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ABSTRACT
Sequential data naturally arises from user engagement on digital

platforms like social media, music streaming services, and web

navigation, encapsulating evolving user preferences and behaviors

through continuous information streams. A notable unresolved

query in stochastic processes is learning mixtures of continuous-

time Markov chains (CTMCs). While there is progress in learning

mixtures of discrete-time Markov chains with recovery guaran-

tees [24, 28, 40], the continuous scenario uncovers unique unex-

plored challenges. The intrigue in CTMC mixtures stems from their

potential to model intricate continuous-time stochastic processes

prevalent in various fields including social media, finance, and

biology.

In this study, we introduce a novel framework for exploring

CTMCs, emphasizing the influence of observed trails’ length and

mixture parameters on problem regimes, which demands specific

algorithms. Through thorough experimentation, we examine the

impact of discretizing continuous-time trails on the learnability of

the continuous-time mixture, given that these processes are often

observed via discrete, resource-demanding observations. Our com-

parative analysis with leading methods explores sample complexity

and the trade-off between the number of trails and their lengths,

offering crucial insights for method selection in different problem

instances. We apply our algorithms on an extensive collection of

Lastfm’s user-generated trails spanning three years, demonstrat-

ing the capability of our algorithms to differentiate diverse user

preferences. We pioneer the use of CTMC mixtures on a basketball

passing dataset to unveil intricate offensive tactics of NBA teams.

This underscores the pragmatic utility and versatility of our pro-

posed framework. All results presented in this study are replicable,

and we provide the implementations to facilitate reprodubility.
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1 INTRODUCTION
Continuous-Time Markov Chains (CTMCs) are a fundamental class

of stochastic processes with a wide array of applications across

various domains. They are particularly crucial in modeling systems

where events occur continuously over time, such as in queueing the-

ory [39], finance [27], understanding disease progression [6, 31, 37]

and telecommunications among others [41]. The inherent memory-

less property of CTMCs, where the future behavior of the system

is independent of the past given the present, makes them a natural

choice for modeling random processes evolving over time [36]. In

the realm of biological systems, for instance, CTMCs have been

instrumental in modeling the stochastic behavior of genetic net-

works and the evolution of species [49]. Similarly, in finance, they

are employed to model various continuous-time financial models

including models for option pricing [27]. CTMCs for molecular ki-

netics have gained popularity in recent years, as they approximate

the long-term statistical dynamics of molecules using a Markov

chain over a discretized partition of the configuration space [38]. It

is notable that in such applications, unlike our focus where we have

a set of 𝑛 well-defined states, elucidating the state-space descrip-

tion isn’t straightforward. The flexibility and analytical tractability

of CTMCs, along with their capability to provide insightful ana-

lytical results, make them an indispensable item in the toolkit of

researchers and practitioners dealing with stochastic systems evolv-

ing over time. In this study, we delve into the largely untouched

realm of learning mixtures of homogeneous CTMCs from trail data

(refer to Section 2 for a formal definition).

Formally, a mixtureM is represented by a tuple of 𝐿 ≥ 2Markov

chains on a finite state space [𝑛] B {1, . . . , 𝑛}, denoted as a se-

quenceM = (𝑀1, 𝑀2, . . . , 𝑀𝐿). Each chain is linked with a vector

of initial probabilities, denoted as 𝑠ℓ ∈ R𝑛 with

∑𝐿
ℓ=1

∑𝑛
𝑦=1 𝑠

ℓ
𝑦 = 1.

For discrete-time Markov chains, each chain ℓ ∈ [𝐿] is defined by a

stochastic matrix representing transition probabilities. The aim is

to ascertain the parameters of M, encompassing the transition ma-

trices and initial probabilities, based on observed trail data [24, 40].

In the case of continuous-time Markov chains (CTMCs), each chain

is now characterized by a rate matrix 𝐾 ℓ along the starting proba-

bilities. The continuous-time stochastic process unfolds as follows:

Initially, we find ourselves in a chain ℓ ∈ [𝐿] and state 𝑦 ∈ [𝑛] with
a probability of 𝑠ℓ𝑦 . Subsequently, the transition between states is

directed by the rate matrix 𝐾 ℓ . Specifically, in state 𝑦, we select

exponential-time random variables 𝐸𝑧 ∼ Exp(𝐾𝑦𝑧) for all states
𝑦 ≠ 𝑧. We then transition to state 𝑧∗ = argmin𝑧 𝐸𝑧 after a time

duration of 𝐸𝑧∗ . Upon transitioning states, we reiterate the process.

This mechanism generates a trail (𝑥𝑡 )𝑡≥0 where 𝑥𝑡 represents the
state at time 𝑡 .

The challenge entails the recovery of a mixture of CTMCs, spec-

ified as follows: Provided a set 𝑋 of continuous-time trails (𝑥𝑡 )𝑡≥0,
is it possible to retrieve the rate matrices K = (𝐾1, . . . , 𝐾𝐿) and
starting probabilities (𝑠1, . . . , 𝑠𝐿), albeit up to a permutation?

In practical scenarios, the observation of a continuous-time pro-

cess is typically approximated through discrete-time observations.
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A significant challenge, which inherently does not arise in the

recovery of discrete-time Markov chains, entails the recovery of

continuous-time chains from their discretized observations. Numer-

ous previous works have addressed this issue, such as [33] through

Maximum Likelihood Estimation (MLE) or by computing the 𝑝-th

root of the matrix exponential [25]. In this study, we extend the

efficient MLE approach of [33]. Intuitively, a primary difficulty lies

in the fact that due to discretization, some states remain unob-

served. Additional known challenges include the admissibility of

the rate matrix under noise [33]. These challenges become more

pronounced when recovering a mixture of CTMCs, as additional

noise, for instance from incorrectly assigning a trail to the incor-

rect chain, comes into play. A direct formulation of the mixture

problem as MLE is inefficient as solving the MLE for a mixture

involves the posterior probabilities of each observed trail, leading

to numerous inter-dependent terms (cf. Section 3). Remarkably, we

demonstrate how to employ the MLE of [33] to recover the mixture

while maintaining its efficiency through soft clusterings.

Fortunately, recent works have addressed the task of learning

mixtures of discrete-time Markov chains, providing a foundation

to learn the discrete-time mixture for any specified discretization

interval under certain lenient conditions [24, 40]. However, the

hurdle of recovering mixtures of Continuous-Time Markov Chains

(CTMCs) still stands: transitioning from discrete to continuous-time

chains introduces additional challenges compared to the discrete-

time scenario, primarily due to the variance in transition rates, as

discussed in detail in Secton 3.1.

In this work, we make the following key contributions:

•We present a versatile algorithmic framework for learning mix-

tures of continuous-time Markov chains through both continuous

and discrete-time observations and methods to tailor it depending

on the length of the trails.

• We illustrate how the observed trails’ length and the mixture

parameters lead to varying problem regimes. Each regime demands

distinct algorithms, for which we provide recommendations. Our

recommendations rely on our theoretical results that represent

new contributions and use advanced probabilistic tools, including

Chernoff-like bounds for Markov chains [15].

•We explore the effects of discretizing continuous-time trails on

the learnability of the continuous-timemixture. As continuous-time

processes are usually observed through discrete, costly observa-

tions, selecting the right discretization is crucial.

•We conduct a thorough experimental analysis, contrasting our

methods with leading-edge competitors. Experimentally, we delve

into the examination of sample complexity, exploring the trade-off

between the number of trails and their lengths. Our discoveries

offer valuable insights that can assist in selecting a suitable method

for a given problem instance. We apply our algorithmic framework

on user-generated trails from the Last.fm platform, demonstrating

its ability to effectively capture users’ listening patterns.

•We introduce Markovletics, a novel application of mixtures of

Markov chains. Specifically, we pioneer the use of CTMC mixtures

on a basketball passing dataset that unveils offensive strategies of

NBA teams.

• In Appendix 5, we present thorough proofs and a broader set

of experiments, shedding light on the advantages and limitations

Table 1: Frequently used notation.

Symbol Definition

𝑛, 𝐿 ∈ N number of states and chains resp.

(𝑥𝑡 )𝑡≥0 continuous-time trail with 𝑥𝑡 ∈ [𝑛]
𝜏 > 0 discretization time parameter

x ∈ [𝑛]𝑚 discrete-time trail of length𝑚

𝑋 (𝑋 ℓ ) set of 𝑟 continuous-time trails (from chain ℓ)

X ( Xℓ ) set of 𝑟 discretized trails (from chain ℓ)

𝑐ℓ𝑦 # of transitions over 𝑦 from trails in Xℓ

𝐾min and 𝐾max min and max rate in the mixture K

of both the proposed methods and the baselines. Additionally, for

the sake of reproducibility, our code can be accessed publicly at [1].

1.1 Definitions and Notation
For ease of reference, we summarize the notation in Table 1. We

already introduced a CTMC as a continuous stochastic process

over the states [𝑛] where each transition is governed by a rate

matrix 𝐾 ∈ R𝑛×𝑛 . For the reader’s convenience, a refresher on

the definition of a CTMC can be found in Appendix A. We can

define the rate matrix through the limit of its discretization. Let

𝑌 (𝑡) ∈ [𝑛] for 𝑡 ≥ 0 be a random variable that holds the state of the

CTMC at time 𝑡 . We define 𝑇𝑦𝑧 (𝜏) = Pr[𝑌 (𝑡 + 𝜏) = 𝑧 | 𝑌 (𝑡) = 𝑦]
for any 𝑡 ≥ 0. In this work, we always assume that the CTMC

is time-homogeneous, which makes 𝑇𝑦𝑧 (𝜏) independent of 𝑡 , due
to the memorylessness of the process. Note also that 𝑇 (𝜏) is the
transition matrix of the discrete-time Markov chain arising from

observing the CTMC at regular time intervals 𝜏 . We obtain the

rate matrix as 𝐾 = lim𝜏→0

1

𝜏 (𝑇 (𝜏) − 𝐼𝑛) where 𝐼𝑛 ∈ R𝑛×𝑛 is the

identity matrix. By this definition, the diagonal elements are 𝐾𝑦𝑦 =

−∑
𝑧≠𝑦 𝐾𝑦𝑧 and describe the distribution of the time 𝑡 required

to transition to any state. We call the mean of 𝑡 the holding time

of state 𝑦. Conversely, we obtain the discretization through the

matrix exponential𝑇 (𝜏) = 𝑒𝐾𝜏 [30, 33, 36]. As discussed, a trail is a
sequence (𝑥𝑡 )𝑡≥0 = 𝑌 (𝑡) for a fixed sample of the random variable

𝑌 . For a mixture K, we define as 𝑋 ℓ as a set of sampled trails from

𝐾 ℓ and the set of all trails as 𝑋 = 𝑋 1 ∪ · · · ∪ 𝑋𝐿 .
To define the distance between two CTMCs, we look at the

distribution generating the next state. That is, for a fixed state

𝑦 ∈ [𝑛], we consider the distribution over (𝑧, 𝑡) where 𝑧 is the

next state and 𝑡 the time of this transition. Here, 𝑧 and 𝑡 are as

defined in the previous section through the minimum of a set of

exponential random variables. We can evaluate the distance of two

CTMCs 𝐾 and 𝐾 ′
in state 𝑦 through the total variation distance

(TV-distance) of the distribution over the tuples (𝑧, 𝑡) [30]. The
TV-distance evaluates to

TV(𝐾𝑦, 𝐾 ′
𝑦) B 1

2

∑
𝑧≠𝑦

∫ ∞
0

|𝐾𝑦𝑧𝑒𝑡𝐾𝑦𝑦 − 𝐾 ′
𝑦𝑧𝑒

𝑡𝐾 ′
𝑦𝑦 |𝑑𝑡 .

