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ABSTRACT

Generalization in deep learning is often associated with the sharpness of the min-
ima encountered during training. We introduce a novel, deterministic, and com-
putationally efficient method called activation decay, designed to flatten sharp
minima and improve generalization across a wide range of tasks. Derived from
Gaussian smoothing, activation decay operates by regularizing the activations of
critical network layers, effectively reducing sharpness and improving robustness.
Unlike stochastic techniques such as dropout or the more computationally ex-
pensive Sharpness-Aware Minimization (SAM), our approach requires no addi-
tional computational overhead, making it particularly suited for large-scale mod-
els. We further demonstrate that activation decay can be seamlessly combined
with other regularization techniques, offering enhanced regularization without in-
creasing training complexity. Extensive experiments on CIFAR-10, ImageNet,
and natural language processing (NLP) tasks validate our approach, showing con-
sistent improvements in generalization and robustness to label noise.

1 INTRODUCTION

Generalization in deep learning models remains a fundamental challenge, particularly as models
grow in complexity and are tasked with learning from increasingly large datasets. The nature of the
minima in the loss landscape has often been cited as a key factor influencing generalization. Models
that converge to sharp minima tend to be highly sensitive to small perturbations, resulting in poor
performance on unseen data. In contrast, models that converge to flatter minima have often been
associated with improved robustness and generalization (Hochreiter & Schmidhuber, 1997). While
sharpness-based measures have been shown to correlate strongly with generalization under certain
settings (Jiang et al., 2020), it is important to note that flatness is not a universal guarantee of better
generalization, as it is sensitive to parameterization and re-scaling effects in deep, overparameterized
networks (Zhang et al., 2017). Despite these nuances, regularization techniques aimed at minimizing
sharpness or curvature remain effective heuristics in guiding models toward solutions that generalize
well in practice.

A widely used regularization method is weight decay, or ℓ2 regularization on weights, which pe-
nalizes the magnitude of the model’s weights by adding a term proportional to the squared norm of
the parameters to the loss function. Weight decay penalizes large parameter values, smoothing the
loss landscape and reducing the complexity of the learned model. By controlling the magnitude of
the weights, weight decay helps the model find flatter minima, improving generalization (Krogh &
Hertz, 1992).

Bishop (1995) first established the connection between noise injection and deterministic regular-
ization, demonstrating how noise injection can be cast as a form of regularization. In more recent
work, Wei et al. (2020); Orvieto et al. (2022) further explored this connection by analyzing how
specific forms of noise injection, such as anticorrelated noise and dropout (Srivastava et al., 2014),
can encourage flatter minima and improve generalization. While noise injection introduces stochas-
ticity during training, making models more robust to perturbations and guiding them toward flatter
minima, those methods introduce randomness into the optimization process, which can lead to per-
formance variability across different runs.

Another important method in the field of regularization is Sharpness-Aware Minimization (SAM)
(Foret et al., 2021), which directly targets sharpness by introducing a min-max optimization frame-
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work. SAM aims to minimize the worst-case sharpness in a neighborhood of the model’s parameters,
encouraging convergence to flatter minima. While effective, SAM’s computational cost and memory
overhead are significantly higher than simpler methods like weight decay and noise injection. Zhang
et al. (2018) show that batch normalization (Ioffe & Szegedy, 2015) and residual connections (He
et al., 2016) enhance backpropagation by improving the local Hessian’s spectrum leading to better
gradient flow.

Beyond simply smoothing the loss landscape, methods like SAM provide robustness to label noise
by guiding models to converge to flatter minima, where the sensitivity to noisy labels is reduced
(Baek et al., 2024). Similarly, smooth networks, such as Lipschitz networks, demonstrate robustness
to adversarial attacks (Tsuzuku et al., 2018; Cohen et al., 2019), as controlling the Lipschitz constant
ensures that small perturbations in the input lead to bounded changes in the output. Importantly, the
Lipschitz constant of a network also plays a critical role in generalization bounds (Bartlett et al.,
2017), as it governs how sensitive the model is to variations in the data, further linking generalization
performance with robustness to both label noise and adversarial perturbations.

The main contributions of this paper are as follows:

• We provide a theoretical framework that establishes a clear relationship between noise vari-
ance and the spectral norm of the Hessian. Specifically, we present two results: Corollary 1
quantifies the reduction in Hessian curvature due to Gaussian smoothing near a local min-
imum, offering guarantees on how smoothing influences the loss landscape and improves
generalization. Theorem 1 demonstrates how the curvature of the final layer and loss, along
with the Lipschitz constants of the intermediate layers, regularizes the Hessian by decom-
posing the individual contributions of each layer to the overall Hessian.

• We propose a simple and deterministic method based on Gaussian smoothing applied to
the final layer weights in Theorem 2. This method significantly reduces the computational
overhead while retaining the smoothing benefits with regard to flat minima. We call that
method activation decay (AD) as it can be cast as a ℓ2-norm regularization on activations.

• We validate our approach through extensive experiments on CIFAR-10, ImageNet, and
natural language processing (NLP) benchmarks in a multi-task setting. Our method consis-
tently improves generalization, demonstrates robustness to label noise (on CIFAR-10), and
outperforms SAM and dropout on NLP tasks. Additionally, it can be seamlessly combined
with SAM without additional computational overhead.

The paper is organized as follows: Section 2 reviews the related work on regularization techniques in
neural networks to promote flat minima, focusing on approaches such as noise-based regularization,
ℓ2 regularization, and their impact on generalization. Section 3 presents our theoretical framework,
detailing the relationship between Gaussian smoothing, Hessian curvature, and ℓ2 regularization,
including new insights into how layer-wise regularization impacts the overall loss landscape. Sec-
tion 4 describes our experimental setup, discusses the results, and demonstrates the effectiveness of
our approach across multiple tasks.

