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ABSTRACT

Federated Learning (FL) often struggles with error accumulation during local
training, particularly on heterogeneous data, which hampers overall performance
and convergence. While dataset distillation is commonly introduced to FL to
enhance efficiency, our work finds that communicating distilled data instead of
models can completely get rid of the error accumulation issue, albeit at the cost of
exacerbating data heterogeneity across clients. To address the amplified hetero-
geneity due to distilled data, we propose a novel FL algorithm termed FedDual-
Match, which performs dual matching in the way that local distribution matching
captures client data distributions while global gradient matching aligns gradients
on the server. This dual approach enriches feature representations and enhances
convergence stability. It proves effective for FL due to a bounded difference in
the testing loss between optimal models trained on the aggregation of either dis-
tilled or original data across clients. At the same time, it can converge to within
a bounded constant of the optimal model loss. Experiments on controlled hetero-
geneous dataset MNIST/CIFAR10 and naturally heterogeneous dataset Digital-
Five/Office-Home demonstrate its advantages over the state-of-the-art methods
that communicate either model or distilled data, in terms of accuracy and conver-
gence. Notably, it maintains accuracy even when data heterogeneity significantly
increases, underscoring its potential for practical applications.

1 INTRODUCTION

Federated learning (FL) is a distributed paradigm that enables collaborative optimization across
devices while preserving data privacy (Bonawitz, 2019). It has been widely adopted in areas of
healthcare (Xu et al., 2021), finance (Li et al., 2020), and the Internet of Things (IoT) (Kairouz
et al., 2021). Due to the communication cost constraint, federated clients typically run multiple local
training epochs before communicating with the server. However, client heterogeneity can cause
weight drifts, which can be further accumulated during communication, leading to performance
drop and convergence instability. To mitigate these challenges, various methods have been proposed
for heterogeneous federated learning, such as regularization techniques (Li et al., 2020), weighted
aggregation (Wang et al., 2020a), and personalization strategies (T Dinh et al., 2020). Despite these
efforts, error accumulation persists. Recently, dataset distillation techniques have been introduced
to FL to enhance efficiency (Xiong et al., 2023; Pi et al., 2023), where client data is condensed
into smaller yet information-dense subsets with similar training utility. In addition to improving
efficiency, in this work, we find that communicating distilled data instead of models can effectively
get rid of the error accumulation, as the model can be fully optimized with aggregated distilled
data on the server in a way akin to the centralized training. However, an issue that accompanies
this change is that the selective extraction and integration of client data features may exacerbate
heterogeneity among distilled datasets compared to the original client data (Huang et al., 2023). To
delve into this issue and the underlying paradigm shift in communication, one will naturally ask the
following two questions for FL:

• How can we fully exploit distilled data and mitigate the amplified heterogeneity?
• Why can distilled data replace model for communication?

To answer the first question, we propose a novel FL framework, called FedDualMatch, that can
leverage complementary strengths of gradient and distribution matching to effectively address the
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Feature distribution Feature distribution

(a) Distribution matching (b) Gradient matching

Input data of Client 1

Input data of Client 2

Distillated data of Client 1

Distillated data of Client 2

Figure 1: (a) Distribution matching amplifies the heterogeneity of distilled data between clients,
while (b) gradient matching reduces the client drift.

amplified heterogeneity on distilled data. As illustrated by Fig. 1 (a), distribution matching excels
at extracting data features but may exacerbate the heterogeneity issue (Shin et al., 2023). Contrast-
ingly, gradient matching, described in Fig. 1 (b), can control the client drift (Zhao et al., 2020) and
thus alleviate the distribution heterogeneity. This insight motivates us to propose local distribution
matching (LDM) for exploiting the unique data features on the client side. It distills data by matching
the mean distribution of the distilled data with that of the given data on each client in multiple layer-
wise feature spaces. To improve the robustness of distillation, we also design Gaussian ball sampling
(Xiong et al., 2023) with adaptive generalization error radius. However, such local data distillation
amplifies the heterogeneity of distilled data between clients, exacerbating the client drift. To rec-
tify this issue, we propose global gradient matching (GGM) on the server side, which constrains
the global model’s gradients for consistency between the aggregated distilled dataset and individual
clients’ distilled datasets and thus improves the convergence stability of the global model. Fig. 2 de-
scribes how the dual matching strategies are integrated into our FedDualMatch to sufficiently distill
data features and meanwhile enhance convergence stability.

For the second question, we conduct a theoretical analysis of the communication of distilled datasets
in terms of effectiveness and convergence. Specifically, we show that under the assumptions of
bounded distributional distance and bounded gradient distance, the testing loss difference between
the optimal model trained on aggregated distilled datasets and that trained on all the given datasets
in the centralized setting can be bounded by a small positive constant. It means that training on
the aggregated distilled dataset closely approximates the ideal centralized training, thus supporting
the effectiveness of distilled data communication. At the same time, the global model can converge
to the sub-optimality gap of the final model is bounded by a constant primarily determined by the
bounded distributional distance.

We provide extensive experiments to evaluate the efficacy and effectiveness of FedDualMatch under
controlled or natural heterogeneity. In controlled experiments with artificial heterogeneity, we set up
the data distributions of MNIST and CIFAR10 via a Dirichlet distribution. Our experimental studies
on them show that it outperforms those existing federated learning methods, based on either distilled
data communication or traditional model communication, in terms of convergence speed and model
accuracy. Further, experimental results on naturally heterogeneous datasets, such as Digit-Five and
Office-Home, demonstrate that it exhibits strong stability and adaptability when handling real-world
data heterogeneity. To summarize, we make the following contributions:

• We propose FedDualMatch, a novel federated learning framework that combines gradient
and distribution matching for distilled dataset communication. It excels in getting rid of
error accumulation while reducing client drift caused by the amplified heterogeneity from
distilled data.

• We provide theoretical analysis on the effectiveness and stable convergence of distilled
dataset communication.

• We conduct extensive experiments which show that our proposed algorithm outperforms
the state-of-the-art on both controlled and naturally heterogeneous datasets and particularly
maintains accuracy on data with increasing heterogeneity.