We further define the recovery error between two CTMCs as the

average of the above TV distance from all states

recovery-error(𝐾,𝐾 ′) B 1

𝑛

∑
𝑥 TV(𝐾𝑥 , 𝐾 ′

𝑥 ) .

We then define the recovery error between two mixtures K and

K′
as the cost (wrt. the recovery-error on CTMCs) of a minimum

2
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assignment between the chains in the mixture

recovery-error(K,K′) B 1

𝐿
min

𝜎∈𝑆𝐿

𝐿∑︁
ℓ=1

recovery-error(𝐾 ℓ , (𝐾 ′)𝜎 (ℓ ) )

where 𝑆𝐿 is the symmetric group of all permutations on [𝐿].
We always assume that the CTMC 𝐾 is irreducible, such that it

has a (unique) stationary distribution 𝜋𝐾 . The mixing time 𝑡mix (𝐾)
of a CTMC 𝐾 is defined as the smallest time 𝑡 ≥ 0 such that

TV(𝑠𝑇 (𝑡), 𝜋𝐾 ) ≤ 1/3. Analogously, the mixing time 𝑡mix (𝑀) of an
ergodic, discrete-time Markov chain𝑀 is the smallest integer 𝑡 ≥ 0

such that TV(𝑠𝑀𝑡 , 𝜋𝑀 ) ≤ 1/3. Note that ⌈𝑡mix (𝐾)/𝜏⌉ = 𝑡mix (𝑇 (𝜏)).

2 RELATEDWORK
The exploration of Markov chains constitutes a core subject within

the realm of probability [5, 19, 30, 36] and computer science [10, 13,

14, 17, 20, 22, 26, 34]. We focus on work that lies closest to ours.

Learning Mixtures of Discrete Markov Chains. The problem
of learning mixtures of discrete Markov chains has been well stud-

ied in the literature. The Expectation Maximization (EM) algo-

rithm [18, 48] can be employed to locally optimize the likelihood

of the mixture, or one could learn a mixture of Dirichlet distribu-

tions [43] albeit without solid theoretical assurances regarding the

output quality. On the other hand, moment-based techniques, lever-

aging tensor and matrix decompositions, can be used to provably

learn (under specified conditions) a mixture of HiddenMarkovMod-

els [3, 4, 42, 43] or Markov Chains [43, Section 4.3]. The approach

introduced by Gupta et al. [24] stands out asmarkedlymore efficient

and scalable compared to the latter techniques, which are dependent

on 5-trails, thereby causing their sample complexity to increase as

𝑛5 instead of 𝑛3. Spaeh and Tsourakakis [40] delved deeper into

these conditions, illustrating that they dictate constraints on the

connectivity of the chains. However, they demonstrated that these

constraints can be relaxed for a wider class of chains, which remain

learnable despite the eased conditions.

Learning Mixtures of homogeneous CTMCs. Extensive re-

search has been conducted on learning a single continuous-time

Markov chain from trails, yet transferring these techniques to han-

dle mixtures presents a challenging and relatively uncharted do-

main. Bladt and Sørensen [9] introduced an EM algorithm, along

with methodologies for certain special cases, including scenarios

where the rate matrix 𝐾 is diagonalizable. However, this condition

is often too restrictive for practical real-world applications [31].

Various methods have been explored and experimentally evaluated

as documented by Tataru and Hobolth [46], revealing that these

methods essentially compute differently weighted linear combina-

tions of the expected values of the sufficient statistics. On a related

note, McGibbon and Pande [33] devised an efficient Maximum

Likelihood Estimation (MLE) technique to recover a single CTMC

from sampled data. Two distinct variants have been proposed: one

for learning a general CTMC and another for a reversible CTMC

that adheres to the stated balance equations [33, 38]. The latter is

tackled as a constrained optimization problem. As previously high-

lighted, there remains a conspicuous absence of algorithms with

recovery guarantees, specifically crafted for mixtures of CTMCs

that broaden the framework of Gupta et al. [24] into the continuous

domain. This void is presumably a result of the inherent intricacy

of the challenge, amplified by the nuanced hurdles presented by

continuous-time processes compared to their discrete-time analogs.

A line of inquiry that aligns closely with the current discourse is

that of Continuous-Time Hidden Markov Models (CT-HMM) [11].

Within a CT-HMM framework, both the hidden states (akin to a

traditional HMM) and the transition times marking the alterations

in hidden states remain unobserved. CT-HMMs manifest as a partic-

ular instance of continuous-time dynamic Bayesian networks [35],

wherein the EM algorithm [8] is employed. Luo et al. [32] have

advanced a Markov Chain Monte Carlo (MCMC) methodology for

deducing a mixture of CT-HMMs [32]. However, as elucidated by

Liu et al. [31], this avenue of investigation grapples with scalability

constraints. In response, more scalable strategies rooted in CTMCs

have been formulated by Liu et al. [31].

Time parameter 𝜏 . The parameter 𝜏 , also referred to as time lag

or discretization parameter in other contexts, is crucial in the dis-

cretization of CTMCs. Intuitively, a “too small" value of 𝜏 results in

a scenario where no transitions are observed, while a “too large"

𝜏 may lead to the observation of numerous transitions, many of

which are not direct. In other words, by ranging 𝜏 from 0 to +∞ we

obtain a sequence of count matrices 𝐶 (𝜏) ∈ R𝑛×𝑛 where 𝑐𝑦𝑧 (𝜏) is
the number of transitions from 𝑦 to 𝑧 within time 𝜏 . Determining

the appropriate scale for a single CTMC is a complex task for which

sophisticated techniques have been devised. One common approach

in molecular kinetics is the use of implied timescales, a method

initially introduced by Swope, Pitera, and Suits [45]. Nonetheless,

this method operates as a heuristic and is burdened by significant

computational expenses due to the necessity of computing eigenval-

ues for a sequence of transition matrices 𝑇 (𝜏𝑘 = 𝑘Δ𝑡), for several
integer values of the variable 𝑘 .

Choosing the number of chains 𝐿. One strategy involves utiliz-

ing model selection indices such as the Akaike Information Crite-

rion (AIC) or the Bayesian Information Criterion (BIC) [21]. Another

well-known strategy is the elbow method [21, 29, 44]. A more theo-

retically grounded technique was introduced recently by Spaeh and

Tsourakakis [40], who leverage restrictions on the singular values

of certain matrices to inform the selection of 𝐿. In this work, we

assume 𝐿 is part of the input for the theory part, but we experimen-

tally evaluate this choice.

3 PROPOSED METHODS
Algorithmic framework. In this section, we present our frame-

work for learning mixtures of CTMCs, using continuous-time or

discretized trails (Algorithm 1). Our framework comprises three

stages: discretization, soft clustering, and recovery. The advantage

of this division is that each phase can be tailored independently

based on the characteristics of the mixture under study and the

sampling process. As a key characteristic of the latter, we use the

length of the trails𝑚. A comprehensive description of these three

stages is provided in the following sections. On a high level, we

first discretize the continuous-time trails by observing each trail at

regular time intervals. Note that in practice, this step may be part

of the data-generating process whenever continuous observation

is impossible or too costly. Below, we provide rules on setting the

discretization parameters based on the properties of the mixture. In

the second step, we learn a soft clustering based on the discretized

3
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trails which assigns each trail to a chain in a probabilistic manner.

Here, we employ techniques developed for learning mixtures of

discrete-time Markov chains. Finally, we use a maximum-likelihood

estimate base on the soft clustering to recover all chains.

Input: Set of 𝑟 continuous-time trails 𝑋 , discretization rate

𝜏 , number of chains 𝐿

Output: Continuous-time mixture K = (𝐾1, . . . , 𝐾𝐿) and
starting probabilities (𝑠1, . . . , 𝑠𝐿)
Let X = {x = (𝑥𝑖𝜏 )0≤𝑖≤𝑟 ∈ [𝑛]𝑚 : 𝑥 ∈ 𝑋 }
Learn a soft assignment 𝑎 : X × [𝐿] → [0, 1] from X
for ℓ = 1, . . . , 𝐿 do

Let 𝑠ℓ𝑦 = 1

𝑟

∑
x∈X:x0=𝑦 𝑎(x, ℓ) for all 𝑦 ∈ [𝑛]

Learn 𝐾 ℓ using MLE on X with weights {𝑎(x, ℓ) : x ∈ X}
end

Algorithm 1: Framework for Learning Mixtures of CTMCs.

We defer all proofs from this section to the Appendix, where they

are grouped by subsection.

3.1 Discretization
A continuous-time trail (𝑥𝑡 )𝑡≥0 is discretized by observing it 𝑚

times at regular time intervals 𝜏 > 0 [33]. That is, a sequence

of states x = (𝑥𝑖𝜏 )0≤𝑖<𝑚 is obtained with x𝑖 = 𝑥𝑖𝜏 ∈ [𝑛] for all
0 ≤ 𝑖 < 𝑚. Discretization is necessitated by our methods, but it is

frequently needed when the stochastic process cannot be observed

continuously [33]. In many real-world scenarios, observing a sto-

chastic process at a fixed time is costly and thus subject to budget

constraints. Given control over the observation times, it is thus an

important task to optimize the discretization parameters 𝜏 and𝑚 to

enable the best possible learning of K. To learn a mixture, two main

steps are necessary: (1) clustering the trails and (2) estimating the

parameters of the exponential random variables of the underlying

continuous-time stochastic process. Concerning (1), it is crucial

for each trail to be lengthy enough to discern the distinct model

differences among the chains within the mixture. We quantify this

by providing clustering guarantees for (1) in Section 3.2. For (2),

the appropriate selection of 𝜏 is vital as we already explained in

Section 1 and 2. We now present certain criteria, independent of the

subsequent clustering method, to choose the discretization rate 𝜏 .

Specifically, we discuss the challenges in choosing 𝜏 by introducing

a basic estimator for the rate matrix K̂ of the underlying CTMC

under the assumption that we have a correct clustering. We will

see how the choice of 𝜏 and estimation quality depends on the

structure of the rate matrix K. These structural challenges are not
an artifact of our estimator, but pertain for other estimators, as we

verify experimentally in Section 4.

For each chain ℓ ∈ [𝐿] and state 𝑦 ∈ [𝑛], we break down the

estimation process of a single row of the rate matrix 𝐾 ℓ𝑦 B (𝐾 ℓ𝑦𝑧)𝑧
into two phases. Initially for each state 𝑦 we estimate the rate

|𝐾 ℓ𝑦𝑦 | (it is essential to recall that by definition in Section 1, the

diagonal of 𝐾 is negative). In order to define our estimator, let

𝑐ℓ𝑦 = {x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦} be the number of times we

transition through𝑦 in the setXℓ of trails from chain ℓ . We estimate

the rate |𝐾 ℓ𝑦𝑦 | through the holding probability 𝑞ℓ𝑦 B 𝑒 |𝐾𝑦𝑦 |𝜏 and

thus define the estimators

𝑞ℓ𝑦 B
1

𝑐ℓ𝑦
|{x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 = 𝑦}| and

�̂�𝑦𝑦 B
1

𝜏
log(𝑞ℓ𝑦) .

With an appropriate universal choice of 𝜏 (discussed in the proof),

we obtain the following estimation guarantee:

Lemma 1. Let 0 < 𝜖
h
< 1 and fix a state𝑦 and chain ℓ ∈ [𝐿]. With

𝑐ℓ𝑦 = Ω
(
𝜖−2
h

log(𝐿𝑛)
)
transitions, our estimator 𝑞ℓ𝑦 for the holding

time satisfies |𝑞ℓ𝑦 − 𝑞ℓ𝑦 | ≤ 𝜖h𝑞ℓ𝑦 with high probability.

