
An Empirical Evaluation of Zeroth-Order
Optimization Methods on AI-driven Molecule

Optimization

Elvin Lo
Horace Greeley High School

Chappaqua, NY 10514
elvinlo922@gmail.com

Pin-Yu Chen
IBM Research

Yorktown Heights, NY 10598
pin-yu.chen@ibm.com

Abstract

Molecule optimization is an important problem in chemical discovery and has been
approached using many techniques, including generative modeling, reinforcement
learning, genetic algorithms, and much more. Recent work has also applied zeroth-
order (ZO) optimization, a subset of gradient-free optimization that solves problems
similarly to gradient-based methods, for optimizing latent vector representations
from an autoencoder. In this paper, we study the effectiveness of various ZO
optimization methods for optimizing molecular objectives, which are characterized
by variable smoothness, infrequent optima, and other challenges. We provide
insights on the robustness of various ZO optimizers in this setting, show the
advantages of ZO sign-based gradient descent (ZO-signGD), discuss how ZO
optimization can be used practically in realistic discovery tasks, and demonstrate
the potential effectiveness of ZO optimization methods on widely used benchmark
tasks from the Guacamol suite. Code is available at: https://github.com/IBM/
QMO-bench.

1 Introduction

The goal of molecule optimization is to efficiently find molecules possessing desirable chemical
properties. As the ability to effectively solve difficult molecule optimization tasks would greatly
accelerate the discovery of promising drug candidates and decrease the immense resources necessary
for drug development, significant efforts have been dedicated to designing molecule optimization
algorithms leveraging a variety of techniques, including deep reinforcement learning [1], genetic
algorithms [2], Bayesian optimization [3], variational autoencoders [4, 5], and more. Several molecule
optimization benchmark tasks have also been proposed, including similarity-based oracles [6] and
docking scores [7].

In this paper, we extend the work of Hoffman et al. [8], who proposed the use of ZO optimization
in their query-based molecule optimization (QMO) framework, an end-to-end framework which
decouples molecule representation learning and property prediction. QMO iteratively optimizes
a starting molecule, making it well suited for lead optimization tasks, but it can also start from
random points and traverse large distances to find optimal molecules. In comparison with the work
of Hoffman et al. [8] which experiments with only one optimizer, we experiment with variations of
QMO using different ZO optimizers. Furthermore, we add more benchmark tasks from Guacamol
[6] (whose use has been encouraged by the molecule optimization community [3, 9] and used by Gao
et al. [10] to benchmark many design algorithms in a standardized setting), and provide insights into
the challenges of ZO optimization on molecular objectives.

NeurIPS 2022 AI for Science Workshop.

https://github.com/IBM/QMO-bench
https://github.com/IBM/QMO-bench


Contributions We evaluate several ZO optimization methods for the problem of molecule optimiza-
tion in terms of convergence speed, convergence accuracy, and robustness to the unusual function
landscapes (described further in Section 2.4) of molecular objectives. We show that ZO-signGD [11]
outperforms other methods for molecule optimization in not only speed but also accuracy, despite
being known to have worse convergence accuracy for other problems like adversarial attacks [11],
which indicates that the sign operation is potentially more robust to the function landscapes of
molecular objectives. Furthermore, we provide insights into practical application of ZO optimization
in drug discovery scenarios for both lead optimization tasks and the discovery of novel molecules, as
well as propose the use of a hybrid approach combining others models with QMO.

Related work ZO optimization is a class of methods used for solving black-box problems by
estimating gradients using only zeroth-order function evaluations and performing iterative updates as
in first-order methods like gradient descent (GD) [12]. Many types of ZO optimization algorithms
have been developed, including ZO gradient descent (ZO-GD) [13], ZO-signGD [11], ZO adaptive
momentum method (ZO-AdaMM, or ZO-Adam specifically for the Adam variant) [14], and more
[15, 16]. The optimality of ZO optimization methods has also been studied under given problem
assumptions [17]. ZO optimization methods have achieved impressive feats in adversarial machine
learning, where they have been used for adversarial example generation in black-box settings and
demonstrated comparable success to first-order white-box attacks [18, 19]. They have also been
shown to be able to generate contrastive explanations for black-box models [20]. Finally, Hoffman
et al. [8] showed how ZO optimization methods can also be applied to molecule optimization with
their QMO framework.

2 QMO: Background and Variations

2.1 QMO framework

Following the QMO framework by Hoffman et al. [8], we use an autoencoder to encode molecules
with encoder E : X 7→ Rd and decode latent vectors with decoder D : Rd 7→ X , where X denotes
the discrete chemical space of all drug candidates. We denote with O : X 7→ R a black-box oracle
returning a scalar corresponding to a molecular property of interest (which may also be modified
by adding losses related to other properties), and for ease of notation with the QMO framework,
we define our optimization objective loss function as f(z) = −O(D(z)) for latent representations
z ∈ Rd. As each function query f(z) queries the oracle O with the decoded molecule corresponding
to z, one function query is equivalent to one oracle query.

