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Abstract

We present the first nontrivial procedure for configuring heuristic algorithms to
maximize the utility provided to their end users while also offering theoretical
guarantees about performance. Existing procedures seek configurations that mini-
mize expected runtime. However, very recent theoretical work argues that expected
runtime minimization fails to capture algorithm designers’ preferences. Here we
show that the utilitarian objective also confers significant algorithmic benefits.
Intuitively, this is because mean runtime is dominated by extremely long runs
even when they are incredibly rare; indeed, even when an algorithm never gives
rise to such long runs, configuration procedures that provably minimize mean
runtime must perform a huge number of experiments to demonstrate this fact. In
contrast, utility is bounded and monotonically decreasing in runtime, allowing for
meaningful empirical bounds on a configuration’s performance. This paper builds
on this idea to describe effective and theoretically sound configuration procedures.
We prove upper bounds on the runtime of these procedures that are similar to
theoretical lower bounds, while also demonstrating their performance empirically.

1 Introduction

Heuristic algorithms are surprisingly effective at solving hard computational problems. However, no
single set of heuristics works well on all problems; the design choices must be tuned to a distribution
of problem instances in the same way that the parameters of a machine learning model are tuned to a
dataset. This black-box optimization problem is called algorithm configuration. Roughly speaking,
the literature on algorithm configuration is divided into two camps. The older and larger camp designs
heuristic procedures that aim to find good configurations as quickly as possible (Birattari et al., 2002;
Hutter et al., 2009, 2011; Ansótegui et al., 2009; López-Ibáñez et al., 2016). A second, more recent
line of work aims to provably identify approximately optimal configurations and to offer guarantees
about the runtime required to do so (Kleinberg et al., 2017; Weisz et al., 2018; Kleinberg et al., 2019;
Weisz et al., 2019, 2020). Virtually all of the work in both camps has focused on minimizing some
version of capped average runtime, although one exception of which we are aware is Tornede et al.
(2020), which explores objectives like higher-order polynomials of runtime that might better capture
a user’s level of risk-aversion.

Very recently, a theoretical argument has been made that minimizing expected runtime is inconsistent
with a plausible set of axioms about algorithm designers’ preferences (Graham et al., 2023). Runtime
is an economic good and, like other economic goods, the value an individual assigns to it is not
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necessarily proportional to the value of the good itself—nor should it be. We can characterize a set of
bounded and monotonically decreasing utility functions that are implied by certain axioms. These
are essentially the von Neumann–Morgenstern axioms (Von Neumann and Morgenstern, 1944) from
classical decision theory, plus two novel runtime-specific axioms that assert a (weak) preference for
faster runs over slower ones, and a (strict) preference for algorithm runs that complete over ones that
time out. Preferences that follow these axioms are described by a utility function that is monotonically
decreasing in runtime from 1 to 0. This utility function can incorporate factors like the benefit an
end user attains from completing a run, the cost they pay for cloud computing resources, and any
uncertainty they may have about when an answer will stop being useful to them. This utilitarian
perspective opens a new and exciting direction for algorithm configuration.

While it is reassuring to know that optimizing utility instead of runtime is the right thing to do, it also
offers significant algorithmic benefits. Because utilities are bounded and monotonically decreasing,
exceedingly long runs contribute negligibly to estimates of an algorithm’s expected utility. This
means that there will always be some captime that allows us to accurately estimate true expected
utility from capped samples. We can use tools from the multi-armed bandit literature for best arm
identification, and the algorithms we describe will draw on the elimination and racing algorithms
described in Mannor and Tsitsiklis (2004); Even-Dar et al. (2006) and elsewhere. In contrast, runtime-
based configuration procedures like Structured Procrastination (Kleinberg et al., 2017), Structured
Procrastination with Confidence (Kleinberg et al., 2019), LeapsAndBounds (Weisz et al., 2018),
CapsAndRuns (Weisz et al., 2019), and ImpatientCapsAndRuns (Weisz et al., 2020) need to do many
runs at large captimes in order to make theoretical guarantees. Furthermore, in order to be able to
make any provable guarantees at all, they have to introduce an additional parameter specifying how
much of the runtime CDF can be ignored; even if an algorithm has always finished very quickly on
every instance seen so far, it could always take so long on the next instance that its expected runtime
is arbitrarily large. In this setting, no optimality guarantees can be made without broadening the
definition of optimality.