Note that we consider all consecutive steps (𝑖, 𝑖+1) as a transition,
even though there may not be a state change. Second, we estimate

the transition probabilities 𝑝ℓ𝑦𝑧 from 𝑦 to another state 𝑧 through

𝑝ℓ𝑦𝑧 B
|{x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 = 𝑧}|
|{x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 ≠ 𝑧}|

�̂� ℓ𝑦𝑧 B 𝑝ℓ𝑦𝑧 |�̂� ℓ𝑦𝑦 |.
The quality of estimation of the transition probabilities is detailed

in Lemma 2 in Appendix B. Our estimation critically optimizes

the following trade-off: As we increase 𝜏 , some direct transitions

become unobservable. On the other hand, excessively reducing 𝜏

results in considerable redundancy and challenges with numerical

stability. Informally, we desire to minimize the number skipped

intermediate transitions due to the 𝜏 time resolution. We define the

notion of a bad transition as follows:

Definition 1 (Bad transition). A pair (𝑥, 𝑖) of a continuous-
time trail 𝑥 and a step 0 ≤ 𝑖 < 𝑚 is called a bad transition if 𝑥𝑖𝜏 = 𝑦,
𝑥𝑖𝜏+Z = 𝑧 for a Z ∈ (0, 1), and 𝑥𝑖𝜏+𝜏 = 𝑦′, for states 𝑦 ≠ 𝑧 and 𝑧 ≠ 𝑦′.

Our estimators’ quality deteriorates as the number of bad tran-

sitions increases and we therefore aim to keep the number of bad

transitions small. Clearly, the probability to obtain a bad transition is

maximized for the state with maximum rate 𝐾max B maxℓ,𝑦 |𝐾 ℓ𝑦𝑦 |,
and we can show (cf. Lemma 1) that

Pr[bad transition] ≤ min(1, 𝐾2

max
𝜏2),

which motivates setting 𝜏 inversely proportional to𝐾max in order to

keep the fraction of bad transitions to a small constant. Disregarding

bad transitions, the estimation’s quality as defined by Lemma 1 is

primarily determined by the total duration duringwhichwe observe

the holding time without transitions. For one trail 𝑥 ∈ 𝑋 ℓ , this is as
follows:

𝜏 · |{0 ≤ 𝑖 < 𝑚 | 𝑥𝑖𝜏+Z = 𝑦 for all Z ∈ [0, 𝜏]}|
We aim tomaximize the expectation of this term, over all transitions,

which by the memorylessness of the exponential random variable

𝐸 ∼ Exp( |𝐾 ℓ𝑦𝑦 |) and the Markov process is

𝜏
∑
𝑥∈𝑋 ℓ ,0≤𝑖<𝑚 Pr[𝑥𝑖𝜏 = 𝑦 ∧ 𝐸 > 𝜏]

= 𝜏 Pr[𝐸 > 𝜏]
∑︁

𝑥∈𝑋 ℓ ,0≤𝑖<𝑚
Pr[𝑥𝑖𝜏 = 𝑦] = 𝜏E[𝑐ℓ𝑦]𝑒𝐾

ℓ
𝑦𝑦𝜏 .

Similarly, to prove Lemma 2, it is essential to optimize the count

of observed transitions with state changes to ensure accurate es-

timation of transition probabilities. In expectation, the number

of transitions from state 𝑦 resulting in a state change is equal to
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E[𝑐ℓ𝑦] (1− 𝑒𝐾
ℓ
𝑦𝑦𝜏 ) which is the lowest for 𝐾min B minℓ,𝑦 |𝐾 ℓ𝑦𝑦 |. We

detail the behavior of both quantities and the number of bad transi-

tions in Figure 6 (in Appendix A). It is evident that we require large

values of 𝜏 to efficiently capture the exponential random variables

dictating the state transitions. In particular, the discrepancy in es-

timating holding times and transition probabilities motivates us

to define the condition number of a continuous-time Markov chain

with rate matrix 𝐾 as ^ B 𝐾max

𝐾min

where 𝐾max = maxℓ,𝑦 |𝐾 ℓ𝑦𝑦 | and
𝐾min = minℓ,𝑦 |𝐾 ℓ𝑦𝑦 |. To estimate the CTMC 𝐾 ℓ for any ℓ ∈ [𝐿],
and 0 < 𝜖 < 1, we set 𝜏 B 𝜖

100^𝐾max

and obtain the following

theorem:

Theorem 1. Fix a chain ℓ ∈ [𝐿] and a state𝑦 ∈ [𝑛]. If the number

of transitions is 𝑐ℓ𝑦 = Ω
(
^2

𝜖3

(
𝑛 + ^2

𝜖

)
log (𝐿𝑛)

)
, we can obtain �̂� ℓ𝑦

such that TV(𝐾 ℓ𝑦, �̂� ℓ𝑦) ≤ 𝜖 with high probability.

Consistent with our earlier discussion, the number of transitions

needed increases with ^ . This necessitates setting 𝜏 at a sufficiently

small value to steer clear of bad transitions. Consequently, a larger

sample set is required to effectively gauge the rates and transi-

tions of states possessing lower rates. Following this, we derive the

subsequent corollary, under the presumption that the number of

transitions for each chain and state are close to uniform and we are

aware of the underlying chain for each trail:

Corollary 1. If 𝑐ℓ𝑥 = Ω( 𝑟𝑚
𝐿𝑛

), then we obtain an estimator K̂
of 𝐾 with recovery-error(K, K̂) ≤ 𝜖 using a total of 𝑟 trails where

𝑟 = Ω
(
𝐿𝑛
𝑚 · ^2

𝜖3

(
𝑛 + ^2

𝜖

)
log (𝐿𝑛)

)
with high probability.

In practice, we frequently do not have knowledge of the under-

lying chain for each transition. The subsequent section delves into

strategies to address this challenge.

3.2 Soft Clustering
In this section, we discuss how to assign each trail to a chain, in a

soft (i.e., probabilistic) manner. Specifically, we aim to learn a soft

clustering 𝑎 : X × [𝐿] → [0, 1] such that 𝑎(x, ℓ) is approximately

proportional to the probability of generating x with the ℓ-th chain

𝐾 ℓ . We denote this probability as Pr[x | K ∩ ℓ] where, in an abuse

of notation, we write x for the event that the discretized trail x
is generated from the mixture K and use ℓ for the event that we

choose the ℓ-th chain in K. Formally, we set

𝑎(x, ℓ) B Pr[x | K ∩ ℓ]∑
ℓ ′ Pr[x | K ∩ ℓ′] (1)

and want that 𝑎(x, ℓ) ≈ 𝑎(x, 𝜎 (ℓ)) for all ℓ ∈ [𝐿] and x ∈ X under

some fixed permutation 𝜎 ∈ 𝑆𝐿 . We call such a soft clustering

(approximately) valid. In the following Section 3.3, we will argue

formally that a valid soft clustering is important for the recovery

of the CTMCs. To obtain such a valid soft clustering, we utilize

techniques developed for learningmixtures of discrete-timeMarkov

chains and use the simple fact that for the discretized mixture

T(𝜏) B (𝑒𝐾1𝜏 , . . . , 𝑒𝐾
ℓ𝜏 ) holds Pr[x | K ∩ ℓ] = Pr[x | T(𝜏) ∩ ℓ]

which allows us to calculate (1).

We classify problem instances according to properties of the

mixture and the sampling process (i.e. the values of 𝑟 , 𝑚, and 𝜏)

into different regimes that necessitate different approaches to learn

the soft clustering. Naturally, for shorter trails, we require more

difference in the transition processes between the CTMCs of the

mixture, to be able to discern the trails. For longer trails, we can get

away with less difference per state. However, it is important that

the difference in the transition process is reflected in the discretized

mixture T(𝜏). For instance, if 𝜏 is chosen close to the mixing time

in the chain, it is only possible to differentiate trails if the station-

ary distributions are distinct. We introduce the following learning

regimes categorized by different trail lengths𝑚.

3.2.1 Short to Medium Length. For trails that are short such as

those of length three or of a fixed (i.e., constant) length, or of

medium length where 𝜏𝑚 ≪ 𝑡mix (K), encountering a state with

notably distinct transition probabilities across different chains is

crucial. This is vital for effectively differentiating trails from various

chains. Such a state is referred to as a model difference. As the

trail length transitions from short to medium, we anticipate an

improvement in the quality of the soft assignment.

For𝑚 = 3 (the shortest length that allows learning a mixture

[24]), we require a model difference in every state and non-zero

starting probabilities to observe transitions from each state. In

this case, we can use singular value decomposition (SVD) based

algorithms [24, 40] to learn a mixture from the discretized trails X,
that aims to recover the discretized mixture T(𝜏) via an estimate

ˆT(𝜏). From there, we derive the soft assignment by setting

𝑎(x, ℓ) B Pr[x | ˆT(𝜏) ∩ ℓ]∑
ℓ ′ Pr[x | ˆT(𝜏) ∩ ℓ′]

. (2)

The following theorem establishes the recovery guarantee, and is

based on the complex algebraic conditions that outline the model

difference as detailed in [40].

Theorem 2. If the discretized mixture T(𝜏) fulfills the conditions
of Theorem 1 in [40], we can recover T(𝜏) and therefore obtain a
valid 𝑎(x, ℓ) from the 3-trail distribution 𝑝𝑥𝑦𝑧 = Pr[𝑥0 = 𝑥 ∧ 𝑥𝜏 =

𝑦 ∧ 𝑥2𝜏 = 𝑧] for all triples of states 𝑥,𝑦, 𝑧 ∈ [𝑛].

The algorithm of [40] requires time𝑂 (𝑛5 +𝑛3𝐿3 + 𝐿cc) where cc
is the number of connected components in the mixture. In practice,

we do not have access to the exact 3-trail distribution, but can

estimate it from the transitions. Utilizing Chernoff bounds, it can

be demonstrated that 𝑂 (𝑛3 log𝑛/𝜖2) transitions suffice to estimate

this distribution up to ±𝜖 [24]. For trails of length𝑚 > 3, we use

expectation maximization to learn an estimate
ˆT(𝜏). As in the case

𝑚 = 3, we obtain a soft assignment from (2). This works well in

practice especially when the number of transitions is low, but is

merely a heuristic as convergence guarantees of expectation for

mixtures of Markov chains are not known.

3.2.2 Long Length. If trails are sufficiently long, we are able cluster

them directly as in [28]. Intuitively, if 𝜏𝑚 ≫ 𝑡mix (K) and if the

stationary distributions are all different, we are able to cluster the

trails just by counting the number of visits to each state. Formally,

let 𝛼 and Δ be such that for all pairs of distinct chains 𝐾,𝐾 ′ ∈
{𝐾1, . . . , 𝐾𝐿} there exists a state 𝑦 such that 𝜋𝐾 (𝑦), 𝜋𝐾 ′ (𝑦) ≥ 𝛼 and

∥𝐾𝑦 − 𝐾 ′
𝑦 ∥2 ≥ 1

𝜏 Δ + 8𝜏 (1 + 𝐾2

max
). That is, the state 𝑦 is visited

sufficiently often and witnesses a model difference. We use the

algorithm of [28] to obtain a clustering of the trails which we

directly use for the assignment 𝑎(x, ℓ). We note that the obtained
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clustering is hard, due to the long length of the trails. By Lemma 3

in Appendix C and [28, Theorem 1], we obtain the following result

stated as a theorem:

Theorem 3. If we have 𝑟 = Ω(𝑛2𝐿2/poly(Δ, 𝛼)) trails of length

𝑚 = Ω

(
𝐿1.5𝑡mix

polylog(𝑟 )
poly(Δ, 𝛼)

)
we obtain a valid soft clustering 𝑎(x, ℓ) with high probability.