In QMO, we use ZO optimization methods to navigate the latent space to solve minzf(z). Specifically,
given a starting molecule and its latent representation z0, we iteratively update the current latent
representation following some optimizer, as done in first-order gradient-based methods like gradient
descent. But as we do not have any first-order oracle, we instead use gradients estimated using only
evaluations of f following some gradient estimator. The QMO framework, which closely follows a
generic ZO optimization procedure, is summarized in Algorithm 1.

Algorithm 1 Generic QMO framework for molecule optimization
1: Inputs: Starting molecule x0 ∈ X , encoder E, decoder D, gradient estimation operation

estimate_gradientf (·) for function f , optimizer updating operation update(·), number of
iterations T , and learning rate α

2: Ziterate ← {∅}
3: z0 ← E(x0)
4: for t = 0, 1, ..., T − 1 do
5: ĝt ← estimate_gradientf (zt, E,D)

6: zt+1 ← update(zt, {ĝi}ti=1, α, E,D)
7: Ziterate ← Ziterate ∪ {zt+1}
8: end for

In principle, QMO is a generic framework which can guide searches over any continuous learned
representation based on any discrete space and use any ZO optimization method. Hoffman et al.
[8] used the pre-trained SMILES-based [21] autoencoder (CDDD model) from Winter et al. [22]

2



with embedding dimension d = 512 and ZO-Adam. Here, we use the same autoencoder but
consider several variations of QMO using different gradient estimators and optimizers to provide a
comprehensive study on the effect of ZO optimization methods.

As a note, QMO is applicable to molecule optimization with design constraints. For example, given a
set of property scores {pi}Ii=1 to be optimized with positive coefficients {γi}Ii=1 and a set of property
constraints {cj}Jj=1 with thresholds {ηj}Jj=1, we can define the oracle as

O(x) =
I∑

i=1

γi · pi(x)−
J∑

j=1

max(ηj − cj(x), 0) (1)

where x ∈ X . The vectors z ∈ Ziterate not satisfying cj(D(z)) ≥ ηj for all j ∈ {1, 2, ..., J} can
then be removed from Ziterate.

2.2 ZO gradient estimators

We consider two main ZO gradient estimators. Both average finite differences over Q independently
sampled random perturbations {uq}Qq=1, include a smoothing parameter β, and follow the form:

∇̂f(z) = φ(d)

β ·Q

Q∑
q=1

[f(z+ βuq)− f(z)]uq (2)

The two gradient estimators differ mainly on the sampling method for each random direction uq , and
also by the dimension-dependent factor φ(d). They are:

• Gaussian smoothing (GS) [13, 23]: when we sample each direction from the uniform
distribution U(S(0, 1)) on the unit sphere. For GS, φ(d) = d.

• Bernoulli smoothing-shrinkage (BeS-shrink) [24]: when we craft each random direction
by independently sampling each of its d entries from (B0.5 − 0.5)/m, where B0.5 follows
the Bernoulli distribution with probability 0.5 and m =

√
Q+d−1/4Q is an optimal shrinking

factor. For BeS-shrink, φ(d) = 1.

By averaging over Q random directions to decrease estimation error, the gradient estimation operation
requires querying Q+ 1 different points (which are each decoded into a molecule and used to query
oracle O). We therefore require Q+ 1 oracle evaluations for each optimization iteration.

Additionally, because the above gradient estimators use a (forward) finite difference of 2 points to
estimate the gradient for each random perturbation, we refer to it as a 2-point gradient estimator. An
alternative to the 2-point GS and BeS-shrink gradient estimators are their 1-point alternatives, which
instead have the form:

∇̂f(z) = φ(d)

β ·Q

Q∑
q=1

f(z+ βuq)uq (3)

Similar to 2-point gradient estimators, 1-point estimators require Q+1 oracle queries at each iteration
(the estimation operation itself requires only Q queries, but this does not account for querying the
updated molecule after each iteration). However, 1-point estimators are not commonly used in
practice due to higher variance.

2.3 ZO optimizers

We consider three main optimizers, each having its own updating operation that consists of computing
a descent direction mt and then updating the current point. Each optimizer can be paired with any
ZO gradient estimator. The three are as follows:

• ZO gradient descent (ZO-GD) [13]: analogous to stochastic gradient descent (SGD) in
the first-order stochastic setting. ZO-GD uses the current gradient estimate as the descent
direction mt = ĝt and updates the current point via the rule zt+1 = zt − αmt.