2 BACKGROUND & RELATED WORK

We define a feed-forward neural network as follows: h(L) = W(L)h(L−1) where h(l−1) =
f (l−1)(h(l−2)) = s(l−1)(W(l−1)h(l−2)) for layers l = 1, . . . , L − 1 and h(0) = x denotes the
input data. Each layer l has its activation s(l), typically ReLU or GELU. For the sake of simplicity,
we omit bias in the network. We note ∥W (l)∥2 the spectral norm of matrix W (l). For a given label
y, we denote the loss as L(h(L),y,θ). The collection of all parameters to be learned, θ, include all
the weights in the network: θ = vec

(
{W(l)}l=1,...,L

)
. We refer to the loss function as L(θ) for

brevity.

Regularization techniques are essential for enhancing the generalization capability of neural net-
works by controlling model complexity, reducing overfitting, and stabilizing training.
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2.1 FLAT MINIMA

Generalization, the ability of a model to perform well on unseen data, is often associated with the
flatness of the minima found during training, as highlighted by empirical studies (Keskar et al., 2016;
Chaudhari et al., 2019), where sharp minima are linked to poorer generalization. The relationship
between loss landscapes, generalization, and stochastic gradient descent (SGD) has been a central
topic in machine learning research for years (Hochreiter & Schmidhuber, 1997). For instance, it has
been shown that in overparameterized models, local minima of the loss function are often close to
the global minima (Choromanska et al., 2015). Additionally, Xing et al. (2018) demonstrate that
SGD exhibits an implicit bias, favoring regions of the loss landscape resembling a valley.

A pivotal study by Keskar et al. (2016) shows that large-batch training tends to converge to sharp
minima, which correlates with worse generalization compared to the flatter minima achieved with
small-batch training. However, Dinh et al. (2017) point out that common sharpness metrics, such as
the spectral norm of the Hessian of L(θ), are sensitive to re-scaling. In our analysis, the networks
are not adversarially reparameterized, ensuring a fair comparison. It is important to note that flatter
minima do not always guarantee better generalization, as counterexamples exist where sharp minima
generalize well and flat minima perform poorly (Andriushchenko & Flammarion, 2022; Zhang et al.,
2017). Nevertheless, Jiang et al. (2020) show that sharpness-based metrics often outperform other
complexity metrics for evaluating generalization.

Finally, as discussed in Section 2.3, Sharpness-Aware Minimization (SAM), introduced by Foret
et al. (2021), has become a prominent and deeply studied method in this area.

2.2 NOISE INJECTION

Noise injection methods add stochasticity during training, either to activations or weights. It im-
proves robustness and prevents overfitting. The most widely known is probably the dropout (Srivas-
tava et al., 2014), which randomly drops units during training, reducing co-adaptation of neurons
and improving generalization. However, its stochastic nature introduces additional variance in per-
formance, requiring careful tuning to prevent underfitting, particularly when applied to deep models
(Liu et al., 2023). The increased training variability may also result in unstable training dynamics
under certain conditions. Perturbed Gradient Descent (PGD) (Jin et al., 2017) introduces noise into
the weight updates to help models escape saddle points and better explore the optimization land-
scape. Building on PGD, anticorrelated noise (Orvieto et al., 2022) modifies the noise structure
and proves it promotes convergence to flatter minima by controlling the curvature of the loss land-
scape. The resulting optimization program can be summarized with the smoothed loss: Lσ(θ) =
E∆∼N (0,σ2I) [L(θ +∆)] . The resulting optimization landscape becomes smoother, reducing the
impact of sharp regions. However, tuning the noise parameter σ is critical, as improper choices can
lead to instability with exploding variance or insufficient regularization.

2.3 LOSS SMOOTHING AND REGULARIZATION

While noise-based regularization techniques have been widely adopted, they often introduce un-
desirable variance into the training process, which can hinder performance. The work of Bishop
(1995) interprets Gaussian noise on inputs as Tikhonov regularization on parameters also known as
weight decay, establishing a connection between noise injection and deterministic loss smoothing.
This encourages smaller weights and promotes simpler solutions that generalize better (Krogh &
Hertz, 1992). Such regularization flattens the loss landscape, leading to convergence toward wider,
flatter minima that correlate with improved generalization (Hochreiter & Schmidhuber, 1997). The
regularized loss function can be expressed as: L(θ) + σ2

2 ∥θ∥22.
Sharpness-Aware Minimization (SAM) (Foret et al., 2021), a more recent approach, penalizes sharp
minima directly. SAM minimizes a robust smoothed objective: minθ max∆∈B(0,ρ) L(θ + ∆),
where B(0, ρ) represents a ball of radius ρ around zero, and ∆ is the perturbation applied to the pa-
rameters. By introducing an adversarial component into the optimization process, SAM effectively
reduces sharpness in the loss landscape, which improves generalization across many tasks. However,
SAM’s computational cost is significantly higher due to multiple forward-backward passes required
for the perturbed loss evaluation.
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Notable works on layer wise regularization such as margin constraint Elsayed et al. (2018) or acti-
vation regularization Yashwanth et al. (2024) are close to our approach. Inspired by the works of
Bishop (1995) and Orvieto et al. (2022), we propose a novel deterministic noise-based regulariza-
tion that operates on activations rather than weights, with the same low computational cost. This
approach reduces sharpness in the loss landscape while maintaining computational efficiency.

3 ACTIVATION DECAY: CONTROLLING THE HESSIAN NORM TO IMPROVE
GENERALIZATION

In this section, we provide a theoretical framework to quantify how smoothing techniques, such as
Gaussian noise injection, affect the curvature of the loss landscape and contribute to better general-
ization. Specifically, we examine how these techniques influence the spectral norm of the Hessian,
a key measure of sharpness in the loss function. By doing so, we establish a connection between
noise-based regularization and the flattening of minima. This is followed by an analysis of how con-
straining the spectral norm weight and the Hessian of individual layers can further control the overall
curvature, offering a tractable approach to loss smoothing. Finally, we discuss a practical method of
smoothing the loss through activation decay, providing theoretical guarantees for its effectiveness in
reducing sharpness. All proofs are provided in the Appendix.

