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ABSTRACT

Federated Learning (FL) often struggles with error accumulation during local
training, particularly on heterogeneous data, which hampers overall performance
and convergence. While dataset distillation is commonly introduced to FL to
enhance efficiency, our work finds that communicating distilled data instead of
models can completely get rid of the error accumulation issue, albeit at the cost of
exacerbating data heterogeneity across clients. To address the amplified hetero-
geneity due to distilled data, we propose a novel FL algorithm termed FedDual-
Match, which performs dual matching in the way that local distribution matching
captures client data distributions while global gradient matching aligns gradients
on the server. This dual approach enriches feature representations and enhances
convergence stability. It proves effective for FL due to a bounded difference in
the testing loss between optimal models trained on the aggregation of either dis-
tilled or original data across clients. At the same time, it can converge to within
a bounded constant of the optimal model loss. Experiments on controlled hetero-
geneous dataset MNIST/CIFAR10 and naturally heterogeneous dataset Digital-
Five/Office-Home demonstrate its advantages over the state-of-the-art methods
that communicate either model or distilled data, in terms of accuracy and conver-
gence. Notably, it maintains accuracy even when data heterogeneity significantly
increases, underscoring its potential for practical applications.

1 INTRODUCTION

Federated learning (FL) is a distributed paradigm that enables collaborative optimization across
devices while preserving data privacy (Bonawitz, [2019). It has been widely adopted in areas of
healthcare (Xu et al, [2021), finance (Li et al. 2020), and the Internet of Things (IoT) (Kairouz
et al.,2021)). Due to the communication cost constraint, federated clients typically run multiple local
training epochs before communicating with the server. However, client heterogeneity can cause
weight drifts, which can be further accumulated during communication, leading to performance
drop and convergence instability. To mitigate these challenges, various methods have been proposed
for heterogeneous federated learning, such as regularization techniques (Li et al., |2020), weighted
aggregation (Wang et al.|[2020a), and personalization strategies (T Dinh et al.,|2020). Despite these
efforts, error accumulation persists. Recently, dataset distillation techniques have been introduced
to FL to enhance efficiency (Xiong et al., 2023} |P1 et al) |2023)), where client data is condensed
into smaller yet information-dense subsets with similar training utility. In addition to improving
efficiency, in this work, we find that communicating distilled data instead of models can effectively
get rid of the error accumulation, as the model can be fully optimized with aggregated distilled
data on the server in a way akin to the centralized training. However, an issue that accompanies
this change is that the selective extraction and integration of client data features may exacerbate
heterogeneity among distilled datasets compared to the original client data (Huang et al.| 2023). To
delve into this issue and the underlying paradigm shift in communication, one will naturally ask the
following two questions for FL:

* How can we fully exploit distilled data and mitigate the amplified heterogeneity?

* Why can distilled data replace model for communication?

To answer the first question, we propose a novel FL framework, called FedDualMatch, that can
leverage complementary strengths of gradient and distribution matching to effectively address the
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Figure 1: (a) Distribution matching amplifies the heterogeneity of distilled data between clients,
while (b) gradient matching reduces the client drift.

amplified heterogeneity on distilled data. As illustrated by Fig.[I] (a), distribution matching excels
at extracting data features but may exacerbate the heterogeneity issue (Shin et al.| 2023)). Contrast-
ingly, gradient matching, described in Fig. |1|(b), can control the client drift (Zhao et al., 2020) and
thus alleviate the distribution heterogeneity. This insight motivates us to propose local distribution
matching (LDM) for exploiting the unique data features on the client side. It distills data by matching
the mean distribution of the distilled data with that of the given data on each client in multiple layer-
wise feature spaces. To improve the robustness of distillation, we also design Gaussian ball sampling
(Xiong et al.,|2023) with adaptive generalization error radius. However, such local data distillation
amplifies the heterogeneity of distilled data between clients, exacerbating the client drift. To rec-
tify this issue, we propose global gradient matching (GGM) on the server side, which constrains
the global model’s gradients for consistency between the aggregated distilled dataset and individual
clients’ distilled datasets and thus improves the convergence stability of the global model. Fig. 2| de-
scribes how the dual matching strategies are integrated into our FedDualMatch to sufficiently distill
data features and meanwhile enhance convergence stability.

For the second question, we conduct a theoretical analysis of the communication of distilled datasets
in terms of effectiveness and convergence. Specifically, we show that under the assumptions of
bounded distributional distance and bounded gradient distance, the testing loss difference between
the optimal model trained on aggregated distilled datasets and that trained on all the given datasets
in the centralized setting can be bounded by a small positive constant. It means that training on
the aggregated distilled dataset closely approximates the ideal centralized training, thus supporting
the effectiveness of distilled data communication. At the same time, the global model can converge
to the sub-optimality gap of the final model is bounded by a constant primarily determined by the
bounded distributional distance.

We provide extensive experiments to evaluate the efficacy and effectiveness of FedDualMatch under
controlled or natural heterogeneity. In controlled experiments with artificial heterogeneity, we set up
the data distributions of MNIST and CIFAR10 via a Dirichlet distribution. Our experimental studies
on them show that it outperforms those existing federated learning methods, based on either distilled
data communication or traditional model communication, in terms of convergence speed and model
accuracy. Further, experimental results on naturally heterogeneous datasets, such as Digit-Five and
Office-Home, demonstrate that it exhibits strong stability and adaptability when handling real-world
data heterogeneity. To summarize, we make the following contributions:

* We propose FedDualMatch, a novel federated learning framework that combines gradient
and distribution matching for distilled dataset communication. It excels in getting rid of
error accumulation while reducing client drift caused by the amplified heterogeneity from
distilled data.

* We provide theoretical analysis on the effectiveness and stable convergence of distilled
dataset communication.

* We conduct extensive experiments which show that our proposed algorithm outperforms
the state-of-the-art on both controlled and naturally heterogeneous datasets and particularly
maintains accuracy on data with increasing heterogeneity.

