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ABSTRACT

We consider the problem of training User Verification (UV) models in federated
setup, where the conventional loss functions are not applicable due to the constraints
that each user has access to the data of only one class and user embeddings cannot
be shared with the server or other users. To address this problem, we propose
Federated User Verification (FedUV), a framework for private and secure training
of UV models. In FedUV, users jointly learn a set of vectors and maximize
the correlation of their instance embeddings with a secret user-defined linear
combination of those vectors. We show that choosing the linear combinations from
the codewords of an error-correcting code allows users to collaboratively train the
model without revealing their embedding vectors. We present the experimental
results for user verification with voice, face, and handwriting data and show that
FedUV is on par with existing approaches, while not sharing the embeddings with
other users or the server.

1 INTRODUCTION

There has been a recent increase in the research and development of User Verification (UV) models
with various modalities such as voice (Snyder et al., 2017; Yun et al., 2019), face (Wang et al.,
2018), fingerprint (Cao & Jain, 2018), or iris (Nguyen et al., 2017). Machine learning-based UV
features have been adopted by commercial smart devices such as mobile phones, AI speakers
and automotive infotainment systems for a variety of applications such as unlocking the system
or providing user-specific services, e.g., music recommendation, schedule notification, or other
configuration adjustments (Matei, 2017; Barclays, 2013; Mercedes, 2020).

User verification is a binary decision problem of accepting or rejecting a test example based on
its similarity to the user’s training examples. We consider embedding-based classifiers, in which a
test example is accepted if its embedding is close enough to a reference embedding, and otherwise
rejected. Such classifiers are usually trained with a loss function that is composed of two terms, 1) a
positive loss that minimizes the distance of the instance embedding to the positive class embedding,
and 2) a negative loss that maximizes the distance to the negative class embeddings. The negative
loss term is needed to prevent the class embeddings from collapsing into a single point (Bojanowski
& Joulin, 2017).

Verification models need to be trained with a large variety of users’ data so that the model learns
different data characteristics and can reliably reject imposters. However, due to the privacy-sensitive
nature of the biometric data used for verification, it is not possible to centrally collect large training
datasets. One approach to address the data collection problem is to train the model in the federated
setup, which is a framework for training models by repeatedly communicating the model weights and
gradients between a central server and a group of users (McMahan et al., 2017a). Federated learning
(FL) allows training models without users having to share their data with the server or other users
and, hence, helps enable private training of verification models.

Training UV models in federated setup, however, imposes additional constraints that each user has
access to the data of only one class, and cannot share their embedding vector with the server or other
users due to security reasons. Specifically, sharing embeddings with others can lead to both training-
and test-time attacks. For example, the server or other users can run a poisoning attack (Biggio et al.,
2012) and train the model so that it verifies fake examples as the examples generated by a particular
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user. They can also carry out evasion attacks at test time (Biggio et al., 2013; Szegedy et al., 2013) to
fool the model to verify impostors as a target user.

Without having access to embedding vectors of others, users cannot compute the negative loss term
for training the model in the federated setup. A recent work (Yu et al., 2020) studied the problem
of federated learning with only positive labels and proposed FedAwS, a method that allows users
and the server to jointly train the model. In FedAwS, at each round, users train the model with the
positive loss function and send the new models to the server. The server then updates the averaged
model using an approximated negative loss function that maximizes the pairwise distances between
user embeddings. FedAwS keeps the embedding of each user private from other users but reveals all
embeddings to the server, which, as mentioned earlier, undermines the security of verification models
in real-world applications.

In this paper, we propose Federated User Verification (FedUV), a framework for training UV models
in federated setup using only the positive loss term. Our contributions are summarized in the
following.

• We propose a method where users jointly learn a set of vectors, but each user maximizes the
correlation of their instance embeddings with a secret linear combination of those vectors. We
show that, under a condition that the secret vectors are designed with guaranteed minimum
pairwise correlations, the model can be trained using only the positive loss term. Our framework,
hence, addresses the problem of existing approaches where embeddings are shared with other
users or the server (Yu et al., 2020).