3



Table 1: Summary of ZO optimization methods considered.

ZO optimization method Gradient estimator Optimizer

Adam-2p-BeS-shrink 2-point BeS-shrink Adam
Adam-2p-GS 2-point GS Adam
GD-2p-BeS-shrink 2-point BeS-shrink GD
GD-2p-GS 2-point GS GD
signGD-2p-BeS-shrink 2-point BeS-shrink signGD
signGD-2p-GS 2-point GS signGD

• ZO sign-based gradient descent (ZO-signGD) [11]: analogous to sign-based SGD
(signSGD) [25] in the first-order stochastic setting. ZO-signGD uses the same point updating
rule as ZO-GD but instead uses the sign of the current estimate as the descent direction
mt = sign(ĝt), where sign(·) denotes the element-wise sign operation.

• ZO-Adam [14]: analogous to Adam [26] in the first-order stochastic setting. ZO-Adam
adopts a momentum-type descent direction and an adaptive learning rate.

The ZO optimization methods compared in this paper are summarized in Table 1.

2.4 Motivating the comparison of ZO optimization methods for molecule optimization

We motivate our comparison of optimizers not only in terms of convergence speed and convergence
accuracy, but also in terms of robustness to the unfriendly function landscapes of molecular objectives.
Indeed, molecule optimization is made difficult by variable function smoothness due to "activity
cliffs" in the molecular space where small structural changes cause large changes in oracle values [9].
As optima are infrequent, there are also large and extremely "flat" unfavorable regions in the space,
where the oracle values change minimally and may be very small. Furthermore, because our objective
function f obtains values by querying the oracle O using discrete molecular representations obtained
from decoding the latent vectors, the function landscape is made discrete and thus further non-smooth
(i.e., the function value may have a discrete "jump" at the borders between adjacent regions of latent
vectors which decode to different molecules, see Fig. 1). Thus, being able to effectively navigate
the latent chemical space and not get stuck in unfavorable regions is an important and non-trivial
attribute to pursue in optimization methods.

Sign-based gradient descent is known to be effective in achieving fast convergence speed in stochastic
settings: in the stochastic first-order oracle setting, Bernstein et al. [25] showed that signSGD could
have faster empirical convergence speed than SGD, and in the zeroth-order stochastic setting Liu et al.
[11] similarly showed that ZO-signSGD has faster convergence speed than many ZO optimization
methods at the cost of worse accuracy (i.e., converging only to the neighborhood of an optima). The
fast convergence of sign-based methods is motivated by the idea that the sign operation is more
robust to stochastic noise, and though our formulation of molecule optimization is non-stochastic, the
sign operation is potentially more robust to the difficult landscapes of molecular objective functions.
Adaptive momentum methods like Adam also make use of the sign of stochastic gradients for
determining the descent direction in addition to variance adaption [27], and thus ZO-Adam may also
show robustness to the function landscape.

3 Practical Usage of QMO for Drug Discovery

We imagine QMO can be applied for two main cases: 1) identifying novel lead molecules (finding
molecules significantly different from known leads), and 2) lead optimization (finding slightly
modified versions of known leads).

For the former application case, it may be counterproductive to use known leads as the starting
molecule in QMO, as those leads may be in the close neighborhood of a local optima (or a local optima
themselves) in the function landscape, in which the optimizer would likely get stuck (preventing the
exploration of different areas of the latent chemical space). Instead, it may be more promising to start
at a random point in the chemical space. QMO also has the advantage that it guides search without
the use of a training set, which aids in finding candidates vastly different from known molecules.

4



However, finding a highly diverse set of novel leads may be unlikely within a single run of QMO as
the optimization methods converge to some neighborhood, meaning that multiple random restarts
would likely be necessary to discover a diverse set of lead molecules.

For the latter application case, it is much more sensible to use known leads as the starting molecule
input to QMO. Additionally, rather than using an oracle O evaluating only the main desired drug
property (i.e., activity against a biological target), it may be advantageous to use a modified oracle. For
example, Hoffman et al. [8] apply QMO for lead optimization of known SARS-CoV-2 main protease
inhibitors and antimicrobial peptides (AMPs) following the constrained molecule optimization setting
of (1), with pre-trained property predictors for each task. They set similarity to the original lead
molecule as the property score psim to be optimized, and set constraints on properties of interest
(binding affinity caff for the SARS-CoV-2 task, or toxicity prediction value ctox and AMP prediction
value cAMP for the AMP task). In these formulations, the main optimization objective is actually
molecular similarity rather than the main properties of interest.