Other theoretically-motivated methods such as Gupta and Roughgarden (2017); Balcan et al. (2017,
2021) offer performance guarantees based on different measures of complexity and guarantee notions
of PAC optimality akin to those we present here. These papers do not focus on runtime, instead
studying traditional sample complexity, with each sample (i.e., algorithm run) contributing the same
“sampling cost.” In our algorithm configuration setting, the cost of a sample is the amount of (capped)
runtime spent acquiring it, with longer captimes potentially leading to more expensive (but also more
informative) samples. Because of this difference, these two lines of work propose quite different
types of learning algorithms. However, Balcan et al. (2021) do assume the existence of a bounded
utility function which measures algorithm performance, and others (Hoos and Stützle, 2004) have
argued that utility functions of this form are better objectives to optimize than runtime when choosing
algorithms. Some methods have been specifically designed to exploit the parallel nature of the
algorithm configuration problem; AC-Band (Brandt et al., 2023) is a bandit-based procedure inspired
by the Hyperband algorithm (Li et al., 2017) that runs multiple configurations simultaneously while
ruling out poor-performing ones along the way and offering theoretical guarantees with respect to the
set of configurations considered.

Inspired by the mantra of procrastination that has found success in previous work, and by the
benefits that come with the use of utility functions, this paper presents a procedure we dub Utilitarian
Procrastination (UP), so-named because it performs as many low-captime runs as possible before
proceeding to higher-captime runs. We offer theoretical guarantees about its performance, showing
that it will return a good configuration and proving that its worst-case upper bound is similar to
the theoretical lower bound that any procedure must require. We also present experimental results
showing how this procedure performs in practice and how it compares to a more naive baseline.

2 Setup

We assume there is a monotonically decreasing runtime utility function u : R�0 ! [0, 1] with
u(0) = 1 and limt!1 u(t) = 0. The existence of u follows from simple axioms (Graham et al.,
2023). The value u(t) describes the (expected) well-being of an individual who uses an algorithm to
solve a problem instance (e.g., an integer program). During the configuration process, the goal will
be to choose an algorithm that maximizes u(t), in expectation over t.
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Given a set of algorithms indexed by i = 1, ..., n, our goal is to find an approximately optimal
algorithm using capped runtime samples. We assume we have access to a stream of input instances
indexed by j = 1, 2, ... drawn from some distribution DJ . We will use tij to denote the true uncapped
runtime of algorithm i on input j, and tij() = min(tij ,) to be the -capped runtime of i on j.
When we do a run, we observe tij(), not tij . Of course these coincide for any run that completes.
The instance distribution DJ , along with any randomness of the algorithm or execution environment
will together induce a runtime distribution for each algorithm i. We will use Di to denote this runtime
distribution, and Fi to denote its CDF. For each algorithm i, the true uncapped expected utility is

Ui = E
t⇠Di

⇥
u(t)

⇤
.

The capped expected utility is
Ui() = E

t⇠Di

⇥
u
�
min(t,)

�⇤
.

And given any capped runtime samples ti1(), ..., tim(), the capped empirical average utility is

bUim() =
1

m

mX

j=1

u
�
tij()

�
.

Definition 1 (✏-optimal). An algorithm i⇤ is called ✏-optimal if Ui⇤ � maxi Ui � ✏.