• We propose to use error-correcting codes to generate binary secret vectors. In our method,
the server distributes unique IDs to the users, which they then use to construct unique vectors
without revealing the selected vector to the server or other users.
• We present a verification method, where a test example is accepted if the correlation of the

predicted embedding with the secret vector is more than a threshold, and otherwise rejected. We
develop a “warm-up phase” to determine the threshold for each user independently, in which
a set of inputs is collected and then the threshold is computed so as to obtain a desired True
Positive Rate (TPR).

• We present the experimental results for voice, face and handwriting recognition using Vox-
Celeb (Nagrani et al., 2017), CelebA (Liu et al., 2015) and MNIST-UV datasets, respectively,
where MNIST-UV is a dataset we created from images of the EMNIST dataset (Cohen et al.,
2017). Our experimental results show that FedUV performs on par with FedAwS, while not
sharing the embedding vectors with the server.

2 BACKGROUND

2.1 FEDERATED LEARNING Algorithm 1 (McMahan et al., 2017a) FedAvg.
θt: model parameters at round t, K: number of users,
ε: fraction of users selected at each round, Du: dataset
of user u with nu examples.
FedAvg:

Server: Initialize θ0
Server: κ← max(ε ·K, 1)
for each global round t = 1, 2, . . . do

Server: St ← (random set of κ users)
Server: Send θt−1 to users u ∈ St
Users u ∈ St: θut , nu ← UserUpdate(θt−1, Du)

Server: θt ←
∑

u∈St
nuθ

u
t∑

u∈St
nu

UserUpdate(θ,D): // Done by users
B ← (split D into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
θ ← θ − ηO`(θ; b)

return θ and |D| to server

Consider a setting where K users want to
train a model on their data. Federated learn-
ing (FL) allows users to train the model
by the help of a central coordinator, called
server, and without sharing their local data
with other users (or the server). The most
commonly-used algorithm for FL is Fed-
erated Averaging (FedAvg) described in
Algorithm (1) (McMahan et al., 2017a).

2.2 USER VERIFICATION
WITH MACHINE LEARNING

User verification (UV) is a binary decision
problem where a test example is accepted
(reference user) or rejected (impostor user)
based on its similarity to the training data.
We consider embedding-based classifiers,
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in which both the classes and the inputs are mapped into an embedding space such that the embedding
of each input is closest to the embedding of their corresponding class. Let wy ∈ Rnd be the
embedding vector of class y and gθ : X → Rnd be a network that maps an input x from the input
space X to an nd-dimensional embedding gθ(x). Let d be a distance function. The model is trained
on (x, y) so as to have y = arg minu d(gθ(x), wu) or, equivalently,

d(gθ(x), wy) < min
u 6=y

d(gθ(x), wu). (1)

Hence, the loss function can be defined as follows:

`(x, y; θ, w) = d(gθ(x), wy)− λmin
u 6=y

d(gθ(x), wu). (2)

Minimizing the loss function reduces to minimizing the distance of the instance embedding to the
true class embedding and maximizing the distance to the embeddings of other classes. The two terms
are called positive and negative loss terms, respectively. The negative loss term is needed to ensure
that the training does not lead to a trivial solution that all inputs and classes collapse to a single point
in the embedding space (Bojanowski & Joulin, 2017).

2.3 ERROR-CORRECTING CODES

Error correcting codes (ECCs) are techniques that enable restoring sequences from noise. A binary
block code is an injective function C : {0, 1}m → {0, 1}c, c ≥ m, that takes a binary message vector
and generates the corresponding codeword by adding a structured redundancy, which can be used to
obtain the original message from the corrupted codeword. In ECCs, each message bit affects many
transmitted symbols in such a way that the corruption of some symbols by noise usually allows the
original message bits to be extracted from the other, uncorrupted received symbols that also depend
on the same message bits.