Using the method of [28] requires 𝑂 (𝑛3 + 𝑟2𝑛2) time.

3.2.3 Very Long Length. We are able to learn the discretized chain

𝑇 (𝜏) from only a single trail in Xℓ for any ℓ ∈ [𝐿] and we can

obtain 𝑎(x, ℓ) as in (2), if the trail is long enough. The following

theorem establishes the length of such a trail subject to 𝑡mix (K), the
maximum mixing time in any chain, and 𝜋min B minℓ,𝑦 𝜋𝐾 ℓ (𝑦).

Theorem 4. If
∑𝑛
𝑦=1 𝑠

ℓ
𝑖
= Ω(1/𝐿) and we have 𝑟 = Ω(𝐿 log𝐿)

trails of length

𝑚 = Ω

(
1

𝜋min

(
𝑛

𝜖2
+ 𝑡mix (K)

𝜏

)
log

𝑛

𝜋min

)
,

then we can learn T(𝜏) with recovery error at most 𝜖 with high prob-
ability.

3.3 Recovery
We now show how to recover the individual chains in the mixture,

given the discretized trails X and the valid soft clustering 𝑎(x, ℓ)
which—depending on the chosen method in the previous section—

is equal to or approximates 𝑎(x, ℓ) up to permutation of ℓ . We

approach this via a Maximum Likelihood Estimation (MLE) given

𝑎(x, ℓ), which means we want to find K̃ = (�̃�1, . . . , �̃�𝐿) to maximize

the likelihood of observing X under knowledge of the posteriors

Pr[x | K∩ ℓ] for each x ∈ X. By the law of total probability, we can

compute the probability of generating X from K̃ as

Pr[X | K̃] = ∏
x∈X Pr[x | K̃] = ∏

x∈X
∑𝐿
ℓ=1 Pr[ℓ] · Pr[x | K̃ ∩ ℓ]

(3)

To use the soft clustering and our approximate knowledge of the

posterior Pr[x | K ∩ ℓ], we try to maximize the correlation instead

of (3): ∏
x∈X

∑𝐿
ℓ=1 Pr[ℓ] · Pr[x | K̃ ∩ ℓ] · Pr[x | K ∩ ℓ]∑

ℓ ′ Pr[x | K ∩ ℓ′]︸                  ︷︷                  ︸
=𝑎 (x,ℓ )

(4)

The mixture K̃ found by maximizing (4) serves as an approximation

to the maximizer of (3), whose quality improves with the certainty

of the soft clustering 𝑎(x, ℓ). However, even maximizing (4) is diffi-

cult as we cannot optimize chains individually but have to consider

their effect on the sample probability of each x. Thus, instead of

maximizing the arithmetic mean

∑𝐿
ℓ=1 Pr[ℓ] · Pr[x | K̃∩ ℓ] · 𝑎(x, ℓ),

we consider the geometric mean
1∏𝐿

ℓ=1 Pr[ℓ] · Pr[x | K̃ ∩ ℓ]𝑎 (x,ℓ ) .
1
To shed light on the technical nuances, envision randomly picking from a mixture

of two coins, each having success probabilities of 𝑝 and 𝑞 respectively. The resulting

success probability becomes
𝑝+𝑞
2

. Rather than maximizing the true likelihood, we

maximize 𝑝1/2𝑞1/2 , which serves as a lower limit.

Using this approximation, we can rewrite (4) as∏
x∈X

∏𝐿
ℓ=1 Pr[ℓ] · Pr[x | K̃ ∩ ℓ]𝑎 (x,ℓ )

=
∏𝐿
ℓ=1 Pr[ℓ] |X | ∏

x∈X Pr[x | K̃ ∩ ℓ]𝑎 (x,ℓ ) (5)

In particular, we can now optimize each chain ℓ individually by

maximizing the corresponding term in the RHS of (5). It remains

to show that (5) is a good approximation for (4). Clearly, when

𝑎(x, ℓ) → 1 for some chain ℓ , the two terms also approach equality.

However, we can even show that the terms are close when the

entropy of 𝑎(x, ℓ) for a fixed trail x is high:

Theorem 5. For each x ∈ X,∏𝐿
ℓ=1 Pr[x | K ∩ ℓ]𝑎 (x,ℓ ) ≤ ∑𝐿

ℓ=1 𝑎(x, ℓ) · Pr[x | K ∩ ℓ]

≤ 𝐿 · (maxℓ 𝑎(x, ℓ)) ·
∏𝐿
ℓ=1 Pr[x | K ∩ ℓ]𝑎 (x,ℓ ) .

Note that the above is tight whenever 𝑎(x, ℓ) is uniform, over all

chains ℓ ∈ [𝐿]. This shows that our approximation is good, for high

and low entropy. We also establish the merit of this approximation

experimentally in Section 4. Given the soft clustering, we can thus

use an MLE to learn the individual chains and their starting proba-

bilities. Specifically, we adapt the iterative heuristic introduced by

[33] to use soft assignments. As an iterative heuristic, the MLE of

[33] does not provide any convergence guarantees, but performs

well in practice. The MLE step requires 𝑂 (𝑛3) time per iteration

and per chain as well as scanning through each trail to pre-compute

the transition counts 𝑐ℓ𝑦 , which requires 𝑂 (𝑟𝑚) time.

3.4 Customizing the Algorithmic Framework
After presenting the three phases of our algorithmic framework

for learning mixtures of CTMCs, we now describe three practical

implementations that demonstrate both real-world efficiency, as

discussed in Section 4, and adherence to the previously mentioned

theoretical guarantees.

• GKV-ST: The SVD-based algorithm as referenced in [24, 40] is

employed to learn mixtures of discrete-time Markov chains, leading

to the soft clustering detailed in Section 3.2.1. Given that SVD-

based techniques are tailored for discrete-time chains of length 3,

we subdivide each discretized trail into segments of this length

prior to the clustering phase.

• dEM: In lieu of the SVD-based algorithm, we use expectation

maximization to learn a mixture of discrete-time Markov chains.

• KTT: We exclusively employ spectral clustering solely for the

assignment step, as outlined in [28], with the underlying algorithm

being credited to Vempala andWang in their work [47]. Thismethod

is elaborated on in Section 3.2.2. It is noteworthy that this method

ensures hard clustering, as per its algorithmic design.

4 EXPERIMENTAL EVALUATION
In our experimental analysis, we aim to answer the following key

questions with experiments on synthetic data:

• What are the practical boundaries of the problem regimes,

and how do different soft clusterings impact the performance of

the algorithm? We investigate this in Figure 1 by varying the trail

length.

• How accurate is the soft clustering and how much of the re-

covery error is attributed to error in the clustering? We examine
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this by monitoring the clustering error over varying trail length𝑚

in Figure 2. In Figure 8 in Appendix E, we show the recovery error

while maintaining a constant number of transitions (i.e., 𝑟 ·𝑚 is

constant); if we treat the number of transitions as a constant, the

recovery error only depends on the error in the soft clustering.

• How much error is attributed to the recovery? Figure 7 in

Appendix E the recovery error across various values of 𝜏 .

Additional important experimental findings are shown in the

Appendix E. We also apply our algorithms on two real-world sce-

narios, user trails on Last.fm and an NBA passing data set (public

yet proprietary dataset obtained from Second Spectrum player

tracking). Our results suggest that no single method is universally

superior; however, dEM consistently performs well across various

trail lengths, while KTT excels with extended trail lengths at a higher
computational cost.

4.1 Experimental Setup
Due to space constraints, comprehensive information on our ex-

perimental setup can be found in Appendix E. All our findings are

reproducible as the code is publicly available (see [1]).

Synthetic Data. We construct an underlying mixture of 𝐿 CTMCs

as follows: for every chain ℓ ∈ [𝐿], we randomly select a uniform

rate matrix 𝐾 ℓ from the set of all rate matrices 𝐾 ∈ R𝑛×𝑛 with

entries 𝐾𝑦𝑧 ∈ [0, 1] for all distinct states 𝑦, 𝑧. Additionally, we
randomly determine the starting probabilities 𝑠ℓ ∈ R𝑛 , drawing
uniformly from the set of starting probabilities that sum up to 1

over ℓ ∈ [𝐿] and 𝑦 ∈ [𝑛]. We sample 𝑟 continuous-time trails

from the mixture according to the stochastic process described in

Section 1. By monitoring the CTMC at consistent time intervals of

𝜏 , we obtain discretized trails x = (𝑥𝑖𝜏 )0≤𝑖<𝑚 . In this process, only

the first𝑚 observations are retained.

Last.fm dataset. We obtain user trails from the Lastfm-1k data-

set [2]. This dataset captures users’ music listening history over

three years, detailing each track played with associated user in-

formation, song title, and timestamp. For our study, we interpret

a continuous sequence of songs listened to by a user as a single

trail, provided that there are no interruptions exceeding 15 minutes.

To streamline our data, we limit the states to the most frequently

listened songs in the dataset and focus on users boasting the highest

trail count. This results in a total of 2763 continuous-time trails

with an average of 9 minutes of listening history. We discretize

with 𝜏 = 10 seconds.

NBA dataset.We use data from an exclusive NBA dataset from Sec-

ond Spectrum to create continuous-time sequences for each team,

where each player represents a state and state changes occur when

players pass the ball. These trails capture offensive opportunities

and conclude when the opposing team gains possession of the ball.

We introduce two extra states, hit andmiss to signify the success of
each offense. The dataset refers to the 2022 and 2023 seasons, con-

tains 1 433 788 passes made within 535 351 opportunities spanning

2 460 games and we generate 3850 sequences per team on average.

Algorithms.We use the three algorithms elucidated in Section 3.4:

GKV-ST, KTT, and dEM. For dEM, we limit the discrete-time expec-

tation maximization algorithm to a maximum of 100 iterations,

typically ensuring adequate convergence. For synthetic data, we

discretize with 𝜏 = 0.1 unless otherwise specified.

0 15 30 45 60 75 90
trail length m

0.0

0.2

0.4

0.6

re
co

ve
ry

er
ro

r

(a) n = 10, L = 5, r = 1000

0 250 500 750 1000 1250 1500 1750 2000
trail length m

(b) n = 10, L = 5, r = 100

dEM

KTT

GKV-ST

cEM

Figure 1: Recovery error across different trail lengths: The
plot illustrates two distinct scenarios: (a) A large number
of transitions with shorter trails, and (b) a small number of
transitions with long trails.

In the second phase, when the objective is to recover a CTMC for

a cluster of trails, we invariably opt for an approximation approach

to the maximum likelihood estimator as proposed by [33] for a sin-

gle chain. Given our CTMCmixture scenario’s choice of soft cluster

assignments, we have modified the method to cater for a weighted

set of trails, as discussed in Section 3. For comparative analysis, we

use continuous-time expectation maximization cEM that is given

access to an initial span of 𝜏 · 𝑚 time for each continuous-time

trail. We also attempted to train a mixture of CTMCs by employ-

ing the Python library HMMs on continuous-time hidden Markov

models. Nevertheless, even with modest examples (such as when

𝐿 = 2, 𝑛 = 5), these attempts failed to reach a coherent mixture.

Therefore, we omit these results from our presentation.