2 RELATED WORK

Heterogeneous federated learning (HFL): HFL focuses on the significant challenge of non-1ID
data distributions across clients as a pervasive issue in real-world federated learning scenarios. To
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Figure 2: (a) The replacement from model to distilled data and (b) the framework of FedDualMatch.
Clients receive the global model from the server, use local distribution-matching-based dataset dis-
tillers to generate synthetic data, and send this data to the server. The server aggregates the distilled
data from all clients, corrects synthetic data heterogeneity using a global gradient-matching-based
dataset distiller, and updates the global model with the corrected aggregated data. The updated
model is then sent back to the clients, repeating the process for federated training.

tackle this, various strategies have emerged. Personalization methods, including pFedMe (T Dinh
et al., 2020), FedBN (Li et al., 2021c)), and Ditto (Li et al., 2021b), adapt global models to client-
specific data, in order to enhance local performance while maintaining overall generalization. Reg-
ularization approaches such as FedProx (Li et al.| [2020), Scaffold (Karimireddy et al.l |2020), and
MOON (Li et al., 2021a) control client drift and stabilize training under heterogeneity by introduc-
ing constraints on local updates. Advanced aggregation techniques such as FedMA (Wang et al.,
2020a), FedNova (Wang et al., 2020b), and FedDyn (Acar et al.| [2021) improve model alignment
and convergence under data heterogeneity. Additionally, model and data distillation strategies, like
FedDF (Lin et al., 2020), FedMD (L1 & Wang, 2019), and FedBE (Chen & Chao, 2020), enhance
global model robustness by aggregating knowledge from diverse clients. Meta-learning approaches,
e.g., MetaFed (Jiang et al., 2019) and Per-FedAvg (Fallah et al.,|2020), leverage dynamic adaptation
to varying client distributions. These methods, all doing model communication, albeit effective, just
alleviate the issue of error accumulation instead of eliminating it at the source.

Dataset-distillation-based federated learning: Recent advancements in FL have leveraged dataset
distillation via either gradient/trajectory matching or distribution matching to enhance communi-
cation efficiency and address client heterogeneity. Gradient and trajectory-based approaches, such
as FedMK (Liu et al| [2022), FedSynth (Hu et al., [2022)), DYNAFED (Pi et al. [2023), FedLAP-
DP (Wang et al., [2023)), and FEDLGD (Huang et al.} 2023)), focus on condensing gradient informa-
tion or optimizing trajectories to streamline communication and improve convergence. In contrast,
distribution-based methods, e.g., FedDM (Xiong et al., [2023)), emphasize preserving data distribu-
tions through synthetic data generation. One-shot approaches, such as DOSFL (Zhou et al., |2020),
FedD3 (Song et al., 2023)), DENSE (Zhang et al., 2022)), and Co-Boosting |Dai et al.| (2024), per-
form nearly as well as with the centralized case by distilling client data into synthetic subsets, while
iterative techniques, including FedDM (Xiong et al.,|2023) and FedAF (Wang et al., [2024), repeat-
edly refine distilled datasets to enhance training efficiency and mitigate heterogeneity. Despite these
advancements, the primary use of dataset distillation is to enhance communication efficiency, with-
out exploring its potential to eliminate error accumulation. Additionally, almost all the methods
perform a single type of matching, suffering inherent limitations of that type. Our work fills these
gaps by combining complementary strengths of gradient and distribution matching to unleash the
full potential of dataset distillation in heterogeneous federated learning.

3 PRELIMINARY: FEDERATED OPTIMIZATION

FL is a privacy-preserving multi-client joint training framework involving K clients (McMahan
et al., 2017). Each client holds local data Dy, = {(z},y})}:*,, where n; = |Dj| represents

=1
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Figure 3: (a) Illustration of the optimization error accumulation in FedAvg, where the generaliza-
tion error ball radius keeps growing. (b) While distribution matching distillation eliminates error
accumulation, it also amplifies data heterogeneity. (c) FedDualMatch mitigates both issues by in-
corporating global gradient matching and global fine-tuning optimization.

the size of the dataset on client £ and n = Zle nk, with 2% and yi, as the i-th sample on
the k-th client and the corresponding label, respectively, following distribution Z;. The goal
of federated learning is to jointly train a single model parameterized by w across clients, via
the optimization objective is: n}li)n L(w) = Zle 25 Ly (w), where Ly (w) denotes the local

loss function of client k. The local loss function under the typical empirical risk minimization
is expressed as Li(w) = ;=37 £(f,(2}),y;,), where £(-) represents the loss function, such
as cross-entropy loss or mean squared error, and f,,(x%) denotes the prediction of the model
with parameters w on input . For the classic FedAvg algorithm (McMahan et all 2017),
the server first distributes the global model to each client. Each client then performs local up-
dates on thelr local datasets. Spemﬁcally, the local model update for client k£ is computed as
wy = w! — VL (w?) = wt — o VU fur (L), Yl ), where 7 is the local learning rate.

nk
After local updates clients send their updated model parameters back to the server, where they are

aggregated as w't! = ST Mgl tl

In an ideal scenario where the global aggregation is performed immediately after each local gradient
update, the resulting gradient optimization would be equivalent to that of training directly on the
centralized aggregated data. Let D = U,i{:l Dy, = {(x;,y:)},. Then the gradient updating in this
case can be written as:

K Nk
1 ) )
wtt =w'—n - > Vil fur (), i) = wh = — ZVUM fur (@), yi) = w' =V L(w").
k=1 i=1

Letw!*! := w! — nVL(w'), 0+ F := - thHE ' VL(w") represents parameter updating
under ideal centralized training. However given the significant communication overhead incurred
in this case, practical implementations typically defer the global aggregation until after £ local
updates on each client, which is presented as '™ := w! — g iii?_E_l VL (wh), wtF =
LK Myt In the common case of the inherent heterogeneity ; # Z;,i # j in client
data d1str1but10ns, the delay can give rise to significant shifts in gradient during optimization. As
illustrated in Fig. 3] (a), the shift accumulates over local updates such that the trajectory of the
global model deviates from the optimal path and consequently leads to sub-optimal performance
and unstable convergence. The shift accumulation can be decomposed:
t'=t+E—-1 K ny
G E =y 3 SISl () v) — Vo e (@) b))
t'=t  k=14i=1
Therefore, in order to eliminate such shifts and achieve optimal joint training, we have to tackle the
following two challenges: 1) how to mitigate the error accumulation over multiple local updates in
Eq.(I); 2) how to reduce the gradient deviations caused by the client data heterogeneity, as seen in
Fig.[3|(a), to align gradients.

4 METHODOLOGY: FEDDUALMATCH

To address the aforementioned challenges, we propose a federated learning framework based on
dataset distillation and built upon a dual matching approach, dubbed as FedDualMatch. It performs
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local distribution matching to leverage client data features and global gradient matching to correct
the gradient shift on the server. By alternating the local and global optimization, we can make the
most of the complementarity between the two matching distillations.

