011), Purchase(Shokri et al., 2017), Texas hospital stays (Shokri
et al., 2017) and Locations (Yang et al., 2016). We focus on image datasets mainly (the first 5
datasets), but tabular datasets are also evaluated.

CIFAR100 (Krizhevsky et al., 2009). This dataset consists of 60, 000 colored images in 100
classes, with 600 images per class. The size of each image is 32× 32.

Tiny ImageNet (Le & Yang, 2015). This is a subset of the ImageNet dataset Deng et al. (2009).
It contains 100, 000 colored images of 200 classes (500 for each class). The size of each image is
64× 64.

Place100. This dataset is a subset of Places365 (Zhou et al., 2017) dataset, which is composed
of more than 1.8 million images with 365 scene categories. Place100 is generated by randomly
selecting 100 scene categories with 600 random images per category.

Place60. This dataset is similar to Place100, except that it has 60 classes containing 1, 000 images
each.

SVHN (Netzer et al., 2011). The Street View House Numbers (SVHN) dataset is a real-world
image dataset containing over 600, 000 digit images. This dataset includes images of house numbers
taken from Google Street View images. The size of each image is 32× 32.

Purchase. This is a tabular dataset about purchase styles. Following Shokri et al. (2017), we
leverage the Purchase-100 dataset (abbreviated as Purchase) and uses 10, 000 records for training.
The dataset itself contains 197, 324 records from 100 classes where each record has 600 binary
features.

Texas hospital stays. This dataset contains the information about inpatients stays in several health
facilities. Following Shokri et al. (2017), our task is to predict a patient’s main procedure. After
pre-processing, the resulting dataset has 67, 330 records and 6,170 binary features.

Locations (Yang et al., 2016) . The original dataset was released by Foursquare about its mobile
users’ location “check-ins”, which has 11,592 users and 1,136,481 check-in records. Our task is to
predict the user’s geo-social type (128 in total). Here we use the version pre-processed by Shokri
et al. (2017), which has 446 binary features.

A.2 AIA DATASETS

Datasets with multiple attributes are required for AIA. To this end, we adapt Place100 and Place60
used as MIA datasets to AIA setting as they both contain multiple attribute labels. More specifically,
the model for Place100 outputs whether a sample is an indoor scene, while the sensitive attribute is
the category of the scene, which contains 100 labels. Place60 has the total number of categories as
60. In addition to Place100 and Place60, we introduce UTKFace (Zhang et al., 2017) specifically
for AIA study.

UTKFace (Zhang et al., 2017). This is a large-scale facial dataset, which consists of over 20, 000
face images with annotations of age, gender, and ethnicity. In our evaluation, we set gender classi-
fication as the the task for target model, and the sensitive attribute to be inferred is ethnicity, which
includes 5 classes.

A.3 MODELS

The target model architectures for the image datasets are ResNet-18, ResNet-34, and MobileNet (He
et al., 2016; Sandler et al., 2018). We choose these models because variants of ResNet are still
achieving SOTA (State of The Art) or near SOTA performance in image classification, and Mo-
bileNet is widely used on mobile devices. We adopt cross entropy as the loss function and SGD as
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Dataset
Method Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.3842 ± 0.0027 0.4002 ± 0.0043 0.3776 ± 0.0036 0.3798 ± 0.0035 0.3803 ± 0.0043
CIFAR100 0.6081 ± 0.0053 0.6232 ± 0.0078 0.5991 ± 0.0098 0.6099 ± 0.0045 0.6127 ± 0.0221
Place100 0.2992 ± 0.0054 0.3159 ± 0.0059 0.2967 ± 0.0037 0.3088 ± 0.0060 0.3007 ± 0.0053
Place60 0.4756 ± 0.0041 0.4903 ± 0.0040 0.4815 ± 0.0025 0.4847 ± 0.0071 0.4707 ± 0.0154
SVHN 0.9592 ± 0.0004 0.9598 ± 0.0006 0.9566 ± 0.0005 0.9593 ± 0.0006 0.9599 ± 0.0006
Purchase 0.4931 ± 0.0055 0.5324 ± 0.0037 0.4760 ± 0.0055 0.5289 ± 0.0043 -
Texas 0.4809 ± 0.0072 0.4975 ± 0.0066 0.4606 ± 0.0101 0.4877 ± 0.0095 -
Location 0.5861 ± 0.0107 0.5914 ± 0.0027 0.5563 ± 0.0156 0.5838 ± 0.0077 -