2 RELATED WORK

Heterogeneous federated learning (HFL): HFL focuses on the significant challenge of non-IID
data distributions across clients as a pervasive issue in real-world federated learning scenarios. To

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Global model aggregation
�� = 

�=1

� ��
�
���

���+1 = ��� − ���(��� , ��)
Local model updating

�� ���+1

Distilled dataset aggregation
 

� = {��}
Global gradient matching�’ = {��’ ∪ ��}

Global model updating
�� = �0 − � 

�=1

�
��(��, �’) )

Local dataset distillation
�� ��

������  �[ℎ�(��)] − �[ℎ�(��)]  

(a) Communication comparison                           (b) Framework of FedDualMatch

Client iLocal data
Synthetic
 data local

Server

Model

Synthetic data global

Local
distribution
matching

Global
gradient
matching

①

②

③

①
②

③

Layer-wise 
alignment

R
Random 
sampling

��

��
��

Gradient matching
��1
�+3

��2
�+3

��+2 ��+3
R

Generalization ball
Active 
radius

Distribution

Client j

Figure 2: (a) The replacement from model to distilled data and (b) the framework of FedDualMatch.
Clients receive the global model from the server, use local distribution-matching-based dataset dis-
tillers to generate synthetic data, and send this data to the server. The server aggregates the distilled
data from all clients, corrects synthetic data heterogeneity using a global gradient-matching-based
dataset distiller, and updates the global model with the corrected aggregated data. The updated
model is then sent back to the clients, repeating the process for federated training.

tackle this, various strategies have emerged. Personalization methods, including pFedMe (T Dinh
et al., 2020), FedBN (Li et al., 2021c), and Ditto (Li et al., 2021b), adapt global models to client-
specific data, in order to enhance local performance while maintaining overall generalization. Reg-
ularization approaches such as FedProx (Li et al., 2020), Scaffold (Karimireddy et al., 2020), and
MOON (Li et al., 2021a) control client drift and stabilize training under heterogeneity by introduc-
ing constraints on local updates. Advanced aggregation techniques such as FedMA (Wang et al.,
2020a), FedNova (Wang et al., 2020b), and FedDyn (Acar et al., 2021) improve model alignment
and convergence under data heterogeneity. Additionally, model and data distillation strategies, like
FedDF (Lin et al., 2020), FedMD (Li & Wang, 2019), and FedBE (Chen & Chao, 2020), enhance
global model robustness by aggregating knowledge from diverse clients. Meta-learning approaches,
e.g., MetaFed (Jiang et al., 2019) and Per-FedAvg (Fallah et al., 2020), leverage dynamic adaptation
to varying client distributions. These methods, all doing model communication, albeit effective, just
alleviate the issue of error accumulation instead of eliminating it at the source.

Dataset-distillation-based federated learning: Recent advancements in FL have leveraged dataset
distillation via either gradient/trajectory matching or distribution matching to enhance communi-
cation efficiency and address client heterogeneity. Gradient and trajectory-based approaches, such
as FedMK (Liu et al., 2022), FedSynth (Hu et al., 2022), DYNAFED (Pi et al., 2023), FedLAP-
DP (Wang et al., 2023), and FEDLGD (Huang et al., 2023), focus on condensing gradient informa-
tion or optimizing trajectories to streamline communication and improve convergence. In contrast,
distribution-based methods, e.g., FedDM (Xiong et al., 2023), emphasize preserving data distribu-
tions through synthetic data generation. One-shot approaches, such as DOSFL (Zhou et al., 2020),
FedD3 (Song et al., 2023), DENSE (Zhang et al., 2022), and Co-Boosting Dai et al. (2024), per-
form nearly as well as with the centralized case by distilling client data into synthetic subsets, while
iterative techniques, including FedDM (Xiong et al., 2023) and FedAF (Wang et al., 2024), repeat-
edly refine distilled datasets to enhance training efficiency and mitigate heterogeneity. Despite these
advancements, the primary use of dataset distillation is to enhance communication efficiency, with-
out exploring its potential to eliminate error accumulation. Additionally, almost all the methods
perform a single type of matching, suffering inherent limitations of that type. Our work fills these
gaps by combining complementary strengths of gradient and distribution matching to unleash the
full potential of dataset distillation in heterogeneous federated learning.

3 PRELIMINARY: FEDERATED OPTIMIZATION

FL is a privacy-preserving multi-client joint training framework involving K clients (McMahan
et al., 2017). Each client holds local data Dk = {(xi

k, y
i
k)}

nk
i=1, where nk = |Dk| represents
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Figure 3: (a) Illustration of the optimization error accumulation in FedAvg, where the generaliza-
tion error ball radius keeps growing. (b) While distribution matching distillation eliminates error
accumulation, it also amplifies data heterogeneity. (c) FedDualMatch mitigates both issues by in-
corporating global gradient matching and global fine-tuning optimization.

the size of the dataset on client k and n =
∑K

k=1 nk, with xi
k and yik, as the i-th sample on

the k-th client and the corresponding label, respectively, following distribution Dk. The goal
of federated learning is to jointly train a single model parameterized by w across clients, via
the optimization objective is: min

w
L(w) =

∑K
k=1

nk

n Lk(w), where Lk(w) denotes the local
loss function of client k. The local loss function under the typical empirical risk minimization
is expressed as Lk(w) = 1

nk

∑nk

i=1 ℓ(fw(x
i
k), y

i
k), where ℓ(·) represents the loss function, such

as cross-entropy loss or mean squared error, and fw(x
i
k) denotes the prediction of the model

with parameters w on input xi
k. For the classic FedAvg algorithm (McMahan et al., 2017),

the server first distributes the global model to each client. Each client then performs local up-
dates on their local datasets. Specifically, the local model update for client k is computed as
wt+1

k = wt − η∇Lk(w
t) = wt − η

nk

∑nk

i=1 ∇wtℓ(fwt(xi
k), y

i
k), where η is the local learning rate.

After local updates, clients send their updated model parameters back to the server, where they are
aggregated as wt+1 =

∑K
k=1

nk

n wt+1
k .

In an ideal scenario where the global aggregation is performed immediately after each local gradient
update, the resulting gradient optimization would be equivalent to that of training directly on the
centralized aggregated data. Let D =

⋃K
k=1 Dk = {(xi, yi)}ni=1. Then the gradient updating in this

case can be written as:

wt+1 = wt − η

K∑
k=1

1

n

nk∑
i=1

∇wtℓ(fwt(xi
k), y

i
k) = wt − η

n

n∑
i=1

∇wtℓ(fwt(xi), yi) = wt − η∇L(wt).

Letw̃t+1 := wt − η∇L(wt), w̃t+E := wt − η
∑t′=t+E−1

t′=t ∇L(w̃t′) represents parameter updating
under ideal centralized training. However, given the significant communication overhead incurred
in this case, practical implementations typically defer the global aggregation until after E local
updates on each client, which is presented as wt+E

k := wt − η
∑t′=t+E−1

t′=t ∇Lk(w
t′

k ), w
t+E =

1
n

∑K
k=1

nk

n wt+E
k . In the common case of the inherent heterogeneity Di ̸= Dj , i ̸= j in client

data distributions, the delay can give rise to significant shifts in gradient during optimization. As
illustrated in Fig. 3 (a), the shift accumulates over local updates such that the trajectory of the
global model deviates from the optimal path and consequently leads to sub-optimal performance
and unstable convergence. The shift accumulation can be decomposed:

w̃t+E − wt+E = η

t′=t+E−1∑
t′=t

K∑
k=1

nk∑
i=1

[
∇wt′

k
ℓ(fwt′

k
(xi

k), y
i
k)−∇w̃t′ ℓ(fw̃t′ (xi

k), y
i
k)
]
. (1)

Therefore, in order to eliminate such shifts and achieve optimal joint training, we have to tackle the
following two challenges: 1) how to mitigate the error accumulation over multiple local updates in
Eq.(1); 2) how to reduce the gradient deviations caused by the client data heterogeneity, as seen in
Fig. 3 (a), to align gradients.