ECCs are designed to maximize the minimum Hamming distance, dmin, between distinct codewords,
where Hamming distance between two sequences is defined as the number of positions at which they
differ. A code with minimum distance δ allows correcting up to (δ − 1)/2 errors (Richardson &
Urbanke, 2008). Also, with the same code length, c, the minimum distance decreases as the message
length, m, increases. In this paper, we use binary BCH codes which are a class of block codes with
codewords of length c = 2i − 1, i ≥ 3 (Bose & Ray-Chaudhuri, 1960). Note that the choice of the
coding algorithm is not crucial to our work and our method works with any ECC algorithm.

3 USER VERIFICATION WITH FEDERATED LEARNING

In this section, we outline the privacy and security requirements of the training UV models and
describe the challenges of training UV models in the federated setup.

3.1 PRIVACY AND SECURITY REQUIREMENTS OF TRAINING UV MODELS

Verification models need to be trained with a large variety of users’ data so that the model learns
different data characteristics and can reliably verify users. For example, speaker recognition models
need to be trained with the speech data of users with different ages, genders, accents, etc., to be able
to reject impostors with high accuracy. One approach for training UV models is to collect the users’
data and train the model centrally. This approach is, however, not privacy-preserving due to the need
to have direct access to the users’ biometric data.

An alternative approach is using FL framework, which enables training with the data of a large
number of users while keeping their data private by design. Training UV models in federated setup,
however, poses its own challenges. As stated in Section (2.2), training embedding-based classifiers
requires having access to all class embeddings to compute the loss function in (2). In UV applications,
however, class embeddings are used for the verification and, hence, are considered security-sensitive
information and cannot be shared with the server or other users.

Providing security is particularly important in UV applications, where the model might be trained
and deployed in adversarial settings. Specifically, the leakage of the embedding vector makes the
verification model vulnerable to both training- and test-time attacks, examples of which are provided
in the following.
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• Poisoning attack (Biggio et al., 2012): The server participates in training and trains the model
with the loss function d(gθ(x

∗
u), wu) for some x∗u. At test time, the model generates wu for the

input x∗u and thus wrongly verifies x∗u as a true example from user u.
• Evasion attack (Biggio et al., 2013; Szegedy et al., 2013): Attacks based on adversarial examples

are known to be highly effective against deep neural networks (Carlini & Wagner, 2017). In
the context of UV models, when a target embedding vector is known, an evasion attack can be
performed to slightly perturb any given input such that the predicted embedding matches the
target embedding and thus is accepted by the model.

3.2 PROBLEM STATEMENT

Without the knowledge of the embedding vectors of other users, users cannot compute the negative
loss term in (2) for training the model in federated setup. Training only with the positive loss function
also causes all class embeddings to collapse into a single point. In this paper, we address the following
questions: 1) how to train embedding-based classifiers without the negative loss term? and 2) how
this can be done in the federated setup?

3.3 RELATED WORK: FEDERATED AVERAGING WITH SPREADOUT (FEDAWS)

In embedding-based classifiers, the negative loss term maximizes the distance of instance embeddings
to the embeddings of other classes. A recent paper (Yu et al., 2020) observed that, alternatively, the
model could be trained to maximize the pairwise distances of class embeddings. They proposed
Federated Averaging with Spreadout (FedAwS) framework, where the server, in addition to averaging
the gradients, performs an optimization step to ensure that embeddings are separated from each other
by at least a margin of ν. Formally, in each round of training, the server applies the following geomet-
ric regularization regsp(W ) =

∑
u∈[K]

∑
u′ 6=u (max(0, ν − d(wu, wu′)))2. FedAwS eliminates the

need for users to share their embedding vector with other users but still requires sharing it with the
server, which seriously undermines the security of the real-world verification models.

4 PROPOSED METHOD

4.1 TRAINING WITH ONLY POSITIVE LOSS

Training UV models using the loss function in (2) requires users to jointly learn the class embeddings,
which causes the security problem of sharing the embeddings with other users. To address this
problem, we propose a method where users jointly learn a set of vectors, but each user maximizes the
correlation of their instance embedding with a secret linear combination of those vectors. The same
linear combination is also used for user verification at test time.