Our goal will be to find ✏-optimal algorithms with probability at least 1� �, and to do so as quickly
as possible. Our first lemma deterministically bounds an algorithm’s uncapped expected utility in
terms of its capped expected utility and CDF.
Lemma 1. For any i and  we deterministically have Ui()� u()

�
1� Fi()

�
 Ui  Ui() .

Proof. This follows from the law of total expectation and the fact that u is non-increasing, and so
u() � u(t) for all t � .

Intuitively, Lemma 1 is true because the capped expected utility counts runs that cap as having just
completed at the captime, when really they would have taken longer if given the chance. This makes
the capped expected utility look more favourable than the uncapped expected utility. Our second
lemma shows that if we do runs at captime , then we can accurately estimate the algorithm’s runtime
CDF at .
Lemma 2. For any i, m,  and �, let bFim() be the fraction of the m runs that A completes within

captime . Then bFim()�
q

ln(1/�)
2m  Fi()  bFim()+

q
ln(1/�)
2m with probability at least 1� 2�.

Proof. For each j, let Xj = 1 if tij <  and Xj = 0 otherwise. The proof then follows from a
straightforward application of Hoeffding’s inequality.

Lemma 2 simply says that if we take enough samples at captime , the fraction of those runs that
complete will be close to the true likelihood of a run completing before . Our third lemma shows
that expected capped utility can be estimated accurately using capped runtime samples.

Lemma 3. For any i, m,  and � we have bUim() �
�
1 � u()

�q ln(1/�)
2m  Ui()  bUim() +

�
1� u()

�q ln(1/�)
2m with probability at least 1� 2�.

Proof. Since u
�
tij()

�
2 [u(), 1] for all j, the proof follows immediately from Hoeffding’s

inequality.

Lemma 3 simply says that if we take enough samples, then the empirical capped average utility will
be close to the true expected capped utility. Together, these lemmas imply empirical confidence
bounds on the true expected utility. Define the upper and lower confidence bounds

UCBim() = bUim() +
�
1� u()

�
r

ln(4n/�)

2m

LCBim() = bUim()�
r

ln(4n/�)

2m
� u()(1� bFim()).
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The next lemma shows that these are good confidence bounds if both the captime  and the number
of samples m are sufficiently large. With probability at least 1� �, each algorithm’s true expected
utility will fall within these confidence bounds, and the width of each confidence range will not be
too large.
Lemma 4. If we do m runs of each algorithm at captime , then with probability at least 1� � we

will have

LCBim  Ui  UCBim

and

UCBim � LCBim  2

r
ln(4n/�)

2m
+ u()

�
1� Fi()

�

for all i simultaneously.

See Appendix A for a full proof. The idea is that the definition of the bounds together with Lemmas 2
and 3 mean the confidence bounds hold and are accurate.

We can see in Lemma 4 that the error in our estimate of an algorithm’s expected utility comes from

two sources: sampling and capping. The term 2
q

ln(4n/�)
2m represents the error due to sampling,

while the term u()
�
1� Fi()

�
represents the error due to capping. To make good guarantees,

configuration procedures will need to ensure that both of these terms are sufficiently small.

3 Configuration Procedures

We first describe two hypothetical procedures that give us lower bounds on the number of samples
and the captime that any configuration procedure will need to use. The bound on the number of
samples (Section 3.1) is a classic result. In Section 3.2, we use a novel “prover-skeptic” argument
to show the lower bound on captime. We then describe in Section 3.3 a simple usable procedure
that returns an ✏-optimal algorithm with probability at least 1� �, but which suffers from two major
drawbacks. First, it requires that we specify an accuracy parameter ✏ and a captime  as input ahead
of time. Making poor choices for these parameters can have a large impact on total configuration
time (see Section 4 for an illustration). Indeed, many choices of ✏, and  are mutually incompatible,
giving rise to meaningless bounds. To avoid this, we hope to design procedures that are anytime: they
continue to improve the accuracy guarantees they can make as they spend more time running. By
taking gradually more and more samples, and by gradually taking them at higher and higher captimes,
an anytime procedure continues to shrink the ✏ that it can guarantee, rather than trying to target a
fixed ✏ it is given as input. Second, the naive procedure is not input-adaptive in any way. It does the
same number of samples at the same captime for every algorithm. Both of these drawbacks are fixed
by our UP procedure in Section 3.4. UP is an anytime procedure, meaning it requires neither an ✏ nor
a  as input, but instead gradually reduces the ✏ it can guarantee by increasing both the number of
samples and the captime.