4 METHODOLOGY: FEDDUALMATCH

To address the aforementioned challenges, we propose a federated learning framework based on
dataset distillation and built upon a dual matching approach, dubbed as FedDualMatch. It performs
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local distribution matching to leverage client data features and global gradient matching to correct
the gradient shift on the server. By alternating the local and global optimization, we can make the
most of the complementarity between the two matching distillations.

4.1 LOCAL DISTRIBUTION MATCHING (LDM)

To effectively extract data features while maintaining their distributional diversity on each client, we
adopt a local distribution matching strategy for dataset distillation similar to FedDM(Xiong et al.,
2023). For client k with data Dk, a common way is to estimate the data distribution deviation in a
lower-dimensional feature space using maximum mean discrepancy (MMD) (Gretton et al., 2012):

argmin
Sk

∥∥∥E[hw(Dk)]− E[hw(Sk)]
∥∥∥,

where hw is the embedding function that maps the input data to the feature space, and Sk represents
the distilled dataset of client k. To fully leverage the utility of local data in training, the choice of
hw plays a crucial role. Different from FedDM Xiong et al. (2023), we introduce the concept of
generalization error ball with adaptive radius Rt, for which we define Rt as the largest norm of the
model updating parameter difference between locally distilled dataset on any client, say Sk, and the
aggregated one S = {Sk}Kk=1 on the server side:

Rt = sup
k

∥∥∥wSk
t − wS

t

∥∥∥ , (2)

where wSk
t and wS

t represent the updates after one gradient step on distilled datasets Sk on
client k and S on the server, respectively, i.e., wSk

t = wt−1 − η∇L(wt−1;Sk) and wS
t =

wt−1 − η∇L(wt−1;S) with wt−1 being the model parameter from the last communication round.
Rt is computed on the server. The generalization error ball then refers to the one with the down-
loaded model parameters from the server as its center and Rt as the radius, denoted by B(wt;Rt)
and visualized in Fig. 3. We set embedding function hw to be part of the randomly sampled model
parameter w from the ball B(wt;Rt), and update synthetic data Sk to perform feature distribution
matching with client data Dk in embedding space hw(∗):

argmin
Sk

sup
w∈B(wt;Rt)

∥∥∥E[hw(Dk)]− E[hw(Sk)]
∥∥∥.

In practice, we do empirical estimation in MMD to fit the data distribution for each class:

Lk
MMD(Sk;Dk) =

C∑
c=1

∥∥∥∥∥∥ 1

nc
k

nc
k∑

i=1

hw(x
c,i
k )− 1

sck

sck∑
i=1

hw(x̃
c,i
k )

∥∥∥∥∥∥ ,
where xc,i

k ∈ Dk and x̃c,i
k ∈ Sk represent the i-th sample of class c in Dk and Sk, respectively, while

nc
k and sck stand for the number of samples of class c in Dk and Sk, respectively, and C is the total

number of classes.

To fully exploit the feature distribution of data on each client, in addition to the dynamic computation
of the generalization error ball’s radius, we put forward the backward layer-wise feature alignment,
and incorporate it into the training process. Embedding function hw has multiple layers, i.e., hw =
{v1, v2, . . . , vJ}, with vp being the p-th layer and J being the layer number. We align each layer’s
feature distributions sequentially, starting from the last layer, i.e., the logit layer. Experiments show
that directly summing the MMD losses of all layers for parameter updates causes convergence issues,
which may result from varying complexities of the feature alignment across layers. Besides, we
observed that aligning deeper (output) layers first can facilitate the learning of earlier (input) layers.
Thus, to do the backward feature alignment for each layer on top of the already aligned deeper
layers, our strategy is to accumulate the MMD losses of the current layer, say p ∈ {J, J−1, . . . , 1},
and all deeper layers as follows:

Lk,p
DM (Sk;Dk) =

J∑
q=p

L
k,vq

MMD(Sk;Dk). (3)

This strategy enables feature distributions of deeper layers to remain aligned while aligning the
feature distribution of the current layer, thus effectively extracting the information on the feature
distribution of data on each client.

5
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Algorithm 1: FedDualMatch: Dual Matching Federated Learning
Input: Random initial global model parameter w0, initial radius of generalization error ball R0 = 5.0, #

clients K, communication rounds T , # epochs of global model training Tg , # local epochs E, learning
rate η, local datasets {Dk}, # layers in embedding function J , # rounds of global gradient matching M #
σ is one constant factor on the Gaussian noise variance, # gradient norm bound C

On server:
for each communication round t = 1, 2, . . . , T do

Broadcast global model parameter wt−1 and radius Rt−1 to all clients
Aggregate distilled datasets S = {Sk}Kk=1 from all clients
Update radius of error ball: Rt = supk

∥∥wSk
t − wS

t

∥∥
for each GGM round m = 1, 2, . . . ,M do

Randomly sample model parameter wg from error ball B(wt−1;Rt)
Synthesize S ′ = {S ′

k} by minimizing global gradient matching loss with initial S ′
k = Sk:

LGGM (S ′;S) =
∑K

k=1 dist
(
▽wgLk(wg;S ′

k),▽wgLk(wg;S)
)

end
Fine-tune global model wt−1 on S̃ =

⋃K
k=1{S

′
k,Sk} for Tg epochs to get wt

end
On each client:

Randomly sample model parameter wk from error ball B(wt−1;Rt)
Use the first J layers in model with parameter wt−1 as embedding function hw

Initialize Sk with random Gaussian noise
for each model layer p = J, J−1, . . . , 1 do

Distill local dataset Dk for synthetic dataset Sk via minimizing distribution matching loss:
Lk,p

DM (Sk;Dk) =
∑J

q=p L
k,vq
MMD(Sk;Dk)

Adding Gaussian noise-based differential privacy:

Obtain the clipped gradient: ∇SkL
k,p
DM (Sk;Dk)←

∇SkL
k,p
DM (Sk;Dk)

max

(
1,

∥∇Sk
L

k,p
DM

(Sk;Dk)∥2
C

)
Add Gaussian noise: ∇SkL

k,p
DM (Sk;Dk)← ∇SkL

k,p
DM (Sk;Dk) +

1

|Sk|N (0, σ2C2I)

end
Upload distilled dataset Sk to server

4.2 GLOBAL GRADIENT MATCHING (GGM)

On the server side, the global model is trained on the aggregated distilled dataset in the same manner
as it would be on a centralized dataset, thus avoiding the issue of local error accumulation over
multiple local updates depicted in Fig. 3 (a). Specifically, after sufficient LDM distillation on K
clients, distilled dataset on each client is sent to the server and aggregated: S = {Sk}Kk=1. However,
LDM-based dataset distillation exacerbates the data heterogeneity across clients, as demonstrated
in Huang et al. (2023) and presented in Fig. 3 (b), such that the optimization of the model trained
on each client distilled data Sk may diverge from the optimal path and thus lead to sub-optimal
convergence. To address this issue, we perform two operations, global gradient matching (GGM)
and global fine-tuning optimization (GFO), to improve federated optimization stability and model
performance, as illustrated in Fig. 3 (c).

Global gradient matching for dataset distillation aims to align gradients on locally distilled data from
each client Sk and that on the aggregated one S by minimizing the following loss with initial S ′

k set
to Sk:

LGGM (S ′;S) = E
w∈B(wt−1;Rt)

[
K∑

k=1

dist (▽wLk(w;S ′
k),▽wLk(w;S))

]
, (4)

where S ′ = {S ′
k}, and dist computes the distance between the above two types of gradient for

which we choose the same as in Zhao et al. (2020) to ensure that gradients are aligned.

To preserve data diversity, we further incorporate the newly distilled dataset S ′
k into Sk and fine-

tune the global model by running gradient steps on the new aggregated data S̃ =
⋃K

k=1{S ′
k,Sk} for

6
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Tg epochs1, which ensures that the global model benefits from both aligned gradients and diverse
data representations. To promote the effect of the above two operations on the global model, we
perform them alternately on the server side for M rounds. In each round, the global model is
randomly sampled from the generalization error ball of adaptive radius Rt to enhance the robustness
of gradient matching. The interplay between gradient alignment and fine-tuning helps stabilize the
convergence and improve performance.

The whole algorithm of FedDualMatch is summarized in Algorithm 1.

5 THEORETICAL ANALYSIS

We now conduct a theoretical analysis for our algorithm to reveal its properties on effectiveness,
convergence, and privacy. While prior work DynaFed (Pi et al., 2023) has explored the convergence
of distilled data fine-tuning as a substitute for model communication, the assumptions are too strong
and the theoretical justification remains limited. To see why it is effective to replace model with
distilled dataset for communication in FL, we begin by introducing the following assumptions:
Assumption 1 (Smooth and convex). Local objective function Lk(·) and embedding functions hw(·)
for any client k = 1, · · · ,K are L-smooth and µ-strongly convex.
Assumption 2 (Bounded gradient). For each client, the norm of the gradient is bounded:

∥∇Lk(w)∥ ≤ G, ∀w ∈ Rd, ∀k ∈ {1, 2, . . . ,K}, (5)

where G is a positive constant.
Assumption 3 (Bounded distributional distance). For any embedding model with parameters ran-
domly sampled from a generalization error ball centered at wt with radius R, the distilled dataset
Sk and the given dataset Dk on the k-th client are mapped to the feature space by the embedding
model. The expected feature distance between them is bounded by a small constant σd > 0 for any
sampled w:∥∥E[hw(Dk)]− E[hw(Sk)]

∥∥ ≤ σd, ∀w ∈ B(wt, R), ∀k ∈ {1, 2, . . . ,K}. (6)

Assumption 4 (Bounded gradient difference). The difference between the gradients computed on
the distilled dataset Sk and the aggregated one S is bounded by a constant σg > 0 in expectation
for any w in the training trajectory of global model parameter:

E
[∥∥∇wL(w,Sk)−∇wL(w,S)

∥∥] ≤ σg, ∀w ∈ {wt|wt+1=wt−η∇L(w,S), t=0, ..., Tg−1}. (7)

Assumption 1 ensures that local optimization problems are well-behaved, with smooth and convex
functions, for global convergence. Assumption 2 ensures that gradients remain controlled. Assump-
tion 3 bounds the difference in data distribution between the distilled and original datasets to ensure
that the distillation process won’t introduce significant distortions. Assumption 4 ensures that gra-
dients computed on distilled datasets closely approximate those computed on the aggregated dataset
for minimizing error accumulation. Under Assumptions 1-4, we have the following theorem:
Theorem 1 (Effectiveness). Let L(w∗

s ;D) denote the loss of the model with optimal parameter w∗
s

trained on the aggregated distilled dataset S, evaluated on the original dataset D, and w∗
d present

the optimal parameter trained on D. With learning rate η = c
Tg

for c ≥ G
µσg

and distributional

distance bound σd =
√
2µ2ϵc/L for small positive constant ϵc, it holds that:

E
[∥∥L(w∗

s ;D)− L(w∗
d;D)

∥∥] ≤ ε, (8)

where ε =
Lσ2

d

2µ2 ≤ ϵc is a sufficiently small positive constant.

Theorem 1 demonstrates that the loss of the model trained on distilled data closely approximates
the loss of the model trained on original data, which proves that aggregated distilled dataset training
can achieve a similar training effect to centralized training. This supports the feasibility of using
distilled data as an alternative for federated communication.

Regarding convergence, the following theorem holds.
1Global model in fine-tuning is indexed by wt−1,s for epoch s = 0, 1, · · · , Tg − 1, with wt−1,0 = wt−1

and wt := wt−1,Tg−1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 2 (Convergence). Define C =
TgηL

2(Lσ2
d+ηG2)

2(Tgµ2η−L) . Under the same assumptions as in The-
orem 1, it holds that:

E [L(wt;D)] ≤ L(w∗
d;D) + C, (9)

Remark (Convergence per communication round). Define Ct = L·E[L(wt−1;D)]
µ2η and B =

L2(Lσ2
d+ηG2)

2µ2 . Under the same assumptions as in Theorem 1, it holds that

E [L(wt;D)]− L(w∗
d;D) ≤ Ct

Tg
+B, (10)

where Tg is the number of training epochs of the global model on the aggregated distilled dataset in
a single communication round.

