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Abstract

Cryogenic electron tomography (Cryo-ET) enables visualization of macromolec-
ular structures in near-native environments, but the resulting subtomograms are
noisy and difficult to classify with deep learning models. Although transfer learn-
ing has been attempted for Cryo-ET subtomogram tasks, leveraging large-scale
image-pretrained Transformers has remained largely unexplored. In this work, we
study how such Transformers can be adapted to Cryo-ET subtomogram classifi-
cation. We propose a simple, effective framework that (i) adapts 2D pretrained
Transformer model weights to 3D subtomograms via weight inflation, and (ii)
denoises subtomograms with Difference of Gaussian filtering. On both simulated
and real subtomogram datasets, our approach enables ViT-B and Swin-B to out-
perform randomly initialized transformers and strong video-pretrained baselines:
the weight-inflated Swin-B achieves 90.70% (simulated) and 99.29% (real), while
weight-inflated ViT-B reaches 85.40% and 97.32%, respectively. These results
demonstrate that carefully adapted image-pretrained Transformers provide a strong
and practical solution for Cryo-ET subtomogram classification.

1 Introduction

Cryogenic electron tomography (Cryo-ET) reconstructs 3D cellular structures from multiple 2D
electron microscopy projections [1, 2]]. Cropped volumes containing individual macromolecules,
called subtomograms [3} 4]], are used for structure identification and classification [5} 6]. However,
the data are extremely noisy and limited in quantity, making supervised training difficult and prone to
overfitting.

To address this, prior works explored semi-/self-supervised learning [[7, [8] or transfer from video-
pretrained models [9]. Yet, these strategies underutilize the strong visual priors learned by modern
large-scale Transformers such as ViT [10] and Swin [11]], which have shown remarkable transfer-
ability across natural-image and multimodal domains [[12} [13|[14]. Extending such 2D pretrained
Transformers to Cryo-ET subtomograms remains an open problem due to their dimensional (2D
vs. 3D) and channel (RGB vs. single-volume) mismatch.

We study how image-pretrained Transformers can be effectively adapted to Cryo-ET classification.
Our framework combines: (i) weight inflation, which converts 2D convolution kernels into 3D ones
while preserving pretrained features, and (ii) Difference-of-Gaussian (DoG) filtering to denoise
subtomograms and construct three input channels aligned with RGB expectations.

On both simulated and real subtomogram datasets, weight-inflated ViT-B and Swin-B substantially
outperform randomly initialized and video-pretrained baselines. Our main contributions are:
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Figure 1: Overall pipeline: starting from a pretrained ViT/Swin transformer on natural images, we
adapt the convolution layer and the transformer backbone of the pretrained model to process cryo-et
subtomograms by applying weight inflation. Difference-of-Gaussian (DoG) filtering is applied to
input subtomograms for denoising before passing to the weight-inflated model.

* A simple, general framework for adapting 2D pretrained Transformers to volumetric Cryo-
ET data.

* Empirical evidence that image-pretrained models can surpass strong video-pretrained base-
lines when properly scaled and denoised.

* New state-of-the-art results on simulated and real Cryo-ET subtomogram classification
benchmarks.

2 Related Works

Subtomogram classification. Early work relied on template matching or unsupervised autoencoders,
but struggled with extreme noise and conformational heterogeneity [[13,[16]. Supervised 3D CNNs
improved accuracy yet remained data-hungry [17]. To reduce labeling needs, semi-/self-supervised
learning has been explored for Cryo-ET volumes [7]]. A parallel direction leverages transfer from
video models (e.g., Kinetics-pretrained 3D CNNs and ViViT), showing that pretraining is beneficial
but leaving open how to best align features with noisy, small 3D inputs [9} 18]

Transfer learning beyond videos. Large-scale image pretraining transfers strongly in medical
imaging, often outperforming domain-specific pretraining when paired with light adaptation (19} 20].
This suggests that high-capacity 2D models can be competitive for Cryo-ET if bridged to volumetric
inputs with minimal inductive bias changes.

Transformers for 3D vision and 2D— 3D adaptation. Hybrid Transformer—UNet designs (e.g.,
UNETR/Swin-UNETR) adapt attention to volumetric segmentation [21,22]. A complementary line
directly inflates 2D kernels to 3D to reuse pretrained weights [24]). We follow this inflation path
but (i) scale receptive fields to small subtomograms and (ii) replace RGB channels with a simple DoG
channelization tailored to low-SNR Cryo-ET. Our results indicate that carefully scaled inflation plus
lightweight channel construction can surpass strong video-pretrained baselines on both simulated and
real data.