Hybrid optimization: Integrating QMO with generative models Additionally, in this paper we
propose to integrate QMO with other models in a hybrid approach: namely, we can use molecules
generated by other models as input to QMO, which will then iteratively optimize each of the inputted
starting molecules. By using other models to generate good lead molecules close to optima, we can
then use QMO to provide a more refined search that may incorporate additional design constraints.
Overall, a hybrid approach could be a query-efficient way to generate drug candidates satisfying
multiple design constraints.

4 Experiments

To benchmark QMO, we select three tasks (oracles) from the popular benchmarking suite Guacamol
[6]: perindopril_mpo (finding molecules similar to perindopril but with a different number of aromatic
rings), zaleplon_mpo (finding molecules similar to zaleplon but a different molecular formula), and
deco_hop (maximizing similarity to a SMILES string while keeping or excluding specific SMARTS
patterns). These represent three of the main categories of Guacamol oracles: similarity-based multi-
property objectives, isomer-based objectives, and SMARTS-based objectives, respectively. The
zaleplon_mpo task is known to be particularly difficult [9]. We also select two baselines, graph-based
genetic algorithm (Graph-GA) [2] and Gaussian process Bayesian optimization (GPBO) [3, 28], both
of which are known to be high-performing molecule optimization algorithms [10].

For each of these tasks, we run experiments using QMO only, baselines only, and hybrid approaches.

• When running experiments using QMO only, we run with several different ZO optimization
methods and try Q = {30, 50, 100} for each, set T = 1000 iterations for perindopril_mpo
and zaleplon_mpo or T = 200 for deco_hop, and average runs from 20 distinct starting
molecules with 2 random restarts each (40 runs total). For each task, we choose to use the
20 lowest-scoring molecules on the oracle from the ZINC 250K dataset [29] as the starting
molecules. We do this in order to show that QMO can find solutions even when starting far
from any high scoring molecules, which we would likely need to do when searching for
novel lead molecules.

• When running baseline models alone, we average runs with two random seeds and limit the
number of oracle queries to 10K.

• When running hybrid approaches, for each baseline model we use a portion of the 10K
query budget to run the model (4K queries for Graph-GA and 2K for GPBO) and use the
remaining query budget to optimize only the top generated molecule using QMO with the
ZO-signGD optimizer and 2-point GS gradient estimator (QMO-sign-2p-GS) with Q = 49.

Note that for these experiments, we consider only the score of the top 1 scoring molecule found so
far for a given run. Additionally, we run QMO only with 2-point gradient estimators, though we
also compare 1-point estimators for QED [30] optimization in Appendix B.1 where we verify the
advantage of 2-point estimators.

5



Figure 1: Function landscapes for various optimized molecules found by QMO. SMILES strings are
listed in Appendix B.2.

4.1 Function landscapes of selected Guacamol objectives

Fig. 1 shows the function landscapes of the selected Guacamol objectives. The origin corresponds to
an optimized latent vector found by QMO, and the vector is perturbed along two random directions
vx and vy sampled from the uniform distribution on the unit sphere.

As shown, the zaleplon_mpo task has the smallest central area consisting of high scoring molecules
and a relatively flat landscape elsewhere, meaning that the QMO optimizer needs to traverse a very
flat unfavorable region to enter a very small optimal neighborhood. This matches the observation that
zaleplon_mpo is a highly difficult task. The deco_hop task, while not nearly as difficult of a task, still
exhibits a very discrete jump in values around the central region, which makes it more difficult for
the QMO optimizer to find the true optimal neighborhood. Finally, perindopril_mpo appears to be
the most smooth function. The optimal central area is larger than for zaleplon_mpo, and the discrete
jumps in function values are not as large as in the other tasks.

4.2 Convergence of ZO optimization methods

Fig. 2 shows the results from experiments run using QMO only and compares the convergence of
ZO optimization methods with different Q. Here, adam_2p_bes-shrink refers to QMO using the
ZO-Adam optimizer with the 2-point BeS-shrink gradient estimator (QMO-Adam-2p-BeS-shrink),

6



Figure 2: Convergence of QMO with different ZO optimizers.

and similarly for the other ZO optimization methods. Diversity scores of the molecules found by
QMO are reported in Appendix B.3.

Overall, the results indicate that ZO-signGD is not only the most query-efficient method, but also the
most robust to difficult function landscapes of molecular objectives. Compared with ZO-Adam, ZO-
signGD converges with both higher speed and better accuracy for most settings, and the difference is
especially clear for low Q and less smooth functions like zaleplon_mpo and deco_hop. The improved
convergence accuracy of ZO-signGD compared to ZO-Adam is particularly interesting as ZO-Adam
converges with much greater accuracy in other problems like adversarial example generation [14],
thus showing the challenges presented by molecular objectives and the improved robustness of
ZO-signGD to their function landscapes.