3.1 Hypothetical Runtime Oracle Procedure

The unique characteristic of our setting is the fact that we observe capped rather than true runtime
samples, and that the cost we pay for each sample is equal to the time we spend collecting it. If this
were not the case, then our problem would already be solved. If we had some oracle that we could
simply query for the true runtime of an algorithm run on a given instance, then all we would need
to do is collect sufficiently many samples from each algorithm. In this case, the optimal procedure
simply takes an increasing number of samples of each algorithm and rules out each suboptimal one
was soon as it can. The Runtime Oracle Procedure (Algorithm 1) is an instantiation of the Successive
Elimination algorithm of Even-Dar et al. (2006) (their Algorithm 3). With probability at least 1� � it
will eventually eliminate all algorithms except the optimal one.
Theorem 1. With probability at least 1� � the Runtime Oracle procedure will eventually return the

optimal algorithm, and it will return an ✏-optimal algorithm if it is run until m is large enough that

2
q

ln(4nm2/�)
2m  ✏. At that point it will have taken m uncapped samples of each ✏-optimal algorithm,
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Algorithm 1 Runtime Oracle Procedure
Inputs: Algorithms i = 1, ..., n; stream of instance j = 1, 2, ...; utility function u; parameter �;
runtime oracle R.
I  {1, ..., n} . candidate algorithms
for m = 1, 2, 3, .... do

for i 2 I do
tim  obtain i’s runtime from R on m-th instance
bUim  1

m

Pm
j=1 u

�
tij
�

end for
i⇤  argmaxi2I

bUim

↵m  
q

ln(4nm2/�)
2m

for i 6= i⇤ do
if bUim < bUi⇤m � 2↵m then . i is suboptimal

I  I \ {i} . remove i
end if

end for
if |I| = 1 or execution is interrupted then

return i⇤

end if
end for

and mi  m uncapped samples of each ✏-suboptimal algorithm i, where 2
q

ln(4nm2
i /�)

2mi
 �i, and

where �i is the difference between the expected utility of an optimal algorithm and of algorithm i.

See Even-Dar et al. (2006), Theorem 8 and Remark 9 for proofs and details. The Runtime Oracle
procedure has two desirable qualities that we would like to preserve in the configuration procedures
we design. Firstly, we do not need to supply the parameter ✏ ahead of time. Instead, the procedure
maintains an internal ✏ that it can guarantee, continually shrinking this toward 0. Secondly, the number
of samples needed to eliminate ✏-suboptimal algorithms grows with the square of the suboptimality
gap �i = maxi0 Ui0 � Ui rather than the square of ✏. Theorem 1 gives an input-dependent guarantee
for the Runtime Oracle procedure that we would like to preserve in the usable procedures we design.
If some algorithm i is very suboptimal, with �i � ✏, then we will be able to eliminate it with many
fewer samples than an algorithm that is almost ✏-optimal.

The Runtime Oracle procedure gives us a baseline against which to compare. Its sample complexity
guarantee is essentially optimal in the following data-dependent sense.

Theorem 2 (Theorem 5 of Mannor and Tsitsiklis (2004)). There exists some set of input distributions

for which every oracle procedure that returns an ✏-optimal algorithm with probability at least 1� �
must take ⌦

�n�|N(✏)|
✏2 log 1

� +
P

i2N(✏)
1
�2

i
log 1

�

�
samples, where N(✏) is the set of ✏-suboptimal

algorithms.