Theorem 2 shows that our algorithm converges with the sub-optimality gap of the final model
bounded by a constant determined by the distributional distance σd. Combined with Theorem 1,
this indicates that the effectiveness and convergence of FedDualMatch depend on the accuracy of
local client data distillation in matching the data distribution. Remark 5 further highlights that dur-
ing a single communication round, the server-side model can achieve strong convergence on the
distilled data. This is because a large number of global training iterations Tg can be performed
within a single round, avoiding error accumulation in federated optimization. Previous work, such
as DynaFed (Pi et al., 2023), provides convergence guarantees for federated learning with distilled
data. However, their analysis assumes that gradients on distilled and original data are tightly aligned
across the entire parameter space, formalized as ∥∇L(w;S)−∇L(w;D)∥ ≤ δ ∥∇L(w;D)∥ + ϵ
for all w. This assumption is overly restrictive and unrealistic, as perfect gradient alignment across
the full parameter space is nearly unattainable. To relax this limitation, we confine the model pa-
rameters to a localized ball, as stated in Assumption 3. This weaker assumption is more practical
and can be satisfied by performing sufficient gradient matching through random sampling within the
ball. This refinement not only broadens the applicability of our approach but also emphasizes its
practical convergence in federated learning scenarios.

In addition, to ensure differential privacy during the execution of our algorithm, we adopt the
Gaussian-based differential privacy mechanism, following the approach used in FedDM. Compared
to FedDM, our method introduces an additional step of sharing the Gaussian error ball radius Rt

between the client and server. However, Rt is privacy-insensitive as it is independent of client data.
This ensures that FedDualMatch also achieves an (ϵ, δ)-differential privacy guarantee. The detailed
proofs of these theorems are provided in Appendices A and B.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate FedDualMatch through controlled experiments and naturally heterogeneous
data. In controlled experiments, client heterogeneity is adjusted using the Dirichlet distribution’s
alpha parameter, where smaller values indicate greater heterogeneity (McMahan et al., 2017). The
MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009) datasets are distributed to
10 clients with alpha values of 0.005, 0.01, and 0.05, respectively, to test the performance under
varying degree of disparities in data distribution. For real-world heterogeneity, the Digital-Five
dataset—comprising MNIST (LeCun et al., 1998), MNIST-M (Ganin et al., 2016), SVHN (Netzer
et al., 2011), SynthDigits (Hull, 1994), and USPS (Ganin & Lempitsky, 2015)—is naturally divided
into 5 datasets, one for each client, exhibiting significant differences in image style and source.
Similarly, Office-Home (Venkateswara et al., 2017) is split into four clients: Art, Clipart, Product,
and Real World, each in a different visual domain.

Baseline methods. We compare FedDualMatch with classical federated learning methods perform-
ing model communication, including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020),
FedNova (Wang et al., 2020b), and SCAFFOLD (Karimireddy et al., 2020). The latter three spe-
cialize in addressing client data heterogeneity. We also compare FedDualMatch with methods doing
distilled dataset communication, such as FedDM (Xiong et al., 2023) and DynaFed (Pi et al., 2023).
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Methods MNIST CIFAR10
α = 0.05 α = 0.01 α = 0.005 α = 0.05 α = 0.01 α = 0.005

FedAvg 97.93±0.02 80.09±1.57 82.95±1.69 53.64±3.39 39.46±0.88 38.04±2.92
FedProx 98.01±0.00 89.99±0.98 83.41±2.34 55.13±0.04 40.93±1.68 39.30±2.02
FedNova 97.67±0.01 75.68±0.14 77.97±5.35 47.90±2.65 37.89±0.74 25.97±3.32

SCAFFOLD 97.94±0.03 86.06±0.93 79.99±2.50 49.62±1.17 17.14±2.11 33.83±0.13
DYNEFED 98.13±0.04 95.69±0.93 75.50±6.28 57.23±1.56 43.06±3.61 27.41±1.94

FedDM 95.43±0.02 95.38±0.12 95.52±0.03 42.44±0.15 41.15±0.12 41.99±0.19
FedDualMatch 96.94±0.03 97.03±0.04 97.00±1.11 44.61±1.02 44.98±0.40 43.75±0.68

Table 1: Accuracy of FL algorithms on MNIST and CIFAR10 in controlled experiments. The re-
sults demonstrate that FedDualMatch maintains accuracy for increasing data heterogeneity between
clients (smaller α).

Figure 4: Test accuracy under different communication rounds. FedDualMatch’s accuracy increases
rapidly in the first round of communication.

Particularly, DynaFed leverages both types of communication by running FedAvg in the early stages
and then fine-tuning on the aggregated distilled dataset.

Hyperparameters. In controlled experiments, all clients participate in T = 20 communication
rounds with batch size 256, which is 10 or 64 for naturally heterogeneous data. Local distribution
matching runs 200 iterations with learning rate η = 1.0, while global gradient matching runs M =
10 rounds of sampling model wg and synthesizing data S ′ by running 10 iterations with learning
rate η = 0.1. Fine-tuning global model runs Tg = 500 iterations with learning rate ηm = 0.001 per
communication round. The distilled data are initialized by random Gaussian noise to safeguard local
data privacy. In addition, only the pooling layers are selected for layer-wise alignment and the layer
number J = 3. If there are no special instructions, we use the Gaussian noise with σr = 0, σs = 0.

6.2 RESULTS AND ANALYSIS

Effectiveness against heterogeneity. Experimental results on heterogeneity are reported in Tab. 1
and Tab. 2. Results from controlled experiments in Tab. 1 indicate that increasing the degree of
client heterogeneity (α decreasing from 0.05 to 0.005) makes model-communication-based feder-
ated learning methods significantly less effective. For instance, SCAFFOLD’s accuracy drops from
97.94% to 79.99% on MNIST, and from 49.62% to 33.83% on CIFAR-10. In contrast, FedDual-
Match performs well and outperforms FedDM, consistently across different degrees of heterogene-
ity. Particularly, it outperforms all the baselines for the case of high degree of heterogeneity, e.g.,
α = 0.05 or 0.005, and its advantage over baselines becomes more pronounced for the highest de-
gree of heterogeneity, i.e., α = 0.005. However, in scenarios of low degree of heterogeneity, the
performance of dataset distillation methods remains limited, due to the small number of images per
class and thus potential overfitting during training in this case. We leave it to our future work to
address the challenge of how to make the data distillation best possible for FL across the full spec-
trum of heterogeneity. Moreover, experimental results in Tab. 2 further confirm FedDualMatch’s
effectiveness in real-world heterogeneous scenarios. For example, FedDualMatch achieves rela-
tive improvements of 24.56% on Digital-Five and 17.22% on Office-Home compared to FedDM,
especially achieving an absolute improvement of 27.37% on SVHN.

Convergence. Fig. 4 is about the convergence behaviors of FL algorithms. FedDualMatch, thanks
to GGM, converges significantly faster than FedDM, particularly on CIFAR10 where it outperforms
all other baselines in a single communication round.
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Figure 5: Comparisons of privacy, ablation study, and different image per class (IPC).