Table 3: Target model’s average test accuracy on different datasets. ResNet-18 is used for all image
datasets, and MLP for non-image datasets Purchase, Texas, and Location. Transfer learning CL
does not apply to non-image datasets. The target model accuracy is relatively low except for SVHN
because we use a subset of the original training data.

the optimizer. We train all models for 200 epochs with a batch size of 128. The learning rate is set
to 0.14. For the non-image dataset Purchase and Location, we choose a 3-layer MLP with the same
number of epochs and batch size. The number of neurons in the hidden layer is 256. For Texas
dataset, we use 5-layer MLP with 512 neurons in the hidden layer because this dataset contains
more features. To avoid fortuitous outcomes, all experiments are repeated 5 times with the standard
deviation presented. Table 3 shows the average accuracy of models trained on various datasets.

B CL PERFORMANCE

Method
Dataset Tiny ImageNet CIFAR100 Place100 Place60 SVHN Purchase Texas Location

Normal 100.0 100.0 100.0 100.0 100.0 100.0 96.770 100.0
Bootstrapping 100.0 100.0 100.0 99.996 100.0 100.0 94.030 100.0
Transfer 100.0 99.997 100.0 99.972 100.0 / / /
Baseline 100.0 99.993 100.0 100.0 100.0 99.990 95.600 100.0
Anti-curriculum 99.963 100.0 100.0 99.918 100.0 100.0 97.410 100.0

Table 4: The average training accuracy of datasets in Table 3. Image datasets are trained on ResNet-
18 while non-image datasets are trained on MLP. Numbers are all in percentage. We observe that all
training accuracies are nearly 100%. Note that for non-image datasets, we skip the transfer method
as there is no a commonly used pre-train model for tabular dataset.
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Figure 7: The training accuracy of different training methods with ResNet-18 on CIFAR100 along
the increase of epochs (total of 90 epochs).

Average training accuracy details can be found in Table 4. The maximum standard deviation in
Figure 3 is 0.0221, with 32 out of 37 results having a standard deviation below 0.01, indicating sig-
nificant differences among CL methods. Notably, bootstrapping and transfer learning consistently
outperform normal training, while anti-curriculum consistently performs the worst. We find it in-
triguing that the baseline performs equally well as transfer learning curriculum for Place100 and
4This learning rate is empirically chosen and has a very limited effect on attack accuracy. For example, when
using a learning rate of 0.001, the MIA accuracy is affected by less than 0.2% when attacking a ResNet-18
model trained on CIFAR100.
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Place60. This suggests that the transfer learning curriculum may not be the most suitable for these
datasets. Figure 7 validates a key motivation for adopting CL: achieving higher accuracy faster.
Notably, bootstrapping and transfer learning consistently reach higher accuracy faster than all other
methods. Conversely, anti-curriculum takes the longest to achieve the same training accuracy as
compared to other methods, underscoring the benefits of a meaningful data order in training. This
observation aligns with prior research (Wu et al., 2021; Hacohen & Weinshall, 2019).

C BASIC MIAS

NN-based attack assumes a vector of prediction posteriors (e.g., confidence scores or loss) of all
class labels can be returned by the target model T when querying T with a data sample x. It is also
assumed that the adversary has a shadow dataset (D) that has the same distribution and format as
T ’s private training dataset. D is used to train a set of shadow models S that behave similarly as T
(e.g., having the same architecture as T like previous work (Shokri et al., 2017; Salem et al., 2019;
Song & Mittal, 2021)).