4.1 LOCAL DISTRIBUTION MATCHING (LDM)

To effectively extract data features while maintaining their distributional diversity on each client, we
adopt a local distribution matching strategy for dataset distillation similar to FedDM(Xiong et al.,
2023). For client k£ with data Dy, a common way is to estimate the data distribution deviation in a
lower-dimensional feature space using maximum mean discrepancy (MMD) (Gretton et al., 2012):

Elh (D) = Elhu(S1)]|

argmln

where h,, is the embedding function that maps the input data to the feature space, and Sy, represents
the distilled dataset of client k. To fully leverage the utility of local data in training, the choice of
h., plays a crucial role. Different from FedDM Xiong et al.| (2023)), we introduce the concept of
generalization error ball with adaptive radius R;, for which we define R; as the largest norm of the
model updating parameter difference between locally distilled dataset on any client, say Sk, and the
aggregated one S = {Si}*_| on the server side:

Ry = oy )
where wf"‘ and w{ represent the updates after one gradient step on distilled datasets S on
client £ and S on the server, respectively, i.e., wf" = wi—1 — NV L(ws—1;Sk) and wf =

wi—1 — NV L(wi—1;S) with w;_1 being the model parameter from the last communication round.
R; is computed on the server. The generalization error ball then refers to the one with the down-
loaded model parameters from the server as its center and R; as the radius, denoted by B(wy; R;)
and visualized in Fig. |3} We set embedding function h,, to be part of the randomly sampled model
parameter w from the ball B(w;; R;), and update synthetic data Sy, to perform feature distribution
matching with client data Dy, in embedding space h,, (x):

argmin  sup  ||E[hw(Dr)] — E[hw(St)] H
S weB(wy;Ry)

In practice, we do empirical estimation in MMD to fit the data distribution for each class:

sy -
(5020 = 3| Zhw SEESNCY! E
i=1

c=1

where xz’ € Dy, and izl € Sy, represent the i-th sample of class ¢ in Dy, and Sy, respectively, while
ng and s§ stand for the number of samples of class c in D}, and Sy, respectively, and C'is the total
number of classes.

To fully exploit the feature distribution of data on each client, in addition to the dynamic computation
of the generalization error ball’s radius, we put forward the backward layer-wise feature alignment,
and incorporate it into the training process. Embedding function h,, has multiple layers, i.e., h,, =
{v1,v2,...,v;}, with v, being the p-th layer and J being the layer number. We align each layer’s
feature distributions sequentially, starting from the last layer, i.e., the logit layer. Experiments show
that directly summing the MMD losses of all layers for parameter updates causes convergence issues,
which may result from varying complexities of the feature alignment across layers. Besides, we
observed that aligning deeper (output) layers first can facilitate the learning of earlier (input) layers.
Thus, to do the backward feature alignment for each layer on top of the already aligned deeper

layers, our strategy is to accumulate the MMD losses of the current layer, say p € {J,J—1,...,1},
and all deeper layers as follows:
k,v
L35 (Sk: Dy) ZLMJCID Si; Di)- (3)

This strategy enables feature distributions of deeper layers to remain aligned while aligning the
feature distribution of the current layer, thus effectively extracting the information on the feature
distribution of data on each client.
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Algorithm 1: FedDualMatch: Dual Matching Federated Learning

Input: Random initial global model parameter wy, initial radius of generalization error ball Ro = 5.0, #
clients K, communication rounds 7', # epochs of global model training Ty, # local epochs E, learning
rate 7, local datasets { Dy }, # layers in embedding function .J, # rounds of global gradient matching M #
o is one constant factor on the Gaussian noise variance, # gradient norm bound C
On server:
for each communication roundt = 1,2,...,T do
Broadcast global model parameter w;—1 and radius R;_; to all clients
Aggregate distilled datasets S = {Sy, }7_; from all clients
Update radius of error ball: R; = sup,, wa" —wf ||
for each GGM round m = 1,2,..., M do
Randomly sample model parameter wg from error ball B(w;—1; Ry)
Synthesize S’ = {S;,} by minimizing global gradient matching loss with initial S}, = Sy:
Laam(8'58) = Yo, dist (Vu, Li(wg; 1), Vuw, Li(wg; S))

end

Fine-tune global model w; ; on & = Uszl{S,’c, Sk} for T, epochs to get wy

end

On each client:

Randomly sample model parameter w” from error ball B(wi—1; Re)

Use the first J layers in model with parameter w;—1 as embedding function h.,

Initialize Sy with random Gaussian noise

for each model layerp = J, J—1,...,1 do

Distill local dataset Dy, for synthetic dataset Sy via minimizing distribution matching loss:
Lishi(Sk Dr) = o, Liiin (Ski D)

Adding Gaussian noise-based differential privacy:

Vs, b (Sk; D)

Obtain the clipped gradient: Vs, L?, (Sk; Di) +
pped g o Lo (Sk; Dx) - (1 HVskL’BKI(Sk;Dk)Hz)

C
. , 1
Add Gaussian noise: Vs, L5 (Sk; Dy) < Vs, L'SP (Sk; D) + @N (0,0%C°1)

end
Upload distilled dataset Sy, to server

4.2 GLOBAL GRADIENT MATCHING (GGM)

On the server side, the global model is trained on the aggregated distilled dataset in the same manner
as it would be on a centralized dataset, thus avoiding the issue of local error accumulation over
multiple local updates depicted in Fig. [3] (a). Specifically, after sufficient LDM distillation on K
clients, distilled dataset on each client is sent to the server and aggregated: S = {Sk}i,(:l. However,
LDM-based dataset distillation exacerbates the data heterogeneity across clients, as demonstrated
in [Huang et al. (2023) and presented in Fig. [3] (b), such that the optimization of the model trained
on each client distilled data S may diverge from the optimal path and thus lead to sub-optimal
convergence. To address this issue, we perform two operations, global gradient matching (GGM)
and global fine-tuning optimization (GFO), to improve federated optimization stability and model
performance, as illustrated in Fig. [3|(c).

Global gradient matching for dataset distillation aims to align gradients on locally distilled data from
each client S;, and that on the aggregated one S by minimizing the following loss with initial S}, set
to Si:

K

Loou(858) = E 1> dist(Vule(iS), VuLi(wiS))| , 4)
t—1;40 k=1

where S’ = {S).}, and dist computes the distance between the above two types of gradient for
which we choose the same as in|Zhao et al.|(2020) to ensure that gradients are aligned.