Methods Digital-Five Office-Home
MNIST M-M SVHN SYN USPS Art Clipart Product Real

FedAvg 91.86 69.78 49.63 61.01 92.04 9.52 21.55 27.43 13.81
FedProx 92.31 75.78 50.12 62.01 93.17 9.26 22.16 26.42 13.48
FedNova 91.99 76.12 43.25 62.37 93.06 9.26 20.53 26.97 13.20

SCAFFOLD 91.41 73.07 26.76 51.83 90.97 7.31 16.16 20.50 11.38
FedDM 90.71 64.80 34.93 60.90 93.55 11.47 21.64 29.45 19.48

FedDualMatch 94.57 77.13 62.30 75.20 91.40 13.00 25.08 35.05 23.50

Table 2: Accuracy of FL algorithms on Digital-Five and Office-Home. FedDualMatch can resist the
natural heterogeneity of data and excel in knowledge discovery across clients.

Privacy. Fig. 5 (a) shows the privacy impact of Gaussian noise. Increasing σs in the distilled data
leads to a decline in performance. The noise effect on the dynamic radius σr gets more pronounced
with larger σs, though whether this is positive or negative depends on the trade-off between stability
and convergence. Smaller radii may improve stability due to the reduced sample space, but leave
optimal model parameters out of the error ball. A larger radius may cover optimal model parameters,
but reduce stability due to a large sample space. How to better balance stability and performance by
optimizing σr is also an interesting future work.

Impact of IPC. Fig. 5 (c) indicates that both small and large sizes of distilled dataset (IPC) decrease
performance, which is consistent with observations in previous data distillation research (Lee &
Chung, 2024; Guo et al., 2023).

Ablation study. Ablation studies in Fig. 5 (b) demonstrate that the layer-wise feature alignment
in LDM brings a significant performance boost, and GGM can further improve performance (e.g.,
0.42% on MNIST and 0.93% on CIFAR10), validating the importance of the combination.

7 CONCLUSION

We propose a federated learning framework, termed FedDualMatch, that leverages distilled data
for communication to eliminate the error accumulation caused by data heterogeneity across clients.
It’s characterized by dual matching, i.e., distribution matching on clients and gradient matching on
server. Moreover, we introduce layer-wise feature alignment for distribution matching and global
model fine-tuning for gradient matching. By design, FedDualMatch excels in facilitating distri-
bution knowledge extraction and convergence stability. We further conduct a theoretical analysis to
understand the rationale behind the practicality of communicating distilled data in federated learning
in terms of effectiveness, convergence, and privacy. Extensive experiments in both controlled and
real-world heterogeneity settings demonstrate its superior and stable performance, and prominent
advantages over the state-of-the-arts on highly heterogeneous data.

Limitation: The performance of FedDualMatch shows stagnation in low-heterogeneity scenarios,
indicating space for improvement. Additionally, current data distillation techniques require substan-
tial computing resources, which may be beyond the computational capacity of edge devices.
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A PROOF OF EFFECTIVENESS

Theorem 3 (Theorem of effectiveness restated). Let L(w∗
s ;D) denote the loss of the model with op-

timal parameter w∗
s trained on the aggregated distilled dataset S, evaluated on the original dataset

D, and w∗
d the optimal parameter trained on D. With learning rate η = c

Tg
for c ≥ G

µσg
and distri-

butional distance bound σd =
√
2µ2ϵc/L for small positive constant ϵc, it holds under Assumptions

1-4 that:
E
[∥∥L(w∗

s ;D)− L(w∗
d;D)

∥∥] ≤ ε, (11)

where ε =
Lσ2

d

2µ2 ≤ ϵc is a sufficiently small positive constant.

Proof. The overall objective function L(·) is L-smooth and µ-strongly convex, i.e.,

L(w′;D) ≥ L(w;D) +∇L(w;D)T (w′ − w) +
µ

2
∥w′ − w∥2 (12)

and
L(w′;D) ≤ L(w;D) +∇L(w;D)T (w′ − w) +

L

2
∥w′ − w∥2. (13)

Since w∗
s is the optimal parameter trained on the aggregated distilled dataset S and w∗

d is the optimal
parameter trained directly on D, it holds that

∇L(w∗
d;D) = 0

and
∇L(w∗

s ;S) = 0. (14)

Substituting w′ = w∗
s and w = w∗

d into Eq.(12) and Eq.(13), we obtain:

L(w∗
s ;D) ≥ L(w∗

d;D) +
µ

2
∥w∗

s − w∗
d∥2 (15)

and
L(w∗

s ;D) ≤ L(w∗
d;D) +

L

2
∥w∗

s − w∗
d∥2 (16)

By Eq. 15 and Eq.(16), we obtain

|L(w∗
s ;D)− L(w∗

d;D)| ≤ L

2
∥w∗

s − w∗
d∥2.

Since L(·) is µ-strongly convex, we can use the following gradient-based characterization:

⟨∇L(x)−∇L(y), x− y⟩ ≥ µ∥x− y∥2

for all x, y ∈ Rn. Applying this to wt and w∗
s , we have:

⟨∇L(wt;S)−∇L(w∗
s ;S), wt − w∗

s⟩ ≥ µ∥wt − w∗
s∥2. (17)
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Next, applying the Cauchy-Schwarz inequality to the left-hand side of Eq.(17), we obtain:
∥∇L(wt;S)−∇L(w∗

s ;S)∥ ∥wt − w∗
s∥ ≥ ⟨∇L(wt;S)−∇L(w∗

s ;S), wt − w∗
s⟩ ≥ µ∥wt − w∗

s∥2

Assuming wt ̸= w∗
s , we can divide both sides by ∥wt − w∗

s∥ to obtain:
∥∇L(wt;S)−∇L(w∗

s ;S)∥ ≥ µ∥wt − w∗
s∥. (18)

From Eq.(18), we can bound the parameter distance by Assumption 2:

∥wt − w∗
s∥ ≤ ∥∇L(wt;S)∥

µ
≤ G

µ
. (19)

To constrain the parameter distance within the dynamic generalization error ball, we define:

Rt = sup
k

∥∥∥wSk
t − wS

t

∥∥∥ .
Using the parameter update rules:

wSk
t = wS

t−1 − η∇L(wt−1;Sk), wS
t = wS

t−1 − η∇L(wt−1;S),
we have:

Rt = η · sup
k

∥∇L(wt−1;Sk)−∇L(wt−1;S)∥ ≤ ησd. (20)

To ensure that the parameter distance ∥wt −w∗
s∥ is within the dynamic generalization error ball, we

combine Eq.(19) with Eq.(20), and set η = c
Tg

:

∥wt − w∗
s∥ ≤ G

µ
≤ Rt ≤ cσd =⇒ c ≥ G

µσd
.