Evaluation Metrics.We evaluate the quality of the mixtures we

have acquired using the recovery error, detailed in Section 1. To

gauge the effectiveness of the soft clustering, we present the clus-
tering error as:

clustering-error(𝑎, 𝑎gt) B
1

2|X| min

𝜎∈𝑆𝐿

𝐿∑︁
ℓ=1

∑︁
x∈X

|𝑎(x, ℓ)−𝑎gt (x, 𝜎 (ℓ)) |

In this context, 𝑎 is the soft clustering derived from our algorithms,

while 𝑎gt signifies the ground truth. Specifically, 𝑎gt (x, ℓ) = 1 if

x ∈ Xℓ and 0, otherwise.

Machine specs.We developed our software using Python 3 and

executed it on a system powered by a 2.9 GHz Intel Xeon Gold

6226R processor, equipped with 384GB RAM.

4.2 Synthetic Experiments
To highlight the differences in our algorithms, we study situations

with different trail lengths and numbers of transitions. In all ex-

periments, we run each algorithm 5 times and report mean and

standard deviation.

Varying Trail Length and Number of Transitions. Figure 1

presents the recovery error for our three proposed algorithms in

scenarios with (a) abundant medium-length trails and (b) limited

extended-length trails. In scenario (a), dEMmirrors the performance

of cEM, achieving minimal recovery error given adequate samples.

Conversely, scenario (b) highlights KTT’s superior performance

to dEM with extended trails, attributed to its enhanced clustering

capabilities. However, as trails lengthen, calculating expectations

becomes less stable. Notably, GKV-ST is restricted to trails of length

3, yet excels when supplied with numerous transitions. This trend is

7
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Figure 3: Classification error and assignment entropy on the
Last.fm dataset.

further validated in Figures 8 and 9 in Appendix E, by maintaining

a consistent total number of observations at (a) 2500 and (b) 25000

and contrasting medium and long trail scenarios respectively.

Scalability. Figure 2 (a) shows the scalability of our algorithms

and the cEM baseline. We observe that KTT scales poorly in 𝑛. On

the other hand, GKV-ST and dEM are much faster in practice (even

though the former scales with 𝑛5) and clearly outperform cEM. We

showcase the scalability with respect to 𝐿 and𝑚 in Appendix E.

Clustering Error. We generate a random mixture comprised of

𝐿 = 2 chains and 𝑛 = 10 states with 𝜏 = 0.1. In Figure 2 (b), we plot

the clustering error as the trail length varies. We observe that KTT
is able to enhance the clustering quality as the length of the trails

increases. However, dEM’s clustering does not benefit from the use

of trails longer than 200. We also observe that the variance of dEM
is larger than KTT.

Overall, we conclude that our methods show differing behavior

across problem regimes depending on 𝑚, 𝑟 , but also in terms of

scalability. Method selection is therefore problem specific.

4.3 Real-world Experiments
Last.fm. We select 𝑘 users from the last.fm dataset who have gen-

erated the most trails, where 𝑘 ∈ {2, 5, 8, . . . , 20}. We apply dEM,
KTT and cEM by setting the chain count 𝐿 equal to 𝑘 . We were not

able to apply GKV-ST as the conditions of [40] are violated. This

configuration inherently sets up a classification task, which is to

classify the trails based on the originating user. Figure 3(a) plots the

average classification error for both the train (depicted by dashed

lines) and test dataset calculated across five 80%-20% train-test splits

of the entire dataset. Using the hard clustering of KTT we obtain

the best possible classification error. We also observe that this can

be attributed to the good performance of the clustering step. Fig-

ure 3(b) shows the median entropy of the assignment of each trail

to the chains. We observe that KTT even on the test data performs

a low-entropy assignment, suggesting a near hard clustering. In-

terestingly, dEM produces an assignment that tracks the entropy of

PG

SG

PF

C

SF

miss hit
3.2s

3.5s

3.0s

1.8s

4.9s

PG

SG

PF

C

SF

miss hit
3.3s

2.3s

3.0s

1.7s

5.0s

Figure 4: TwoGolden StateWarriors offensive strategies from
a mixture of 𝐿 = 4 CTMCs, discretized over 𝜏 = 0.1 seconds.

the groundtruth. As the number of users in the dataset increases,

the performance deteriorates due to the soft-assignment having to

decide among a greater number of potential chains, coupled with

the reality that some users have similar listening habits. In Appen-

dix E we provide additional experiments, where a large number

of users are represented by only a few chains, modeling a set of

archetypical user patterns.

Markovletics: Navigating Sports Strategies through CTMCs.
For every team in the 2022 season, we utilize trails crafted from

an NBA passing dataset to deduce a blend of CTMCs. We aim for

each chain to represent an offensive team’s tactic, shedding light

on the probability of point-scoring associated with that particular

strategy by inspecting its steady-state distribution. For a qualitative

evaluation of the learned mixtures, we asses its accuracy when

used for a prediction of the score of an opportunity. We include this

experiment along a detailed description of the setup in Section E.

In Figure 4, we highlight two of the offensive tactics of Golden

State Warriors (GSW) discerned from dEM with four CTMCs. The

basketball game involves five positions: Point Guard (PG), Shooting

Guard (SG), Power Forward (PF), Center (C), and Small Forward (SF).

Each position is annotated with the calculated ball holding time.

Arrows represent potential passes between positions, with their

thickness and opacity denoting the pass’s probability. Passes with

a low likelihood (less than 0.2) are excluded for visual convenience.

The player with the highest starting probability is highlighted in

blue. Shoot attempts are highlighted in red (miss) and green (hit).

Each strategy illuminates unique offensive patterns. We also note

that the strategy on the left has a 44% chance of scoring, while the

one on the right has a probability of 37%. Additional strategies from

GSW can be found in Appendix E, alongside strategies of the New

York Knicks.

5 CONCLUSION
This research delved extensively into the study of learning mixtures

of CTMCs, presenting novel algorithms and conducting compar-

isons with leading competitors across synthetic and real-world

scenarios. Our methods have been proven effective in real-world

scenarios, as seen in the Last.fm application. Additionally, we intro-

duced the innovative concept of Markovletics for learning offensive

tactics in NBA. In essence, our research adds a fresh dimension to

the theoretical aspects of Markov chains and exemplifies its real-

world applicability. Our study raises several intriguing questions,

including the choice of the parameter 𝐿 and the expansion of our

techniques to a broader spectrum of datasets, including those from

bioinformatics [7].
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A EFFECT OF THE 𝜏 PARAMETER
We remind the reader of the following formal definition of a CTMC

with rate matrix 𝐾 ∈ R𝑛×𝑛 . Let𝑀 ∈ R𝑛×𝑛 be the transition matrix

of a discrete-time Markov chain given by 𝑀𝑦𝑧 B 𝐾𝑥𝑦/|𝐾𝑦𝑦 | for
𝑦 ≠ 𝑧 and𝑀𝑦𝑦 = 0. Let 𝑌 d (𝑖) ∈ [𝑛] be the state of a random walk

through𝑀 at step 𝑖 ∈ N0. To define the continuous-time process,

we sample transition times 𝑇 (𝑖) ∼ Exp( |𝐾𝑦𝑦 |) where 𝑦 = 𝑌 d (𝑖).
Now, for a time 𝑡 ≥ 0, we set 𝑌 c (𝑡) = 𝑌 d (𝑖) where 𝑖 ∈ N0 is such
that

∑
𝑗<𝑖 𝑇 ( 𝑗) ≤ 𝑡 <

∑
𝑗≤𝑖 𝑇 ( 𝑗).

In the remainder of this section, we provide further intuition on

the quality of estimation of K for different values of 𝜏 , as discussed

in the introduction and Section 3.1.

Figure 5 demonstrates the significance of selecting an appropri-

ate value for 𝜏 . The illustration depicts transitions from state 1 to

state 2 in two separate chains, each with distinct transition rates of 1

and 10, respectively. The choice of the time scale 𝜏 has a substantial

impact on the observed transition probabilities. It is essential to

carefully choose 𝜏 (e.g., 𝜏 = 0.1) in order to distinguish between

the discretized chains, as we discussed in Section 3.1. The under-

lying issue is that when one chain within the mixture transitions

significantly faster than another, using the correct discretization

choice becomes critical. A too-small discretization may result in too

few observed transitions in the slower chain, while a too-large dis-

cretization may cause both chains to converge to their potentially

identical stationary distributions, hindering the differentiation of

the trajectories.

CTMCs 𝐾1
and 𝐾2

discretized chains

𝑒𝐾
1𝜏

and 𝑒𝐾
2𝜏

𝜏 = 5

𝜏 = 0.1

𝜏 = 0.002

1 2

1

1 2

10

1 2

≈0.99
1 2

≈1.00

1 2

≈0.63
1 2

≈0.10

1 2

≈0.02
1 2

≈0.00

Figure 5: Choosing the right value of 𝜏 is crucial.

Figure 6 shows the asymptotic trends of the variables in the

estimation of K with respect to 𝜏 that we introduced in Section 3.1:

the total observation time for holdings periods without transitions,

the count of observed transitions and the tally of bad transitions.

Owing to the varying gradient as 𝜏 approaches 0, we can adjust 𝜏 to

yield a minimal set of bad transitions while ensuring a significant

number of quality (i.e., not bad) transitions.

0 1 2

0

→ 𝜏

Holding time

Transition probabilities

Bad transitions

Figure 6: Estimating K.

B PROOFS FROM SECTION 3.1
We define 𝑞ℓ𝑦 B 𝑒

𝐾 ℓ𝑦𝑦𝜏 = Pr [𝐸 ≥ 𝜏] for 𝐸 ∼ E𝑥𝑝 ( |𝐾𝑦𝑦 |) as the
probability to remain in state 𝑦 in time 𝜏 . Since we are observing

states at discrete time intervals of size 𝜏 , our estimator is

𝑞ℓ𝑦 =
1

𝑐ℓ𝑦

��{y ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 = 𝑦
}��

where 𝑐ℓ𝑦 =
��{x ∈ Xℓ , 𝑖 : x𝑖 = 𝑦

}��
is the number of transitions from

chain ℓ that traverse through 𝑦. Note that 𝑞ℓ𝑦 is a biased estimator

of 𝑞ℓ𝑦 because we are unable to tell whether transitions are bad (see

Definition 1). That is, when estimating the holding time with our

estimator, it could happen that x𝑖 = 𝑥𝜏𝑖 = 𝑦 and x𝑖+1 = 𝑥𝜏 (𝑖+1) = 𝑦
but there is a b ∈ (0, 1) with 𝑥𝜏𝑖+b ≠ 𝑦. We thus have to set 𝜏 small

enough to avoid bad samples. In particular, we set

𝜏 =

√
𝜖
h

3𝐾max

.

We now estimate one row of the rate matrix 𝐾 ℓ𝑦 = (𝐾 ℓ𝑦𝑧)𝑧 for a

fixed chain ℓ and state 𝑦. For brevity, we will omit ℓ in 𝐾𝑦𝑧 = 𝐾
ℓ
𝑦𝑧

and omit 𝑧 in 𝑞 = 𝑞ℓ𝑧 , 𝑞 = 𝑞ℓ𝑦 , and𝑚 =𝑚ℓ𝑦 .

Lemma 1. Given 𝑐 = Ω
(
𝑒 |𝐾𝑦𝑦 |𝜏𝜖−2

h
log(𝐿𝑛)

)
= Ω

(
𝜖−2
h

log(𝐿𝑛)
)

transitions, our estimator 𝑞 for the holding time satisfies

|𝑞 − 𝑞 | ≤ 𝜖
h
𝑞

with high probability.