Let W ∈ Rc×nd be a set of c vectors and vu ∈ {−1, 1}c be the secret vector of user u. We modify
the loss function in (2) as follows:

`(x, y, v; θ,W ) = `pos + λ`neg, (3)

where `pos = d(gθ(x),WT vy) and `neg = −min
u/∈y

d(gθ(x),WT vu).

Let us call su = WT vu the secret embedding of user u. Note that users still need to know the secret
vector, vu, or the secret embedding, su, of other users to compute the negative loss term. We, however,
show that under certain conditions, the model can be trained using only the positive loss term.

Let us define the positive and negative loss terms as follows:

`pos = max(0, 1− 1

c
vTyWgθ(x)) and `neg = max

u/∈y

1

c
vTuWgθ(x). (4)

The positive loss term maximizes the correlation of the instance embedding with the true secret
embedding, while the negative loss term minimizes the correlation with secret embeddings of other
users. We have the following Lemma.
Lemma 1. Assume ‖Wgθ(x)‖=

√
c and vy ∈ {−1, 1}c. For `pos defined in (4), we have `pos = 0

if and only if Wgθ(x) = vy .
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Proof. Let z = Wgθ(x). The term `pos = 0 is equivalent to 1
cv
T
y z ≥ 1. We have 1

cv
T
y z ≤

1
c‖vy‖‖z‖ = 1 and the equality holds if and only if z = αvy. Since ‖z‖= ‖vy‖=

√
c, then α = 1

and, hence, we have `pos = 0 if and only if z = vy .

The following Theorem links the positive and negative loss terms of (4) when secret vectors are
chosen from ECC codewords.

Theorem 1. Assume ‖Wgθ(x)‖=
√
c and vy ∈ {−1, 1}c. Assume vi’s are chosen from ECC

codewords. For `pos and `neg defined in (4), minimizing `pos also minimizes `neg.

Proof. Since vi ∈ {−1, 1}c, the Hamming distance between vu1
and vu2

is defined as

∆u1,u2
=

1

4
‖vu1

− vu2
‖2 =

1

4
(‖vu1

‖2 + ‖vu2
‖2 − 2vTu1

vu2
) =

c

2
(1− 1

c
vTu1

vu2
).

The minimum Hamming distance between codewords is obtained as dmin = minu1 6=u2 ∆u1,u2 .
As stated in Section 2.3, ECCs are designed to maximize dmin or, equivalently, minimize
maxu1 6=u2

1
cv
T
u1
vu2 . Using Lemma (1), we have `pos = 0 if and only if z = vy, which results

in `neg = maxu/∈y
1
cv
T
u vy. As a result, `neg is at its minimum when `pos = 0 and vi’s are chosen

from ECC codewords.

Theorem (1) states that the negative loss term in (3) is redundant when ‖Wgθ(x)‖=
√
c and the secret

vectors are chosen from ECC codewords, enabling the embedding-based classifiers to be trained with
only the positive loss defined in (4). Note that it will still help to use `neg for training especially
at early epochs, but the effect of `neg gradually vanishes as `pos becomes smaller and eventually
gets close to zero. To illustrate this, we show an example of the training and test accuracy with and
without `neg in Figure 4 in Appendix C. As can be seen, using `neg results in better accuracy at early
epochs but does not have significant impact on the final accuracy.

4.2 FEDERATED USER VERIFICATION (FEDUV)

In this section, we present Federated User Verification (FedUV), a framework for training UV models
in the federated setup. FedUV consists of three phases of choosing unique codewords, training, and
verification, details of which are provided in the following.