Next, define hw∗
s
(∗) in Assumption 3 as:

hw∗
s
(∗) = ∇L(w∗

s ; ∗).

The gradients of w∗
s on the aggregated input dataset D and distilled dataset S can be expressed as:

∇L(w∗
s ;D) =

1

K

K∑
k=1

∇Lk(w
∗
s ;Dk), ∇L(w∗

s ;S) =
1

K

K∑
k=1

∇Lk(w
∗
s ;Sk).

Then, applying Assumption 3, we have:

∥∇L(w∗
s ;D)−∇L(w∗

s ;S)∥ =

∥∥∥∥∥ 1

K

K∑
k=1

∇Lk(w
∗
s ;Dk)−

1

K

K∑
k=1

∇Lk(w
∗
s ;Sk)

∥∥∥∥∥
≤ 1

K

K∑
k=1

∥∇Lk(w
∗
s ;Dk)−∇Lk(w

∗
s ;Sk)∥

≤ σd.

Then, applying Eq.(14) yields that
∥∇L(w∗

s ;D)∥ = ∥∇L(w∗
s ;D)−∇L(w∗

s ;S)∥ ≤ σd.

Applying µ-strong convexity of L(·), Cauchy-Schwarz inequality, and Assumption 3, similar to
Eq.(19), we get that

∥w∗
s − w∗

d∥ ≤ ∥∇L(w∗
s ;D)−∇L(w∗

d;D)∥
µ

≤ σd

µ
.

Finally, using Eq.(17), the effectiveness theorem can be proven as:

E [∥L(w∗
s ;D)− L(w∗

d;D)∥] ≤ E
[
L

2
∥w∗

s − w∗
d∥2
]
≤ Lσ2

d

2µ2
.

Since σd =
√

2µ2ϵc/L for small positive constant ϵc, it holds that
E [∥L(w∗

s ;D)− L(w∗
d;D)∥] ≤ ϵc.

14
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B PROOF OF CONVERGENCE

Theorem 4 (Convergence). Define C =
TgηL

2(Lσ2
d+ηG2)

2(Tgµ2η−L) . Under the same assumptions as in The-
orem 1, it holds that:

E [L(wt;D)] ≤ L(w∗
d;D) + C, (21)

Remark (Convergence per communication round). Define Ct = L·E[L(wt−1;D)]
µ2η and B =

L2(Lσ2
d+ηG2)

2µ2 . Under the same assumptions as in Theorem 1, it holds that

E [L(wt;D)]− L(w∗
d;D) ≤ Ct

Tg
+B, (22)

where Tg is the number of training epochs of the global model on the aggregated distilled dataset in
a single communication round.

Proof. We begin by leveraging Assumption 3:

∥E[hw(Dk)]− E[hw(Sk)]∥ ≤ σd.

Aggregating over all K clients, the expectations for the aggregated input data D and distilled data S
are:

E[hw(D)] =
1

K

K∑
k=1

E[hw(Dk)], E[hw(S)] =
1

K

K∑
k=1

E[hw(Sk)].

Therefore, the distributional distance between aggregated datasets D and S is:

∥E[hw(D)]− E[hw(S)]∥ =

∥∥∥∥∥ 1

K

K∑
k=1

E[hw(Dk)]−
1

K

K∑
k=1

E[hw(Sk)]

∥∥∥∥∥
=

1

K

∥∥∥∥∥
K∑

k=1

E[hw(Dk)]−
K∑

k=1

E[hw(Sk)]

∥∥∥∥∥
≤ 1

K

K∑
k=1

∥E[hw(Dk)]− E[hw(Sk)]∥

≤ σd.

Given that the embedding function hw(∗) is Lh-smooth, we can bound the gradient difference as:

∥∇L(wt;D)−∇L(wt;S)∥ ≤ Lh ∥E[hw(D)]− E[hw(S)]∥ ≤ Lhσd.

Next, consider the parameter update rule:

wt−1,0 = wt−1,

wt−1,t̂+1 = wt−1,t̂ − η∇L(wt−1;t̂,S), t̂ = {0, 1, ·, Tg − 1},
wt = wt−1,Tg−1.

Utilizing the L-smoothness of L(w;D), we have:

L(wt−1,t̂+1;D) ≤ L(wt−1,t̂;D) +
〈
∇L(wt−1,t̂;D), wt−1,t̂+1 − wt−1,t̂

〉
+

L

2

∥∥wt−1,t̂+1 − wt−1,t̂

∥∥2
= L(wt−1,t̂;D)− η

〈
∇L(wt−1,t̂;D),∇L(wt−1,t̂;S)

〉
+

Lη2

2
∥∇L(wt;S)∥2 .

(23)

Define the gradient error as:

e = ∇L(wt−1,t̂;S)−∇L(wt−1,t̂;D).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then, the inner product term can be expanded as:〈
∇L(wt−1,t̂;D),∇L(wt−1,t̂;S)

〉
=
〈
∇L(wt−1,t̂;D),∇L(wt−1,t̂;D) + e

〉
=
∥∥∇L(wt−1,t̂;D)

∥∥2 + 〈∇L(wt−1,t̂;D), e
〉

≥
∥∥∇L(wt−1,t̂;D)

∥∥2 − ∥∥∇L(wt−1,t̂;D)
∥∥ · ∥e∥

≥
∥∥∇L(wt−1,t̂;D)

∥∥2 − Lhσd

∥∥∇L(wt−1,t̂;D)
∥∥ .

(24)

Substituting Eq.(24) back into Eq.(23), we obtain:

E[L(wt−1,t̂+1;D)]

≤ E[L(wt−1,t̂;D)]− ηE
[∥∥∇L(wt−1,t̂;D)

∥∥2]+ ηLhσdE
[∥∥∇L(wt−1,t̂;D)

∥∥]+ Lη2G2

2
.

(25)

To bound the cross term, we apply the inequality ab ≤ a2

2c + cb2

2 with a = ηLhσd and b =
E [∥∇L(wt;D)∥], choosing c = η:

ηLhσdE
[∥∥∇L(wt−1,t̂;D)

∥∥] ≤ (ηLhσd)
2

2η
+

η
(
E
[∥∥∇L(wt−1,t̂;D)

∥∥])2
2

=
ηL2

hσ
2
d

2
+

η
(
E
[∥∥∇L(wt−1,t̂;D)

∥∥])2
2

.

(26)

Substituting Eq.(26) into Eq.(25), we obtain:

E[L(wt−1,t̂+1;D)] ≤ E[L(wt−1,t̂;D)]− ηE
[∥∥∇L(wt−1,t̂;D)

∥∥2]
+

ηL2
hσ

2
d

2
+

η
(
E
[∥∥∇L(wt−1,t̂;D)

∥∥])2
2

+
Lη2G2

2
.