Proof. We first bound the number of bad transitions. In partic-

ular, we want that only a 2𝛾 B 𝜖
h

2
𝑞 fraction of the 𝑐 transitions are

bad so that we do not incur to much error from these samples. We

first calculate the probability to obtain a single bad sample. Here, we

use that the larger

��𝐾𝑦𝑦 ��, the more likely it is to switch states, so the

probability of obtaining a bad sample is maximized in the state with

largest

��𝐾𝑦𝑦 ��. Let thus 𝐸, 𝐸′ ∼ Exp (𝐾max) be independent random
variables. By the memorylessness of the exponential distribution,

Pr

[
𝐸 + 𝐸′ < 𝜏

]
=

∫ 𝜏

0

Pr

[
𝐸′ ≤ 𝜏 − 𝑡

]
𝑓𝐸 (𝑡)𝑑𝑡

= 𝐾max

∫ 𝜏

0

(
1 − 𝑒−𝐾max (𝜏−𝑡 )

)
𝑒−𝐾max𝑡𝑑𝑡

= 1 − (1 + 𝐾max𝜏) 𝑒−𝐾max𝜏

≤ 1 − (1 + 𝐾max𝜏) (1 − 𝐾max𝜏)
= 𝐾2

max
𝜏2

where 𝑓𝐸 is the PDF of 𝐸. We further bound

𝐾2

max
𝜏2 =

𝜖
h

9

≤ 𝜖
h

4

− 𝜖
h

12

·
√
𝜖
h
|𝐾𝑥𝑥 |

𝐾max

≤ 𝜖
h

4

(
1 − 1

3

√
𝜖
h

|𝐾𝑥𝑥 |
𝐾max

)
≤ 𝜖

h

4

𝑒
1

3

√
𝜖
h

𝐾𝑥𝑥
𝐾max =

𝜖
h

4

𝑒𝐾𝑥𝑥𝜏 =
𝜖
h

4

𝑞 = 𝛾 .

Let now𝐻 𝑗 = 1 if there is no state change in the observed transition

𝑗 ∈ [𝑐]. Let 𝐵 𝑗 = 1 if the 𝑗-th transition is bad. By a Chernoff bound,

Pr

[∑︁𝑐

𝑗=1
𝐵 𝑗 ≥ 2𝑐𝛾

]
≤ exp

(
−1

3

𝑐𝛾

)
= exp

(
− 1

12

𝜖
h
𝑐𝑞

)
= 𝑂

(
1

poly (𝐿𝑛)

)
.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Learning Mixtures of Continuous-Time Markov Chains Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Thus, with high probability, at most a 2𝛾 fraction of the samples is

bad. We therefore incur an additive error of at most 2𝛾 =
𝜖
h

2
𝑞 from

bad samples. Since 2𝛾 ≤ 1

2
, we can use another Chernoff bound on

the good samples, which make up at least half the total samples, to

show that the estimation error from sampling is at most
𝜖
h

2
with

high probability:

Pr

[���𝑞 − 2

𝑐

∑︁𝑐/2
𝑗=1

𝐻 𝑗

��� ≥ 𝜖
h

2

𝑞

]
≤ 2 exp

(
− 1

24

𝜖2
h
𝑐𝑞

)
= 𝑂

(
1

poly (𝐿𝑛)

)
. □

Let 𝑝𝑧 B
𝐾𝑦𝑧

|𝐾𝑦𝑦 | be the transition probability from state 𝑦 to 𝑧

within time 𝜏 . We estimate 𝑝𝑧 through

𝑝𝑧 B

��{x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 = 𝑧
}����{x ∈ Xℓ , 0 ≤ 𝑖 < 𝑚 : x𝑖 = 𝑦 ∧ x𝑖+1 ≠ 𝑦
}��

for all states 𝑦 ≠ 𝑥 . Let also p B (𝑝𝑧)𝑧≠𝑦 and p̂ B (𝑝𝑧)𝑧≠𝑦 be

discrete probability vectors.

Lemma 2. With 𝑐 = Ω
(
𝑛^

𝜖2
t

√
𝜖
h

log (𝐿𝑛)
)
transitions, our estimator

for the transition probabilities satisfies

TV(p, p̂) ≤ 𝜖t
with high probability.

Proof. We first bound the probability to see a transition in

a given sample. Since the probability of observing a transition

is minimized for 𝐾min, let 𝐸 = Exp (𝐾min). Using the fact that

𝑒−𝑥 ≥ 1 − 𝑥
2
for 𝑥 ∈ [0, 1.59], we can bound the probability of

observing a transition as

Pr [𝐸 < 𝜏] = 1 − 𝑒−𝐾min𝜏 = 1 − 𝑒−^
−1

√
𝜖
h

3 ≥
√
𝜖
h

6^
.

We obtain that at least a

√
𝜖
h

12^ fraction of the samples are transitions

with high probability, since by a Chernoff bound,

Pr

[
1

𝑚

∑︁𝑐

𝑖=1
𝑇𝑗 ≤

√
𝜖
h

12^

]
= Pr

[∑︁𝑐

𝑖=1
𝑇𝑗 ≤

(
1 − 1

2

)
𝑐

√
𝜖
h

6^

]
≤ exp

(
−𝑐

√
𝜖
h

^
· 1

48

)
= 𝑂

(
1

poly (𝐿𝑛)

)
.

where𝑇𝑗 = 1−𝐻 𝑗 is a random variable for observing a state change

in the 𝑗-th transition. With a similar argument as in Lemma 1, we

can show that if ^
√
𝜖
h
≤ 9

24
𝜖t, only a

𝜖t
2
-fraction of the transition

samples are bad. Furthermore, it is well know that to estimate

a discrete distribution with support 𝑛 − 1 to TV (p, p̂) ≤ 𝜖t
2
, we

require Ω(𝑛/𝜖2
t
) many samples of transitions. This requires that√

𝜖
h

12^ 𝑐 = Ω(𝑛/𝜖2
t
) which is satisfied by setting 𝑐 as in the theorem

statement. □

Since 𝑒𝐾𝑦𝑦𝜏 = 𝑞, we set

�̂�𝑦𝑦 B
log (𝑞)
𝜏

and �̂�𝑦𝑧 B 𝑝𝑧
���̂�𝑦𝑦 �� .

We define the 𝑦-th row of the ℓ-th chain as 𝐾 ℓ𝑦 = (𝐾𝑦𝑧)𝑧 and our

estimate as �̂� ℓ𝑦 = (�̂�𝑦𝑧)𝑧 .

Theorem 1 Using 𝑐 = Ω
(
^2

𝜖3

(
𝑛 + ^2

𝜖

)
log (𝐿𝑛)

)
transitions, we

can estimate 𝐾 ℓ𝑦 such that TV(𝐾 ℓ𝑦, �̂� ℓ𝑦) ≤ 𝜖 with high probability.

Proof. By the definition of the TV distance,

TV(𝐾 ℓ𝑦, �̂� ℓ𝑦) =
1

2

∫ ∞

0

∑︁
𝑧≠𝑦

����� �̂�𝑦𝑧�̂�𝑦𝑦
�̂�𝑦𝑦𝑒

�̂�𝑦𝑦𝑡 −
𝐾𝑦𝑧

𝐾𝑦𝑦
𝐾𝑦𝑦𝑒

𝐾𝑦𝑦𝑡

�����𝑑𝑡
=

1

2𝜏

∫ ∞

0

∑︁
𝑧≠𝑦

���𝑝𝑧 log (𝑞) 𝑞𝑡/𝜏 − 𝑝𝑧 log (𝑞) 𝑞𝑡/𝜏 ���𝑑𝑡 .
We condition on the case that |𝑞 − 𝑞 | ≤ 𝜖

h
𝑞 and TV (p, p̂) ≤ 𝜖t

which both happen with high probability due to Lemma 1 and

Lemma 2, respectively. We can then apply the bound��𝑎 ˆ𝑏 − 𝑎𝑏�� = ��𝑎( ˆ𝑏 − 𝑏) + (𝑎 − 𝑎)𝑏
�� ≤ | ˆ𝑏 − 𝑏 | · |𝑎 | + |𝑎 − 𝑎 | · |𝑏 | (6)

twice to each inner term. That is, we first bound��𝑞𝑡/𝜏 log (𝑞) − 𝑞𝑡/𝜏 log (𝑞)��
≤

��
log (𝑞) − log(𝑞)

�� · 𝑞𝑡/𝜏 + ��𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 �� · |log (𝑞) |
≤ 2𝜖𝑞𝑡/𝜏 +

��𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 �� · |log (𝑞) | .
since |log (𝑞) − log (𝑞) | = log

(
max

{
𝑞
𝑞 ,
𝑞

𝑞

})
≤ 𝑒2𝜖h . We use this to

bound��𝑝𝑧 log (𝑞) 𝑞𝑡/𝜏 − 𝑝𝑧 log (𝑞) 𝑞𝑡/𝜏 ��
≤

��
log (𝑞) 𝑞𝑡/𝜏 − log (𝑞) 𝑞𝑡/𝜏

�� · 𝑝𝑧 + |𝑝𝑧 − 𝑝𝑧 | ·
��
log (𝑞) 𝑞𝑡/𝜏

��
≤ 2𝜖

h
𝑞𝑡/𝜏𝑝𝑧 +

��𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 �� · |log (𝑞) | · 𝑝𝑧 + |𝑝𝑧 − 𝑝𝑧 | ·
��
log (𝑞) 𝑞𝑡/𝜏

��.
Plugging this back in, we obtain

TV(𝐾 ℓ𝑦, �̂� ℓ𝑦) ≤
1

2

∫ ∞

0

∑︁
𝑧≠𝑦

(
2

𝜖
h

𝜏
𝑞𝑡/𝜏𝑝𝑧︸      ︷︷      ︸
(I)

+
���𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 ��� · |log (𝑞) |

𝜏
· 𝑝𝑧︸                             ︷︷                             ︸

(II)

+ |𝑝𝑧 − 𝑝𝑧 | ·
���� log (𝑞)𝜏

𝑞𝑡/𝜏
����︸                        ︷︷                        ︸

(III)

)
𝑑𝑡 .

We analyze all three error terms separately. First, we bound

(I) = 2

𝜖
h

𝜏

∑︁
𝑧≠𝑦

𝑝𝑦𝑧

∫ ∞

0

𝑞𝑡/𝜏𝑑𝑡 = 2𝜖
h

1

|log (𝑞) |

≤ 2𝜖
h

1

|log (𝑞) | − log (1 + 𝜖
h
) = 2

𝜖
h��𝐾𝑦𝑦 ��𝜏 − 𝜖h

and, assuming that

√
𝜖
h
≤ ^−1,

(II) =
∫ ∞

0

∑︁
𝑧≠𝑦

���𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 ��� · |log (𝑞) |
𝜏

· 𝑝𝑧𝑑𝑡

=
��𝐾𝑦𝑦 �� · ∫ ∞

0

���𝑞𝑡/𝜏 − 𝑞𝑡/𝜏 ���𝑑𝑡
≤

��𝐾𝑦𝑦 �� ( 1��𝐾𝑦𝑦 �� − 𝜖
h

𝜏

− 1��𝐾𝑦𝑦 ��
)

=
𝜖
h��𝐾𝑦𝑦 ��𝜏 − 𝜖h .
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Finally,

(III) =
∫ ∞

0

∑︁
𝑧≠𝑦

|𝑝𝑧 − 𝑝𝑧 | ·
���� log (𝑞)𝜏

𝑞𝑡/𝜏
����𝑑𝑡

=
∑︁
𝑧≠𝑦

|𝑝𝑧 − 𝑝𝑧 | ·
��𝐾𝑦𝑦 �� ∫ ∞

0

𝑒𝐾𝑦𝑦𝑡𝑑𝑡

=
∑︁
𝑧≠𝑦

|𝑝𝑧 − 𝑝𝑧 |

= 2TV (p, p̂) .