3.2 Hypothetical Captime Verification Procedure

We now consider a lower bound on the captime we will be required to use, even in a world where we
do not need to take samples. We imagine there are a prover and a skeptic. The prover has access to
the runtime CDF of each algorithm i. The skeptic will get to see each runtime CDF only up to some
i that the prover will choose. The prover then recommends an algorithm i⇤ and the skeptic should
be convinced that i⇤ is ✏-optimal, based only on the truncated CDFs. As the i’s tend to infinity,
the skeptic will see more and more of the true CDFs and therefore eventually be convinced of the
prover’s claim (assuming it is true). The goal is to convince the skeptic that i⇤ is ✏-optimal using i’s
that are as small as possible. The skeptic will be able to compute the following deterministic bounds
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Algorithm 2 Captime Verification Procedure
Inputs: Algorithms i = 1, ..., n; stream of instances j = 1, 2, ...; utility function u; parameter ✏;
runtime CDFs F1, ..., Fn.
for i = 1, ..., n do

Ui  
R1
0 u(t)dFi(t) . expected utility

end for
iopt  argmaxi Ui . optimal algorithm
for i = 1, ..., n do

�i  Uiopt � Ui

i  inf
�
 : u()

�
1� Fi()

�
 �i +

✏
2

 

end for
i⇤ = argmaxi LBi

if LBi⇤ � UBi � ✏ for i = 1, ..., n then . skeptic’s check
return i⇤

else
return “failed”

end if

on an algorithm’s expected utility

UBi =

Z i

0
u(t)dFi(t) + u(i)

�
1� Fi(i)

�

LBi =

Z i

0
u(t)dFi(t).

The skeptic knows that LBi  Ui  UBi, but also that the runtime distributions could be such as to
make Ui fall anywhere in this range. So whatever algorithm i⇤ the prover returns to the skeptic, the
skeptic will be convinced that i⇤ is ✏-optimal if, and only if, they observe LBi⇤ � UBi � ✏ for all
i 6= i⇤. The following lemma justifies this condition.
Lemma 5. If LBi⇤ � UBi � ✏ for all i 6= i⇤, then i⇤ is ✏-optimal. If there exists an i 6= i⇤ with

LBi⇤ < UBi � ✏, then regardless of the values of the CDFs Fi up to the captimes i, there are some

input distributions for which i⇤ is not ✏-optimal.

The proof works by constructing counter-example CDFs, but takes the CDFs as given up i, so does
not rely on specifying any information available to the skeptic. No matter what the CDF of each i
looks like up to i, there will be some inputs with LBi⇤ < UBi � ✏ for which i⇤ is not ✏-optimal.
Lemma 6. The skeptic will be convinced that both iopt and i⇤ = argmaxi LBi are ✏-optimal if the

captimes i are large enough that u(i)
�
1� Fi(i)

�
 �i +

✏
2 for all algorithms i.

Algorithm 2 describes the prover-skeptic interaction. The next lemma shows that using these captimes
is essentially optimal. It gives us a baseline minimum captime against which to compare.
Lemma 7. There are some inputs for which any verification procedure must use captimes i large

enough that u(i)
�
1� Fi(i)

�
 �i + ✏ for all algorithms i, or the skeptic will not be convinced

that the returned algorithm is ✏-optimal.

The proof simply constructs a counterexample for which doing runs at a smaller captime will lead
any configuration procedure to make a wrong conclusion.