Finally, as a note, both ZO-Adam and ZO-signGD outperform ZO-GD. In fact, ZO-GD is completely
unsuccessful for the zaleplon_mpo task: even when searching a wide range of hyperparameters
and testing several molecules, ZO-GD is unable to find any molecules with zaleplon_mpo scores
above 0.2 within the first 100 iterations, and often cannot even get above 0.01. Inspection revealed
that the gradient vectors were too small for ZO-GD to make meaningful point updates. Thus, full
zaleplon_mpo experiments were not run using ZO-GD. In addition, results from GS and BeS-shrink
gradient estimators do not differ greatly, though GS seems to converge faster with lower Q.

4.3 Query efficiency of QMO versus other approaches

Fig. 3 shows the optimization curves when limiting optimization to a query 10K budget, including
experiments run using QMO only (specifically, only QMO-sign-2p-GS is shown), baseline models

7



Figure 3: Optimization curves of QMO, generative models, and hybrid methods.

only, and hybrid approaches. Precise numbers and area under curve (AUC) scores are also reported
in Appendix B.4.

The baseline models (Graph-GA and GPBO) demonstrate faster convergence speed than QMO alone,
and the relative convergence accuracies of all methods differ slightly for each task and can be said
to be comparable overall. However, the hybrid approaches combining baseline models with QMO
(i.e., Graph GA + sign_2p_gs) produce similar curves to their baseline model counterparts even for
zaleplon_mpo and deco_hop, where QMO has higher convergence accuracy than the baseline models,
so further investigation may be necessary to effectively integrate QMO into hybrid approaches.

5 Conclusion

In this paper, we study the application of ZO optimization methods to molecule optimization. Through
experimentation on tasks from the Guacamol suite, we show that ZO-signGD outperforms ZO-Adam
and ZO-GD, especially for more difficult function landscapes with small regions of optima, flat
regions, and discrete jumps. Accordingly, we observe that the sign operation can increase robustness
to the difficult function landscapes of molecular objectives, while also achieving higher query
efficiency compared to other optimizer updating methods. We also discuss how the generic QMO
framework can be applied practically in realistic drug discovery scenarios, which includes a hybrid
approach with other models.

To conclude, we would like to mention a few limitations of this study. Synthesizability of molecules
is not accounted for, though one possible approach is to modify the objective function with a
synthesizability loss. Additionally, the effect of autoencoder choice and latent dimension are not
thoroughly investigated for the selected benchmark tasks, though Hoffman et al. [8] provide analysis
for their antimicrobial peptides task. Finally, while Hoffman et al. [8] also show that training an oracle
prediction model (to predict scores based on latent representations) has significant disadvantages in
optimization accuracy compared to always using the oracle itself, we do not thoroughly investigate
the impact it would have on the objective function landscapes in the latent space.

References
[1] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo

design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

[2] Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search
for the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

[3] Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

[4] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,

8



Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[5] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[6] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: bench-
marking models for de novo molecular design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

[7] Miguel García-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato,
Andreas Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better
benchmarks for ligand design. Journal of chemical information and modeling, 62(15):3486–
3502, 2022.

[8] Samuel C Hoffman, Vijil Chenthamarakshan, Kahini Wadhawan, Pin-Yu Chen, and Payel
Das. Optimizing molecules using efficient queries from property evaluations. Nature Machine
Intelligence, 4(1):21–31, 2022.

[9] Austin Tripp, Wenlin Chen, and José Miguel Hernández-Lobato. An evaluation framework for
the objective functions of de novo drug design benchmarks. In ICLR2022 Machine Learning
for Drug Discovery, 2022.

[10] Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W Coley. Sample efficiency matters: A
benchmark for practical molecular optimization. arXiv preprint arXiv:2206.12411, 2022.

[11] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International Conference on Learning Representations, 2018.

[12] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

[13] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[14] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-
adamm: Zeroth-order adaptive momentum method for black-box optimization. Advances in
Neural Information Processing Systems, 32, 2019.

[15] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive linear
speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-
order. Advances in Neural Information Processing Systems, 29, 2016.

[16] Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Yangyang Xu. Zeroth-order optimization
for composite problems with functional constraints. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 7453–7461, 2022.

[17] Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization.
Advances in Neural Information Processing Systems, 34:324–334, 2021.

[18] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15–26,
2017.

[19] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh,
and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for
attacking black-box neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 742–749, 2019.

9



[20] Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen, Karthikeyan Shan-
mugam, and Ruchir Puri. Model agnostic contrastive explanations for structured data. arXiv
preprint arXiv:1906.00117, 2019.

[21] David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences, 28
(1):31–36, 1988.

[22] Robin Winter, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. Learning continuous and
data-driven molecular descriptors by translating equivalent chemical representations. Chemical
science, 10(6):1692–1701, 2019.