The attacker trains an attack model AMI using S. In particular, the attacker queries every shadow
model S with the samples from its own training dataset and a disjoint testing dataset. The prediction
posteriors of all samples and whether they are in training (denoted member) or testing (denoted non-
member) are used as input to train AMI . Finally, the attacker queries T with a sample of interest x
and uses the prediction posteriors as the input to AMI to predict the membership status.

Compared to the NN-based attack, the model AMI of metric-based attacks does not need to be
trained. Instead, AMI generates a privacy risk score from the output of T and compares it to class-
specific thresholds.

For the label-only attack, it assumes only the prediction label instead of the prediction posteriors
are returned from T . Still, the adversary can continuously add adversarial perturbations to the input
sample x until its prediction label has been changed. The key insight is that the magnitude of the
adversarial perturbation is larger for the member sample as T gives a more confident prediction. D
and S can be used to select a threshold to separate the perturbation magnitudes of members and
non-members.

D DEFENSE METHODS

DP-SGD. Differentially-Private Stochastic Gradient Descent (DP-SGD) modifies the stochastic
gradient descent (SGD) algorithm and integrates (ϵ, δ)-DP (Dwork et al., 2006) to provide provable
privacy guarantee.
Definition 1. ((ϵ, δ)-DP) An algorithmM(·) satisfies (ϵ, δ)-differential privacy ((ϵ, δ)-DP), if and
only if for any pair of datasets V and V ′ that differs in only one element and for any possible output
set O

Pr [M(V ) ∈ O] ≤ eϵ Pr [M(V ′) ∈ O] + δ, (6)

After a per-sample gradient is computed, DP-SGD clips it to a fixed maximum norm C and Gaussian
noise is added to the aggregated parameter gradient with standard deviation δC. The output of the
trained model will satisfy (ϵ, δ)-DP.

MemGuard. Different from DP-SGD, MemGuard does not change the training process. At a high
level, it obfuscates the predictions of the target model by adding noises to its output. It is designed to
defend against MIA in particular, while DP-SGD deals with all sorts of privacy risks. Assuming an
attack model AMI has been trained with shadow training (Shokri et al., 2017), and AMI(T (x), y)
outputs a confidence score ranging in [0, 1], where T (x) is the prediction of the target model and y
is the label for x. A sample is considered a member if the score is larger than 0.5 and a non-member
if smaller than 0.5. MemGuard has two phases. In Phase 1, it crafts adversarial noise and adds it
to T (x) to force AMI(T (x), y) to be 0.5 to confuse the attacker, while the distance between the
original prediction and the noisy prediction is minimized. In phase II, the adversary adds the noise
to the original prediction with a certain probability of trade-off the utility and privacy.

MixupMMD. Li et al. (2021) found a model vulnerability under MIA relates to the difference
between the training and testing accuracy, and they proposed MixupMMD to intentionally reduce
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Figure 8: Loss distribution for models trained on Tiny ImageNet with ResNet-18.

the training accuracy to validation accuracy. A new penalty, Maximum Mean Discrepancy (MMD),
is used by the regularizer.

AdvReg. Nasr et al. (2018) proposed to mitigate MIA by formulating the defense as a min-max
optimization problem. Given a validation set that serves as “non-members”, AdvReg introduces an
adversarial classifier to infer the membership status using the posteriors generated from the target
model. The optimization goal is to minimize the original classification loss and maximize the loss
of the adversarial classifier.

E ALGORITHMS

We show the CL algorithm in Algorithm 1 and the attack algorithm of our designed attack in Algo-
rithm 2.

Algorithm 1: Curriculum learning framework.