3.3 Naive Procedure

We now turn to the setting we are actually interested in, where runs cost time and long ones must
eventually be terminated. The simplest thing we could do is just pick a captime (or perhaps we
somehow “know” the right captime) and do the necessary number of runs. With a fixed captime, the
scenario is not much different from the runtime oracle scenario above. The main difference is that the
“resolution” at which we can understand an algorithm’s expected utility will be limited by the size of
the captime we use to take our samples. We will never know what the runtime CDF looks like beyond
the captime, no matter how many samples we take. Given any , the confidence bounds described in
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Algorithm 3 Naive Procedure
Inputs: Algorithms i = 1, ..., n; stream of instances j = 1, 2, ...; utility function u; parameters
✏, �; captime  satisfying u() < ✏.
m 

l
2 ln(2n/�)
(✏�u())2

m

for i = 1, ..., n do
ti1(), ..., tim() run i on m instances using captime 
bUim() 1

m

Pm
j=1 u

�
tij()

�
. empirical average utility

end for
i⇤  argmaxi bUim()
return i⇤

Section 2 tell us we could simply choose the smallest m satisfying 2
q

ln(2n/�)
2m + u()  ✏, do m

runs of each algorithm at captime , then return the one with largest empirical average utility. We can

think of 2
q

ln(2n/�)
2m as the error due to sampling, and u() as the error due to capping. This is the

Naive procedure.
Theorem 3. With probability at least 1� � the Naive procedure returns an ✏-optimal algorithm. It

takes enough -capped runtime samples of each algorithm to ensure that 2
q

ln(2n/�)
2m + u()  ✏.

The proof of this and of subsequent theorems are deferred to Appendix A. Each essentially follows
from the fact that the upper and lower confidence bounds are specified to satisfy Hoeffding’s inequality
and the union bound. Comparing Theorem 3 to Theorem 1 we can see the reason for the increased
number of samples required when we observe capped instead of uncapped runs: if u() is relatively

large, it will take a much larger m to shrink the term 2
q

ln(2n/�)
2m enough to satisfy the inequality in

Theorem 3.

The Naive procedure has some undesirable qualities. Choosing the right  may not be easy and in
Section 4 we will show what a difference this choice can make for the total runtime of the Naive
procedure. We are also required to specify an ✏ beforehand; it may hard to know the “right” ✏, and
the best m and  for one ✏ may be quite different from the best for a slightly different ✏. What’s more,
this procedure ignores information about an algorithm’s runtime distribution that could be learned
by observing runs along the way; it essentially assumes that every algorithm always times out at the
given captime. As a result, it takes more samples of ✏-suboptimal algorithms than is necessary. The
UP procedure corrects these defects.

3.4 Utilitarian Procrastination

Our Utilitarian Procrastination (UP) procedure starts by doing runs at the smallest captime possible,
trying to rule out whatever configurations we can, and only starts doing runs at a larger captime when
necessary.
Theorem 4. With probability at least 1 � � UP eventually returns the optimal algo-

rithm and it returns an ✏-optimal algorithm if it is run until m is large enough that

2
q

ln(11nm2(log iopt+1)2/�)
2m + u(iopt)

�
1� Fiopt(iopt)

�
 ✏. For any suboptimal i, if

m,i,iopt are ever large enough that 2
q

ln(11nm2(log i+1)2/�)
2m + 2

q
ln(11nm2(log iopt+1)2/�)

2m +

u(i)
�
1� Fi(i)

�
+ u(iopt)

�
1� Fiopt(iopt)

�
 �i then i will be eliminated.

In Theorem 4 we can clearly see the analog of both Theorem 1 and Theorem 3. UP is input dependent
in two senses. The condition for ruling out a suboptimal i depends on �i and also on the runtime
CDFs Fi and Fiopt . Just as in the pure sample complexity case of Theorem 1, if i is very suboptimal
and �i is large, it will be easier to satisfy the condition in Theorem 4 and thus rule i out. Additionally,
the condition will be easier to satisfy if the inputs are such that either i or iopt is able to complete a
lot of runs at their respective captimes, so that their CDFs are close to 1. Theorem 4 also implies the
following theorem and corollary, which together constitute our main theoretical result.
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Algorithm 4 Utilitarian Procrastination
Inputs: Algorithms i = 1, ..., n; stream of instances j = 1, 2, ...; utility function u; parameter �.
I  {1, ..., n} . candidate algorithms
i  1 for all i 2 I
for m = 1, 2, 3, ... do

for i 2 I do
ti1(i), ..., tim(i) run i on m instances using captime i

bFim(i) |{j : tij(i)<i}|
m . fraction of runs that completed

bUim(i) 1
m

Pm
j=1 u

�
tij(i)