Thus, we incur a total error of

TV(𝐾 ℓ𝑦, �̂� ℓ𝑦) ≤ 2

𝜖
h��𝐾𝑦𝑦 ��𝜏 − 𝜖h + TV (p, p̂) ≤ 12^

√
𝜖
h
+ 𝜖t

since

��𝐾𝑦𝑦 ��𝜏 − 𝜖
h

≥ 1

6

√
𝜖
h
^−1 if 6

√
𝜖
h

≤ ^−1. We can thus set

√
𝜖
h
= 𝜖

24^ and 𝜖t =
𝜖
2
to obtain TV(𝐾𝑦, �̂�𝑦) ≤ 𝜖 . With Lemma 1

and Lemma 2, this gives us the bound on𝑚 in the theorem statement.

□

C PROOFS FROM SECTION 3.2
Long trails. In order to apply the theorem of [28], we need to

ensure that each pair of chains exhibits a model difference Δ in a

state that is visited sufficiently often. To ensure the former, we show

how to transfer a model difference from the mixture of CTMCs to

a mixture of discrete-time Markov chains:

Lemma 3. For any two rate matrices 𝐾,𝐾 ′ ∈ {𝐾1, . . . , 𝐾𝐿} and
a state 𝑦 ∈ [𝑛], if ∥𝐾𝑦 − 𝐾 ′

𝑦 ∥2 ≥ 1

𝜏 Δ + 8𝜏 (1 + 𝐾2

max
) then ∥𝑒𝐾𝜏𝑦 −

𝑒𝐾
′𝜏

𝑦 ∥2 ≥ Δ.

Proof. By the definition of the matrix exponential as a Taylor

series,

𝑒𝐾𝜏 − 𝑒𝐾
′𝜏 = 𝜏 (𝐾 − 𝐾 ′) −

∞∑︁
𝑘=2

1

𝑘!
((𝐾𝜏)𝑘 − (𝐾 ′𝜏)𝑘 )

and thus, by the triangle inequality,

∥𝑒𝐾𝜏𝑦 − 𝑒𝐾
′𝜏

𝑦 ∥2 ≥ 𝜏 ∥𝐾𝑦 − 𝐾 ′
𝑦 ∥2 − ∥𝐴𝑦 ∥2 − ∥𝐴′

𝑦 ∥2 (7)

where𝐴 B
∑∞
𝑘=2

= (𝐾𝜏)𝑘 and 𝐴′
is defined analogously. It thus re-

mains to analyze ∥𝐴𝑦 ∥. To this end, let again 𝐾max B maxℓ,𝑦 |𝐾 ℓ𝑦𝑦 |.
Since rate matrices are diagonally dominant, we know by the Gersh-

gorin circle theorem that all eigenvalues of 𝐾𝜏 lie in [−2𝐾max𝜏, 0].
It is easy to see that the magnitude of the eigenvalues of 𝐴 are thus

bounded by

|_(𝐴) | ≤
∞∑︁
𝑘=2

1

𝑘!
(2𝐾max𝜏)𝑘 = 𝑒2𝐾max𝜏 − 1 − 2𝐾max𝜏 ≤ 4𝐾2

max
𝜏2

for 𝐾max𝜏 ≤ 1

2
and therefore ∥𝐴𝑦 ∥, ∥𝐴′

𝑦 ∥ ≤ 4𝐾2

max
𝜏2. We plug this

back into (7) and obtain ∥𝑒𝐾𝜏𝑦 −𝑒𝐾 ′𝜏
𝑦 ∥2 ≥ 𝜏 ∥𝐾𝑦 −𝐾 ′

𝑦 ∥2−8𝐾2

max
𝜏2 ≥

Δ. □

When setting 𝜏−1 = Θ(^𝐾max) in the as in the context of Sec-

tion 3.1, we obtain: If ∥𝐾𝑦 − 𝐾 ′
𝑦 ∥2 = ^Ω (^𝐾maxΔ + 𝐾min) then

∥𝑒𝐾𝜏𝑦 − 𝑒𝐾 ′𝜏
𝑦 ∥2 ≥ Δ.

Very Long Trails. We define the 𝜋-norm of a vector 𝑢 ∈ R𝑛
through

∥𝑢∥2𝜋 =

𝑛∑︁
𝑖=1

𝑢2
𝑖

𝜋 (𝑖) .

Theorem 6 (Chernoff-Hoeffding Bound for Random Walks

[15]). Let x ∈ [𝑛]𝑚 be a random walk of length 𝑚 in a discrete-
time Markov chain𝑀 ∈ R𝑛×𝑛 with associated starting probabilities
𝑠 ∈ [0, 1]𝑛 . Let the stationary distribution of𝑀 be 𝜋 and the mixing
time 𝑡mix. Let 𝑓 : [𝑛] → [0, 1] be a function with ` B E𝑦∼𝜋 [𝑓 (𝑦)]
and 𝐹 B

∑
𝑧∈x 𝑓 (𝑧). Then,

Pr[𝐹 ≥ (1 + 𝛿)`𝑚] ≤ ∥𝑠 ∥𝜋 ·
{
𝑒−Ω (𝛿2`𝑚/𝑡mix )

for 0 ≤ 𝛿 ≤ 1

𝑒−Ω (𝛿`𝑚/𝑡mix )
for 𝛿 ≥ 1.

For some fixed state 𝑦, let 𝑓 (𝑧) = 0 if 𝑧 = 𝑦 and 𝑓 (𝑧) = 1,

otherwise, such that 𝑐𝑦 B
∑
𝑧∈x 𝑓 (𝑧) = 𝑚 − 𝐹 is the number of

times a random walk x traverses state 𝑦. We bound the probability

of obtaining less than \ samples:

Pr[𝑐𝑦 ≤ \ ] ≤ Pr[𝐹 ≥ (1 + 𝛿)`𝑚] ≤ ∥𝑠 ∥𝜋𝑒−Ω (𝛿`𝑚/𝑡mix )
(8)

for ` = 1 − 𝜋 (𝑦) and 𝛿 = Ω( 𝜋 (𝑦)−\/𝑚` ).

Theorem 7. Given a Markov chain with transition probabilities
𝑀 , we can learn𝑀 up to recovery error 𝜖 from a single trail of length

𝑚 = Ω

(
𝑛𝜖−2 + 𝑡mix (𝑀)

𝜋min

log

𝑛

𝜋min

)
with high probability.

Let 𝑀𝑦 = (𝑀𝑦𝑧) ∈ R𝑛 be the vector of transition probabilities

out of state 𝑦. We define an estimator �̂�𝑦 through �̂�𝑦𝑧 B 𝑐𝑦𝑧/𝑐𝑦 ,
where 𝑐𝑦𝑧 is the number of times the trail transitions from state 𝑦

to 𝑧 and 𝑐𝑦 B
∑
𝑧 𝑐𝑦𝑧 .

Proof. We first bound the TV-distance from 𝑀𝑦 to �̂�𝑦 for a

fixed count 𝑐𝑦 . Choose an arbitrary set of states 𝑍 ⊆ [𝑛] and let

𝑀𝑦 (𝑍 ) B
∑
𝑧∈𝑍 𝑀𝑦𝑧 . By a Hoeffding bound,

Pr

[
|𝑀𝑦 (𝑍 ) − �̂�𝑦 (𝑍 ) | > 𝜖

]
≤ 2𝑒−2𝑐𝑦𝜖

2

.

By a union bound, the probability that any set 𝑍 experiences error

more than 𝜖 under \ observations is at most

Pr

[
TV(𝑀𝑦, �̂�𝑦) > 𝜖

]
≤ 2

𝑛 · 2𝑒−2𝑐𝑦𝜖
2

≤ 𝑒𝑛−2𝑐𝑦𝜖
2

(9)

for sufficiently large 𝑛. Let now

\ = 𝑂

(
𝑚𝜋 (𝑦) + 𝑛 −𝑚𝜋 (𝑦)𝜖

2

1/𝑡mix + 𝜖2

)
where 𝑡mix B 𝑡mix (𝑀). We consider two bad events. First, that

there are not enough samples, i.e. 𝑐𝑦 ≤ \ . Second, that given at

least \ samples, the estimation error is larger than 𝜖 . Using (8), the

probability of the first bad event is at most

Pr[𝑐𝑦 ≤ \ ] ≤ ∥𝑠 ∥𝜋𝑒−Ω (𝛿`𝑚/𝑡mix ) = ∥𝑠 ∥𝜋 exp

(
−Ω

(
𝑚𝜋 (𝑦) − 𝑛𝜖−2

𝜖−2 + 𝑡mix

))
.

Furthermore, the probability of the second bad event is, due to (9),

Pr[TV(𝑀𝑦, �̂�𝑦) > 𝜖 | 𝑐𝑦 ≥ \ ] ≤ exp

(
−Ω

(
𝑚𝜋 (𝑦) − 𝑛𝜖−2

𝜖−2 + 𝑡mix

))
.

12
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Combining both, we see that probability that of error ≥ 𝜖 when

estimating𝑀𝑥 is at most

Pr[TV(𝑀𝑦, �̂�𝑦) > 𝜖] ≤ ∥𝑠 ∥𝜋 exp

(
−Ω

(
𝑚𝜋 (𝑦) − 𝑛𝜖−2

𝜖−2 + 𝑡mix

))
≤ 1

√
𝜋min

exp

(
−Ω

(
𝑚𝜋min − 𝑛𝜖−2
𝜖−2 + 𝑡mix

))
.

By a union bound, the probability that for a fixed chain, any state

has estimation error more than 𝜖 is at most

𝑛
√
𝜋min

exp

(
−Ω

(
𝑚𝜋min − 𝑛𝜖−2
𝜖−2 + 𝑡mix

))
Therefore, with high probability, we are able to estimate the chain

from a single trail within error 𝜖 when setting𝑚 as the the theorem

statement. □

Finally, we remark that the probability that there is a chain for

which we do not obtain a single trail is, by a union bound, at most

𝐿∑︁
ℓ=1

(1 − ∥𝑠ℓ ∥1)𝑚 = 𝐿 · (1 − Ω(1/𝐿))𝑚 ≤ 𝐿 · 𝑒−Ω (𝑚/𝐿) .

It thus suffices to set𝑚 = Ω(𝐿 log𝐿) to obtain samples from ever

chain with high probability.

D PROOFS FROM SECTION 3.3
Theorem 5. For each x ∈ X,∏𝐿

ℓ=1 Pr[x | K ∩ ℓ]𝑎 (x,ℓ ) ≤ ∑𝐿
ℓ=1 𝑎(x, ℓ) · Pr[x | K ∩ ℓ]

≤ 𝐿 · (maxℓ 𝑎(x, ℓ)) ·
∏𝐿
ℓ=1 Pr[x | K ∩ ℓ]𝑎 (x,ℓ ) .