Choosing Unique Codewords. To train the UV model with the positive loss function defined in (4),
users must choose unique codewords without sharing the vectors with each other or the server. To
do so, we propose to partition the space between users by the server and let users select a random
message in their assigned space. Specifically, the server chooses unique binary vectors bu of length lb
for each user u ∈ [K] and sends each vector to the corresponding user. Each user u then chooses a
random binary vector, ru, of length lr, constructs the message vector mu = bu‖ru, and computes the
codeword vu = C(mu), where C is the block code.

The length of the base vectors is determined such that the total number of vectors is greater than or
equal to the number of users, i.e., lb ≥ log2K. In practice, the server can set lb � log2K so that
new users can be added to the training after training started. In experiments, we set lb = 32, which is
sufficient for most practical purposes. The code length is also determined by the server based on the
number of users and the desired minimum distance obtained according to the estimated difficulty
of the task. Using larger codewords improves the performance of the model but also increases the
training complexity and communication cost of the FedAvg method. The proposed method has the
following properties.

• It ensures that codewords are unique, because the base vectors bu’s and, in turn, mu’s are unique
for all users. Moreover, due to the use of the ECC algorithm, the minimum distance between
codewords are guaranteed to be more than a threshold determined by the code characteristics.

• The final codewords are not shared among users or with the server. Moreover, there are 2lr

vectors for each user to choose their codeword from. Increasing lr improves the security of the
method by making it harder to guess the user’s codeword but reduces the minimum distance of
the code for a given code length. In experiments, we set lr ≥ 32, which is sufficient for most
practical purposes.
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Algorithm 2 Federated User Authentication (FedUV). K: number of users, C: block code, θ,W :
model parameters, σ: a function that scales its input to have norm of

√
c, q: TPR.

Codeword Selection:
Server: Send a unique binary vector, bu, u ∈ [K], of length lb ≥ log2K to user u
User u ∈ [K]:

Choose a random binary vector, ru, of length lr
Construct message vector mu = bu‖ru
Compute codeword vu = C(mu)

Training:
Server and users: Train UV model using FedAvg algorithm (1) and with the loss function
`pos = max(0, 1− 1

cv
T
y σ(Wgθ(x)))

Warm-up Phase(θ,W, vy, q): // Done by users
Collect inputs x′j , j ∈ [n], and compute ej = 1

cv
T
y σ(Wgθ(x

′
j))

Set τ equal to the i-th smallest value in e where i = bn · (1− q)c

Verification(θ,W, vy, τ, x′): // Done by users
e = 1

cv
T
y σ(Wgθ(x

′))
if e ≥ τ then ACCEPT else REJECT

• The method adds only a small overhead to vanilla FL algorithms. Specifically, the server assigns
and distributes unique binary vectors to users and users construct message vectors and compute
the codewords.

𝑔𝜃 𝑊𝑥 Scale
𝑧 = 𝑐

𝑧

Figure 1: Model structure for FedUV.

Training. Figure 1 shows the model structure used in FedUV
method. The model is trained using the FedAvg algorithm
and with the loss function `pos = max(0, 1− 1

cv
T
y σ(Wgθ(x))),

where σ is a function that scales its input to have norm of
√
c.

Verification. After training, each user deploys the model as a
binary classifier to accept or reject test examples. For an input x′, the verification is done as

1

c
vTy σ(Wgθ(x

′))
accept

≷
reject

τ, (5)

where τ is the verification threshold. The threshold is determined by each user independently such
that they achieve a True Positive Rate (TPR) more than a value, say q = 90%. The TPR is defined as
the rate that the reference user is correctly verified. To do so, in a warm-up phase, n inputs x′j , j ∈ [n],
are collected and their corresponding scores are computed as 1

cv
T
y σ(Wgθ(x

′
j)). The threshold is then

set such that a desired fraction q of inputs are verified.

Our proposed framework, FedUV, is described in Algorithm (2).

4.3 COMPARING COMPUTATIONAL COST OF FEDUV AND FEDAWS

FedUV has similar computational cost to FedAwS on the user side as both methods perform regular
training of the model on local data (with different loss functions). On the server side, however,
FedUV is more efficient, since, unlike FedAwS, it does not require the server to do any processing
beyond averaging the gradients.