�
. empirical average utility

↵im  
q

ln(11nm2(log i+1)2/�)
2m

UCBim  bUim(i) +
�
1� u(i)

�
↵im

LCBim  bUim(i)� ↵im � u(i)
�
1� bFim(i)

�

end for
i⇤  argmaxi2I LCBim

for i 2 I do
if UCBim < LCBi⇤m then . i is suboptimal

I  I \ {i} . remove i
end if
if 2↵im  u(i)

�
1� bFim(i)

�
then . captime doubling condition

i  2i

end if
end for
if |I| = 1 or execution is interrupted then

return i⇤

end if
end for

Theorem 5. For any m, let ✏ = 3
q

ln(11nm4/�)
2m . Then with probability at least 1� �, UP returns an

✏-optimal algorithm once it takes m samples. At that point, if ⇤
i is the largest captime algorithm i

has been run with then ⇤
i  2 inf

�
 : u()

�
1� Fi()

�
< ✏

3
p
2

 
.

The proof follows from Theorem 4 and from UP’s specific choice of captime doubling condition. We
note that there is room for improvement, but that this captime bound is comparable to the worst-case
lower bound captime needed by any configuration procedure as presented in Section 3.2. The smallest
captime that satisfies u()

�
1� Fi()

�
< ✏

3
p
2

needs to be larger than the smallest captime that
satisfies u()

�
1� Fi()

�
< �i + ✏, which is the best we can hope to do.

Corollary 1. With probability at least 1��, UP returns an ✏-optimal algorithm after taking a number

of samples that at most a logarithmic factor more than is optimally required by any procedure, and at

a captime that is a constant larger than inf
�
 : u()

�
1� Fi()

�
< ✏

3
p
2

 
.

Proof. The number of samples follows immediately from the definition of ✏ in Theorem 5. Because
the captimes are always doubled, the total time spent by UP on any single instance is at most a
constant times larger than the time spent running that instance the final time it was run. Since the
captime at that point was at most ⇤

i , the total time spent running any instance is at most a constant
times inf

�
 : u()

�
1� Fi()

�
< ✏

3
p
2

 
.

4 Experiments

We now illustrate the runtime costs of utilitarian algorithm configuration and the impacts of the
adaptive improvements offered by UP over Naive. We would have liked to go further, and in particular
to offer comparisons against baselines other than Naive. However, we saw no straightforward way
of doing so: there is simply no previous work on offering algorithm configuration in the utility-
maximizing setting. Our paper focuses on algorithm configuration with theoretical guarantees. There
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Figure 1: Runtime of the Naive procedure for different values of input captime  on three datasets using
a log-Laplace utility function. Choosing a bad captime can have a large effect on total configuration time,
especially for smaller ✏ values.

do exist many methods with guarantees in the runtime minimizing setting; we could have run existing
procedures like Structured Procrastination, LeapsAndBounds, or CapsAndRuns and then evaluated
them in terms of a utilitarian objective. However, such an apples-to-oranges comparison would
likely have yielded very poor performance and regardless would have dispensed with the guarantees
that motivate these methods. Second, we could have compared to heuristic methods like SMAC,
ParamILS and GGA. Again, however, they optimize a different objective function. It is possible to
imagine modifying one of these algorithms to optimize utility, but doing so would require fundamental
algorithmic changes (e.g., to their so-called adaptive capping heuristics) and nontrivial software
engineering effort. Even if we could have made such changes in a non-controversial way, comparing
heuristic methods to methods offering guarantees would again be an apples-to-oranges comparison.
Perhaps for these reasons, we note that no paper of which we are aware has yet compared any heuristic
algorithm configuration method to any offering theoretical guarantees. We do intend to pursue such
an investigation ourselves in future work, but anticipate that a careful study of this question will
require an entire research paper.