To preserve data diversity, we further incorporate the newly distilled dataset S, into Sy, and fine-
tune the global model by running gradient steps on the new aggregated data S = Uszl {S;., Sk} for
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T, epochﬂ which ensures that the global model benefits from both aligned gradients and diverse
data representations. To promote the effect of the above two operations on the global model, we
perform them alternately on the server side for M rounds. In each round, the global model is
randomly sampled from the generalization error ball of adaptive radius R; to enhance the robustness
of gradient matching. The interplay between gradient alignment and fine-tuning helps stabilize the
convergence and improve performance.

The whole algorithm of FedDualMatch is summarized in Algorithm [I]

5 THEORETICAL ANALYSIS

We now conduct a theoretical analysis for our algorithm to reveal its properties on effectiveness,
convergence, and privacy. While prior work DynaFed (P1 et al., 2023)) has explored the convergence
of distilled data fine-tuning as a substitute for model communication, the assumptions are too strong
and the theoretical justification remains limited. To see why it is effective to replace model with
distilled dataset for communication in FL, we begin by introducing the following assumptions:

Assumption 1 (Smooth and convex). Local objective function Ly (-) and embedding functions h.,(-)
forany clientk = 1,--- | K are L-smooth and p-strongly convex.

Assumption 2 (Bounded gradient). For each client, the norm of the gradient is bounded.:
HVLk(w)H SG, Vu}ERd, Vk € {1727~"7K}7 (5)

where G is a positive constant.

Assumption 3 (Bounded distributional distance). For any embedding model with parameters ran-

domly sampled from a generalization error ball centered at w® with radius R, the distilled dataset

Sy, and the given dataset Dy, on the k-th client are mapped to the feature space by the embedding

model. The expected feature distance between them is bounded by a small constant 04 > 0 for any
sampled w:

|E[hu(Dr)] — Elhw(Sk)]|| < 04, Yw € B(w',R), Vke{1,2,...,K}. (6)

Assumption 4 (Bounded gradient difference). The difference between the gradients computed on
the distilled dataset Sy, and the aggregated one S is bounded by a constant o, > 0 in expectation
for any w in the training trajectory of global model parameter:

IE[HV“,L(w,Sk) — VU,L(w,S)H} <oy, Yw € {w' v =w'-nVL(w,S),t=0, ..., T,~1}. (7)

Assumption [T| ensures that local optimization problems are well-behaved, with smooth and convex
functions, for global convergence. Assumption [2]ensures that gradients remain controlled. Assump-
tion 3] bounds the difference in data distribution between the distilled and original datasets to ensure
that the distillation process won’t introduce significant distortions. Assumption ] ensures that gra-
dients computed on distilled datasets closely approximate those computed on the aggregated dataset
for minimizing error accumulation. Under Assumptions we have the following theorem:

Theorem 1 (Effectiveness). Let L(w?¥; D) denote the loss of the model with optimal parameter w
trained on the aggregated distilled dataset S, evaluated on the original dataset D, and w}; present

the optimal parameter trained on D. With learning rate n = + for ¢ > #% and distributional
g g
distance bound o4 = +/2p?e./ L for small positive constant €., it holds that:

]E[HL(U);‘,D) - L(w;;D)H] <eg, (8)

Lo2 . . L.
%4 < ¢, is a sufficiently small positive constant.

where ¢ = T

Theorem |1| demonstrates that the loss of the model trained on distilled data closely approximates
the loss of the model trained on original data, which proves that aggregated distilled dataset training
can achieve a similar training effect to centralized training. This supports the feasibility of using
distilled data as an alternative for federated communication.

Regarding convergence, the following theorem holds.

!Global model in fine-tuning is indexed by w;_1,s for epoch s = 0,1, -+, Ty — 1, with w;—1,0 = w¢—1
and wy := Wi—1,Ty—1-
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Theorem 2 (Convergence). Define C' = % Under the same assumptions as in The-
orem[l} it holds that:
E[L(w; D)] < L(w}; D) + C, ©)
Remark (Convergence per communication round). Define C; = W and B =
L?(Lo3+nG?) . . .
— Under the same assumptions as in Theorem |1} it holds that
* Ct
E[L(wy; D)] — L(wj; D) < = + B, (10)

g

where T} is the number of training epochs of the global model on the aggregated distilled dataset in
a single communication round.

Theorem 2] shows that our algorithm converges with the sub-optimality gap of the final model
bounded by a constant determined by the distributional distance o4. Combined with Theorem [T}
this indicates that the effectiveness and convergence of FedDualMatch depend on the accuracy of
local client data distillation in matching the data distribution. Remark [3] further highlights that dur-
ing a single communication round, the server-side model can achieve strong convergence on the
distilled data. This is because a large number of global training iterations 7}, can be performed
within a single round, avoiding error accumulation in federated optimization. Previous work, such
as DynaFed [2023), provides convergence guarantees for federated learning with distilled
data. However, their analysis assumes that gradients on distilled and original data are tightly aligned
across the entire parameter space, formalized as |VL(w;S) — VL(w; D)|| < § ||VL(w; D)|| + €
for all w. This assumption is overly restrictive and unrealistic, as perfect gradient alignment across
the full parameter space is nearly unattainable. To relax this limitation, we confine the model pa-
rameters to a localized ball, as stated in Assumption [3] This weaker assumption is more practical
and can be satisfied by performing sufficient gradient matching through random sampling within the
ball. This refinement not only broadens the applicability of our approach but also emphasizes its
practical convergence in federated learning scenarios.