5 RELATED WORK

The problem of training UV models in federated setup has been studied in (Granqvist et al., 2020) for
on-device speaker verification and in (Yu et al., 2020) as part of a general setting of FL with only
positive labels. However, to the best of our knowledge, our work is the first to address the problem
of training embedding-based classifiers in federated setup with only the positive loss function. Our
proposed framework trains the model without sharing the secret embedding vector with the server
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or other users. It is, however, not designed to defend against generic attacks in the federated setup,
such as the poisoning and backdoor attacks presented in (Bhagoji et al., 2019; Bagdasaryan et al.,
2020). Our method also inherits potential privacy leakage of FL methods, where users’ data might
be recovered from a trained model or the gradients (Melis et al., 2019). It has been suggested that
adding noise to gradients or using secure aggregation methods improve the privacy of FL (McMahan
et al., 2017b; Bonawitz et al., 2017). Such approaches can be applied to our framework as well.

Our approach of assigning a codeword to each user is related to distributed output representa-
tion (Sejnowski & Rosenberg, 1987), where a binary function is learned for each bit position. It
follows (Hinton et al., 1986) in that functions are chosen to be meaningful and independent, so that
each combination of concepts can be represented by a unique representation. Another related method
is distributed output coding (Dietterich & Bakiri, 1991; 1994), which uses ECCs to improve the
generalization performance of classifiers. We, however, use ECCs to enable training embedding-based
classifiers with only the positive loss function.

6 EXPERIMENTAL RESULTS

6.1 DATASETS

VoxCeleb (Nagrani et al., 2017) is created for text-independent speaker identification in real environ-
ments. The dataset contains 1, 251 speakers’ data with 45 to 250 number of utterances per speaker,
which are generated from YouTude videos recorded in various acoustic environments. We selected
1, 000 speakers and generated 25 training, 10 validation and 10 test examples for each speaker. The
examples are 2-second audio clips obtained from videos recorded in one setting. We also generated a
separate test set of 1, 000 examples by choosing 5 utterances from 200 of the remaining speakers that
were not selected for training. All 2-second audio files were sampled at 8 kHz to obtain vectors of
length 214 for model input.

CelebA (Liu et al., 2015) contains more than 200, 000 facial images from 10, 177 unique individuals,
where each image has the annotation of 40 binary attributes and 5 landmark locations. We use CelebA
for user verification by assigning the data of each individual to one client and training the model to
recognize faces. We selected 1, 000 identities from those who had at least 30 images, which we split
into 20, 5 and 5 examples for training, validation, and test sets, respectively. We also generated a
separate test set with 1, 000 images from individuals that were not selected for training (one example
per person). All images were resized to 64× 64.

MNIST-UV. We created MNIST-UV dataset for user verification based on handwriting recognition.
MNIST-UV examples are generated using the EMNIST-byclass dataset (Cohen et al., 2017), which
contains 814, 255 images from 62 unbalanced classes (10 digits and 52 lower- and upper-case letters)
written by 3, 596 writers. A version of this dataset, called FEMNIST, has been used to train a 62-class
classifier in federated setup by assigning the data of each writer to one client (Caldas et al., 2018). In
FEMNIST, the difference in handwritings is used to simulate the non-iid nature of the clients’ data in
federated setup.

We repurpose EMNIST for the task of user verification by training a classifier that recognizes the
handwritings., i.e., similar to FEMNIST, the data of each writer is assigned to one client but the
model is trained to predict the writer IDs. To this end, we created MNIST-UV dataset that contains
data of 1, 000 writers each with 50 training, 15 validation, and 15 test examples. Each example in the
dataset is of size 28× 28× 4 and is composed of images of digits 2, 3, 4 and 5 obtained from one
writer. For each writer, the training examples are unique; however, the same sub-image (images of
digits 2, 3, 4 or 5) might appear in several examples. This also holds for validation and test sets. The
sub images are, however, not shared between training, validation, and test sets. We also generated a
separate test set with 1, 000 examples from writers that were not selected for training (one example
per writer). Figure 3 in Appendix A shows few examples of the MNIST-UV dataset.