3 Methods

Our pipeline (Figure[I) combines weight inflation of pretrained ViT/Swin backbones with Difference-
of-Gaussian (DoG) filtering to adapt to 3D subtomograms and improve robustness to noise.

3.1 Model Adaptation via Weight Inflation

ViT and Swin were originally designed for RGB images, which have shape C'x H x W with C' = 3. In
contrast, Cryo-ET subtomograms are three-dimensional voxel blocks of shape H' x W’ x D’ without



an explicit channel dimension. This discrepancy introduces two mismatches: (i) a dimensionality
mismatch, as pretrained convolution layers operate on 2D kernels, and (ii) a channel mismatch, as
subtomograms lack RGB-like channels.

To resolve the dimensionality mismatch between 2D pretrained models and 3D Cryo-ET data, we
follow and extend the weight inflation strategy proposed by [24]. Specifically, a 2D convolution
kernel of shape K x C' x P x P is converted into a 3D kernel of shape K x C x Q x P’ x P’, where
K is the number of output channels, C' the number of input channels, P the original kernel size, and
@ the kernel depth. We explore two inflation variants: (i) average inflation, which repeats the 2D
kernel @) times along the depth dimension and divides by @), and (ii) center inflation, which inserts
the 2D kernel into the central slice with zeros elsewhere. Unlike prior work that directly transfers
2D kernels into 3D, we account for the smaller spatial scale of subtomograms (H', W'! <!H, W)
by introducing an in-plane resizing step before inflation: either (a) applying 2D average pooling to
reduce kernel size from P!x!P to P'!x!P’ (P’ < P), or (b) enlarging subtomogram slices to match
the pretrained kernel resolution. This adjustment ensures that receptive fields are properly scaled for
subtomogram structures, making our approach distinct from standard weight inflation methods.

3.2 Difference-of-Gaussian Filtering

Cryo-ET subtomograms usually have low signal-to-noise ratios (SNR), and the presence of strong
background noise can hinder the model’s ability to extract structural information. To mitigate this,
we apply three-dimensional Difference-of-Gaussian (DoG) filtering [25} 26] as a preprocessing step.

Formally, a 3D Gaussian filter G € R +Dx@r+1)x(2r+1) of radjus r and variance o is defined by

2 2 2
f@,9,5) = — exp (—x“’”) M

(27702)% 202

T=—TryYy=—1r2=—T

f(z,y, 2)

S

Glz,y, 2] = 3

where z,y,2 € [—r, 7] N Z.

For each subtomogram, we convolve it with two Gaussian filters of variances (o1, o2) and subtract
the results to obtain a denoised Difference-of-Gaussian (DoG) volume. Repeating this with another
pair (03, 04) yields a second DoG volume. We then stack the original subtomogram with the two
DoG outputs, forming a three-channel input that matches the RGB structure expected by pretrained
models while providing multi-scale denoising cues beyond simple channel replication.

4 Experiments

We evaluate our approach on both simulated [27] and real [28] Cryo-ET subtomogram datasets. All
experiments use PyTorch with AdamW optimizer and cosine learning rate decay. A detailed ablation
study is provided in Appendix [2]

Method Pretrain Dataset Simulated Acc. Real Acc.
ViViT [9] Kinetics-400 84.8 91.1
3D-ResNet-34 [9] Kinetics-400 85.9 99.1
ViT-B (random) - 68.3 81.1
Swin-B (random) - 80.7 91.6
ViT-B (ours) ImageNet-21k 85.4 97.3
Swin-B (ours) ImageNet-22k 90.7 99.3

Table 1: Classification accuracy (%) on simulated and real Cryo-ET subtomogram datasets.



4.1 Simulated Cryo-ET Subtomogram Dataset

Dataset. We follow [27, 9] to generate simulated subtomograms from ten macromolecular structures
(1bxn, 1f1b, 1yg6, 2byu, 2h12, 21db, 3gl1, 3hhb, 4d4r, 6t3e) in the Protein Data Bank [29]. Each
subtomogram has shape 323 voxels with signal-to-noise ratio (SNR) 0.05. We use 3,000 samples for
training, 1,000 for validation, and 1,000 for testing.