3.1 LOSS FLATTENING AND LAYER SMOOTHING

In the regime near a minimum, where the loss gradient’s norm is small, understanding the impact of
smoothing techniques like Gaussian noise on the curvature of the loss is crucial for generalization.
The following corollary quantifies the reduction in the spectral norm of the Hessian—an indicator of
sharpness—when Gaussian noise is applied to the parameters near a local minimum. This provides
a concrete measure of how smoothing leads to flatter minima, which is directly tied to improved
generalization in deep learning.

Corollary 1 (Dimension-free bound on Hessian norm of Gaussian smoothed loss). (Adapted from
Delattre et al. (2024)) Let L : Rd → R be differentiable. Suppose that the gradient ∇θL is H-
Lipschitz continuous, and that ∥∇θL(θ)∥2 ≤ ϵ. The spectral norm of the Hessian of the Gaussian
smoothed loss is bounded by:

∥∇2
θ E∆∼N (0,σ2I) [L(θ +∆)] ∥2 ≤ H erf

(
ϵ√
2Hσ

)
. (1)

In this corollary, erf denotes the error function defined for any positive and real value by erf(x) =
2√
π

∫ x

0
e−t2 dt. The proof of this corollary is derived and adapted from Theorem 2 of Delattre et al.

(2024) which is used in randomized smoothing context with noise on inputs to derive Lipschitz
continuity of smoothed classifier. The work of Nesterov & Spokoiny (2017) was the first to derive
bounds on the regularity of the Gaussian smoothed loss. However, their bound depends on the
dimension d, which makes it less tight in high-dimensional settings.

This bound offers a quantitative measure of the effect of Gaussian noise injection on the curvature
of the loss around minima, providing practical insight into how parameter perturbations contribute
to smoother loss landscapes. Note that Orvieto et al. (2022) established a link between the trace of
the Hessian of the loss and the noise injected whereas the bound here is on the Hessian’s spectral
norm.

While directly controlling the overall curvature of the loss landscape is crucial, managing the spectral
norm of intermediate layers

∥∥W (l)
∥∥
2

and the Hessian of specific layers, such as the loss function,
offers a more tractable approach. The next result provides a decomposition of the contributions of
each layer, showing how constraining the Lipschitz constants and the Hessian at critical points can
effectively control the overall curvature.

Theorem 1 (Bound on Hessian norm of loss). Let L : Rd → R be twice differentiable. Assume that
the set of parameters θ is such that the loss function attains zero: L(θ) = 0.

4
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Then, the spectral norm of the Hessian of the loss L is bounded by:

∥∇2
θ L(θ)∥2 ≤

L−1∑
j=1

∥∥∥∥∂h(j)

∂θ

∥∥∥∥
2

L−1∏
l=j+1

∥∥∥W(l)
∥∥∥
2

2 ∥∥∇2
h(L−1)L(θ)

∥∥
2
. (2)

In over-parameterized deep neural networks, it is common for the training loss to reach values close
to zero, given the high capacity of the model to fit the training data (Zhang et al., 2017). Therefore,
assuming L(θ) = 0 is reasonable in this context.

This inequality demonstrates that the contributions from the later layers to the bound on the Hessian
norm are more significant than those from the earlier layers, as the spectral norm

∥∥W (l)
∥∥
2

are
accumulated more times in deeper layers. Consequently, the spectral norm constants associated
with deeper layers influence the curvature of the loss more strongly. The term

∥∥∇2
h(L−1)L(θ)

∥∥
2

reflects the influence of the Hessian with respect to the penultimate activations, which, combined
with the accumulated Lipschitz constants, governs the overall smoothness of the loss landscape.

Weight decay is an efficient regularization because it helps to bound spectral norm
∥∥W (l)

∥∥
2

by
bounding the Frobenius norm of the layer weights

∥∥W (l)
∥∥
F

. The work of Delattre et al. (2023)
introduces a tight bound on the spectral norm of convolutional and dense layers, and performs reg-
ularization to better generalization.

3.2 ACTIVATION DECAY FOR DETERMINISTIC LOSS SMOOTHING

In this section, we implement a Gaussian-smoothed loss function aimed at reducing the sharpness
of minima encountered during training by targeting the term ∇2

h(L−1)L(θ): we focus on injecting
Gaussian noise into the weights W (L) of the final layer h(L) while keeping the rest of the network
unchanged. Perturbing only the final layer, we reduce computational overhead while retaining the
smoothing benefits. The smoothed final loss can be written as:

Lσ(W (L)h(L−1),y) = E∆∼N (0,σ2I)

[
L
(
(W (L) +∆)h(L−1),y

)]
. (3)

This approach is related to approximating the softmax of a Gaussian distribution (Lu et al., 2021)
and aligns with methods that focus on optimizing the last layer separately from the rest of the net-
work (Newman et al., 2021). We can apply this smoothing to the cross-entropy loss and obtain the
following result.

Theorem 2 (Smoothed Cross-Entropy Loss). Let LCE be the cross-entropy loss, h(L−1) ∈ Rd be
an input from the penultimate layer, y ∈ Rc be a one-hot encoded label vector, and W (L) ∈ Rc×d

be a weight matrix. Then the following bound holds for the smoothed loss:

Lσ
CE(W

(L)h(L−1),y) ≤ LCE(W
(L)h(L−1),y) +

σ2

2
∥h(L−1)∥22 . (4)

Optimizing the right-hand side is equivalent to optimizing the original loss LCE with an added
ℓ2 regularization term on the penultimate activations ∥h(L−1)∥22, this activation decay (AD) effect
functions similarly to weight decay. As noise on inputs gives regularization on weights (Bishop,
1995), here noise on weights gives regularization on activations. Note that Taylor expansion gives
a tighter approximation of the smoothed cross-entropy but the approximation is not an upper bound
on the smoothed loss, see the result in Appendix.