6.2 EXPERIMENT SETTINGS

Training setup. We train UV models using the FedAvg method with 1 local epoch and 20, 000
rounds with 0.01 of users selected at each round. The model structures are provided in Appendix B.
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VoxCeleb dataset CelebA dataset MNIST-UV dataset
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(a) Training set
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(b) Test set with known users

0.00 0.02 0.04 0.06 0.08
False Positive Rate

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

softmax
FedAws
FedUV(127)
FedUV(255)
FedUV(511)

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

softmax
FedAws
FedUV(127)
FedUV(255)
FedUV(511)

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

softmax
FedAws
FedUV(127)
FedUV(255)
FedUV(511)

(c) Test set with unknown users
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Figure 2: ROC curves for models trained in federated setup using softmax, FedAwS and FedUV algorithms.
FedUV (c) denotes FedUV with code length of c. It can be seen that FedUV performs on par with FedAwS,
while softmax outperforming both methods. Also, as expected, increasing the code length improves the
performance of FedUV algorithm. Note that, unlike FedUV, both softmax and FedAwS share embeddings
with other users and/or the server.

Baselines. We compare our FedUV method with the FedAwS algorithm (Yu et al., 2020) and regular
federated learning with the softmax cross-entropy loss function, which we refer to as softmax
algorithm. Note that softmax and FedAwS share the embedding of each user with other users
and/or the server. Similar to FedUV, we perform a warm-up phase for the two baselines to determine
the verification threshold for each user.

Table 1: Statistics of BCH codewords used
in experiments.

Code length Message length dmin

127 64 21
255 71 59
511 67 175

Generating codewords. We use BCH coding algorithm
to generate codewords of lengths 127, 255 and 511. The
code lengths are chosen to be smaller than the number of
users (1, 000) to emulate the setting with a very large num-
ber of users. For each code length, we find the message
length of greater than or equal to 64 that produces a valid
code. Table 1 shows the code statistics.

6.3 VERIFICATION RESULTS

We evaluate the verification performance on three datasets, namely 1) training data, 2) test data of
users who participated in training, and 3) data of users who did not participate in training. Figure 2
shows the ROC curves. The verification performance is best on training data and slightly degrades
when the model is evaluated on test data of users who participated in training and further reduces
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on data of new users. All methods, however, achieve notably high TPR, e.g., greater than 80%, at
low False Positive Rates (FPRs) of smaller than 10%, implying that the trained UV models can
reliably reject the impostors. The regular softmax training outperforms both FedAwS and FedUV
algorithms in most cases, especially at high TPRs of greater than 90%. FedUV’s performance is
on par with FedAwS, while not sharing the embedding vectors with the server. Also, as expected,
increasing the code length in FedUV improves the performance.

7 CONCLUSION

In this paper, we presented FedUV, a framework for private and secure training of user verification
models. In FedUV, users first collaboratively choose unique secret vectors from codewords of an
error-correcting code and then train the model using FedAvg method with a loss function that only
uses their own vector. After training, each user independently performs a warm-up phase to obtain
their verification threshold. We show our framework addresses the problem of existing approaches
where embedding vectors are shared with other users or the server. Our experimental results for
user verification with voice, face, and handwriting data show FedUV performs on par with existing
approaches, while not sharing the embeddings with other users or the server.
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A MNIST-UV DATASET

Figure 3 shows examples from MNIST-UV dataset. Note that, in figure, sub-images are placed in a
2× 2 grid for clarity.

User 0

User 1

Data from 

unseen users 

ValidationTraining set Test

Figure 3: Examples from MNIST-UV dataset created for user verification by handwriting. Each example in the
dataset is of size 28× 28× 4 and is composed of images of digits 2, 3, 4 and 5 obtained from one writer. In
figure, sub-images are placed in a 2× 2 grid for clarity. MNIST-UV dataset contains data of 1, 000 writers each
with 50 training, 15 validation, and 15 test examples. It also contains a separate test set with 1, 000 examples
from writers that were not selected for training (one example per writer).