Baselines. We compare against strong video-pretrained models: ViViT [18]] and 3D-ResNet-34 [30],
both pretrained on Kinetics-400 [31]] following the pipeline in [9]]. These represent the standard
state-of-the-art in Cryo-ET transfer learning.

Implementation. We evaluate ViT-B/16 [10] pretrained on ImageNet-21k and Swin-B [11] pretrained
on ImageNet-22k. For ViT, the 2D patch embedding of size 3 x 16 x 16 is inflated to 3 x Q x P’ x P’
with @ € {1, 3,5} and P’ €{4,16}; for Swin, the stem convolution (3 X 4 x 4) is similarly inflated.
Subtomograms are preprocessed using DoG-based channelization (Sec.[3.2) to form three-channel
inputs, and positional encodings are reinitialized for 3D. The final embedding is passed through a
fully connected layer for classification

4.2 Real Cryo-ET Subtomogram Dataset

Dataset. We adopt the real Cryo-ET dataset curated in [9, [8], containing seven protein classes
extracted from the Noble Single Particle Dataset [28]]. Each subtomogram (282 voxels) is rescaled to
323 and selected via DoG-based particle picking [26]. The dataset includes 400 samples per class
(2,800 total), split 3:1:1 for training, validation, and testing.

Baselines and setup. We use the same ViViT and 3D-ResNet-34 baselines as above and apply
identical fine-tuning procedures.

4.3 Results and Analysis

As shown in Table[T] our weight-inflated Swin-B achieves 90.7% accuracy on the simulated dataset
and 99.3% on the real dataset, outperforming both randomly initialized and video-pretrained models.
ViT-B shows similar trends with notable gains over random initialization (68.3—85.4%). These
results indicate that image-pretrained Transformers perform better than video-pretrained or randomly
initialized Transformers for Cryo-ET subtomogram classification.

The ablation study further (Appendix [2)) show that: (1) pretrained inflation consistently improves
over random initialization; (2) scaling kernel resolution to subtomogram size provides large boosts,
especially for Swin-B; and (3) DoG-based channelization yields stable gains across all settings.

5 Conclusion

We introduced a pipeline to adapt vision Transformers pretrained on RGB images for Cryo-ET
subtomogram classification: (i) we adjust kernel sizes and input resolutions before extending 2D
convolution kernels into 3D, and (ii) we build a three-channel input by adding two DoG-filtered
versions of the subtomogram to the raw volume. These steps addressed both the dimensional and
channel mismatches between images and subtomograms. On both simulated and real datasets,
the weight-inflated Transformers achieved the best results, outperforming randomly initialized
Transformers and video-pretrained baselines.

Limitations and future work. We tested only two Vision Transformer architectures. The selected
DoG variances are fixed and not diverse, and the positional encodings for the 3D patches are randomly
initialized. Future work could explore the use of pretrained weights from a wider range of vision
and biomedical tasks, testing alternative strategies beyond center or average weight inflation, and
developing more effective ways to use DoG filtering for channel construction.
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A Ablation Study

Ablation Model Pretrain Weight  3D-Convolution Input DoG Acc on Acc on
Dataset Inflation Kernal Size Resolution Variances Simulated  Real

ViT-B - Random 3x4x4 32x32x32  (0.5,1.0),(0.5,2.0) 6830%  81.07%

ViT-B  ImageNet-21k  Center 3x4x4 32 x 32 x 32 (0.5,1.0), (0.5,2.0) 85.60% 87.86%

Initialization ViT-B  ImageNet-21k  Average 3x4x4 32x32x32  (0.5,1.0),(0.5,2.0) 85.40%  86.79%

Strategy Swin-B - Random 3x1x1 32x32x32  (0.5,1.0),(0.5,2.0) 80.70%  91.61%

Swin-B  ImageNet-22k  Center 3x1x1 32x32x32  (0.5,1.0),(0.5,2.0) 89.60%  95.36%

Swin-B  ImageNet-22k  Average 3x1x1 32x32x32  (0.5,1.0),(0.5,2.0) 90.00%  94.82%

ViT-B  ImageNet-21k  Center 1x4x4 32x32x32  (0.5,1.0),(0.5,2.0) 8520%  86.96%

ViT-B  ImageNet-21k  Center 3x4x4 32 % 32 x 32 (0.5,1.0), (0.5,2.0) 85.60% 87.86%