4 EXPERIMENTS

4.1 THEORETICAL VALIDATION OF REGULARIZATION EFFECTS

This experiment empirically evaluates how closely the theoretical bound from Corollary 1 aligns
with observed Hessian norms. Several runs of training on CIFAR-10 are performed with the ResNet-
56 model and different parameters σ for the AD. Then, we compute the largest eigenvalue of the
Hessian on the final layers of the network to assess the sharpness reduction predicted by Gaussian

5
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Figure 1: (a) Comparison between the theoretical bound on the largest eigenvalue of the Hessian
given by Corollary 1 and the empirical value computed with PyHessian with a relative tolerance
of 1e−3, on a ResNet-56 model trained on CIFAR-10 for 300 epochs. (b) Accuracy on CIFAR-
10 for an MLP with depth 3 and varying numbers of hidden features per layer. Our method with
regularization is compared to the baseline with no regularization.

smoothing. Here Hessian is computed only w.r.t to W(L) of the final layer. We estimate ϵ by
averaging the gradient’s norm near the minimum at the end of the training. The Hessian eigenvalue
is computed on the training set at the end of the training after 300 epochs. We see in Figure 1a,
that the theoretical bound gives the correct trend of the evolution of the curvature of the Hessian,
the remaining mismatch might come from stochasticity in the Hessian eigenvalue computation, the
Jensen gap, etc. We use the PyHessian library to compute the Hessian operator norm (Yao et al.,
2020).

4.2 EMPIRICAL EVALUATION ON VISION DATASETS

Classification with MLP on CIFAR-10 This experiment compares different regularization tech-
niques on a 4-layer Multi-Layer Perceptron (MLP) network with GELU activation. The MLP has
3072 input features, and the training was conducted on the CIFAR-10 dataset. The model was
trained using Stochastic Gradient Descent (SGD) without momentum, and no weight decay was ap-
plied. A learning rate scheduler with annealing was used to adjust the learning rate, which was set
to 1e−1. We use a batch size of 128 and standard data augmentation techniques, including random
horizontal flips and random crops with padding of 4 pixels. These augmentations are applied to the
training data to improve generalization. Each experiment was repeated 10 times to ensure statistical
significance. We explored various regularization methods: We apply dropout (DO), parameterized
by probability p, on intermediate layers h(l); weight decay (WD) on all layers, parameterized by
σ; activation decay (AD), parameterized by σ, on the last layer h(L); a combination of AD on the
last layer h(L), parameterized by σ, with weight decay on intermediate layers h(l), where the best
parameter is obtained from the previous weight decay experiment; and SAM parametrized by ρ.

Results are presented in Figure 2. The baseline is at 62.17%. Our results demonstrate that AD
increases generalization when σ = 0.1, improving accuracy by 2.63 %. Applying dropout alone
also slightly enhances generalization, improving by 1.73% for best parameter p = 0.1. However,
combining dropout with AD does not yield additional benefits and performs worse than using AD
alone. Additionally, the application of intermediate loss regularization does not provide any notice-
able benefits in terms of generalization. The method that combines AD and weight decay performs
the best as highlighted by Theorem 1. SAM do not provide as good results for the MLP architecture
as for CNNs architecture as reported in SAM paper (Foret et al., 2021). We also provide a compari-
son with a similar approach proposed by Baek et al. (2024) in Appendix A.1. Their method applies
layer-wise activation regularization across all layers except the last, where weight decay is used. In
contrast, our approach requires fewer hyperparameters to tune while achieving comparable results.

We also provide results on MLP-Mixer architecture (Tolstikhin et al., 2021) on ImageNet in the
Appendix, showing that our method extends to a bigger dataset and architecture.
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Figure 2: Comparison of accuracies of different regularizations, the higher the better, applied to
a 4-layer MLP network trained on the CIFAR-10 dataset. The plots show the evolution of accuracy
with varying values of parameter σ for activation decay (AD) and weight decay (WD) and drop
rate p for dropout (DO). The first curve (AD) depicts the effect of σ while keeping p at 0.0. The
second curve (AD + WD) combines WD with the best parameter 1e−3 and varying σ for AD. The
third curve (DO) illustrates the impact of dropout when σ is 0.0. The fourth curve (WD) depicts the
effect of σ when it parameterizes weight decay. The fourth curve (SAM) illustrates the impact of ρ
parameter. Shell indicates the standard deviation over 10 runs.

Effect of overparameterization on regularization performance This experiment evaluates how
AD regularization behaves when varying the number of parameters in the model. We use a 3-layer
MLP on CIFAR-10 and adjust the number of hidden features to transition between underparame-
terized and overparameterized regimes. As shown in Figure 1b, we observe that the gains from our
method are consistent across both regimes. Smoothing the loss leads to noticeable improvements in
accuracy, demonstrating the effectiveness of our regularization technique regardless of the model’s
parameter count.

Table 1: Accuracies on validation set for baseline, AD (σ = 0.2), ASAM (ρASAM = 2.0) and
AD+SAM, for WideResNet on CIFAR-10. Results were reported after averaging over 3 runs and
the standard deviation is 0.03 for all runs.

Configuration Validation accuracy (%)
Baseline 97.09
ASAM 97.48
AD 97.27
AD + ASAM 97.54

Comparison to ASAM with Wide ResNet on CIFAR-10 Table 1 presents a comparative analysis
of the average accuracies on the validation set achieved by different training configurations using the
WideResNet architecture trained on 300 epochs on the CIFAR-10 dataset. The configurations evalu-
ated are: Baseline, the standard training setup without additional optimization techniques, achieved
a validation accuracy of 97.09%. Ours, a proposed method utilizing AD with σ = 0.2, improved

7
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the validation accuracy to 97.27%. For experiments involving SAM we use the upgrade Adaptive
SAM (ASAM) (Kwon et al., 2021), we adopted the official implementation provided by the authors.
To ensure a fair evaluation, we used the best parameter ρASAM = 2.0 as specified in their code
repository for this particular task which achieved a validation accuracy of 97.48%. AD + ASAM, a
combination of the proposed method and SAM, yielded the highest validation accuracy of 97.54%.
The best values of ASAM and AD parameters were picked by hyperparameter search. AD and
ASAM outperform the baseline individually, while the combination yields the best performance.
This can be explained because ASAM is designed to minimize the worst-case ascent sharpness,
specifically targeting regions of the loss landscape where the maximum sharpness is reduced (Wen
et al., 2022). In contrast, AD focuses on reducing the average sharpness, promoting a smoother
and more stable optimization trajectory. This complementary behavior could explain why the two
methods combine effectively, leading to enhanced generalization performance.
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Figure 3: Accuracy difference and Hessian trace of the loss for varying σ, with 30% label noise on
CIFAR-10 using ResNet-56.