B EXPERIMENTAL SETUP

Table 2 shows network architectures used for each dataset. In models, we use Group Normalization
(GN) instead of batch-normalization (BN) following the observations that BN does not work well
in non-iid data setting of federated learning (Hsieh et al., 2019). The models are trained with SGD
optimizer with learning rate of 0.1 and learning rate decay of 0.01.

Table 2: Network architectures for training UV models with different datasets. convxd(c1, c2, k, p) is x-
dimensional convolutional layer with c1 and c2 input and output channels, respectively, kernel size of k and
padding of p. The default value of p is 1. GN(G) is group normalization layer with G groups. Scaling layer
scales its input to have norm of

√
c. c is the code length in case of FedUV and the number of users in softmax

and FedAwS algorithms.

VoxCeleb CelebA MNIST-UV
conv1d(1, 64, k = 15)

relu, max pool1d(4), GN(2)

conv1d(64, 128, k = 9)

relu, max pool1d(8), GN(2)

conv1d(128, 256, k = 7)

relu, max pool1d(8), GN(2)

conv1d(256, 512, k = 5)

relu, max pool1d(8), GN(2)

conv1d(512, 1024, k = 3)

relu, max pool1d(8), GN(2)

Flatten

FC(1024, c)

Scaling // for FedUV

conv2d(3, 64, k = 3)

relu, max pool2d(2), GN(2)

conv2d(64, 128, k = 3)

relu, max pool2d(2), GN(2)

conv2d(128, 256, k = 3)

relu, max pool2d(2), GN(2)

conv2d(256, 512, k = 3)

relu, max pool2d(2), GN(2)

conv2d(512, 1024, k = 3)

relu, max pool2d(4), GN(2)

Flatten

FC(1024, c)

Scaling // for FedUV

conv2d(4, 64, k = 3, p = 3)

relu, max pool2d(2), GN(2)

conv2d(64, 128, k = 3, p = 1)

relu, max pool2d(2), GN(2)

conv2d(128, 256, k = 3, p = 1)

relu, max pool2d(2), GN(2)

conv2d(256, 512, k = 3, p = 1)

relu, max pool2d(2), GN(2)

conv2d(512, 1024, k = 3, p = 1)

relu, max pool2d(2), GN(2)

Flatten

FC(1024, c)

Scaling // for FedUV
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C TRAINING WITH AND WITHOUT `neg

Figure 4 shows the training and test accuracy with and without `neg for MNIST-UV dataset (For the
sake of simplicity, here we show the accuracy rather than the TPR and FPR). As seen, using `neg
results in better accuracy at early epochs but does not have significant impact on the final accuracy.
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Figure 4: Training and test accuracy with and without `neg for MNIST-UV dataset.

D AUC

Table 3 shows the Area Under the Curve (AUC) of the ROC curves of Figure 2. As seen, the AUC is
above 0.99 in most cases, indicating that all methods perform well on different datasets.

Table 3: AUC of the ROC curves of Figure 2.

Dataset Dataset type softmax FedAwS FedUV (127) FedUV (255) FedUV (511)

VoxCeleb
train 0.997 0.998 0.995 0.998 0.998

test (known) 0.997 0.998 0.995 0.998 0.998
test (unknown) 0.997 0.998 0.995 0.998 0.998

CelebA
train 0.999 0.995 0.994 0.996 0.998

test (known) 0.999 0.992 0.989 0.994 0.998
test (unknown) 0.996 0.981 0.969 0.986 0.992

MNIST-UV
train 0.997 0.998 0.993 0.995 0.996

test (known) 0.996 0.997 0.993 0.994 0.995
test (unknown) 0.996 0.996 0.992 0.993 0.995
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