Experimental Setup. We leverage three datasets from Weisz et al. (2020). The first is a set of
runtimes for the minisat SAT solver on data generated by the CNFuzzdd instance generator. The
others are sets of runtimes for the CPLEX integer program solver on the combinatorial auction winner
determination instances (regions) and on woodpecker conservation problems (rcw); see Appendix D
of Weisz et al. (2020) for details. We only used the first seed for the CPLEX datasets.1

Choosing the Right Captime Matters. In Fig. 1 we plot the total configuration time of the Naive
procedure with different input captimes  on three datasets from Weisz et al. (2020) using a log-
Laplace utility function from Graham et al. (2023): u(t) = uLL(t; 60, 1) = 1� 1

2
t
60 if t  60 and

u(t) = 1
2
60
t otherwise. We used ✏ values of 0.1, 0.15 and 0.2 and set � = 0.1. The first observation

we make is that choosing a bad captime can have a large effect on total configuration time, especially
for smaller ✏ values. The second observation is that, for any fixed , different values of ✏ can also have
huge effects on total runtime of the configuration procedure. Both of these points help to emphasize
the need for a procedure like UP that starts out with a small , only increasing it as needed, and
refines the ✏ it can guarantee “on the fly”, based on the runs it has observed.

Anytime Speedups Matter. In Fig. 2, we plot the total configuration time of UP and Naive as
a function of ✏. We used the same log-Laplace utility function as above and set � = 0.1 (within
reasonable ranges, the value of � has relatively little effect on total runtime). UP can drastically
outperform Naive, especially for smaller values of ✏.

Unsurprisingly, being anytime in  helps most when we do not know how to provide a good  as
input beforehand. If we somehow guess or know the right captime to use, then it can be hard to
beat Naive. But if we use the wrong captime, UP can be much faster than Naive. In Fig. 3 we use a
uniform utility function from Graham et al. (2023), with u(t) = uunif (t; 60) = 1� t

60 for t < 60
and 0 otherwise. In the top row, we have used a captime of  = 60 for Naive, which is appropriate
for this utility function since it is linear up to that point and then 0 thereafter. In the bottom row, we
have set the captime poorly at  = 600, meaning that we are not terminating some runs even though

1Code to reproduce all plots can be found at https://github.com/drgrhm/utilitarian-ac.
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Figure 2: Runtime of the different configuration procedures for different values of ✏ on three different datasets
using a log-Laplace utility function. UP easily outperforms Naive.

Figure 3: Runtime of the different configuration procedures for different values of ✏ on three different datasets
using a uniform utility function. The top row shows a scenario where the Naive procedure has been given an
appropriate captime, the bottom row shows a scenario where it has not.

they are so long they give us 0 utility. We can see that if we get the captime right, then Naive will
perform quite well. But if we get it wrong, Naive can drastically underperform compared to UP.

5 Conclusion

We have presented Utilitarian Procrastination (UP), a utility-based approach to automated algorithm
configuration. This is the first procedure that we know of to incorporate utility functions into the
algorithm configuration framework. UP is anytime, meaning it requires minimal input from the user
and continues to refine its guarantees as it is run. In simple experiments, we show that by freeing
the user from having to provide either an accuracy parameter ✏ or a captime  UP can help avoid the
excessively long runtimes that come when these inputs are chosen poorly. Of course we would have
liked to have shown that UP never uses a captime larger than ⇤

i  2 inf
�
 : u()

�
1� Fi()

�
<

�i +
✏
2

 
, matching the hypothetical procedure. The bound we do show is a result of the condition

UP checks when deciding whether to double the the captime i. UP uses a simple condition that
balances the error due to sampling with the error due to capping. Other, more intelligent choices may
be possible, but improving this will have to wait for future work.
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