(27)

Applying the µ-strong convexity of L(·), we have:

E[
∥∥∇L(wt−1,t̂;D)

∥∥2] ≥ 2µ2

L

(
E[L(wt−1,t̂;D)]− L(w∗

d;D)
)
=

2µ2

L
∆t. (28)

Let us define the sub-optimality gap:

∆t = E[L(wt−1,t̂;D)]− L(w∗
d;D).

Substituting Eq.(28) into Eq.(27), we obtain:

∆t+1 ≤ ∆t − 2µη∆t +
ηL2

hσ
2
d

2
+

η(E
[∥∥∇L(wt−1,t̂;D)

∥∥])2
2

+
Lη2G2

2
. (29)

To handle the term η(E[∥∇L(wt−1,t̂;D)∥])2, we apply Jensen’s inequality, which gives:

(E[∥∇L(wt−1,t̂;D)∥])2 ≤ E[∥∇L(wt−1,t̂;D)∥2].
Substituting back into Eq.(29), we get:

∆t+1 ≤ (1− µ2η

L
)∆t +

Lη
(
Lσ2

d + ηG2
)

2
.

The convergence becomes:

∆Tg
≤ (1− µ2η

L
)Tg∆0 +

Lη
(
Lσ2

d + ηG2
)

2

Tg−1∑
t=0

(1− µ2η

L
)t

≤ ∆0

1 + µ2η
L Tg

+
L2
(
Lσ2

d + ηG2
)
(1− (1− µη)Tg )

2µ2

≤ L∆0

µ2η
· 1

Tg
+

L2
(
Lσ2

d + ηG2
)

2µ2
.
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Therefore, we conclude that:

E [L(wt;D)]− L(w∗
d;D) ≤ Ct

Tg
+B. (30)

Thus, the remark of the convergence per communication round is proved. Then, we focus on the
entire training process, which means the convergence of multi-round communications.

Let:
E [L(wt;D)] ≤ αtL(w

∗
d;D) + βtE [L(w0;D)] + γt

Substituting into Eq. 30, we get:

E [L(wt+1;D)] ≤ L(w∗
d;D) +

LE [L(wt;D)]

µ2η
· 1

Tg
+

L2
(
Lσ2

d + ηG2
)

2µ2

= (1 + αt
L

Tgµ2η
) · L(w∗

d;D) +
L

Tgµ2η
βt · E [L(w0;D)] +

(
L

Tgµ2η
γt +

L2
(
Lσ2

d + ηG2
)

2µ2

)
(31)

Through Eq. 31, we get: 
αt+1 = (1 + αt

L
Tgµ2η )

βt+1 = L
Tgµ2ηβt

γt+1 = L
Tgµ2ηγt +

L2(Lσ2
d+ηG2)

2µ2

If the setting of Tg is big enough, which means L ≪ Tgµ
2η ⇒ L

Tgµ2η ≪ 1, with the initialization
asα0 = 0, β0 = 1, σ0 = 0 we get:

αt =
∑t−1

i=0

(
L

Tgµ2η

)i
=

Tgµ
2η

Tgµ2η−L

(
1−

(
L

Tgµ2η

)t)
≤ Tgµ

2η
Tgµ2η−L ≈ 1

βt =
(

L
Tgµ2η

)t
≈ 0

γt =
L2(Lσ2

d+ηG2)
2µ2 · Tgµ

2η
Tgµ2η−L

(
1−

(
L

Tgµ2η

)t)
≤ TgηL

2(Lσ2
d+ηG2)

2(Tgµ2η−L)

Then, the entire convergence can be proved as:

E [L(wt;D)] ≤ L(w∗
d;D) +

TgηL
2(Lσ2

d + ηG2)

2(Tgµ2η − L)
.
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C ADDITIONAL EXPERIMENTAL RESULTS

Figure 6: Comparison between synthetic images and model weights

Fig 6 shows how the size of the synthetic data and that of the model weight change with rounds. We
can see that the communication efficiency improves while transferring the synthetic data (images)
which is 2.5 times smaller than model weights.

Figure 7: Synthetic images by our method

Figure 8: synthetic images by FedDM

18
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Figure 9: Comparison using real data

In FedDM, real client data is randomly selected as the initialization for synthetic images. However,
privacy leakage is very likely to happen with this initialization. For example, a lot of image feature
information can be observed in Fig 8. Thus, in our experiments, we opted to generate synthetic im-
ages from random initialization to prevent potential privacy leakage (see Fig 7). We also conducted
additional experiments with real data initialization, where our method still outperforms FedDM (see
Fig 9).

Client Sampling FedDM FedBiMatch
1.0 0.3784 0.4611
0.8 0.3542 0.4517
0.5 0.3525 0.4268
0.2 0.3584 0.4101

Table 3: Performance comparison between FedDM and FedBiMatch across client sampling rates.

Tab 3 shows that a lower participating rate will have lower accuracy. The setting is 50 clients with
different join ratios.

Figure 10: Computation overhead

Fig 10 shows that our computation on the server side(with gradient matching) doesn’t cost a lot of
computation overhead compared to FedDM. This is because the gradient matching only operates on
synthetic data. The size of synthetic images depends on IPC. In our setting, each class only has 10
synthetic images. So the computation cost is still acceptable.

Fig 11 shows the performance on the larger number of devices. This is because, with fewer clients,
the aggregated updates can be overly influenced by a small number of clients, especially in non-
IID settings. Increasing the number of clients reduces the variance in updates and ensures a fairer
representation of all client datasets

Tab C shows the class distribution for different α’s in the Dirichlet distribution.
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Figure 11: Comparison on large devices [the performance is not correct]

Client alpha=0.005 alpha=0.01 alpha=0.05 alpha=0.1
client0 [9] [1, 8] [1, 5, 9] [1, 6, 7, 8]
client1 [3] [0, 5] [0, 2, 3] [0, 1, 2, 3]
client2 [2] [6] [2, 7] [1, 2]
client3 [5] [1, 7] [6, 7, 8, 9] [2, 7, 8, 9]
client4 [8] [3] [0, 1, 3, 4] [0, 1, 3, 4]
client5 [0] [2, 9] [0, 6] [0, 5, 6, 7, 8, 9]
client6 [6] [7] [3, 5, 6] [2, 3, 6]
client7 [1] [2, 4] [1, 6, 8, 9] [1, 2, 3, 5, 6, 7]
client8 [4] [0] [0, 4, 5] [0, 4, 6, 7, 8]
client9 [7] [0] [1, 8] [1, 5, 6, 8]

Table 4: Client Classes for alpha=0.005, alpha=0.01, alpha=0.05 and alpha=0.1
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