Input: Training dataset X = {Xi}Ni=1, difficulty measurer f(X ,C), pacing function g(i),
number of iterations M, number of epochs E, target model T

1 X ← f (X , C);
2 for e ∈ 1, . . . , E do
3 for i ∈ 1, . . . ,M do
4 X ′i ← X [1, . . . , g(i)];
5 Bi ← sample(X ′i );
6 T ← train (T,Bi)

Algorithm 2: Training the attack model and adjusting threshold under Diff-Cali. “pred” is
“prediction”.
Input: Target model TTT , reference model SSS, shadow datasetDDD, labels of shadow dataset LLL,

attack modelAMIAMIAMI , curriculum CCC, number of epochs EEE
1 for e ∈ 1, . . . , E do
2 scal (T,D) = s (T,D)− s (S,D);
3 θ0 = argmax

θ
pred(AMI , L, scal (T,D));

4 AMI ← train (AMI , scal (T,D) , g (x,C, θ0));

F MORE RESULTS

F.1 LOSS DISTRIBUTION

The previous evaluation presents a macro-level understanding of CL’s impact on MIA. Here we
present a micro-level analysis by examining the loss distribution between members and non-
members in models trained with normal and CL methods. Due to the space limitation, here we
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Figure 9: Attack model’s confidence score for both member and non-member samples on Purchase.
MLP is used for target model training, and data samples are arranged according to their difficulty
scores from bootstrapping.
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Figure 10: t-SNE of the classification results on the difficult batch of SVHN.

only show the results of ResNet-18 trained on Tiny ImageNet in Figure 8. There is a clear difference
between their loss distributions, e.g., bootstrapping makes the overall members’ loss much lower
and the members’ loss distribution less overlapped with non-members’, especially for those mem-
bers with higher difficulty levels. In Section 5.2, we also reason this observation from the perspective
of data memorization.

F.2 NON-IMAGE DATASETS

As shown in Table 1, most experiments remain to have the same trend they are showing in image
datasets. For Purchase, however, attack accuracy on normal training is 0.71% higher than boot-
strapping for example. This shows that CL does not always empower MIA more. In Figure 9, we
show the confidence score of members and non-members on Purchase, and the result is similar to
the image datasets, where difficult samples are more vulnerable.

In the meantime, we found the changes caused by different CL methods are more drastic on the non-
image datasets, compared to the image datasets. For example, Texas has a more prominent attack
accuracy drop (8.0%) on anti-curriculum. The non-image datasets are relatively simple, containing
only binary features after pre-processing, hence they are more likely to be impacted by CL. Table 3
also shows the target model accuracy varies more for the non-image datasets under CL.

F.3 T-SNE STUDY

To investigate the disparate impact CL has on the classification accuracy across samples. we use
t-distributed stochastic neighbor embedding (t-SNE) to visualize the classification tasks carried out
by bootstrapping and normal ML on the most difficult batch of data of SVHN. Figure 10 shows all

17



Under review as a conference paper at ICLR 2024

Architecture
Method Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

ResNet-18 0.8572 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0002 0.8582 ± 0.0001 0.8718 ± 0.0001
ResNet-34 0.8564 ± 0.0001 0.8746 ± 0.0003 0.8481 ± 0.0002 0.8559 ± 0.0002 0.8715 ± 0.0002
MobileNet 0.7979 ± 0.0001 0.8308 ± 0.0000 0.7763 ± 0.0002 0.8318 ± 0.0000 0.8430 ± 0.0001

Table 5: The average accuracy of NN-based attacks on models trained on different network archi-
tectures with CIFAR100.

samples within the difficult batch, and it turns out bootstrapping can separate samples from group
“1”, “2” and “3” better than normal training.

F.4 TARGET MODEL ARCHITECTURES

To study the impact of the architecture of the target model, we launched MIA against ResNet-
34 and MobileNet and compare the results against ResNet-18. Table 5 demonstrates the average
attack accuracy of MIA when target models are trained with ResNet-18, ResNet-34, and MobileNet,
respectively. It shows that they all share a similar trend of how CL affects MIA. Though MobileNet
turns out to be less vulnerable (5.85% and 5.93% less attack accuracy compared to ResNet-34 and
ResNet-18, respectively), bootstrapping, transfer learning, and baseline all increase the overall attack
accuracy.