Kernel ViT-B  ImageNet-21k  Center 5x4x4 32x32x32  (0.5,1.0),(0.5,20) 8490%  87.68%

Depth Swin-B  ImageNet-22k  Center Ix1x1 32x32x32  (0.5,1.0),(05,20) 8930%  9536%

Swin-B  ImageNet-22k  Center 3x1x1 32 x 32 x 32 (0.5,1.0), (0.5,2.0) 89.60% 95.36%

Swin-B  ImageNet-22k  Center 5x1x1 32 % 32 x 32 (0.5,1.0), (0.5,2.0) 89.90% 94.29%

ViT-B  ImageNet-21k  Center 3x4x4 32 x 32 x 32 (0.5,1.0), (0.5,2.0) 85.60% 87.86%

Kernel Size & ViT-B  ImageNet-21k  Center 3 x 16 x 16 32 %128 x 128 (0.5,1.0), (0.5,2.0) 86.10%  97.32%

Input Resolution Swin-B  ImageNet-22k  Center 3x1x1 32x32x32  (0.5,1.0),(0.5,2.0) 89.60% 95.36%

Swin-B  ImageNet-22k  Center 3x4x4 32 x 128 x 128 (0.5,1.0), (0.5,2.0) 89.70% 98.04%

ViT-B ImageNet-21k  Center 3x4dx4 32 x 32 x 32 - 79.10% 85.54%

ViT-B  ImageNet-21k ~ Center 3x4x4 32 x 32 x 32 (0.5,1.0), (0.5,2.0) 85.60% 87.86%

DoG ViT-B  ImageNet-21k  Center 3x4x4 32 % 32 x 32 (1.0,2.0), (1.0,4.0) 84.30% 87.86%

Variances Swin-B  ImageNet-22k  Center 3x1x1 32 x 32 x 32 - 85.30% 92.68%

Swin-B  ImageNet-22k  Center 3x1x1 32x32x32 (0.5,1.0),(0.5,2.0) 89.60%  94.46%

Swin-B  ImageNet-22k  Center 3x1x1 32 % 32 x 32 (1.0,2.0), (1.0,4.0) 89.70% 95.36%

Table 2: Ablation results on simulated and real Cryo-ET subtomogram datasets. The table reports
accuracy under different choices of initialization strategy, kernel depth, kernel size with input
resolution, and DoG variance settings for ViT-B and Swin-B backbones.

Table [2] reports ablations across initialization strategy, kernel depth, kernel size with input resolution,
and DoG variance choices. The ablation study suggests several trends. First, pretrained weight
inflation substantially outperforms random initialization, confirming the benefit of transferring from
large-scale image models. Second, kernel depth has only a modest effect on performance, with depth
of 1, 3, and 5 yielding similar results, indicating that depth is not a critical factor for adaptation. Third,
adjusting input resolution to better align with pretrained kernel sizes improves accuracy, particularly
for Swin-B at higher resolutions. Finally, DoG-based channel augmentation consistently provides
gains over raw subtomograms, while the specific variance pairs make only minor differences.

Additional training details. We train single NVIDIA RTX 3090 GPU with mixed precision:
forward/backward under torch.autocast (FP16) and updates via torch.amp.GradScaler (en-
abled). Optimization uses AdamW with learning rate 5x 10~° for randomly initialized models and
2x 1075 for pretrained ones, 3=(0.9,0.999), e=10~%, and weight decay 5x10~2. A cosine anneal-
ing schedule (CosineAnnealingLR) is applied with T}, =100 and 7,,;,=10"", stepped once per
epoch after validation. We set the random seed to 26. The loss is standard cross-entropy.

For data preprocessing, each subtomogram volume is min—max normalized to [—1, 1], replicated to
three channels, and optionally converted to a DoG triplet using user-specified sigmas o1, 02, 03, 04:
channel 1 is the raw volume, channel 2 is DoG(o1, 03), and channel 3 is DoG(o3,04). Augmen-
tations (applied only during training when enabled) comprise random 3D crop (scale € [0.5, 1]),
random flips along all axes, and random affine (isotropic scale 0.1, rotation £45°, translation 43
voxels), each activated independently with probability 0.5.
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