In addition, to ensure differential privacy during the execution of our algorithm, we adopt the
Gaussian-based differential privacy mechanism, following the approach used in FedDM. Compared
to FedDM, our method introduces an additional step of sharing the Gaussian error ball radius R;
between the client and server. However, R; is privacy-insensitive as it is independent of client data.
This ensures that FedDualMatch also achieves an (¢, ¢)-differential privacy guarantee. The detailed
proofs of these theorems are provided in Appendices[A]and B}

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate FedDualMatch through controlled experiments and naturally heterogeneous
data. In controlled experiments, client heterogeneity is adjusted using the Dirichlet distribution’s
alpha parameter, where smaller values indicate greater heterogeneity (McMahan et all, 2017). The
MNIST (LeCun et all, [1998) and CIFAR10 (Krizhevsky et al 2009) datasets are distributed to
10 clients with alpha values of 0.005, 0.01, and 0.05, respectively, to test the performance under
varying degree of disparities in data distribution. For real-world heterogeneity, the Digital-Five
dataset—comprising MNIST (LeCun et al}, [1998)), MNIST-M (Ganin et al., [2016), SVHN
201T), SynthDigits (Hull,[1994), and USPS (Ganin & Lempitsky, [2015)—is naturally divided
into 5 datasets, one for each client, exhibiting significant differences in image style and source.
Similarly, Office-Home (Venkateswara et al.,[2017) is split into four clients: Art, Clipart, Product,
and Real World, each in a different visual domain.

Baseline methods. We compare FedDualMatch with classical federated learning methods perform-

ing model communication, including FedAvg (McMahan et al 2017), FedProx (Li et al [2020),
FedNova (Wang et al.|, [2020b), and SCAFFOLD (Karimireddy et al., 2020). The latter three spe-

cialize in addressing client data heterogeneity. We also compare FedDualMatch with methods doing

distilled dataset communication, such as FedDM (Xiong et al.,[2023)) and DynaFed (Pi et al,[2023).
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Methods MNIST CIFAR10
a = 0.05 a=0.01 a = 0.005 a=0.05 a=0.01 a = 0.005
FedAvg 97.93+0.02  80.09+1.57 82.95+1.69 | 53.64+3.39 39.46+0.88  38.04+2.92

FedProx 98.01+0.00  89.99+0.98  83.41+2.34 | 55.13x0.04 40.93%£1.68  39.30+2.02
FedNova 97.67+£0.01 75.68+0.14  77.97+£5.35 | 47.90+2.65 37.89+0.74 25.97+3.32
SCAFFOLD 97.94+0.03  86.06+0.93  79.99+2.50 | 49.62+1.17 17.14+2.11 33.83+0.13
DYNEFED 98.13+0.04  95.69+0.93  75.50+6.28 | 57.23+1.56 43.06+3.61 27.41+1.94
FedDM 95.43+£0.02 95.38+0.12  95.52+0.03 | 42.44+0.15 41.15+0.12 41.99+0.19
FedDualMatch | 96.94+0.03  97.03+0.04 97.00+1.11 | 44.61+1.02 44.98+0.40 43.75+0.68

Table 1: Accuracy of FL algorithms on MNIST and CIFARI1O0 in controlled experiments. The re-
sults demonstrate that FedDualMatch maintains accuracy for increasing data heterogeneity between
clients (smaller «).
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Figure 4: Test accuracy under different communication rounds. FedDualMatch’s accuracy increases
rapidly in the first round of communication.

Particularly, DynaFed leverages both types of communication by running FedAvg in the early stages
and then fine-tuning on the aggregated distilled dataset.

Hyperparameters. In controlled experiments, all clients participate in 7' = 20 communication
rounds with batch size 256, which is 10 or 64 for naturally heterogeneous data. Local distribution
matching runs 200 iterations with learning rate 7 = 1.0, while global gradient matching runs M =
10 rounds of sampling model w, and synthesizing data S’ by running 10 iterations with learning
rate 7 = 0.1. Fine-tuning global model runs T, = 500 iterations with learning rate 7,, = 0.001 per
communication round. The distilled data are initialized by random Gaussian noise to safeguard local
data privacy. In addition, only the pooling layers are selected for layer-wise alignment and the layer
number J = 3. If there are no special instructions, we use the Gaussian noise with o, = 0,0, = 0.

6.2 RESULTS AND ANALYSIS

Effectiveness against heterogeneity. Experimental results on heterogeneity are reported in Tab.
and Tab. 2] Results from controlled experiments in Tab. [I] indicate that increasing the degree of
client heterogeneity (« decreasing from 0.05 to 0.005) makes model-communication-based feder-
ated learning methods significantly less effective. For instance, SCAFFOLD’s accuracy drops from
97.94% to 79.99% on MNIST, and from 49.62% to 33.83% on CIFAR-10. In contrast, FedDual-
Match performs well and outperforms FedDM, consistently across different degrees of heterogene-
ity. Particularly, it outperforms all the baselines for the case of high degree of heterogeneity, e.g.,
o = 0.05 or 0.005, and its advantage over baselines becomes more pronounced for the highest de-
gree of heterogeneity, i.e., « = 0.005. However, in scenarios of low degree of heterogeneity, the
performance of dataset distillation methods remains limited, due to the small number of images per
class and thus potential overfitting during training in this case. We leave it to our future work to
address the challenge of how to make the data distillation best possible for FL across the full spec-
trum of heterogeneity. Moreover, experimental results in Tab. [2| further confirm FedDualMatch’s
effectiveness in real-world heterogeneous scenarios. For example, FedDualMatch achieves rela-
tive improvements of 24.56% on Digital-Five and 17.22% on Office-Home compared to FedDM,
especially achieving an absolute improvement of 27.37% on SVHN.

Convergence. Fig. []is about the convergence behaviors of FL algorithms. FedDualMatch, thanks
to GGM, converges significantly faster than FedDM, particularly on CIFAR10 where it outperforms
all other baselines in a single communication round.
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Figure 5: Comparisons of privacy, ablation study, and different image per class (IPC).

Methods Digital-Five Office-Home
MNIST | M-M | SVHN | SYN | USPS | Art | Clipart | Product | Real
FedAvg 91.86 69.78  49.63 61.01 92.04 9.52 21.55 27.43 13.81
FedProx 92.31 7578  50.12 62.01 93.17 | 9.26 22.16 26.42 13.48
FedNova 91.99 76.12  43.25 62.37 93.06 9.26 20.53 26.97 13.20
SCAFFOLD 91.41 73.07 26776 51.83 9097 | 7.31 16.16 20.50 11.38
FedDM 90.71 64.80 3493 60.90 93.55 | 1147 21.64 29.45 19.48
FedDualMatch 94.57 7713 6230 7520 91.40 | 13.00 25.08 35.05 23.50

Table 2: Accuracy of FL algorithms on Digital-Five and Office-Home. FedDualMatch can resist the
natural heterogeneity of data and excel in knowledge discovery across clients.