0 2 4 6 8
Difficulty Level

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

(a) ResNet-34

0 2 4 6 8
Difficulty Level

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(b) MobileNet

Figure 11: MIA accuracy for target model trained on Tiny ImageNet with ResNet-34 and MobileNet,
respectively.

Figure 11 demonstrates the results by difficulty levels on ResNet-34 and MobileNet when train-
ing with Tiny ImageNet, which can be viewed together with Figure 1b about ResNet-18. Though
MobileNet turns out to be less vulnerable (4% less attack accuracy compared to ResNet-34 and
ResNet-18), bootstrapping, transfer learning and baseline all increase the overall attack accuracy,
and narrows down the gap between difficult and easy samples. As such, the privacy concerns in CL
cannot be addressed by changing target models’ architectures. This observation is consistent with
other works (Li & Zhang, 2021; He & Zhang, 2021) about MIA vs. architectures.

F.5 CONFIDENCE SCORE AND ACCURACY FOR MIA AND AIA

Confidence Score. Figure 12 and Figure 13 show the confidence scores of the NN-based MIA and
Diff-Cali.

MIA Accuracy. Figure 14 shows the results on datasets other than the ones used in the main text.

AIA Accuracy. Figure 15 shows that CL does not necessarily make the target model more vulner-
able to AIA.
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Figure 12: Attack model’s confidence score for both member and non-member samples. ResNet-18
is used for target model training, and data samples are arranged according to their difficulty scores
from bootstrapping.
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Figure 13: Diff-Cali’s member and non-member confidence score for ResNet-18.

F.6 EVALUATION OF DEFENSE

We evaluate how the defenses, including DP-SGD, MemGuard, MixupMMD, and AdvReg perform
under the impact of CL. Table 6 shows the attack accuracy on ResNet-18 which is trained with
CIFAR100. Because MixupMMD and AdvReg require reference datasets for defense deployment,
we equally divided CIFAR100 into 5 parts for fair comparison among all the defense techniques.
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Figure 14: MIA accuracy on Place60, SVHN and UTKFace. ResNet-18 is used for target model
training and bootstrapping is used for CL. The x-axis represents the difficulty level of the data, and
the y-axis represents the attack accuracy.
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Figure 15: Attribute inference attack accuracy on UTKFace

More specifically, all target models in Table 6 are trained with only 12, 000 data points, which also
explains why the accuracies are lower.

Regarding the setup of the defense methods, bootstrapping and anti-curriculum with DP-SGD are
trained with the same curriculum as previous experiments. DP-SGD* uses a noisy curriculum for
bootstrapping and anti-curriculum, and the difficulty measurer is trained under DP-SGD. For transfer
learning, it is not impacted as we use a pre-trained model. ϵ and δ in our evaluation are 124, 496
and 1e − 5 for DP-SGD. We have a large ϵ because we have 200 epochs of training and ResNet-
18 contains a large number of parameters. We did not change these settings for a fair comparison
with other defense techniques. Previous studies have used large ϵ for DP-SGD in order to achieve
good model accuracy (Jayaraman & Evans, 2019; Kurakin et al., 2022). Based on a recent work Bu
et al. (2022), we are able to make ϵ 10 times smaller after proper parameter tuning while achieving
similar target accuracy. The ϵ can be brought down even first with large batch size. Pulling tricks of
DP-SGD based on the above recent work can further boost the tradeoff, we do not discuss it here as
that is a parallel line of research. Note that in this section, we still use small batch size for DP-SGD
evaluation though that results in large ϵ. This is because we want to keep parameters across all target
models the same for a fair MIA evaluation, and we have limited computing resources for handling
large batch number.