Classification with Label Noise with ResNet-56 on CIFAR-10 We evaluate the effect of 30%
label noise effect on CIFAR-10 classification using ResNet-56, varying the parameter σ in AD.
Figure 3 shows the accuracy difference from a baseline model and the trace of the Hessian of the
loss w.r.t all parameters, plotted against σ. The Hessian trace, a proxy for sharpness, indicates
sharper minima and poorer generalization under label noise. As σ increases, accuracy initially
improves but declines as the Hessian trace rises, aligning with findings from Foret et al. (2021)
and Baek et al. (2024), where SAM (Sharpness-Aware Minimization) improves regularization under
label noise. Our AD method enhances noise robustness by controlling sharpness as σ increases,
improving accuracy without the computational cost of SAM. This makes AD an efficient alternative
for handling noisy labels for free. This experiment further reinforced the link between flat minima
and label noise robustness.

4.3 ADAPTING TO LARGE LANGUAGE MODEL

Multi-task learning (MTL) Zhang et al. (2021) is a paradigm in machine learning where a model
is trained to perform multiple tasks simultaneously, leveraging shared representations across tasks.
MTL also offers the benefit of reducing computational costs and latency, enabling the model to
handle multiple tasks in a single inference step, rather than performing separate inferences for each
task.

With the advent of large-scale pretrained models, multi-task learning has become increasingly pop-
ular in NLP. Pretrained on large corpora, these models can capture a wide range of patterns and
dependencies in text data. Leveraging this general knowledge during fine-tuning while specializing
in specific tasks leads to new state-of-the-art performances on a variety of downstream tasks. This
task-specific adaptation during fine-tuning, is needed for earlier Large Language Models (LLMs) as
BERT Devlin et al. (2019) and RoBERTa Liu et al. (2019) and has recently been reduced to few-shot
learning with models like GPT-3 Brown et al. (2020) and T5 Raffel et al. (2020) and even extended
to zero-shot settings by Wei et al. (2022); Sanh et al. (2022) in the context of very large models.
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However, fine-tuning multiple tasks can lead to overfitting on individual tasks, which can degrade
the model’s performance on other tasks, calling for specific design choices, adding extra task-
specific parameters (adapters), or using specific prompts (see Stickland & Murray (2019); Wang
et al. (2023)). Our AD method promotes flat minima to improve generalization across tasks. The
goal is to prevent overfitting to any specific task while retaining the benefits of pretraining on various
tasks. Our flat minima regularization helps preserve the generalization capabilities of the pretrained
model, ensuring robust performance across all tasks during fine-tuning. As detailed in Section 2.1
flat minima and generalization are often tied together and the experimental results presented in Ta-
bles 6 and 3 show our regularization helps conserve performance across diverse tasks by promoting
smooth optimization landscapes during fine-tuning.

Fine tuning on distinct tasks In this experiment, we evaluate the performance of a multi-task
NLP model using the RoBERTa (Liu et al., 2019), BERT (Devlin et al., 2019), and T5 (Raffel et al.,
2020) architectures to handle distinct tasks. The multi-task setup allows the model to process these
tasks simultaneously, optimizing latency and resource consumption. We experimentally show that
in the context of fine-tuning and few-shot learning, our Activation Decay (AD) method helps LLMs
to generalize better across tasks, leading to improved performance compared to the baseline models.

Each task is described as follows: (i) Sentiment Analysis: a binary classification task (posi-
tive/negative) on the IMDb dataset, using classification accuracy as the metric; (ii) NER: named
entity recognition on the Snips and CoNLL datasets, evaluated using F1-score, precision, and recall
metrics; (iii) Intent Classification: intent detection on the Snips dataset, evaluated with classification
accuracy; (iv) Entailment Classification (SNLI): a binary classification task predicting whether a
sentence entails another, based on the SNLI dataset, with classification accuracy as the metric; (v)
POS Tagging: part-of-speech tagging on the CoNLL dataset, evaluated using F1-score, precision,
and recall metrics; (vi) Query Correctness: a binary classification task assessing the correctness of
queries, evaluated with classification accuracy.

The backbone models used for all tasks are BERT (bert-base) and RoBERTa (roberta-base), with
dropout probability set to 0. The model’s performance is evaluated using a custom smoothed loss
function with σ = 0.05, and the results are compared with SAM regularization at different ρ values.
Weight decay is present by default in the training configuration of the backbone. We use standard
training configuration from HuggingFace corresponding models and trainers.

Table 2 presents evaluation results for fine-tuning BERT on seven NLP tasks, comparing the baseline
model with standard dropout (p = 0.1), SAM regularization with standard values (ρ = 0.01), and
Activation Decay (σ = 0.05). The best values for SAM were selected from ρ = 0.01, 0.05, 0.1,
and Activation Decay from σ = 0.01, 0.05, 0.1. Metrics include classification accuracy, F1-score,
precision, and recall. Activation Decay consistently outperforms both the baseline and SAM across
most tasks. The same results for RoBERTa are reported in Table 5 in the Appendix, showing the
efficiency of AD.