[23] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimiza-
tion in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 385–394, 2005.

[24] Katelyn Gao and Ozan Sener. Generalizing gaussian smoothing for random search. In Interna-
tional Conference on Machine Learning, pages 7077–7101. PMLR, 2022.

[25] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[27] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404–413. PMLR,
2018.

[28] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of the
27th International Conference on Machine Learning, pages 1015–1022, 2010.

[29] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

[30] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

[31] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal
graph-to-graph translation for molecule optimization. In International Conference on Learning
Representations, 2018.

10



Appendix

A Implementation details

Winter et al. [22] showed that their CDDD autoencoder model has a high validity rate of 97%, even
when traversing a large distance from the valid latent representations of randomly picked molecules.
In our implementation of QMO, we dealt with decode failures by assigning a penalty score of 0.1
less than the score of the starting molecule, f(z0)− 0.1.

Also, we only considered the molecules generated after each optimization iteration. That is, we did
not consider the Q molecules obtained from decoding the perturbed latent vectors {z + βuq}Qq=1
(used for estimating gradients) in Ziterate despite that they were also used to query the oracle O.
Especially in a realistic drug discovery scenario where oracle evaluations are highly expensive, we
would of course want to also consider these molecules in case they exhibit good properties. In
addition, while we considered there to be Q+ 1 oracle evaluations necessary for each optimization
iteration, the actual amount would be lower in practice as some of the perturbed latent vectors would
decode to the same molecule since the perturbations are small (and a small number of latent vectors
would also decode to no valid input).

All experiments were run using Google Colab, and code for QMO is available at: https://github.
com/IBM/QMO-bench. For the Graph-GA and GPBO baseline models, we adopt the implementation
of Gao et al. [10].

B Additional results

B.1 Comparing 1-point and 2-point gradient estimators

Though we ran only 2-point gradient estimators on the Guacamol tasks, we also compared 1-point
gradient estimators on the QED [30] objective. Specifically, following the setup of Hoffman et al. [8],
we defined a minimum similarity threshold of 0.4 (and did not consider molecules with similarity less
than 0.4 to the starting molecule) and set the oracleO(x) = 4 ·QED(x)−max(0.4− sim(x, x0), 0)
for molecule x ∈ X and starting molecule x0, where sim(·) denotes Tanimoto similarity with Morgan
fingerprints. We selected 100 molecules with QED scores in [0.7, 0.8] from the test set in [31] (who
extracted the molecules from ZINC) and optimized each with T = 20 iterations and 20 random
restarts each. We consider an optimized molecule a success if its QED scores falls in [0.9, 1.0],
and we visualize in Fig. B1 how many random restarts are necessary for different ZO optimization
methods to achieve a given success rate. As shown, 2-point gradient estimators achieve significantly
higher success rates than their 1-point counterparts given the same number of random restarts.

B.2 SMILES strings of molecules found by QMO

The SMILES strings from Fig. 1 are as follows:

Figure B1: Optimization of QED with different ZO optimizers.

11

https://github.com/IBM/QMO-bench
https://github.com/IBM/QMO-bench


• s1 = CCCC(NC(C)Cn1c(C2CCCCC2)nc2cc(C(=O)O)ccc21)C(=O)OCC

• s2 = CCCC(C(=O)OCC)c1nc2cc(C(=O)O)ccc2n1C1CCCCC1C(C)=O

• s3 = CCCC(C)n1c(C(=O)NC(C)C(=O)OCC)cc2cc(C3CCCCC3)cc(C(=O)O)c21

• s4 = COc1cc(C(=O)NCC23CC=CC2C3)nc2c(C#N)cccc12

• s5 = CCC1(CC)C(C(=O)Nc2cccc(F)c2)=CN=C2C=C(C#N)C(=O)N21

• s6 = CCC12CC(CO1)N(C(=O)c1cnc3cccc(C#N)c(=O)c3c1)C2

• s7 = COc1cc2ncnc(Nc3ccc(F)c4ncccc34)c2cc1C(C)C

• s8 = CCCCOc1ncccc1C(=O)CNc1ncnc2cc(OC(F)F)c(F)cc12

• s9 = COc1cc(Nc2ncnc3cc(OC)c([N+](=O)[O-])cc23)ccc1F.

B.3 Diversity metrics

Table B1 shows the diversity of the QMO optimized molecules from Section 4.2 (optimized using
sign_2p_gs with Q = 50). For each starting molecule in the test set, the best molecule found after
two random restarts was used, showing the diversity of molecules that can be generated from different
starting points. Hoffman et al. [8] also showed how different random restarts starting from the same
starting point can find diverse candidates.

Table B1: Diversity of 20 QMO optimized molecules from different starting points.