Privacy. Fig.[5](a) shows the privacy impact of Gaussian noise. Increasing o in the distilled data
leads to a decline in performance. The noise effect on the dynamic radius o, gets more pronounced
with larger o, though whether this is positive or negative depends on the trade-off between stability
and convergence. Smaller radii may improve stability due to the reduced sample space, but leave
optimal model parameters out of the error ball. A larger radius may cover optimal model parameters,
but reduce stability due to a large sample space. How to better balance stability and performance by
optimizing o, is also an interesting future work.

Impact of IPC. Fig.[5](c) indicates that both small and large sizes of distilled dataset (IPC) decrease
performance, which is consistent with observations in previous data distillation research (Lee &
Chung, 2024} |Guo et al., 2023).

Ablation study. Ablation studies in Fig. [5] (b) demonstrate that the layer-wise feature alignment
in LDM brings a significant performance boost, and GGM can further improve performance (e.g.,
0.42% on MNIST and 0.93% on CIFAR10), validating the importance of the combination.

7 CONCLUSION

We propose a federated learning framework, termed FedDualMatch, that leverages distilled data
for communication to eliminate the error accumulation caused by data heterogeneity across clients.
It’s characterized by dual matching, i.e., distribution matching on clients and gradient matching on
server. Moreover, we introduce layer-wise feature alignment for distribution matching and global
model fine-tuning for gradient matching. By design, FedDualMatch excels in facilitating distri-
bution knowledge extraction and convergence stability. We further conduct a theoretical analysis to
understand the rationale behind the practicality of communicating distilled data in federated learning
in terms of effectiveness, convergence, and privacy. Extensive experiments in both controlled and
real-world heterogeneity settings demonstrate its superior and stable performance, and prominent
advantages over the state-of-the-arts on highly heterogeneous data.

Limitation: The performance of FedDualMatch shows stagnation in low-heterogeneity scenarios,
indicating space for improvement. Additionally, current data distillation techniques require substan-
tial computing resources, which may be beyond the computational capacity of edge devices.

REFERENCES
Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,

and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

10



Under review as a conference paper at ICLR 2025

Keith Bonawitz.  Towards federated learning at scale: Syste m design. arXiv preprint
arXiv:1902.01046, 2019.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to feder-
ated learning. arXiv preprint arXiv:2009.01974, 2020.

Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, and Bo Han. Enhancing one-shot
federated learning through data and ensemble co-boosting. arXiv preprint arXiv:2402.15070,
2024.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180-1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1-35, 2016.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching. arXiv preprint arXiv:2310.05773,
2023.

Shengyuan Hu, Jack Goetz, Kshitiz Malik, Hongyuan Zhan, Zhe Liu, and Yue Liu. Fedsynth:
Gradient compression via synthetic data in federated learning. arXiv preprint arXiv:2204.01273,
2022.

Chun-Yin Huang, Ruinan Jin, Can Zhao, Daguang Xu, and Xiaoxiao Li. Federated virtual learning
on heterogeneous data with local-global distillation. arXiv preprint arXiv:2303.02278, 2023.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence, 16(5):550-554, 1994.

Yihan Jiang, Jakub Kone¢ny, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1-2):1-210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yongmin Lee and Hye Won Chung. Selmatch: Effectively scaling up dataset distillation via
selection-based initialization and partial updates by trajectory matching. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713—-10722, 2021a.

11



Under review as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50-60, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pp. 6357—
6368. PMLR, 2021b.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021c.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in neural information processing systems, 33:2351-2363,
2020.

Ping Liu, Xin Yu, and Joey Tianyi Zhou. Meta knowledge condensation for federated learning.
arXiv preprint arXiv:2209.14851, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Renjie Pi, Weizhong Zhang, Yueqi Xie, Jiahui Gao, Xiaoyu Wang, Sunghun Kim, and Qifeng
Chen. Dynafed: Tackling client data heterogeneity with global dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12177-12186, 2023.

Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and I1-Chul Moon. Loss-curvature
matching for dataset selection and condensation. In International Conference on Artificial Intel-
ligence and Statistics, pp. 8606-8628. PMLR, 2023.

Rui Song, Dai Liu, Dave Zhenyu Chen, Andreas Festag, Carsten Trinitis, Martin Schulz, and Alois
Knoll. Federated learning via decentralized dataset distillation in resource-constrained edge envi-
ronments. In 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1-10. IEEE,
2023.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in neural information processing systems, 33:21394-21405, 2020.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018-5027, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020a.

Hui-Po Wang, Dingfan Chen, Raouf Kerkouche, and Mario Fritz. Fedlap-dp: Federated learning by
sharing differentially private loss approximations. arXiv preprint arXiv:2302.01068, 2023.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611-7623, 2020b.

Yuan Wang, Huazhu Fu, Renuga Kanagavelu, Qingsong Wei, Yong Liu, and Rick Siow Mong Goh.
An aggregation-free federated learning for tackling data heterogeneity. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26233-26242, 2024.

Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, and Cho-Jui Hsieh. Feddm: Itera-
tive distribution matching for communication-efficient federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16323-16332, 2023.

12



Under review as a conference paper at ICLR 2025

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
learning for healthcare informatics. Journal of healthcare informatics research, 5:1-19, 2021.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and Chao
Wu. Dense: Data-free one-shot federated learning. Advances in Neural Information Processing
Systems, 35:21414-21428, 2022.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated
learning. arXiv preprint arXiv:2009.07999, 2020.

A PROOF OF EFFECTIVENESS

Theorem 3 (Theorem of effectiveness restated). Let L(w?; D) denote the loss of the model with op-

timal parameter w} trained on the aggregated distilled dataset S, evaluated on the original dataset

D, and w}; the optimal parameter trained on D. With learning rate n = = for ¢ > #% and distri-
9 9

butional distance bound o4 = \/2u>¢./ L for small positive constant €., it holds under Assumptions
that:
E[|[L(wi:D) - Lwy D)] <. (an

Lo?2 . . ..
where € = Tlg < €. is a sufficiently small positive constant.