Few shots learning on Multilingual Massive Multitask Language Understanding (MMMLU)
dataset We evaluate our models on the MMMLU dataset (Hendrycks et al., 2020), which spans
57 diverse topics ranging from elementary to advanced professional subjects. We use the newly
updated version published by (OpenAI, 2023), which expanded the dataset to include 14 languages
using professional human translators. We use the T5 architecture (Raffel et al., 2020) for our ex-
periments, fine-tuning the small (60 M), base (220 M), and large (770 M) variants of the model
over 3 epochs. The results, summarized in Table 3, show that our AD with σ = 0.01 in a multitask
setting, consistently outperforms the standard dropout p = 0.1 a common baseline for fine-tuning
baseline across all model sizes, demonstrating its effectiveness for large models. This result high-
lights the importance of our approach in improving accuracy, particularly in large-scale multitask
environments. All code and implementation details will be made available upon acceptance of the
paper to ensure reproducibility.

5 DISCUSSION AND CONCLUSION

The formula in Theorem 1 offers guidance for layer-specific regularization by applying either weight
decay or activation decay. Since most of the training configurations already employed weight decay,

9
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Table 2: Evaluation results for BERT baseline with DO (p = 0.1), SAM (ρ = 0.01), and AD
(σ = 0.05) on 7 tasks.

Metric DO SAM AD
Sentiment Evaluation
Classification Accuracy (%) 76.72 76.54 77.08
NER Evaluation
Snips F1 Score (%) 78.33 69.67 80.90
Snips Precision (%) 73.69 64.11 76.20
Snips Recall (%) 83.59 76.28 86.21
Intent Evaluation
Classification Accuracy (%) 98.04 98.19 98.49
Entailment SNLI Evaluation
Classification Accuracy (%) 87.96 89.39 88.88

CoNLL NER Evaluation
Seqeval F1 Score (%) 64.43 61.01 65.94
Seqeval Precision (%) 61.87 61.48 64.11
Seqeval Recall (%) 67.20 60.55 67.87
CoNLL POS Evaluation
Seqeval F1 Score (%) 75.95 72.48 77.89
Seqeval Precision (%) 74.89 71.59 76.98
Seqeval Recall (%) 77.04 73.39 78.82
Query Correctness Evaluation
Classification Accuracy (%) 69.95 69.47 69.31

Table 3: Test accuracy results for T5 configurations on the MMMLU dataset, for baseline used with
DO (p = 0.1), and AD (σ = 0.01).

Model DO AD
T5-large 52.07 52.95
T5-base 49.89 50.25
T5-small 32.21 33.49

we introduced activation decay to replace dropout, as the latter is a noise-based injection method.
Empirical results confirm the effectiveness of this replacement and validate the proposed formula.
We also experimented with proportional weight decay across layers, aiming to scale it based on each
layer’s contribution to the overall Hessian spectral norm of the loss. However, this approach did not
yield improved results, potentially due to the looseness of the formula or the fact that weight decay
controls the Frobenius norm, which serves as a loose upper bound on the spectral norm. Future work
could focus on refining the formula to more tightly align with the spectral norm improve proportional
weight decay performance and study the impact of normalization layers like Batch Normalization
and Layer Normalization on the Hessian spectral norm.

The proposed method of activation decay presents a novel and effective approach to improving gen-
eralization in deep learning by addressing the sharpness of minima during training. By leveraging
Gaussian smoothing to regularize critical activations, activation decay flattens minima and enhances
robustness without incurring additional computational costs. Our method provides a determinis-
tic alternative to stochastic regularization techniques like dropout and SAM, maintaining efficiency
while achieving comparable or superior performance. Additionally, its ability to integrate and com-
bine seamlessly with existing regularization methods like weight decay makes it a versatile and
practical tool for large-scale models.
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A ADDITIONAL EXPERIMENTS

A.1 CLASSIFICATION WITH MLP ON CIFAR-10

In this experiment we use the same setting as in experiemnt 4.2. We conducted a comparison of
our method AD, with the approach outlined in (Baek et al., 2024) Section 4.3, whose framework,
designed specifically for label noise robustness, requires tuning decay parameters for each layer to
achieve effective regularization. This introduces additional hyperparameter complexity but shares
conceptual similarities with our approach.

To ensure a fair comparison, both methods were evaluated under identical experimental settings,
including hyperparameter tuning for Baek et al. (2024)’s regularization coefficients. The results are
summarized in Table 4.

Table 4: Comparison with (Baek et al., 2024) and Activation Decay (AD) under identical experi-
mental settings.

Metric (Baek et al., 2024) AD (ours)
Mean test accuracy (%) 65.05 65.11
95% confidence interval [64.86, 65.23] [64.90, 65.33]

Our findings demonstrate that AD, which applies ℓ2-regularization to the penultimate activations,
achieves comparable results to (Baek et al., 2024)’s method without the need for layer-wise tuning.
Specifically, (Baek et al., 2024)’s method requires tuning separate coefficients for intermediate lay-
ers (σ = 1e−3) and for the last layer parameters (σ = 1e−2). In contrast, our approach eliminates
this complexity and achieves similar performance with a single hyperparameter, σ, set to 0.1.

The simplicity of our method reduces the number of hyperparameters to tune, making it both more
practical and easier to analyze. Furthermore, regularizing the penultimate activation indirectly reg-
ularizes preceding layers, as the penultimate activation encapsulates their contributions.

A.2 CLASSIFICATION WITH MLP-MIXER ON IMAGENET-1K

We test our method on the MLP-Mixer architecture (Tolstikhin et al., 2021), using the same settings
as Liu et al. (2023) and Liu et al. (2022). We applied AD to the final layer and the cross-entropy loss
of the Mixer-S/32 architecture on ImageNet-1k and reported the accuracy. Figure 4 results indicate
that AD improves model performance, leading to higher accuracy than the baseline.
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Figure 4: Plot of different pieces of training on ImageNet of MLP-Mixer with AD, with varying σ.

A.3 EXPERIMENTS ON LLM
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Table 5: Evaluation results for RoBERTa baseline and AD (σ = 0.05), on 7 tasks.