Task Average score Diversity

perindopril_mpo 0.628 0.678
zaleplon_mpo 0.500 0.805
deco_hop 0.859 0.664

B.4 Query efficiency tables

Scores from Fig. 3 are summarized below in Tables B2, B3, and B4.

C Other ZO optimization methods

Other than the ZO optimization methods considered here, ZO stochastic coordinate descent (ZO-
SCD) [15] was also tested. However, because the coordinate-wise gradient estimator relies on
perturbing coordinates individually, the perturbed vector embeddings used to estimate gradients
almost always decoded back to the same molecule as the original non-perturbed vector. In other
words, the autoencoder almost always perceived the embedding vectors with all coordinates the same
but one coordinate to be the same molecule, so the coordinate-wise gradient estimates were almost
always zero.

Table B2: Scores for perindopril_mpo with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph_ga 0.527 0.453 0.465 0.490 0.533 0.593
gpbo 0.502 0.446 0.478 0.478 0.494 0.583
sign_2p_gs (Q = 30) 0.456 0.219 0.327 0.408 0.490 0.544
sign_2p_gs (Q = 50) 0.441 0.176 0.284 0.388 0.485 0.541
sign_2p_gs (Q = 100) 0.395 0.101 0.218 0.330 0.439 0.507
graph_ga_4k + sign_2p_gs (Q = 49) 0.522 0.466 0.491 0.501 0.531 0.572
gpbo_2k + sign_2p_gs (Q = 49) 0.487 0.435 0.438 0.438 0.508 0.555

12



Table B3: Scores for zaleplon_mpo with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph_ga 0.315 0.167 0.239 0.294 0.337 0.362
gpbo 0.241 0.172 0.244 0.244 0.253 0.261
sign_2p_gs (Q = 30) 0.259 0.001 0.013 0.105 0.321 0.406
sign_2p_gs (Q = 50) 0.233 0.000 0.007 0.048 0.291 0.390
sign_2p_gs (Q = 100) 0.158 0.000 0.000 0.013 0.168 0.333
graph_ga_4k + sign_2p_gs (Q = 49) 0.314 0.183 0.239 0.298 0.331 0.359
gpbo_2k + sign_2p_gs (Q = 49) 0.307 0.223 0.254 0.276 0.329 0.350

Table B4: Scores for deco_hop with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph_ga 0.634 0.580 0.600 0.638 0.650 0.676
gpbo 0.663 0.587 0.615 0.615 0.626 0.792
sign_2p_gs (Q = 30) 0.582 0.529 0.539 0.572 0.638 -
sign_2p_gs (Q = 50) 0.652 0.529 0.548 0.576 0.669 0.783
sign_2p_gs (Q = 100) 0.604 0.522 0.537 0.558 0.622 0.702
graph_ga_4k + sign_2p_gs (Q = 49) 0.661 0.592 0.602 0.637 0.655 0.741
gpbo_2k + sign_2p_gs (Q = 49) 0.716 0.591 0.597 0.597 0.772 0.859

D Hyperparameter tuning

Aside from the number of random perturbations Q, there are two other main hyperparameters for
each of the ZO optimization methods compared: function smoothing parameter β, and learning rate
α. The value β = 10 was used for all tasks as it was found to work well with the CDDD model.
Consistent with Hoffman et al. [8], we find that β = 1 or below does not work well (as gradients
cannot be accurately approximated without sufficient smoothing) and β = 100 or above results in
many decode failures. When trying a few molecules with β values between this range (including
β = {5, 10, 20, 50} for each task, β = 10 still performed best for the majority of molecules. The
tuning of α is shown in Table D1 and Table D2. As a note, α larger than the largest tested values
for each optimization method often resulted in many decode failures, so even if the best α was the
largest value tested, choosing notably larger α (greater by more than a factor of 2) may not be a good
idea. Also, for ZO-Adam, two additional hyperparameters are used for the adaptive learning rate: the
exponential averaging parameters β1 and β2. For these parameters, we use the default values used by
the PyTorch Adam implementation, β1 = 0.9 and β2 = 0.999.

E Licenses

All test sets of molecules were originally extracted from the ZINC database [29] which is free for use
by anyone.

13



Table D1: Tuning of learning rate α for Guacamol tasks. Scores correspond to the average scores
after optimizing 20 molecules with 2 random restarts each (40 trials total) for T = 1000 iterations.