Proof. The overall objective function L(-) is L-smooth and p-strongly convex, i.e.,
L(w';D) > L(w; D) + VL(w; D) (w' — w) + gHw’ — w|? (12)
and

L(w'; D) < L(w; D) + VL(w; D)T (w' — w) + gllw’ —wl®. a3)

Since w} is the optimal parameter trained on the aggregated distilled dataset S and wy; is the optimal
parameter trained directly on D, it holds that

VL(w};D)=0

and
VL(w;;S) =0. (14)

Substituting w’ = w} and w = w; into Eq. and Eq., we obtain:
L(w}; D) > L(w}s D) + 5wl — wjl? (1)

and I
L(w}; D) < L(wg; D) + 3w — w? (16)

By Eq. [15]and Eq.(16), we obtain
* * L * *
|L(w(3 D) = L(wy D)| < S llw] — wj|*.
Since L(+) is p-strongly convex, we can use the following gradient-based characterization:
(VL(z) = VL(y), = —y) > pllz -y

for all z,y € R™. Applying this to w; and w, we have:

(VL(wg; S) — VL(w?; S), wy — w?) > pllwy — wk|* (17

13
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Next, applying the Cauchy-Schwarz inequality to the left-hand side of Eq.(T7), we obtain:
IVL(ws; S) = VL(w; )| flwe = will = (VL(we; S) = VL(w};S), we — wl) > pllwe — wi|®
Assuming w; # w?, we can divide both sides by ||w; — w?|| to obtain:

IVL(wi; §) = VL(wg; S)|| 2 pllws = wi- (18)

From Eq.(I8), we can bound the parameter distance by Assumption [2}
IVZwaS) _ G

[Jwe —wi| < (19)
K H
To constrain the parameter distance within the dynamic generalization error ball, we define:
R = sup‘ WS — wd
k
Using the parameter update rules:
wfk = wf_l — UVL(wt—1§Sk)a wf = wf_l - UVL(wt—NS)v
we have:
Ry =n-sup||VL(wi—1;Sk) — VL(wi—1; S)|| < nog. (20)
k

To ensure that the parameter distance ||w; — w?*|| is within the dynamic generalization error ball, we
. . _ c.
combine Eq.@ with Eq.@, and set 7 = 7

G G
flwe —wi|| < = <R <coq = c¢>—.
W Hoq

Next, define /.« () in Assumption as:
ha; (%) = VL(wg; ).

The gradients of w? on the aggregated input dataset D and distilled dataset S can be expressed as:

K K

1 1

VL(w;;D) = 22 > VLg(wiiDr), VLW S) = 22 > VL(w): St).
k=1 k=1

Then, applying Assumption [3] we have:

IVL(wg; D) = VL(wg; S)|| =

1 & 1 o
}ZVLk(wz;'Dk)—?ZVLk(w:;Sk)
k=1 k=1

K
1 * *,
<% ; IVLy(wg; Dx) — V Lg(wg; Skl

< gqd.

Then, applying Eq.(14) yields that
IVL(wg; D) = [[VL(wS; D) = VL(wi; S)|| < 0.

Applying p-strong convexity of L(-), Cauchy-Schwarz inequality, and Assumption [3| similar to
Eq.(19), we get that

[lwg — wg|l <

|VL(w}; D) — VI D) _ o4
I T op

Finally, using Eq.(T7), the effectiveness theorem can be proven as:

&~

2

04
2

1

* * L * *
BlIL(03:D) - L DI < B |5 s - wiP| <

[\

Since o4 = +/2u2%¢./ L for small positive constant €., it holds that
E [[|L(w5; D) — L(wg; D)||] < e

14
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B PROOF OF CONVERGENCE

T, nL? (L05+7]G2)

Theorem 4 (Convergence). Define C' = . Under the same assumptions as in The-

2(Typu*n—L)
orem[l} it holds that:
E [L(wy; D)] < L(wg; D) + C, 2D
Remark (Convergence per communication round). Define C;, = W and B =
L?(Lo3+nG?) . . .
— Under the same assumptions as in Theorem |1}, it holds that
* Ct
E[L(wy; D)] = L(wg; D) < Tt B, (22)

g

where T} is the number of training epochs of the global model on the aggregated distilled dataset in
a single communication round.
Proof. We begin by leveraging Assumption 3}

[E[hw (Dr)] = Elho (St < 04-

Aggregating over all K clients, the expectations for the aggregated input data D and distilled data S
are:

1 & 1 &
w = 7 w\&k )]s w = 7 w\Ck )|
Bl (P) = e D Elu(Po) Elhu(S)] = D Elhu(s)

Therefore, the distributional distance between aggregated datasets D and S is:

1 & 1«
H]E[hw(p)] - E[hw(‘s)]” = } ZE[hth(Dk)] - E E[hw(‘sk)] |
1 kI_<1 B k=1
=% > Elh(Di)] = Y Elhu(Sk)] ‘
1 ;:1 k=1
<% D IE[w(Dr)] — Elhu Sk
k=1
S gd.

Given that the embedding function h,, (*) is Lj,-smooth, we can bound the gradient difference as:

|V Lwi; D) — VE(wy; S)|| < Ly |Elh (D)) — Efh(S)]]| < Loa.

Next, consider the parameter update rule:

Wt—1,0 = Wi—1,
Wi 141 = W1 f — nVL(wtfl;{,S),tA: {0,1,-, T, — 1},

W = Wt—1,Ty—1-
Utilizing the L-smoothness of L(w; D), we have:
L 2
L(w;_y 7,1;D) < L(w,_ ;D) + <VL(wt71,£§D)th71,f+1 - wt71,£> + 3 Hwt71,5+1 - wtﬂ,f”

Ln?
= L(wt,l’g;D) -n <VL(wt71,g;D), VL(wthg;S» + D) HVL(thS)HQ-
(23)
Define the gradient error as:

e=VL(w,_,8)—VL(w,_, ;D).

15



Under review as a conference paper at ICLR 2025

Then, the inner product term can be expanded as:
<VL(wt—1,£§ D), VL(wt—1,533)> = <VL(wt—1,£§D)v VL(w;_q £§D) + e>
= HVL(wt—l,f3D)H2 +(VL(w,_y 3 D),e)
> VL, D) “
( )l

— |[VL(we_y D) - el
> HVL wtfl,th;,D — Lpog HVL wtfl,f;ID)H .

|2
Substituting Eq.(24) back into Eq.(23), we obtain:
E[L(wt—1,£+1§ D)

LipG? (2
< E[L(w,_y 5 D)) = 7E | [VL(w,_ i D)|*] + nLnodk [|[VL(w,, 5 D)|[] + =5

az

To bound the cross term, we apply the inequality ab < o- + % with a = nLpogs and b =
E [||VL(w; D)J|], choosing ¢ = #:

s |72, D)) < el 1 ELVEs D)