Metric DO AD

Sentiment Evaluation
Classification Accuracy (%) 77.66 77.68
NER Evaluation
Snips F1 Score (%) 72.70 73.99
Snips Precision (%) 67.78 69.25
Snips Recall (%) 78.39 79.44
Intent Evaluation
Classification Accuracy (%) 97.59 96.83

Entailment SNLI Evaluation
Classification Accuracy (%) 88.60 89.33
CoNLL NER Evaluation
Seqeval F1 Score (%) 67.62 67.90
Seqeval Precision (%) 65.08 65.38
Seqeval Recall (%) 70.36 70.61
CoNLL POS Evaluation
Seqeval F1 Score (%) 71.86 72.14
Seqeval Precision (%) 70.68 70.89
Seqeval Recall (%) 73.07 73.45
Query Correctness Evaluation
Classification Accuracy (%) 68.08 68.06

Table 6: Evaluation results for BERT baseline with DO (p = 0.1), SAM for different ρ values, and
AD with (σ = 0.05) on 7 tasks.

Metric DO SAM AD
ρ = 0.01 ρ = 0.05 ρ = 0.1

Sentiment Evaluation
Classification Accuracy (%) 76.72 76.54 75.38 62.28 77.08
NER Evaluation
Snips F1 Score (%) 78.33 69.67 62.29 63.95 80.90
Snips Precision (%) 73.69 64.11 56.58 58.08 76.20
Snips Recall (%) 83.59 76.28 69.27 71.14 86.21
Intent Evaluation
Classification Accuracy (%) 98.04 98.19 97.43 97.28 98.49
Entailment SNLI Evaluation
Classification Accuracy (%) 87.96 89.39 86.77 83.85 88.88

CoNLL NER Evaluation
Seqeval F1 Score (%) 64.43 61.01 51.09 52.05 65.94
Seqeval Precision (%) 61.87 61.48 51.64 51.72 64.11
Seqeval Recall (%) 67.20 60.55 50.56 52.39 67.87
CoNLL POS Evaluation
Seqeval F1 Score (%) 75.95 72.48 69.31 71.20 77.89
Seqeval Precision (%) 74.89 71.59 68.79 70.46 76.98
Seqeval Recall (%) 77.04 73.39 69.84 71.97 78.82
Query Correctness Evaluation
Classification Accuracy (%) 69.95 69.47 66.24 64.74 69.31
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B PROOFS

B.1 PROOF OF COROLLARY 1

Proof. Proof is the same as the one from Theorem 2 of Delattre et al. (2024) but one has to simply
adapt the bound with ∥∇L(θ)∥2 ≤ ϵ instead of having ∇L(θ) in the simplex.

B.2 PROOF OF THEOREM 1

Proof. We aim to derive an upper bound on the operator norm of the Hessian matrix ∇2
θL(θ) at a

point where the loss function attains zero: L(θ) = 0.

Let us denote z = h(L−1) as the penultimate activation.

The Hessian matrix of L with respect to θ is given by:

∇2
θL(θ) =

∂2L
∂θ2

,

and using the chain rule:

∇2
θL =

(
∂2z

∂θ2

)⊤

∇zL+

(
∂z

∂θ

)⊤

∇2
zL

(
∂z

∂θ

)
.

Since L(θ) = 0, this implies that θ is at a global minimum of L due to the non-negativity of the
loss function. Therefore, by the necessary condition for optimality in differentiable functions, the
gradient of the loss function with respect to θ vanishes:

∇L(θ) = 0.

∇2
θL =

(
∂z

∂θ

)⊤

∇2
zL

(
∂z

∂θ

)
.

We expand ∂z/∂θ using the chain rule:

∂z

∂θ
=

L−1∑
j=1

∂z

∂h(j)

∂h(j)

∂θ
,

and each term ∂z/∂h(j) involves the product of derivatives from layer j + 1 to L− 1:

∂z

∂h(j)
=

L−1∏
l=j+1

∂f (l)

∂h(l−1)
.

Thus, the Jacobian becomes:

∂z

∂θ
=

L−1∑
j=1

 L−1∏
l=j+1

∂f (l)

∂h(l−1)

 ∂h(j)

∂θ
.

Applying the triangle inequality for operator norms:∥∥∥∥ ∂z∂θ
∥∥∥∥
2

≤
L−1∑
j=1

∥∥∥∥∥∥
L−1∏
l=j+1

∂f (l)

∂h(l−1)

∥∥∥∥∥∥
2

∥∥∥∥∂h(j)

∂θ

∥∥∥∥
2

For contractant non-linear activation such as ReLU and GELU, the layer’s derivative is bounded by
its weight spectral norm: ∥∥∥∥ ∂f (l)

∂h(l−1)

∥∥∥∥
2

≤
∥∥∥W (l)

∥∥∥
2
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we further bound the product of norms:∥∥∥∥∥∥
L−1∏
l=j+1

∂f (l)

∂h(l−1)

∥∥∥∥∥∥
2

≤
L−1∏
l=j+1

∥∥∥W (l)
∥∥∥
2

Thus, the operator norm of the Jacobian is bounded by:∥∥∥∥ ∂z∂θ
∥∥∥∥
2

≤
L−1∑
j=1

∥∥∥∥∂h(j)

∂θ

∥∥∥∥
2

L−1∏
l=j+1

∥∥∥W (l)
∥∥∥
2

Since z = h(L−1), we can write:

∥∇2
θ L(θ)∥2 ≤

L−1∑
j=1

∥∥∥∥∂h(j)

∂θ

∥∥∥∥
2

L−1∏
l=j+1

∥∥∥W (l)
∥∥∥
2

2 ∥∥∇2
h(L−1)L(θ)

∥∥
2
.

B.3 PROOF OF THEOREM 2

Proof. The original cross-entropy loss for the correct class c is given by:

L(hL(hL−1),y) = −W⊤
c hL−1 + log

 d∑
j=1

exp(W⊤
j hL−1)

 .