Task Methods Learning rate α Q = 30 Q = 50 Q = 100

perindopril_mpo

adam_2p_bes-shrink
0.1 0.555 0.598 0.607
0.2 0.578 0.617 0.635
0.3 0.564 0.617 0.654

adam_2p_gs
0.1 0.600 0.600 0.604
0.2 0.589 0.611 0.635
0.3 0.560 0.605 0.637

grad_2p_bes-shrink 30.0 0.429 0.585 0.611
50.0 0.466 0.555 0.598

grad_2p_gs 2.0 0.584 0.582 0.571
5.0 0.500 0.566 0.630

sign_2p_bes-shrink
0.05 0.531 0.593 0.602
0.1 0.598 0.630 0.629
0.2 0.531 0.575 0.615

sign_2p_gs
0.05 0.583 0.595 0.593
0.1 0.585 0.610 0.635
0.2 0.534 0.564 0.617

zaleplon_mpo

adam_2p_bes-shrink
0.1 0.386 0.445 0.449
0.2 0.208 0.447 0.483
0.3 0.151 0.376 0.470

adam_2p_gs
0.1 0.455 0.465 0.472
0.2 0.374 0.453 0.491
0.3 0.321 0.425 0.483

sign_2p_bes-shrink
0.05 0.382 0.398 0.429
0.1 0.478 0.485 0.477
0.2 0.410 0.445 0.485

sign_2p_gs
0.05 0.436 0.442 0.429
0.1 0.460 0.487 0.488
0.2 0.399 0.441 0.483

deco_hop

adam_2p_bes-shrink
0.1 0.544 0.564 0.605
0.2 0.578 0.636 0.722
0.3 0.585 0.628 0.738

adam_2p_gs
0.1 0.564 0.585 0.603
0.2 0.603 0.638 0.735
0.3 0.612 0.669 0.741

grad_2p_bes-shrink 50.0 0.480 0.587 0.666
70.0 0.508 0.634 0.739

grad_2p_gs

2.0 0.554 0.544 0.543
5.0 0.608 0.597 0.584
7.0 0.596 0.681 0.653

10.0 0.592 0.696 0.688

sign_2p_bes-shrink
0.1 0.645 0.709 0.784
0.2 0.663 0.748 0.860
0.3 0.613 0.670 0.746

sign_2p_gs
0.1 0.676 0.763 0.762
0.2 0.657 0.783 0.865
0.3 0.616 0.621 0.763

14



Table D2: Tuning of learning rate α for QED task. Scores correspond to the average of the success
rates of optimizing 100 molecules after 1, 5, and 20 random restarts with T = 20 iterations per
restart.

Methods Learning rate α Q = 30 Q = 50 Q = 100

adam_1p_bes-shrink
0.05 0.007 0.013 0.050
0.1 0.193 0.193 0.290
0.2 0.287 0.277 0.403

adam_1p_gs
0.05 0.003 0.010 0.030
0.1 0.180 0.20 0.237
0.2 0.317 0.290 0.350

adam_2p_bes-shrink
0.05 0.187 0.363 0.497
0.1 0.443 0.577 0.730
0.2 0.623 0.730 0.777

adam_2p_gs
0.05 0.337 0.400 0.507
0.1 0.627 0.707 0.777
0.2 0.723 0.733 0.787

grad_1p_bes-shrink 0.5 0.053 0.070 0.123
1.5 0.440 0.507 0.590

grad_1p_gs
0.1 0.420 0.243 0.100
0.2 0.437 0.497 0.453
0.5 0.120 0.220 0.323

grad_2p_bes-shrink
10.0 0.137 0.357 0.767
20.0 0.283 0.633 0.840

grad_2p_gs

0.2 0.103 0.090 0.087
0.5 0.350 0.323 0.260
1.5 0.750 0.770 0.743
2.0 0.697 0.793 0.780

sign_1p_bes-shrink
0.05 0.010 0.027 0.040
0.1 0.257 0.287 0.317
0.2 0.453 0.490 0.503

sign_1p_gs
0.05 0.000 0.017 0.010
0.1 0.173 0.270 0.287
0.2 0.447 0.480 0.500

sign_2p_bes-shrink
0.05 0.177 0.360 0.510
0.1 0.497 0.723 0.810
0.2 0.670 0.833 0.890

sign_2p_gs
0.05 0.293 0.373 0.483
0.1 0.677 0.730 0.813
0.2 0.777 0.800 0.860

15


	Introduction
	QMO: Background and Variations
	QMO framework
	ZO gradient estimators
	ZO optimizers
	Motivating the comparison of ZO optimization methods for molecule optimization

	Practical Usage of QMO for Drug Discovery
	Experiments
	Function landscapes of selected Guacamol objectives
	Convergence of ZO optimization methods
	Query efficiency of QMO versus other approaches

	Conclusion
	Implementation details
	Additional results
	Comparing 1-point and 2-point gradient estimators
	SMILES strings of molecules found by QMO
	Diversity metrics
	Query efficiency tables

	Other ZO optimization methods
	Hyperparameter tuning
	Licenses