Proof (Theorem 5). The first inequality can be directly derived

from the arithmetic-geometric mean inequality using the factors

𝑎(x, ℓ). For the second, it is worth noting that without loss of gen-

erality we can assume

∑𝐿
ℓ=1 Pr[x | K ∩ ℓ] = 1. This is because both

the arithmetic and geometric mean scale linearly. We thus want to

show that ∑𝐿
ℓ=1 𝑝

2

ℓ
≤ 𝐶 · ∏𝐿

ℓ=1 𝑝
𝑝ℓ
ℓ

(10)

for 𝑝ℓ = 𝑎(x, ℓ) = Pr[x | K ∩ ℓ]. Note that (10) is equivalent to

2
log

2

∑𝐿
ℓ=1 𝑝

2

ℓ = 2
−𝐻2 (p) ≤ 𝐶 · 2−𝐻1 (p) = 𝐶 · 2

∑𝐿
ℓ=1 𝑝ℓ log2 𝑝ℓ

where 𝐻𝛼 (p) is the Rényi entropy2 of p and a suitable constant

𝐶 > 0. By well-known facts about the Rényi-entropy,

𝐻1 (p) − 𝐻2 (p) ≤ log
2
𝐿 − 𝐻2 (p)

≤ log
2
𝐿 − 𝐻∞ (p) = log

2
𝐿 + log

2
max

ℓ
𝑝ℓ

so we obtain𝐶 = 𝐿 ·maxℓ 𝑝ℓ as required for the theorem statement.

□

2
The Rényi entropy of order 𝛼 is defined as 𝐻𝛼 (p) = 1

1−𝛼 log
2

(∑𝐿
ℓ=1 𝑝

𝛼
𝑖

)
while

the Shannon entropy 𝐻1 (p) and min-entropy 𝐻∞ (p) = − log
2
maxℓ 𝑝ℓ are defined

trough the limit.

E EXPERIMENTAL EVALUATION
E.1 Detailed Dataset Description
Last.fm dataset. We obtain user trails from the Lastfm-1k dataset

which can be accessed via the provided link [2]. This dataset cap-

tures users’ music listening history over three years, detailing each

track played with associated user information, song title, and times-

tamp. For our study, we interpret a continuous sequence of songs

listened to by a user as a single trail, provided that there are no in-

terruptions exceeding 15 minutes. To streamline our data, we limit

the states to the 10 most frequently listened songs in the dataset

and focus on users boasting the highest trail count. This results in

a total of 2763 continuous-time trails with an average of 9 minutes

of listening history. We then convert the trails using a time frame

of 𝜏 = 10 seconds. Following this, the converted discrete trails are

segmented into smaller trails, each with a length of 10. We obtain

13 615 discrete-time trails.

NBA Dataset. The NBA dataset from Second Spectrum archives

every pass executed during NBA basketball games for the 2022 and

2023 seasons. Each documented pass is linked with a specific offen-

sive opportunity and is marked with the time it was made, as well as

the passer and the receiver. In this context, an opportunity refers to

a continuous duration when a team possesses the ball. This record

also mentions the team on the offense and the points they score

during the possession. It is important to note that in NBA rules (rule

no 7), a team’s opportunity to score is constrained to 24 seconds due

to the shot clock regulation. This comprehensive dataset consists of

1 433 788 passes made within 535 351 opportunities spanning 2 460

games.

To dissect the data for each team during the two seasons, we

employ the following approach. We designate a state for each of

the top 12 players who have the ball for the longest durations. In

addition, we introduce two special distinct states hit andmiss. These
states signify whether an opportunity culminated in the offensive

team scoring or failing to score, respectively. The continuous-time

trail begins at the state that corresponds to the player who receives

the opening pass. The subsequent state is the receiving player of the

next pass, and the transition time mirrors the time lapse between

the two passes. When an opportunity wraps up, the trail concludes

(i.e., is absorbed in terms of Markov chains) in the hit or miss state,
contingent on the scoring outcome. Our analysis only includes

opportunities that span beyond 5 seconds and involve a minimum

of 3 passes. To ensure balance, we exclude any surplus of hit and
miss opportunities. This leaves us with a total of 3850 trails per

team on average.

E.2 Additional Experimental Results
Remark. It is important to mention that in cases where the 𝑦-axis

of a figure lacks annotation, it corresponds to the 𝑦-axis of the

adjacent figure on the left.

Varying 𝜏 . Figure 7 shows the effect of using different 𝜏 values on

the recovery error. Note that dEM, KTT, and GKV-ST utilize 𝜏 as a dis-
cretization parameter. In contrast, cEM operates on trails generated

by the CTMC, continually observed for a duration of 𝜏 ·𝑚. We can

see that, as the observation duration increases, the performance of

cEM improves with larger value of 𝜏 but also has the most variance

compared to the other methods. For dEM and KTT, there exists an
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Figure 7: Recovery error for different discretization rates 𝜏 :
(a) 20 samples with 25-length trails and (b) 100 samples with
200-length trails.
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Figure 8: Recovery error based on transition counts: The
plots present the error as a function of the total transitions,
derived from multiplying the number of samples with the
trail length. Two specific cases are highlighted: (a) 2 500 total
transitions, and (b) 25 000 total transitions. The figure titles
contain the remaining parameters, 𝜏 is set to 0.1.

optimal value for 𝜏 . We observe from Figures 7(a) and (b) that this

𝜏 value varies as we vary the trail length 𝑚. This optimal value

strikes a balance between observing each transition sufficiently

often to ensure effective clustering and keeping 𝜏 sufficiently small

to achieve optimal recovery, represented by the mapping 𝑒𝐾𝜏 ↦→ 𝐾 .

Ranging the trail length 𝑚. Figure 8 examines the behaviors

of dEM, KTT, and GKV-ST, maintaining a consistent total number

of observations 𝑚 · 𝑟 of (a) 2500 and (b) 25000. For longer trails,

KTT surpasses even the cEM baseline. However, (a) also underscores

dEM’s reliance on adequately longer trails, a criterion not necessary

for its continuous counterpart.

Ranging the number of trails 𝑟 . Figures 9(a) and (b) show the

recovery error for all methods as the number of samples increases

from 100 to 1000 with a step of 50 and from 10 to 100 with a step of

5 respectively. The values for 𝑛, 𝐿,𝑚 are 10, 2, and 500, respectively.

We observe that cEM has the lowest recovery error in all cases.

The performance of the other three methods alternates with dEM
ranking as the second best. In the regime where we see few trails,

the variance of all methods increases.

Sample Complexity. For dEM and KTT, we study the empirical

sample complexity, i.e. the number of samples required to obtain

a recovery error below a certain threshold. For our results, we

use a threshold of 0.1. Figure 10 shows the sample complexity for

varying trail length (a) and varying discretization rates 𝜏 (b). We

can clearly observe that for increasing trail length, KTT performs

better while dEM performs worse. This behavior is attributed to the

local optimization nature of the EM algorithm. Furthermore, (b)
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Figure 9: Recovery error under a varying number of trails.
We consider trails of medium length in (a) and trails of long
length in (b).
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Figure 10: Sample complexity for a varying number of sam-
ples (a) and a varying discretization rate 𝜏 (b).
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Figure 11: Mixture of 𝐿 = 2 chains with 𝐾1 = 𝑓 · 𝐾2. We show
the effect of different initializations, as explained in the text.

shows that KTT still achieves low recovery error if trails are long

enough, even for low 𝜏 , compared to dEM.
Proportional Rates. We consider the difficult case when the rate

matrices 𝐾1
and 𝐾2

of a mixture are proportional, i.e. there exists a

factor 𝑓 > 0 such that 𝐾1 = 𝑓 · 𝐾2
for the same graph topologies.

This is a difficult case as the discretization step may conflate the two

chains into the same discrete chain. In this hard case, we found that

dEM performed best. We thus use dEM with several initializations.

For clarity, let us denote with K[0,𝑓 ] the uniform distribution over

rate matrices𝐾 with𝐾𝑦𝑧 ∈ [0, 𝑓 ] for states𝑦 ≠ 𝑧. First, we initialize

with a random mixture sampled from (K[0,1] ,K[0,𝑓 ] ). We call this

initialization good. Second, we try to learn the holding times first

and initialize dEM with random rate matrices that have the learned

holding times (learned). Third, we sample both initial rate matrices

from 𝐾[0,1] (random). We observe that the recovery and clustering

error is almost as good as when using the groundtruth clustering,

after using the good initialization or learning the holding times.

Scalability. Figure 12 shows the running times of dEM, GKV-ST, KTT,
and cEM. We vary the number of chains 𝐿 in (a) and the trail length

𝑚 in (b). KTT scales worse that the rest of the methods. The fastest is
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Figure 12: Running times for varying number of chains 𝐿 (b)
and varying trail length (b).
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Figure 13: Allocation-percentage and median entropy for
dEM on Last.fm.

based on the GKV-ST methodology for discrete chains [24, 40] with

the caveat that the theoretical conditions of the recovery theorems

may not always apply, as we observed in some of our experiments.

Last.fm. Figure 13 shows outcomes from supplementary experi-

ments on the Last.fm dataset. We explore the learning of a mixture

encompassing 𝐿 chains with values ranging from 2 to 10 by center-

ing our attention on 20 users. This is done to discern typical user

behaviors, also known as archetypical behaviors [16]. We graphi-

cally represent the median assignment entropy and the minimum

and maximum of the assignment probabilities over the chains for

dEM. In this context, the probability of assignment to a chain ℓ ∈ [𝐿]
is defined as

1

𝑟

∑
x∈X 𝑎(x, ℓ). We notice that as the number of chains

increases, the entropy also tends to rise. This suggests that several

chains produce comparable likelihoods for the trails, leading to

greater uncertainty in assignment. As previously noted in the main

content, determining a strategy for selecting 𝐿 remains an open

challenge for future work.

NBA. We also provide additional qualitative results on the NBA

dataset. Since hit and miss are the sole absorbing states, 𝜋𝐾 (hit)
and 𝜋𝐾 (miss) = 1−𝜋𝐾 (hit), they signify the odds of scoring or not
scoring points, respectively. Thus, we can ascribe a score likelihood

to each tactic. To gauge the efficacy of the deduced mixture, we

assess its predictive precision, as done in other work [12]. With a

given mixture of continuous-time Markov chains and a trail prefix

𝑥 ′ = (𝑥𝑡 )0≤𝑡≤𝑡 ′ halting prior to reaching the absorbing states hit
or miss at time 𝑡 ′, we ascertain the probabilities Pr[𝑥 ′ ∩ ℓ | K]
and Pr[𝑥∞ = hit | 𝑥 ′ ∩ 𝐾 ℓ ] for every ℓ ∈ [𝐿], facilitating the

determination of the score likelihood Pr[𝑥∞ = hit] via the theorem
of total probability. We use trails with a 80%-20% train-test split

from the teams Golden State Warriors (GSW), Boston Celtics (BOS),

Los Angeles Lakers (LAL), Miami Heat (MIA), Los Angeles Clippers

(LAC), and Houston Rockets (HOU) in the 2022 season. We plot

the predictive accuracy of the chains learned via dEM, KTT, and cEM.
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Figure 14: Train and test accuracy of miss and hit prediction
using dEM, cEM, KTT and RNNs on the NBA dataset.
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Figure 15: Two additional Golden State Warriors offensive
tactics from the mixture in Figure 4. Based on our derived
CTMCs, both tactics (left and right) have a scoring probability
of 41%.
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Figure 16: Offensive strategies for the New York Knicks rep-
resented as a mixture of 𝐿 = 4 CTMCs. Parameter 𝜏 was set
equal to 0.1 secs. The scoring probabilities are as follows: 37%
(top left), 36% (top right), 35% (bottom left), and 40% (bottom
right).

As a baseline, we implemented a recurrent neural network using

Pytorch [23] that is trained on the set of discretized trails.

Finally, we show two additional offensive strategies for the

Golden State Warriors (Figure 15) and another set of 4 offensive

strategies learned from trails of the New York Knicks in the 2022

season in Figure 16. We will include more strategies from all teams

in an extended journal version of our work.
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