- 2n 2 ) (26)
_nLioy  n(E[IVL(w, D))
= + )
2 2
Substituting Eq.(26) into Eq.(23), we obtain:
2
E[L(w;_1 4415 D)] < ElL(w,_y 5 D)] ~ nE || VL(w,_, s D)||’]
2 27
nLyoi 1 (E [||VL(wt—1,£5 D)H]) L G?
+ + + :
2 2 2
Applying the u-strong convexity of L(-), we have:
2, _ 24 . 2p°
B V(0 D] > 2 (BILGw_y D) ~ Lwis D) = 2 29)
Let us define the sub-optimality gap:
Ar = E[L(w,_, ;;D)] — L(wg; D).
Substituting Eq.(28) into Eq.(27), we obtain:
L2602 nE[|VL(w,_, 5D)|])? Ln*G?
Avp1 < Ay — 2unAg + 170%d E[IVLE DD el iy (29)

2 2 2

To handle the term n(E[||VL(w,_, ;; D)||])?, we apply Jensen’s inequality, which gives:
(E[IVL(w;,_y 5 D)IN? < E[IVL(w,_y 53 D)|]-
Substituting back into Eq.(29), we get:
2 Ln (Lo +nG?
A <(1- %)At + n(dfn)-

The convergence becomes:

2
1o, 7 ¢
Ar < (1-EDTop, 1-21

r,<(1-=) 5 t:O( )

VR U (Log +nG?) (1 — (1 — un)")

T 14T, 242

_LAg 1 L? (Lo3 + nG?)

e

wen Ty 2p
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Therefore, we conclude that:
C
E[L(wy;D)] - L(wj D) < = + B. (30)
g

Thus, the remark of the convergence per communication round is proved. Then, we focus on the
entire training process, which means the convergence of multi-round communications.

Let:
E [L(wy; D)] < ap L(w}y; D) + BE [L(wo; D)] + v

Substituting into Eq. 30} we get:
LE[L(wy; D)] 1 N L? (Lo3 + nG?)

E[L ;D) < L(w}; D - —
[ (wt+17 )] = (wd7 )+ /14277 Tg 2/142

L? (Lo} 4+ nG?)
2

Ve +

L L
— (1 — ). Lw5: D)+ —3, - E[I ;D) +
( Qi 2 ) (wd7 ) TgMQWﬂt [ ('LU(), )] (TqMQW 21

Top*n
(31
Through Eq.[31] we get:
v = (1+ o)

L
Bt+1 = mﬁt

L?(Lo2+nG?
Ve+1 = Tgﬁzn% + ( 222 )
If the setting of 7}, is big enough, which means L < T,u?n = Tg;Lﬂn < 1, with the initialization

asapg = 0,5y = 1,00 = 0 we get:

7 2 t 2
— t—1 L _ _Typ'n L Ton™n
Qp = Zi:() (Tgu271> = Typn—L 1 Tyu2n S W2 —L ~ 1

_ L2(Lod+nG?) Tyt 1 L\ <Tg77L2(L03+77G2)
= 2p® " TepPn—L \ * T 2 = 2(Tyu*n—L)

Then, the entire convergence can be proved as:

TgnL2 (Lafl +nG?)

E[L(wy; D)] < L(wg; D) + 2(T Py — L)
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C ADDITIONAL EXPERIMENTAL RESULTS

1e8 Synthetic Images and Model Weights Size vs Rounds

Model Weights Size
251 Synthetic Images Size
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B 1s
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>
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Figure 6: Comparison between synthetic images and model weights

Fig[6]shows how the size of the synthetic data and that of the model weight change with rounds. We
can see that the communication efficiency improves while transferring the synthetic data (images)

which is 2.5 times smaller than model weights.

Figure 7: Synthetic images by our method

Figure 8: synthetic images by FedDM
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Figure 9: Comparison using real data

In FedDM, real client data is randomly selected as the initialization for synthetic images. However,
privacy leakage is very likely to happen with this initialization. For example, a lot of image feature
information can be observed in Fig[8] Thus, in our experiments, we opted to generate synthetic im-
ages from random initialization to prevent potential privacy leakage (see Fig[7). We also conducted
additional experiments with real data initialization, where our method still outperforms FedDM (see

Fig[9).

Client Sampling | FedDM | FedBiMatch
1.0 0.3784 0.4611
0.8 0.3542 0.4517
0.5 0.3525 0.4268
0.2 0.3584 0.4101

Table 3: Performance comparison between FedDM and FedBiMatch across client sampling rates.

Tab 3] shows that a lower participating rate will have lower accuracy. The setting is 50 clients with
different join ratios.

Figure 10: Computation overhead

Fig 10| shows that our computation on the server side(with gradient matching) doesn’t cost a lot of
computation overhead compared to FedDM. This is because the gradient matching only operates on
synthetic data. The size of synthetic images depends on IPC. In our setting, each class only has 10
synthetic images. So the computation cost is still acceptable.

Fig 1] shows the performance on the larger number of devices. This is because, with fewer clients,
the aggregated updates can be overly influenced by a small number of clients, especially in non-
IID settings. Increasing the number of clients reduces the variance in updates and ensures a fairer
representation of all client datasets

Tab [ shows the class distribution for different «’s in the Dirichlet distribution.
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Evaluation Accuracy vs Rounds for Different Client Numbers

e
W
=}

Evaluation Accuracy

Client Num 50
—— Client Num 20
—#— Client Num 10

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Rounds

Figure 11: Comparison on large devices [the performance is not correct]

Client | alpha=0.005 | alpha=0.01 | alpha=0.05 alpha=0.1
clientQ [9] [1, 8] [1,5,9] [1,6,7,8]
clientl [3] [0, 5] [0, 2, 3] [0, 1,2, 3]
client2 [2] [6] [2,7] [1,2]
client3 [5] [1,7] [6,7,8,9] [2,7,8,9]
client4 [8] [3] [0, 1, 3, 4] [0, 1, 3, 4]
client5 [0] [2,9] [0, 6] [0,5,6,7,8,9]
client6 [6] [7] [3,5, 6] [2, 3, 6]
client7 [1] [2, 4] [1,6,8,9] | [1,2,3,5,6,7]
client8 [4] [0] [0, 4, 5] [0, 4, 6,7, 8]
client9 [7] [0] [1, 8] [1,5,6,8]

Table 4: Client Classes for alpha=0.005, alpha=0.01, alpha=0.05 and alpha=0.1
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