Table 6 demonstrates that DP-SGD is able to curb the MIA accuracy from 90.8% to 50.5% in aver-
age, which is close to random guess (i.e., member or non-member), though at the cost of a significant
drop in target model’s classification accuracy (from 49.52% to 16.42% in average). This observation
is consistent with previous works (Li et al., 2021; Kurakin et al., 2022). We also found DP-SGD is
effective against Diff-Cali (e.g., attack accuracy for normal and bootstrapping are dropped to 53.67%
and 53.09%). For DP-SGD*, due to the introduced noise, the ranking given by its curriculum is
less accurate, but Table 6 shows that such change does not impact the MIA accuracy, and the target
model accuracy drops by only a small amount (i.e., 0.8% for bootstrapping and 0.7% for baseline)
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None DP-SGD* DP-SGD MemGuard MixupMMD AdvReg
Target MIA Target MIA Target MIA Target MIA Label-only Target MIA Target MIA

norm 48.0 90.3 17.4 50.6˙±0.11 17.4 50.8˙±0.07 48.0 50.0 83.0 54.1 81.6˙±0.02 51.2 89.2˙±0.01
bstp 51.4 91.4˙±0.03 18.0 50.6˙±0.06 17.2 50.7˙±0.01 51.4 50.0 84.5 54.4 83.1˙±0.02 54.2 91.6˙±0.02
tran 48.9 91.3˙±0.03 17.2 50.6˙±0.01 17.2 50.6˙±0.01 48.9 50.0 84.5 55.7 76.1˙±0.03 50.4 92.8˙±0.04
base 50.0 91.5˙±0.02 18.3 50.4˙±0.11 17.6 50.4˙±0.11 50.0 50.0 84.0 55.0 84.4˙±0.02 53.0 91.6˙±0.01
anti 49.3 89.5˙±0.02 11.2 50.3˙±0.11 17.2 50.4˙±0.10 49.3 50.0 81.3 52.6 79.1˙±0.02 52.1 87.3

Table 6: The average accuracy of MIA (± standard deviation (STD)) on target model trained on
CIFAR100 with ResNet-18 and different defense methods. All numbers are in percentage, entry
without ± STD means the STD is less than 0.01%.
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Figure 16: Attack model’s confidence score for member and non-member samples of CIFAR-100
trained on ResNet-18 with DP-SGD.

except for anti-curriculum. Due to the noise in ranking, the ranking for anti-curriculum is no longer
strictly ordered from difficult to easy. Instead, it becomes more random, thus target accuracy of anti-
curriculum is even closer to baseline or bootstrapping. In general, the result suggests using noisy
ranking (DP-SGD*) as a defense might not be effective.

For MemGuard, due to its design, NN-based MIA accuracy is fixed to 50% when the defender knows
what MIA method is performed by the attacker. In the meantime, the classification task of the target
model is not impacted by MemGuard. However, it is not very effective towards label-only attack, as
it does not change the label. Our evaluation shows that the overall label-only attack accuracy can still
reach up tp 86% even with MemGuard deployed. MixupMMD decreases the MIA accuracy (e.g.,
91.4% to 83.1% for bootstrapping), and interestingly, it increases the target model accuracy (e.g.,
from 51.4% to 54.4% for bootstrapping), which might be attributed to its new regularizer. AdvReg
can also increase target accuracy (e.g., 51.4% to 54.2% for bootstrapping) but is less effective in
mitigating MIA (e.g., MIA accuracy is even increased from 91.4% to 91.6% for bootstrapping).
This observation concurs with a previous work Song & Mittal (2021).

Given that CL introduces disparate impact on samples under different difficulty groups, we further
investigate the relation between difficulty groups and defenses, and we focus on DP-SGD. Figure 16
shows that DP-SGD is able to eliminate the disparate impact by CL, essentially making the difficult
samples again hard to attack. We speculate the reason is that DP-SGD adds noise to gradient,
which adds randomness to the optimization phase. CL, by introducing a teacher module, reinforces
the learning by reducing the randomness. Ultimately, DP-SGD and CL are built on two opposite
foundations. Thus, DP-SGD can eliminate the benefit from CL and achieve significant defense
effect.

Overall, there is still room for improvement in defenses. Potential future work is to preserve certain
properties brought by an ML technique (e.g., fast convergence and higher final performance by CL)
and mitigate privacy risks generically.
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