Consider the smoothed loss by introducing Gaussian noise ∆ ∼ N (0, Iσ2):

Lσ(hL(hL−1),y) = E∆∼N (0,Iσ2)

−(Wc +∆c)
⊤hL−1 + log

 d∑
j=1

exp((Wj +∆j)
⊤hL−1)


Separating the terms:

Lσ(hL(hL−1),y) = −W⊤
c hL−1 + E∆∼N (0,Iσ2)

log
 d∑

j=1

exp((Wj +∆j)
⊤hL−1)

 .

By applying Jensen’s inequality on the expectation inside the logarithm, we get:

E∆

log
 d∑

j=1

exp((Wj +∆j)
⊤hL−1)

 ≤ log

E∆

 d∑
j=1

exp((Wj +∆j)
⊤hL−1)

 .

Since ∆j ∼ N (0, σ2I), we use the moment generating function of the Gaussian distribution:

E[eZ ] = eµ+
1
2σ

2

Applying this to our case for each W⊤
j hL−1 +∆⊤

j hL−1:

E
[
exp((Wj +∆j)

⊤hL−1)
]
= exp(W⊤

j hL−1)E
[
exp(∆⊤

j hL−1)
]

Given ∆j ∼ N (0, σ2I) and ∆⊤
j hL−1 is a Gaussian with mean 0 and variance σ2∥hL−1∥2, we get:

E
[
exp(∆⊤

j hL−1)
]
= exp

(
0 +

1

2
σ2∥hL−1∥2

)
Therefore,

E
[
exp((Wj +∆j)

⊤hL−1)
]
= exp

(
W⊤

j hL−1 +
1

2
σ2∥hL−1∥2

)
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Summing over j:

E∆

 d∑
j=1

exp((Wj +∆j)
⊤hL−1)

 =

d∑
j=1

exp

(
W⊤

j hL−1 +
1

2
σ2∥hL−1∥2

)

Substituting this back into the expression for the smoothed loss, we obtain:

Lσ(hL(hL−1),y) ≤ −W⊤
c hL−1 + log

 d∑
j=1

exp

(
W⊤

j hL−1 +
1

2
σ2∥hL−1∥2

)
This result shows that the smoothed loss Lσ(hL(hL−1),y) is bounded above by the original loss
with an additional offset term 1

2σ
2∥hL−1∥2. This offset is akin to the regularization term observed

in the loss from the work of Tsuzuku et al. (2018) in term of Lϵ where L is the Lipschitz constant
and ϵ the size of the perturbation.

B.4 THEOREM AND PROOF ON TIGHTER APPROXIMATION USING TAYLOR EXPANSION

Theorem 3 (Tighter Approximation via Taylor Expansion). Let W (L) ∈ Rc×d, h(L−1) ∈
Rd, and ∆ ∈ Rc×d with elements drawn independently from N (0, σ2). Denote ŷ =
softmax(W (L)h(L−1)). For small σ, the expected cross-entropy loss under perturbations ∆ is
approximately:

E
[
LCE

(
(W (L) +∆)h(L−1),y

)]
≈ LCE(W

(L)h(L−1),y) + 1
2σ

2∥h(L−1)∥22
c∑

i=1

ŷi(1− ŷi) .

Note that the obtained approximation of the smoothed loss is not an upper bound on the exact
smoothed loss.

Proof. We start by expanding the cross-entropy loss around W (L)h(L−1) using a first-order Taylor
expansion:

LCE

(
(W (L) +∆)h(L−1),y

)
≈ LCE(W

(L)h(L−1),y) +∇LCE(W
(L)h(L−1),y)⊤(∆h(L−1)) ,

where ∇LCE(W
(L)h(L−1),y) = ŷ − y. The first-order term is then:

(ŷ − y)⊤∆h(L−1) .

Taking the expectation of this term with respect to ∆, we use the fact that E[∆] = 0, so the
expectation of the first-order term is zero:

E
[
(ŷ − y)⊤∆h(L−1)

]
= 0 .

We then proceed with the second-order Taylor expansion:

1

2
(∆h(L−1))⊤∇2LCE(W

(L)h(L−1),y)(∆h(L−1)) ,

where the Hessian ∇2LCE(W
(L)h(L−1),y) is given by:

∇2LCE(W
(L)h(L−1),y) = diag(ŷ)− ŷŷ⊤ .

Now, we compute the expectation of the second-order term. Using the property of quadratic forms
for Gaussian random variables, we have:

E[∆h(L−1)(∆h(L−1))⊤] = σ2∥h(L−1)∥22Ic ,

where Ic is the identity matrix in Rc×c. Thus, the second-order term simplifies to:

σ2

2
∥h(L−1)∥22tr

(
∇2LCE(W

(L)h(L−1),y)
)

.
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Finally, we compute the trace of the Hessian:

tr
(
diag(ŷ)− ŷŷ⊤) = c∑

i=1

ŷi(1− ŷi) ,

as the trace of ŷŷ⊤ is 1. Therefore, the second-order term becomes:

σ2

2
∥h(L−1)∥22

c∑
i=1

ŷi(1− ŷi) .

Thus, the total approximation including both the first- and second-order terms is:

E
[
LCE

(
(W (L) +∆)h(L−1),y

)]
≈ LCE(W

(L)h(L−1),y) +
σ2

2
∥h(L−1)∥22

c∑
i=1

ŷi(1− ŷi) .

19


	Introduction
	Background & Related Work
	Flat minima
	Noise injection
	Loss smoothing and regularization

	Activation decay: controlling the Hessian norm to improve generalization
	Loss Flattening and Layer Smoothing
	Activation Decay for Deterministic Loss Smoothing

	Experiments
	Theoretical Validation of Regularization Effects
	Empirical Evaluation on Vision Datasets
	Adapting to Large Language Model

	Discussion and Conclusion
	Additional experiments
	Classification with MLP on CIFAR-10
	Classification with MLP-Mixer on ImageNet-1k
	Experiments on LLM

	Proofs
	Proof of Corollary 1 
	Proof of Theorem 1
	Proof of Theorem 2
	Theorem and proof on Tighter Approximation using Taylor expansion


